# **Energy Systems Analysis**

### **Rakesh Agrawal**

School of Chemical Engineering Purdue University West Lafayette, IN 47907

# **Presentation Overview**

- Why is Energy Important?
- How is Energy Used?
- Availability of Primary Energy Sources?
- What will the Fossil-Fuel deprived future be?
- Fuel for the Transportation Sector
  - H<sub>2</sub> as an energy carrier



# Why is Energy Important?



# Why is Energy Important?



Source: www.goodworksonearth.org



4

# Why is Energy Important?















# Energy Consumption is Way of Life in Industrialized Countries

2007 Primary energy consumption per capita





6

# **How is Energy Used?**



7

# As an Example, Consider the USA Energy Landscape



# U.S. Energy Flow – 2005 (quadrillion Btu)



**OBSERVATION: 85% Energy from Fossil Fuels** 



9

©2008 R. Agrawal

Source :EIA

# US Energy Flow – 2005



Source : LLNL



UNIVERSITY

# U.S. Energy Flow - 2005

- In U.S. more than 52% Electricity from coal (also true for China & India)
- More than 55% of Energy is lost or wasted!
- Internal Compression Engines are quite inefficient.



11

# U.S. 2002 Carbon Dioxide Emissions from Energy Consumption — 5,682\* Million Metric Tons of CO<sub>2</sub>





Lawrence Livermore National Laboratory, May 2004 http://eed.llnl.gov/flow/

UNIVERSITY

#### **Total World CO<sub>2</sub> Emissions ~ 28,000 Million Metric Tons**

# **Availability of Primary Energy Sources**



# **Some Energy Facts**



# **World Oil Production**

15

ERS



#### Total proven conventional oil reserve = 1238 billion bbl

©2008 R. Agrawal

Source : BP Statistical Review of world Energy 2008

### World Oil Reserves-to-Production (R/P) Ratios



Reserves are 16% above 1997 level

- Production is 13% higher than 1997 level
- USA R/P = 11.7 years
- USA R/Consumption = 3.9 years

Source : BP Statistical Review of world Energy 2008



# **Natural Gas Production**



- Total proven gas reserve = 177.4 trillion m<sup>3</sup>
- Natural gas demand continues to rise

Source : BP Statistical Review of world Energy 2008



# Natural Gas Reserves-to-Production Ratios



- Reserves are 21% above 1997 level
- Production is 32% higher than 1997 level
- USA R/P = 10.9 years
- In USA, natural gas production has remained flat over the last decade

Source : BP Statistical Review of world Energy 2008





- Proven World Reserve = 848 billion tons
- World Reserve-to-Production Ratio = 133 years
- USA Reserve-to-Production Ratio = 234 years



19

# It seems that there is enough hydrocarbon fuel to last for the next fifty years!



**©2008** RrAygrawal

# It seems that there is enough hydrocarbon fuel to last for the next fifty years!

However.....



**©2008** RrAygrawal

### The world population is expected to rise



**©2008 R**rAygrawal

- The world population is expected to rise
- World energy consumption rate is expected to rise



# **World Marketed Energy Consumption**



- World primary energy usage rate in 2007 was 14.8 TW
- By 2050, the usage rate could be 28 TW

#### **Consumption rate could double!**



- The world population is expected to rise
- World energy consumption rate is expected to rise

# China's current economic growth is expected to accelerate energy consumption



# China's Recent Energy Consumption



- Average growth rate over past quarter century > 10%!
- Current China's primary energy consumption = 13.7 billion boe
- Current USA's primary energy consumption = 17.3 billion boe



S



# China could Quadruple its Energy Consumption Soon!

Development of Japan, 1940 - 2000



adaptation : Prof. M Suzuki



# China could Quadruple its Energy Consumption Soon!

Development of Japan, 1940 - 2000





# **China's Recent Energy Consumption**

- Average growth rate > 10%!
- Current China's primary energy consumption = 13.7 billion boe
- Current USA's primary energy consumption = 17.3 billion boe
- If primary energy @ per capita rate of Japan = 43.9 billion boe
- Current total world's energy consumption = 81.4 billion boe



- The world population is expected to rise
- World energy consumption rate is expected to rise
- China's current economic growth is expected to accelerate energy consumption

