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The minimum energy requirement of a distillation sets a lower, thermodynamically defined 
operating limit, which is increasingly important in practice due to growing interest in saving 
energy. During the conceptual design phase this energy information can also be used to  quickly 
compare distillation configurations. This paper gives a summary of the most important methods 
published to  date for the calculation of the minimum energy requirement. Firstly, the occurrence 
of so-called pinch zones will be systematically described. These are sections of the column in 
which a t  minimum reflux an infinite number of separation stages would be necessary. Then 
exact and approximating solutions of the problems both for ideal and for nonideal mixtures will 
be discussed. For ideal mixtures a rapid calculation is possible using the well-known Underwood 
equations, which can also be applied to  complex columns (e.g., several feeds and side products, 
side stream strippers and enrichers). However, strongly nonideal multicomponent mixtures 
still require time-consuming simulations of columns having large numbers of plates. In such 
cases serious convergence problems must often be reckoned with. Recent developments aim at 
avoiding column simulations and at calculating pinch points directly. 

1. Introduction 
Distillation is a proven, versatile and intensively 

investigated unit operation and plays a major role in 
many chemical processes. This situation is unlikely to  
change even in the long term, because alternative unit 
operations are often neither technically feasible nor 
commercially competitive. The development and con- 
tinuous refinement of distillation trains are thus im- 
portant tasks in process design, having a considerable 
influence on the commercial success of whole production 
processes. Increases in the costs of primary energy and 
new government regulations will exert pressure on 
us-now and in the future-to organize the overall use 
of energy efficiently and to  continually reduce its 
consumption. 

Figure 1 shows schematically the relation between 
reflux ratio ( r )  and number of plates (n) for four different 
degrees of separation. The pressure drop in the column 
has been ignored. For a constant separation specifica- 
tion the result is a hyperbolic curve. In the limiting case 
of minimum reflux ratio (rmtn) the number of separation 
stages and the investment cost approach infinity. If the 
reflux is slightly increased, the required number of 
stages falls rapidly. Operation at total reflux (r - -1 
defines the minimum number of stages (nmin). In 
practice the optimum operating point for the column, 
in terms of the overall costs, is usually between 1.1 and 
1.5 times the minimum reflux ratio. The approach to 
the lower, thermodynamically defined operating limit 
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Figure 1. Number of stages and reflux ratio (B ,  bottoms product; 
D, distillate; F, feed; nmin, minimum number of stages; rmin, 
minimum reflux ratio). 

by adding more column stages is confined by the degree 
of maneuver required for process control in order to 
handle fluctuations, and also by uncertainties in the 
physical properties and in the underlying models VI. 

Methodical chemical process design consists in gen- 
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acetone 

chloroform benzene 
Figure 2. Distillation with minimum energy consumption in a triangular diagram. 

era1 of the interplay between ideas, which increase the 
number of possible solutions, and consequent analyses 
which evaluate the ideas and lead to the early rejection 
of bad options [2]. During the evaluation steps the 
minimum energy requirement can also serve as an 
indicator of the investment costs, since column dimen- 
sions such as diameter and heat transfer areas are 
dependent on the energy input. If we consider further 
that difficult separations require not only a high con- 
sumption of energy but a t  the same time a large number 
of separation stages, then it will become clear how the 
minimum energy requirement of distillation units can 
be used in an overall feasibility comparison of the 
various distillation options during the front end engi- 
neering [3]. 

We must not overlook the fact that the minimum 
flows inside the column are also very usefbl numerical 
values for the initialization of rigorous simulation 
calculations, especially when our goal is to optimize 
columns with respect to given product specifications. 

The rapid and reliable calculation of the minimum 
energy requirement for a specified sharpness of separa- 
tion is thus an important task at  several stages of the 
development of a chemical process. However, in spite 
of a considerable amount of research effort this problem 
has not been satisfactorily solved for the general case 
of nonideal multicomponent mixtures. Usually time- 
consuming calculations using process simulation pro- 
grams must be tolerated, or alternatively simplifjring 
assumptions must be made. Null [4] puts it in a 
nutshell: "...there is no corresponding effort to develop 
reliable and accurate shortcut blocks which give a 
reasonable approximation of complex columns and of 
systems which exhibit highly nonideal behavior". This 
paper offers a systematic analysis of the problem and a 
critical summary of the approaches available for calcu- 
lating the minimum energy requirement. 