# Oil production will peak during the lifetime of a child born today



- The world population is expected to rise
- World energy consumption rate is expected to rise
- China's current economic growth is expected to accelerate energy consumption
- Oil production will peak during the lifetime of a child born today
- For most nations it is national energy independence and security issue



- The world population is expected to rise
- World energy consumption rate is expected to rise
- China's current economic growth is expected to accelerate energy consumption
- Oil production will peak during the lifetime of a child born today
- For most nations it is national energy independence and security issue
- It takes a long time to develop a new energy source and its infrastructure



- The world population is expected to rise
- World energy consumption rate is expected to rise
- China's current economic growth is expected to accelerate energy consumption
- Oil production will peak during the lifetime of a child born today
- For most nations it is national energy independence and security issue
- It takes a long time to develop a new energy source and infrastructure

Therefore, we must develop alternative energy sources before the current ones are nearly depleted.



# **Alternate Energy Sources**

- Biomass
- Hydroelectricity
- Wind
- Nuclear
- Solar



# Biomass: Sustainable source of carbon but...

# All US corn and soybean can meet only 12% of gasoline and 6% of diesel demand



Source. Hill et al., PNAS, 103, 2006

# Biomass: Sustainable source of carbon but...

All US corn and soybean can meet only 12% of gasoline and 6% of diesel demand

Therefore, one must use lignocellulosic mass to increase oil production.

**Still requires large land area for cultivation!** 



36



## Total 2007 world primary energy can be met by 8% USA land area\*

## U.S primary energy can be met by 1.7% of USA land area

\* PV efficiency of 10%



37

## **Alternate Energy Sources**

- Biomass
- Hydroelectricity
- Wind
- Nuclear
- Solar

## Nuclear and solar are the only ones that can alone meet all the energy needs.



38

### Why is Solar use not Prevalent?



## **Production Cost of Electricity**



UNIVERSITY

## Photovoltaic Cost has been Declining



adaptation : UN report

#### However, to be truly competitive, cost has to come below \$1,000/kw



41

## **To Sum Up Our Discussion...**

- Energy is one of the grand challenges of our time
- World is not about to run out of oil or NG
- However,
  - Demand for energy is growing rapidly
  - Conventional oil will peak out in a few decades
  - Most nations do not have enough oil or NG
- Must develop alternate energy sources
- This development must start now
- Solar can provide a long term viable option



#### However...

- In near future, no one primary energy source will dominate
- Primary Energy mix will change with time
- Eventually, use of renewables and nuclear will emerge and become dominant

#### ... Let us examine a Future State first, and then build transition Pathways



## What will the world look like in a Fossil-Fuel deprived Future?



## **Solar Economy vision**



## All uses must coexist: Use of Solar Photons must be optimized.



#### How should one optimize the use of Solar Photons? (or nuclear heat)

## ... Let us start by examining conversion efficiencies

















©2008 R. Agrawal

**RDUE** 

UNIVERSITY



©2008 R. Agrawal

**RDUE** 

UNIVERSITY









### Preferred Ranking on the basis of Recovery Efficiencies

- Heat
- Electricity
- H<sub>2</sub>
- Biomass/Liquid Fuel

#### However, challenges involved with:

- Intermittency/Storage
- Transmission/Long distances
- Cost

## ... Of all the end uses most challenging is transportation.



### The transportation sector constitutes

- Cars (Light Duty Vehicles)
- Trucks
- Busses
- Trains
- Airplanes

#### And needs:

- High energy density fuel ~ 33 kWh/gallon of gasoline
- Ease of use/handling
- Safe in the hands of a common man



#### Energy Systems Analysis of the U.S. Transportation Sector



## **Transportation Fuels**

### **Current State**

 Liquid Hydrocarbons from Crude Petroleum

- **Future State**
- Crude oil scarce
- Coal to Liquid
- Gas to Liquid
- Nuclear
- Sun to Fuel



## **Sun to Wheels**

## **Option #1: Sun to biofuels**

## **Question:**

# How much land area to support the entire US transportation sector?





#### Land area for 13.8 mbbl/d = 25-55% of the total US land area Total US land area: 3.6 million mi<sup>2</sup>



## **Sun to Wheels**

# Biomass alone can not meet the need for the entire US transportation sector



## **Sun to Wheels**

## **Option #2: Sun to electricity**

- To travel 350 miles, amount of electricity needed = 105 kWh
- However, battery storage ≤ 100 Wh/kg
- On-board electric storage is a challenge
- Plug-in hybrids vehicle (PHEV) will have a role to play