2. Physical and Mathematical Basis 

2.1. Occurrence of Pinch Zones. During distilla- 
tion at minimum reflux ratio zones of constant (station- 
ary) phase composition-so-called pinch zones-would 
occur in the separation profile. In these column regions 
vapor and liquid are in equilibrium. Because of the lack 
of driving forces, in such zones infinitesimal concentra- 
tion changes require a large number of separation 

plates, in the extreme case an infinite number. Figure 
2 shows qualitatively in a triangular coordinate system 
the liquid phase separation profile of a minimum reflux 
situation in the acetone/chloroform/benzene mixture. 
Both pinch zones can be recognized by the points which 
follow each other closely both in the feed region in the 
stripping section and also in the middle of the rectifying 
section. 

If we consider a distillation in a simple column, where 
all the components of the feed are present in both 
products, then at minimum reflux only one pinch will 
occur, namely in the region of the feed tray [5-71. In 
the special case of a potentially reversible split [8], the 
pinch composition is the same as the feed composition. 
This very special type of split is named "preferred 
separation" by Stichlmair [51] and "transitional split" 
by Levy et al. [911 and Fidkowski et al. [1181. With the 
exception of the tangent pinch case (cf. section 4.5) all 
two-component distillations belong to this class of 
separations, in which the minimum reflux can be 
determined simply from the feed composition. 

Figure 3 shows on a McCabe-Thiele diagram the 
operating lines for the rectifying and stripping sections 
for several reflux ratios r in the separation of an ideal, 
partly vaporized binary mixture. The operating lines 
for both sections meet on a line which depends on the 
degree of feed vaporization (q = and on the mass 
balance around the feed tray. At the smallest value of 
the reflux (r = rmin) the operating lines of both sections 
of the column just meet on the equilibrium line. In the 
pinch area between the operating line corresponding to 
minimum reflux and the equilibrium line an infinite 
number of steps can be drawn in as a staircase on both 
sides. 

Most multicomponent separations are in general less 
sloppy. Apart from exceptions with strongly nonideal 
mixtures, which will be mentioned later, every mini- 
mum reflux separation then exhibits a pinch in each 
half of the column. As soon as one of the column product 
streams does not contain one or more of the components 
of the feed, the pinch in the corresponding half of the 
column no longer coincides with the feed tray, but moves 
to somewhere between feed and product outlet. In the 
part of the column between feed point and pinch the 
concentrations of the components to be removed fall to 
zero. In Figure 2 this is shown by the almost straight 
portion of the concentration profile between the feed 
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section of a ternary distillation for one bottoms product 
composition and for several reboiler loads. The termi- 
nation points of the separation profiles (Pi) lie on a chain 
dotted line starting from the bottoms product. This 
curve is known as the pinch point curve of the bottoms 
product. In the example shown the pinch point curve 
for the distillate (P,.j) runs along the side of the triangle. 

The termination points of distillation and the pinch 
point curves can be quickly found using a system of 
equations which has roughly the same order of difficulty 
as a flash calculation: Figure 6 gives the control volume 
for modeling a pinch point in the rectifymg section. The 
system of equations corresponds to the calculation of a 
reversible distillation and is as follows: 
material balances: 

vyi = Lxi + DxD,i (i = 1, ..., c) (1) 

0 xB feed ‘D 1 

liquid mole fraction x 
Figure 3. Binary distillation in the McCabe-Thiele plot. 

point and the acetone/chloroform side of the triangle, 
where the concentration of benzene is reduced to zero. 

The displacement of the pinch zones from the feed is 
thus dependent on the key components and the difficulty 
of separation. Key components are defined by King 191 
as components which ”appear to a significant extent in 
both products” of the column, whereas the components 
boiling lower than the light key or higher than the heavy 
key are “relegated almost exclusively to one product or 
the other”. 

A separation with more than three components can 
be represented as a profile of mole fractions of one phase 
along the separation stages. In Figure 4 the mole 
fractions of the liquid phase are shown for the distilla- 
tion of an ideal five-component system. The separation 
takes place between the key components butane and 
isopentane. The pinch zones can easily be identified as 
plateaus in the mole fraction profile. In the area 
between feed point and the pinch under consideration 
the components boiling lower o r  higher than the key in 
question disappear. The enrichment of the product 
components takes place after this in the zone between 
pinch and product outlet. 

2.2. Pinch Points as “Termination Points of 
Distillation” and How To Model Them. A column 
design method recently used by Levy et al. [IO] and by 
Knight and Doherty [ I l l  (see also section 4.3) for 
nonideal multicomponent mixtures is well suited for 
illustrating the occurrence of and the search for pinch 
points with the help of real concentration profiles in 
columns: The distillation column is divided into strip- 
ping section and rectifying section. Both halves of the 
column are calculated in small differential steps starting 
from the end of the column. This is done using 
predetermined product compositions and heat duties. 
The calculation in each section is carried out by the 
addition of differential steps until the concentration 
changes fall below a predetermined minimum value. 
The point reached is a pinch, where the vapor and liquid 
streams passing each other are in equilibrium. Hausen 
[I21 evaluated such “termination points of distillation” 
as long ago as 1935 using the nitrogedargodoxygen 
system as an example. 

Figure 5 shows the separation profiles in the stripping 

concentration summations: i x i  = 1, &i = 1 (2) 

equilibrium condition: yi = (i = 1, ..., C) (3) 

energy balance: Vhv - LhL - Dhh = Qc (4) 

i= l  i = l  

pressure constancy: p = p D  ( 5 )  

Ki =K,(Z,y‘,T,p) (t  = 1, ..., C) (6 )  
physical properties: 

hL = hL(?,T,p), hV = hV(?,T,p) (7) 

The system consists of material and energy balances, 
summations of mole fractions, and physical property 
relationships. The additional condition, which charac- 
terizes the pinch, is the equilibrium of the vapor and 
liquid phases flowing across the cross section of the 
column. An analogous set of equations can be written 
for the pinch in the stripping section. Assumptions 
concerning the number of components or the boiling or 
enthalpy behavior-for example constant relative vola- 
tility and constant molal overflow-are not required. 

Koehler et al. [81 deduce that the degree of freedom 
of the system of equations for a completely specified 
distillate is 1. We can therefore, theoretically, solve the 
system of equations after fixing one more variable (e.g., 
temperature, quantity of energy exchanged, one mole 
fraction). This is, however, an extremely difficult 
undertaking, since we are dealing with a nonlinear 
system of equations and in practice solution methods 
only converge if reliable starting values-close to the 
true values-are available for the remaining variables 
and in particular for the mole fractions. The remaining 
degree of freedom also prevents us from solving the 
minimum energy problem using the system of equa- 
tions: in the general case it is not known, a priori, where 
on the two pinch point curves the pinch points lie at 
minimum reflux. It should be mentioned here that the 
Underwood method implies the solution of the system 
of pinch equations-explained in section 3-given certain 
simplifying assumptions. 

The pinch point curve will be obtained when the 
system of equations is solved repeatedly starting at  the 
product and by increasing the reboiler or condenser load 
or  by varying one of the mole fractions. Therefore the 
calculation of pinch points does not require the compu- 
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Figure 4. Five-component distillation under minimum reflux. 

pentane 

100 
(bottoms) 

.-.. 
pinch P 

section). 

T 

stripping 
section 

pinch point curve 
of bottoms product 

heptane 

in stripping section 
Figure 5. Concentration profiles and pinch curves (L, liquid; V, vapor; P, pinch point; QB, reboiler duty; r, rectifying section; s, stripping 

tation of numerous multistage adiabatic separation 
profiles. This statement applies also to nonideal sys- 
tems. 

If we consider a complete column instead of half a 
column, then the solutions of the systems of pinch 
equations for the rectifying section and the stripping 
section are not independent of each other. They are 
linked via the energy balance over the column because 
each condenser load corresponds to a given reboiler load: 

Provided that no multiple solutions of the system of 
pinch equations occur (see also section 4.5), every 
solution in the rectifying section determines exactly one 
solution in the stripping section, as is indicated in 
Figure 5, in which corresponding pinch points have the 

c-- 
1 
I 

same index numbers. Each estimated reflux ratio and 
respectively each estimated energy quantity give a 
solution of the system of pinch equations in both halves 
of the column. In principle the problem now consists 
in identifying which of the infinite number of pinch 
point pairs gives the minimum energy requirement for 
the given separation. 