## **Plug-in hybrid vehicles (PHEV)**



Parks et al., NREL/TP-640-41410, May 2007





## **Sun to Wheels**

## **Option #3: H<sub>2</sub> Fuel Cell Vehicles**



## Hydrogen





65

## Hydrogen as an Energy Carrier – Its Promises and Challenges



## **The Promise of Hydrogen**



Source: EPA

#### Clean and efficient conversion to power No pollutants – only water as byproduct



67

## The Challenge of Hydrogen

- It is just an energy carrier
- Must be produced from an energy source
- Inefficiencies in the steps of production, transportation and delivery



### **Committee on Alternatives and Strategies for Future Hydrogen Production and Use**

MICHAEL P. RAMAGE, NAE,1 Chair, ExxonMobil Research and Engineering Company (retired), Moorestown, New Jersey

**RAKESH AGRAWAL**, NAE, Air Products and Chemicals, Inc., Allentown, Pennsylvania Now at Purdue University, West Lafayette, Indiana

DAVID L. BODDE, University of Missouri, Kansas City

**ROBERT EPPERLY**, Consultant, Mountain View, California

ANTONIA V. HERZOG, Natural Resources Defense Council, Washington, D.C.

**ROBERT L. HIRSCH**, Scientific Applications International Corporation, Alexandria, Virginia

MUJID S. KAZIMI, Massachusetts Institute of Technology, Cambridge

ALEXANDER MacLACHLAN, NAE, E.I. du Pont de Nemours & Company (retired), Wilmington, Delaware

GENE NEMANICH, Independent Consultant, Sugar Land, Texas

WILLIAM F. POWERS, NAE, Ford Motor Company (retired), Ann Arbor, Michigan MAXINE L. SAVITZ, NAE, Consultant (retired, Honeywell), Los Angeles, California

WALTER W. (CHIP) SCHROEDER, Proton Energy Systems, Inc., Wallingford,

Connecticut

**ROBERT H. SOCOLOW**, Princeton University, Princeton, New Jersey

DANIEL SPERLING, University of California, Davis

ALFRED M. SPORMANN, Stanford University, Stanford, California

JAMES L. SWEENEY, Stanford University, Stanford, California

1 NAE = Member, National Academy of Engineering



**Focus of the Study** 

#### **Transportation**

#### **Light Duty Vehicles (LDVs)**





70

### Hydrogen Fuel Cell Car



71

UNIVERSITY

©2008 R. Agrawal

© R. Agrawal, 2008

## Focus of the H<sub>2</sub> Systems Analysis

- Estimated current and future
  - Projected costs
  - Energy efficiencies
  - Carbon dioxide (CO<sub>2</sub>) emissions
- Addressed national security issues
  - Availability of each feed stock
  - Impact on oil import
- Addressed infrastructure issues



72

## H<sub>2</sub> Production Technologies

- Natural Gas
- Coal
- Nuclear
- Biomass
- Electrolysis
- Wind
- Solar (PV)

#### Both current and potential future technologies considered



73

## **Production Sizes**

#### **1.** Central Station

- Production capacity ~ 1.2 MM kg/d
- Supports ~ 2 MM cars
- **2.** Midsize plant
  - Production capacity ~ 24,000 kg/d
  - Supports ~ 40,000 cars
- **3. Distributed Plant** 
  - Production capacity ~480 kg/d
  - Supports ~ 800 cars



## **Performance Assumptions**

#### Efficiency of Fuel Cell Vehicles (FCV) =

**1.66** × Efficiency of Gasoline Hybrid Electric Vehicles (GHEV)



## **Delivered H<sub>2</sub> Costs of Various Technologies**



GEA = Gasoline Efficiency Adjusted – scaled to hybrid vehicle efficiency



## **Delivered H<sub>2</sub> Costs of Various Technologies**



GEA = Gasoline Efficiency Adjusted – scaled to hybrid vehicle efficiency



77

## **Delivered H<sub>2</sub> Costs of Various Technologies**

- Natural gas, coal and nuclear can provide H<sub>2</sub> at comparable cost to gasoline
- In future, wind has a potential to provide comparable cost
- Solar requires breakthrough technology to compete