3. Ideal Mixtures 

3.1. Basis of the Underwood Method. The most 
important shortcut in the calculation of the minimum 
reflux ratio for a simple distillation originated in a 
publication by Underwood in the year 1932 [I31 and 
several in the years 1945-1948 [14-171. The principles 
of the calculation method widely used today are con- 
tained in the last three of these papers on which the 
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‘- pinch cross section 
Figure 6. Control volume to model pinch points in the rectifying 
section. 

following summary of Underwood’s key ideas is also 
based. Underwood gave a completely general solution 
to  the problem of minimum energy requirement for 
mixtures, subject to the assumptions of constant relative 
volatility and constant molal overflow. These assump- 
tions are also made in the next paragraphs. The results 
are often qualitatively valid for real mixtures. 

The components are numbered in order of boiling 
points. The separation factors of the vapor-liquid 
equilibrium should be referred to the highest-boiling 
component C: 

With the equations 

(9) 

(10) 

(11) 

Underwood defines for formal reasons the parameters 
of the rectifying section and $J of the stripping section. 
The physical interpretation of parameter v, can be 

obtained from material balance and equilibrium at a 
pinch point in the rectifying section (eqs 1 and 31, which 
give 

“iXD,i 
= ( r  + UY,,~ a, - L/(VKc) (12) 

when they are combined. When this expression is 
summed for all components, the result is eq 10. The 
parameter v, = L/(VKc) contains the ratio of the flow of 
the phases and the equilibrium and is commonly k n o w n  
as the stripping factor. 

b %,2 E,, 
Figure 7. Geometric interpretation of the Underwood method for 
separating the heavy component c from the mixture abc (b, light 
key; c, heavy key). 

Each of the eqs 10 and 11 has-for a given product 
composition and a given reflux ratio-as many solutions 
as there are components in the mixture. The solution 
parameters fit into the order of relative volatilities as 
follows: 

Equation 12 contains, in the form given, the vapor 
mole fraction at the pinch point, and there is also an 
analogous equation for the stripping section. Because 
of these equations pinch compositions can be calculated 
for each parameter, i.e., for every value of product 
composition and reflux flow. Some concentrations can 
even assume a negative value, and the corresponding 
pinches then have merely a theoretical meaning. The 
polyhedron obtained from the straight lines joining the 
compositions of the pinches is called the “distillation 
space”. In the case of three-component mixtures the 
expression “distillation triangle” is used. 

Figure 7 gives an example from Underwood [151: from 
a mixture having components a, b, and c and composi- 
tion F the high boiler c is to be almost completely 
separated. The light key is component b, the heavy key 
is c. For the chosen product compositions B and D 
(mass balance line shown dashed) and the reflux ratio, 
the distillation triangle for the rectifying section is fixed 
by the pinch points Pr,l, Pr,2, and Pr,3, and that of the 
stripping section by Ps,l, Ps,2, and Ps,3. The edges of the 
two distillation triangles appear in a slightly different 
context,as distillation separatrices [18-21, 1241. (Not 
to be confounded with the product region boundaries of 
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section 4.6.) The chain dotted line shows the liquid 
phase concentration profile in the column at minimum 
reflux, which coincides with a separatrix. 

Underwood’s great achievement is to have provided 
a method which determines, from the great number of 
pinch points, the ones which follow from the given 
separation under minimum energy consumption. He 
proved that, at minimum reflux, these two parameters 
v) and ly from the rectifying section and from the 
stripping section coincide, which lie between the relative 
volatilities of the key components; he proved that q.72 = 
q1 in the example. It is this identity which makes 
possible the geometric interpretation of a minimum 
energy rectificatior shown in Figure 7. Because of the 
common parameters the pinch points P,1 and Pr,3 of the 
rectifying section lie together with the pinch points Ps,2 
and Ps,3 of the stripping section on a straight line, i.e., 
they are colinear. Levy et al. [IO] write that this 
colinearity is an assumption by Underwood. We believe 
it would be more precise to say that the colinearity is a 
consequence of the minimum energy condition. To 
illustrate the problem several authors (e.g., ref 25) show 
for one specified separation distillation triangles with 
a smaller and with a larger reflux than the minimum. 
In the one case the triangles do not reach each other; 
in the other case they penetrate each other and the 
distillation triangle corners of the rectifying and strip- 
ping sections are no longer colinear. 

Geometric relationships of this kind, in part general- 
ized to four-component mixtures, and illustrated by 
concentration tetrahedra, are to be found in the excel- 
lent interpretation of Underwood‘s papers by Franklin 
[22-251. The four pinches in each column section then 
form two unsymmetrical tetrahedra, which, according 
to  the separation being considered and at minimum 
reflux, have points, edges, side surfaces, or parts of 
tetrahedra in common. Vogelpohl 1261 gives the rela- 
tionships necessary for calculating the distillation 
“spaces” for arbitrary numbers of components of ideal 
mixtures. White has written a series of papers [27- 
351, in which he treats very clearly the calculation and 
interpretation of concentration profiles for ternary and 
quaternary distillations of ideal mixtures. He also deals 
several times with the case of minimum reflux and the 
location of pinch points. 

The common roots of the systems of pinch eq,uations 
of the rectifying and of the stripping sections allow us 
to combine eq 10 with the aid of the material balance 
around the whole column (xF,$’ = X D , ~ D  + X B , ~ B ) :  

(15) 

where q is the liquid fraction of the feed and 0 one of 
the common roots. 

To calculate the minimum reflux ratio, Underwood 
proposes evaluating all the common roots of the last 
equation and putting each into eq 10. This gives a 
linear system of equations for the minimum reflux ratio 
(or for the minimum boilup ratio). It also gives the 
product concentrations of all components lying between 
the key components. The number of equations is the 
same as the number of common roots 0. 

Shiras [5] remarked that it can be difficult to 
predict-in the case of narrow-boiling mixtures-how the 
components are distributed in the products. If, however, 
during the solution of the system of equations we 

assume incorrectly that a certain component is distrib- 
uted in the products, then the result will be that the 
quantity of the component in the distillate is greater 
than the quantity in the feed stream if in actual fact it 
is a lighter component. On the other hand, if it is really 
a heavier component than assumed, then the result will 
be a negative mole fraction in the distillate. This 
indicates how we should improve the product specifica- 
tion for further iterations. The well-known methods for 
estimating the distribution of the components in the 
product for ideal mixtures [36-391 can also be helpful 
here: these are given in detail in the textbook by King 
191 and in the paper by Wagner [401. 

Finally it should be mentioned that Vogelpohl [261 
and Norden et al. [411 have in other ways derived 
equations which correspond to Underwood‘s. Acrivos 
and Amundson [42-471 devote a series of papers to the 
calculation of ideal distillations of continuous mixtures, 
Le., of mixtures which are described not as discrete 
components, but rather as a distribution of properties. 
They also report a method equivalent to Underwood’s 
for calculating the minimum reflux. Cerda and Wester- 
berg [481 also develop a simple method for the deter- 
mination of the minimum energy requirement. This 
method can be extended to columns having side stream 
strippers and side stream rectifiers. The derivations, 
however, make further assumptions besides those of 
Underwood, e.g., for sharp multicomponent separations, 
that the pinch points in both column halves always 
occur exactly two stages above and below the feed tray. 
Although the authors present several satisfactory re- 
sults of comparative calculations with the Underwood 
method, the simplification probably causes unnecessary 
inaccuracies. Lestak et al. [491 demonstrate this using 
a statistical analysis of comparative calculations and 
mention further that several of Cerda’s equations 
contain mistakes. Glinos and Malone [501 give ap- 
proximations to the Underwood equations for ternary 
distillations and propose the formation of pseudocom- 
ponents for use with multicomponent mixtures. The 
idea of substituting the very fast and established 
Underwood method by procedures with additional sim- 
plifications must however be critically examined. For 
several special cases of ideal three-component distilla- 
tions (complete removal of the light boiler or of the 
heavy boiler) Stichlmair [511 gives the analytical solu- 
tions of the Underwood equations. 

Figure 8 shows a short summary of the most impor- 
tant offspring of the Underwood method, of which some 
are touched upon below. In practice, the relatively easy 
modifications for so-called complex columns are signifi- 
cant (sections 3.2 and 3.3). Some publications deal with 
extentions of the Underwood procedures to enable 
calculations of nonideal mixtures with a higher ac- 
curacy. Particularly interesting is the proposed intro- 
duction of “enthalpy fractions” by Hausen [52] to deal 
with the influence of the differing heats of evaporation 
of the components. The “enthalpy share” of a compo- 
nent in a mixture is defined by 

j = l  

using the enthalpies of vaporization of the components. 
King [91 also proposes using the Underwood method 
with these transformed mole fractions. In two consider- 
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Figure 8. Underwood’s method and its offspring. 
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Figure 9. Pinch situation for binary distillations with side product withdrawals. 

ably more recent papers investigations of the minimum 
energy requirement have been undertaken which, in 
principle, result in the same proposal [53, 541. 