## However, there are other issues besides cost

- Overall system efficiency
- Carbon release to atmosphere
- Availability of feedstock



79

## However, there are other issues besides cost

- Overall system efficiency
- Carbon release to atmosphere
- Availability of feedstock



80

## **Well-To-Wheels Energy Use**





## **Well-To-Wheels Energy Use**



Most Technologies Have Overall Efficiency Comparable to Gasoline



## However, there are other issues besides cost

- Overall system efficiency
- Carbon release to atmosphere
- Availability of feedstock



## Carbon Released During H<sub>2</sub> Production, Dispensing & Delivery (Future Technologies)





84

## Carbon Released During H<sub>2</sub> Production, Dispensing & Delivery (Future Technologies)



#### For All Sources, Carbon Emission is Not More Than Gasoline



## However, there are other issues besides cost

- Overall system efficiency
- Carbon release to atmosphere
- Availability of feedstock



## Penetration Curves for Fuel Cell Vehicles (USA) Optimistic Case Postulated by Committee



**Complete replacement of ICE vehicles with fuel cell vehicles in 2050** 



## **Hydrogen Penetration Scenario (USA)**





88

## Land Use in Biomass Gasification Option (USA)



Currently available: 700,000 mi<sup>2</sup> cropland, 900,000 mi<sup>2</sup> pasture land



89

#### NATURAL GAS SMR Natural Gas Use Due to Use of H<sub>2</sub> in FCVs





#### NATURAL GAS SMR Natural Gas Use Due to Use of H<sub>2</sub> in FCVs





## How about CO<sub>2</sub> Sequestration?



## **Cumulative Carbon Sequestration (USA)**



- Capacity of depleted U.S. oil and gas reservoirs = 150+ billion metric tons CO<sub>2</sub>
- Capacity of unminable U.S. coal seams = 55 billion metric tons CO<sub>2</sub>



## To Sum Up Hydrogen Discussion So Far...

#### For fossil fuels:

- Cost of H<sub>2</sub> is no greater than gasoline
- Well to wheel efficiency is no worse than gasoline
- Carbon emission is not increased
- Enough space to sequester CO<sub>2</sub>



## ...So What are the Major Challenges to Hydrogen Use for the Light Duty Vehicles?



95

#### **Fuel cell**

- Cost needs reduction (greater than \$2000/kw to less than \$100/kW)
- Efficiency needs improvement (from less than 50% to greater than 65%)
- Lifetime must be increased (from less than 1000 hrs to 4000-5000 hrs)
- Operating temperature issues



**On board storage** 

- High pressure or cryogenic tanks take up too much space
- Safety perception with high pressure tanks



### **Energy density of hydrogen**

|                             | kWh/kg | kWh/gal | Eq. vol.(gal)<br>(5 kg H <sub>2</sub> ) |
|-----------------------------|--------|---------|-----------------------------------------|
| H <sub>2</sub> @ 10,000 psi | 33.3   | 5.0     | 33                                      |
| Liquid H <sub>2</sub>       | 33.3   | 8.9     | 18                                      |
| Gasoline                    | 11     | 33.6    | 8.3                                     |



**Development of infrastructure to provide H<sub>2</sub> for LDV use** 

- 'Chicken and Egg' problem
- For fossil fuel H<sub>2</sub>, distribution and dispensing costs compete with production cost
- Transition path not clear
- Cost and efficiency of current distributed H<sub>2</sub> generator are unacceptable



99

H<sub>2</sub> could be provided from fossil fuels

- Might need viable CO<sub>2</sub> capture and storage
- Reservoir studies
- Long-term risk analysis
- Requires successful collection/disposal of other pollutants



In the long run H<sub>2</sub> needs to be produced from renewable or nuclear

- Current cost is too high
- Major breakthroughs are needed
  - Wind (electrolysis)
  - Solar
  - Nuclear



## **Sun to Wheels**

## Summary for option #3 (H<sub>2</sub> FCV)

- Need for a common energy carrier such as H<sub>2</sub>?
- H<sub>2</sub> economy will not happen "soon"
- In the transition period, H<sub>2</sub> can be produced from fossil fuels without much negative consequences
- Although H<sub>2</sub> can be produced from fossil fuels without much negative consequences, following major challenges must be met first
  - Cost effective and durable FC systems
  - H<sub>2</sub> storage
  - Safety in the hands of general population
- However, the final solution must use renewables or nuclear



## **Sun to Wheels**

## **Option #4: Electricity & Biofuels**

- 5.5 Mbbl/d replaced with PHEVs of 40 miles per charge of batteries
- 8.3 Mbbl/d still needed

# Question: Can we get 8.3 Mbbl/d sustainably from biomass?



## **Sun to Wheels**

## **Option #4: Electricity & Biofuels**

 Explore alternative synergistically integrated processes to produce 8.3 Mbbl/d.