3.2. The Underwood Method for Columns with 
Several Feeds and Side Draws. As  long ago as 1932 
Underwood 1131 investigated the calculation of multi- 
component distillations with side draws, in which he 
took his equations for binary mixtures and used the key 
components as the two components. Later the methods 
described in section 3.1 for multicomponent mixtures 
were extended several times to columns having multiple 
feeds and/or side draws. Also graphical solution meth- 
ods and solutions of special separation cases were 
proposed. References 59-69 cover some of this work 
but probably not all of it. Of these sources Chou and 
Yaws E671 quote a series of further publications on the 
calculation-sometimes graphical-of the minimum re- 
flux ratio for ideal binary systems. 

The core of every procedure for dealing with side 
draws is the following consideration: if side streams are 
withdrawn from a column, then, as a rule, the draw will 
be made from the liquid phase in the rectifylng section 
and from the vapor phase in the stripping section, so 
as to guarantee the highest possible purity. For the 
binary case Figure 9 illustrates that for side draws the 
lowest reflux ratio (definition: r = L / ( D  + BJ) always 

lies in the feed region (balance line is chain dotted). 
Thus, also for this type of column both pinch points have 
the same composition as the feed. If we form a 
pseudoproduct (D’) from all the products of the rectifying 
section and the same for the stripping section (B’), then 
the minimum reflux ratio can be calculated again by 
solving the system of pinch equations for the feed 
composition. Sugie and Benjamin [601 had the same 
idea for multicomponent distillations and prove that 
here the controlling pinch points in both halves of the 
column must lie between the feed point and the first 
side draw. We can thus use the simple Underwood 
relations for multicomponent columns with side draws, 
provided that we also form pseudoproducts. 

However, the approaches mentioned are only suitable 
for carrying out performance and rating calculations on 
existing columns, since several figures of interest for 
complex columns-the flow quantities and the composi- 
tions of the side draws-cannot be determined a priori 
and must be estimated for the summation to pseudoprod- 
ucts [1171. Particular notice must be taken here, since 
there are maximum values for the mole fractions of the 
intermediate boilers in side draw products. The exact 
data for the side draw products will not be known until 
simulation calculations with a concrete number of stages 
and a reflux ratio above the minimum have been carried 
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Figure 10. A column with multiple feeds and side products. 

out. That is why iteration is necessary for the computer- 
based column design. 

The calculation of the minimum energy requirement 
for columns with several feeds and side draws proceeds 
in an analogous way (Figure 10). In principle any feed 
stream can determine the minimum energy require- 
ment, and the two pinch zones are once again to be 
found between the feed point in question and the first 
side draw. The question to be answered is which of the 
feeds is the controlling one? In other words, we are 
looking for the feed whose pinch points occur first when 
we continuously reduce the reflux, starting with a high 
initial value. Hence, the minimum energy values must 
be evaluated for all feeds, and the highest value is the 
governing one. The control volume in Figure 10 (drawn 
chain dotted for the pinch combination of feed 1) should 
illustrate that, when making a component balance 
during pinch calculations, we must take into account 
that several feed and product streams enter and leave 
the respective control volume. Nikolaides and Malone 
[66] also use the method just described without further 
explanation and derive the relations for the column 
design. They also give approximation criteria for esti- 
mating the side stream compositions. 

3.3. The Underwood Method for Side Stream 
Columns and for the Petlyuk Configuration. In 
addition to the two clear and instructive publications 
of Carlberg and Westerberg [701, references 71-74 are 
also devoted to side stream columns and to the Petlyuk 
configuration. 

In the calculation of the minimum reflux ratio for 
columns having side stream rectifiers and strippers, 
thermodynamically equivalent column arrangements 
are considered (Figure 11). A net product stream can 

/ 

side stripper and equivalent arrangement 

side rectifier and equivalent arrangement 
Figure 11. Side stream stripper and side stream enricher. 

then be allotted to the first column of the equivalent 
sequence. This stream consists of the difference be- 
tween the streams entering and leaving the end of the 
column under consideration (e.g., D = V - L). Then 
the minimum energy requirement can be calculated 
using the Underwood equations. The key idea of this 
approach via equivalent column arrangements is that 
the Underwood relations are derived from material 
balances. Product compositions do not have to be given 
explicitly. In the Underwood equations there is also no 
assumption that the reflux (or vapor return) must be 
generated by a heat exchanger installed at the ap- 
propriate column end. One is free to  use external reflux 
or vapor as in the equivalent schemes. 