## Novel synergistic integration for fuel



©2008 R. Agrawal

## **PURDUE**

105

## A Novel Biomass and H<sub>2</sub> from Carbon-free energy source partnership



**Carbon-free Energy Source** 

## A Hybrid Hydrogen-Carbon (H<sub>2</sub>CAR<sup>™</sup>) Economy!

Agrawal et al., PNAS, 104, 2007



NIVERSITY

## H<sub>2</sub>CAR<sup>™</sup> economy

- Biomass primarily supplier of carbon atoms
- H<sub>2</sub> from a sustainable carbon-free source
- H<sub>2</sub> converts every carbon atom to liquid fuel
- No release of CO<sub>2</sub> during conversion process
- CO<sub>2</sub> release only at end use
- A solution to store H<sub>2</sub> as a high density fuel
- A sustainable open-loop cycle for carbon



## An Example of a synergistic Solution Novel H<sub>2</sub>CAR<sup>™</sup> Process





108

Agrawal et al., PNAS, 104, 2007

## **Requirements for 8.3 Mbbl/d**

| Process             | Biomass       | Land area                  |  |
|---------------------|---------------|----------------------------|--|
|                     | Requirement   | (million km <sup>2</sup> ) |  |
|                     | (Billion Ton) |                            |  |
| Conventional        | 2.26          | 1.51                       |  |
| H <sub>2</sub> CAR™ | 0.85          | 0.57                       |  |



# Production of 13.84 million bbl/d of synthetic oil using Biomass

#### **Future Case<sup>1</sup>:**

**Gasifier Efficiency = 70%** 

Biomass growth rate = 1.5 kg dry mass/m<sup>2</sup>/yr

| Case         | Land area<br>(million km²) |                | Required<br>H <sub>2</sub> | Carbon<br>Efficiency | Energy<br>Efficiency |
|--------------|----------------------------|----------------|----------------------------|----------------------|----------------------|
|              | Biomass                    | H <sub>2</sub> | (Billion<br>kg/yr)         | (%)                  | (%)                  |
| Conventional | 2.5                        | 0              | 0                          | 36.7                 | 40.6                 |
| H₂CAR™       | 0.92*                      | 0.046*         | 239                        | ~100                 | 58                   |

\*Needs only 10% of the US land area or half of current cropland area! Currently available: 1.8 million km<sup>2</sup> cropland, 2.3 million km<sup>2</sup> pasture land



©2008 R. Agrawal

<sup>1</sup>NRC H<sub>2</sub> Report

## **Effect of Biomass growth rate on land area**



VERSI

ΤY

## Advantages of Biomass H<sub>2</sub>CAR<sup>™</sup>

- Crop Diversity (Biodiversity vs Monocultures)
- Tailor biomass to maximize carbon pickup
- Reduction in land area radius to support a plant
- Reduction in biomass storage space
- Reduced energy input



112

## Advantages of Biomass H<sub>2</sub>CAR<sup>™</sup> (contd.)

- Decreased use of fertilizer and pesticides
- Decreased wear and tear to land
- Plausible use of carbonaceous municipal waste
- Synthesis of desired hydrocarbon molecules



113

## Challenges for the Proposed H<sub>2</sub>CAR<sup>™</sup> process

- Cost-effective production of H<sub>2</sub> from carbon-free energy source
- Biomass growth rate and yield
- Design and operation of Novel Gasifier
- More selective conversion to desired synthetic liquid fuel
- Efficient Internal Combustion Engine



## Why Concept Works?



#### **Energy source for a barrel of oil**

#### **Gasifier Efficiency = 70%**

|              | Biomass (MJ) | Hydrogen (MJ) |
|--------------|--------------|---------------|
| Conventional | 8779         | -             |
| H₂CAR™       | 3193         | 3799          |

Nearly 55% energy in final barrel of oil comes from H<sub>2</sub>!