The second columns of the equivalent arrangements 
can be calculated using the same Underwood relations, 
if the appropriate value of q for the vapor fraction of 
the “net” feed is used in eq 15: 

L 
q=L+V 

where streams entering the column have positive signs. 
One can easily convince oneself that, in the equivalent 
sequence for a side stream rectifier, the q value is larger 
than 1 and in the case of a side stream stripper it is 
less than 0. In the one case the feed can be regarded 
as subcooled liquid and in the other as superheated 
vapor. 

Extensions of this approach to sequences with several 
side stream columns and to the so-called thermally 
coupled Petlyuk scheme (Figure 12) have also been 
discussed [70]. In this latter case the first column 



Ind. Eng. Chem. Res., Vol. 34, No. 4,1995 1011 

4.2. Rigorous Column Simulations. If we deal 
with nonideal multicomponent mixtures and approxi- 
mation methods for the calculation of the minimum 
energy requirement are to be rejected because of poor 
accuracy, then exact column simulation programs must 
be used. Unfortunately this is laborious, since to date 
these programs are intended for carrying out perfor- 
mance and rating calculations of existing columns. It 
is not possible to exploit a priori the pinch characteristic 
that vapor and liquid at certain points in the column 
are in equilibrium with each other. It is necessary to 
allow for repeated time-consuming calculations of col- 
umns having large numbers of stages. One possibility, 
for example, is to start with a column having a small 
number of stages and, by gradually reducing the energy 
input, to build the column up in small steps-the results 
of one calculation being used as the initial values for 
the next one. Another strategy is to choose a very large 
number of stages to start with and to vary the reflux 
ratio. Then each value of the reflux ratio produces a 
pinch point pair and the reflux ratio corresponds to  the 
minimum value for the combination of distillate and 
bottoms product which the calculation produces. Fur- 
thermore, product concentrations, product flows, or 
yields could be specified directly, together with the large 
number of stages, and the reflux could be minimized 
using an optimization routine. In the authors’ experi- 
ence this numerically difficult approach leads to success 
only if a realistic estimate of the column’s vapor and 
liquid profiles for the chosen specification is already 
available. 

Since the methods just mentioned for the evaluation 
of the minimum energy consumption are very time- 
consuming and therefore cost-intensive, several tailor- 
made calculation algorithms have been proposed [5, 6, 
76-82, 1231. They all have one factor in common, 
however, in that a complete tray-to-tray simulation of 
the column or a t  least of column sections (column 
partitioning methods) is necessary. As an example the 
calculation model of Tavana and Hanson [811 will be 
considered, since it explicitly allows the input of product 
flows of the key components. Only that part of the 
column between the pinch points including the feed tray 
is modeled stagewise, and the common material and 
energy balance equations are used. The “pinch trays” 
which lie a t  the top and at  the bottom of this part of 
the column are described by special equations which 
express the pinch condition, i.e., that the compositions 
of the phases do not change from tray to tray. The 
solution of the system of equations is carried out using 
an adaptation of the Newton-Raphson method. The 
portions of the column between the pinch zones and the 
product exits do not have to be calculated. The ap- 
proach to the minimum energy requirement will be 
achieved here as in most other cases by gradual 
increases in the number of stages between the pinch 
zones. Unfortunately, example calculations with these 
column partitioning methods are scarce and are given 
mostly for ideal mixtures; such examples are of limited 
worth in evaluating the methods. 

Another calculation procedure is presented by Nan- 
dakumar and h d r e s  [531, who investigated the dy- 
namic behavior of distillation columns. They model the 
columns using a nonsteady system of partial differential 
equations. Since the authors specify column sections 
with large numbers of stages, they are virtually describ- 
ing columns at minimum reflux. The high computation 
effort for this deviation via the dynamic model means 

i 
I 

1 
Figure 12. Thermally coupled Petlyuk scheme. 
carries out only a prefractionation. This column has no 
heat exchangers of its own; its reflux and also its vapor 
come from the columns downstream. In the equations 
given by Petlyuk [75], there is the important restriction 
that they apply only for the special case of the lightest 
possible cut in the first column, i.e., for the potentially 
reversible cut for which the pinch points lie exactly at 
the feed stage (cf. section 2.1). 