# Problems with current gasification processes

## Carbon efficiency of 30-40% results in large land area requirements



#### How 60-70% carbon is lost in biomass case?





#### **An Alternative Interim Solution**

## **Synthetic oil from Coal**



## **Novel H₂CAR<sup>™</sup> Process for Coal**





# Production of 13.84 million bbl/d of synthetic oil using Coal

**Gasifier Efficiency = 75%** 

| Case         | Amt of<br>Coal<br>(Billion<br>tons/yr) | Required<br>H <sub>2</sub><br>(Billion<br>kg/yr) | CO <sub>2</sub><br>sequestered<br>(Gtc/yr) | Carbon<br>efficiency<br>(%) | Energy<br>efficiency<br>(%) |
|--------------|----------------------------------------|--------------------------------------------------|--------------------------------------------|-----------------------------|-----------------------------|
| Conventional | 1.97                                   |                                                  | 0.9                                        | 39.9                        | 50.7                        |
| H₂CAR™       | 0.83                                   | 211.46                                           | 0                                          | ~100                        | 65.2                        |

#### **No Need for CO<sub>2</sub> sequestration!**



### **Longevity of Coal Reserves in USA\***

- At current consumption rate of 1.13 billion tons/yr ~ 244 yrs
- With Additional production of 13.8 mbbl/d using conventional process ~ 89 yrs
- With Additional production of 13.8 mbbl/d using H<sub>2</sub>CAR<sup>™</sup> ~ 144 yrs

**\*US Coal Reserves ~ 275 billion tons** 



122

#### Challenges for the Proposed H<sub>2</sub>CAR<sup>™</sup> Coal process

- Cost-effective production of H<sub>2</sub> from carbon-free energy source
- Design and operation of Novel Gasifier
- More selective conversion to desired synthetic liquid fuel
- Efficient Internal Combustion Engine



#### A Detour to Explore more Process Integration . . .



124

#### Search For Synergy Between Thermochemical and Biological Processes



#### **Proposed Framework for Biofuels**



©2008 R. Agrawal

UNIVERSITY

#### **Detail Schematic of the proposed Framework for Biofuels**





127



## H<sub>2</sub>CAR-fermentation integration\*

| Case                                                              | Carbon<br>Efficiency<br>(%) | Energy<br>Efficiency<br>(%) | H <sub>2</sub><br>requirement(<br>billion kg/yr) |
|-------------------------------------------------------------------|-----------------------------|-----------------------------|--------------------------------------------------|
| Corn Ethanol                                                      | 67                          | 57                          | -                                                |
| H <sub>2</sub> CAR                                                | ~100                        | 57                          | 250                                              |
| $H_2CAR + Fermentation$<br>(Heat and CO <sub>2</sub> integration) | ~100                        | 66                          | 200                                              |

\* In all cases, mass equivalent to DDGS is subtracted





**Potential benefits of the Biomass Integrated Processes** 

- Integrated process leads to increased energy efficiency (65% vs 57%)
- No CO<sub>2</sub> release during the conversion process decreases land area requirements significantly



130

## In Summary

- Energy is one of the grand challenges of our time
- World is not about to run out of oil or NG
- However,
  - Demand for energy is growing rapidly
  - Conventional oil will peak out in a few decades
  - Most nations do not have enough oil or NG
- Must develop alternate energy sources
- This development must start now



## In Summary

- Solar/Nuclear hold the future promise
- Multiple Challenges with the use of solar
  - Cost
  - Intermittency/Storage
  - Transmission
- System approach needed to optimize use of solar photons
- Biomass predominantly a carbon source



132

## In Summary

## **For Transportation Fuel:**

- The picture continues to evolve
- Electricity likely to play a significant role
- Liquid fuels will continue to dominate
  - However, carbon source will be sustainable
  - Integration with carbon-free energy sources likely e.g. Nuclear or solar
  - Need for creativity and innovation
- H<sub>2</sub> could play a role if associated challenges could be met
- Multiple energy careers will be used.



## **Energy System Analysis**



### Acknowledgement

- Navneet Singh
- Qijie Guo
- NRC H<sub>2</sub> Committee



## ....Thank you

The state