4. Nonideal Mixtures 
4.1. Binary Nonideal Mixtures. Featherstone [551 

and Vogelpohl[561 have introduced approaches to treat 
binary azeotropic mixtures. While Featherstone obtains 
relatively inaccurate results, Vogelpohl reports good 
agreement between rigorous and shortcut results. In 
order to apply the equations of Underwood, he performs 
a coordinate transformation for the mole fractions by 
dividing the system into two subsystems, each of which 
contains the azeotrope as one pseudocomponent and one 
of the two pure compounds as the other component. 
Seen graphically, the McCabe-Thiele diagram for the 
azeotropic mixture is split at the azeotropic composition 
into two diagrams for ideal mixtures. In both sub- 
systems the transformed relative volatilities are as- 
sumed to  be constant again. This coordinate transfor- 
mation can also be performed for multicomponent 
systems. Anderson and Doherty [571 make use of the 
same model and also report good results. Of course, 
solutions can. as well be obtained purely graphically via 
the McCabe-Thiele plot or, if the assumption of con- 
stant molal overflow is not justified, via the Ponchon- 
Savarit diagram [1201. 

Basically, however, there is no need t o  use ap- 
proximation methods to calculate the minimum energy 
requirement of nonideal and azeotropic binary distilla- 
tions. The reversible rectification model (cf. section 4.4) 
represents an absolutely exact and almost equally fast 
calculation method, which furthermore gives the opti- 
mum energy profile along a distillation column Et?]. The 
reversible distillation model also applies t o  complex 
column schemes with multiple feeds and products or 
with side stream columns, and it also covers the special 
case of a tangent pinch; see section 4.5. 
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energy interpretation according to Doherty et al. Figure 13. Minimum 

that their method must be rejected for all practical 
purposes. It is nevertheless very interesting that with 
this method the movement of the pinch points away 
from the feed tray with increasing reflux can be directly 
followed, since fewer components are distributed in both 
products as the reflux increases. 

Some Soviet 183-871 and some Japanese papers 
[112-114] have a certain similarity of topic. In these 
papers the change of the product compositions and the 
location of the pinch points is investigated for azeotropic 
ternary systems under varying reflux conditions in 
columns having an infinite number of stages. 

4.3. The Approaches of Doherty and Co-work- 
ers. Mainly in the middle of the 19809, Doherty and 
his co-workers published several papers on the modeling 
of distillation processes and on approximation calcula- 
tions of the minimum energy requirements, in particu- 
lar for nonideal and azeotropic mixtures. All of their 
models assume steady-state operation, theoretical trays, 
and constant column pressure. They always require the 
multiple calculation of concentration, temperature, and 
possibly flow profiles in parts of the column, with the 
goal of attaining a correct material balance over the 
whole column. The separation profiles can be calculated 
either using a tray-to-tray process (favored recently by 
the group 1901) or using a differential equation, which 
is discussed briefly below. 

For constant molal overflow in simple columns, the 
method is described first in ref 88 and is derived in 
detail in ref 89. It approximates the difference of the 
liquid mole fractions between two neighboring trays, 
which is obtained from a material balance around one 
end of the column, via the first differential of an 
imaginary, continuous profile of the liquid mole fraction 
over the trays. The result for the stripping section is 

(i = 1, ..., C - 1) (18) 

and the equation for the rectifying section is similar. 

The less the concentrations change along the column 
trays, the more accurate will be the resulting differential 
approximation of the discrete balance. At minimum 
reflux the composition changes at pinch points and the 
differential quotient disappear completely ( h i , ,  I dn = 
0). The result can be interpreted as a system of 
equations for calculating pinch points (cf. section 2.2). 

The procedure for the approximation calculation of 
the minimum energy requirement according to Doherty 
will now be described with the help of the separation of 
the low boiler acetone from the azeotropic acetone1 
chlorofordbenzene mixture. Starting with specified 
products (given a correct mass balance) and with an 
estimate for the reflux ratio, the separation profiles of 
the rectifying and stripping sections are calculated. 
Because the differentials appear explicitly in the bal- 
ances (eq 181, they can be integrated by single-step or 
multiple-step procedures for ordinary differential equa- 
tions. The separation is achieved with minimum energy 
consumption if the pinch at  the end of the stripping 
profile lies exactly on the concentration profile of the 
rectifjmg section. If the profiles miss each other, then 
the separation is not possible with the estimated reflux 
ratio. If one profile penetrates the other, then the reflux 
is higher than the minimum. This interplay can easily 
be followed graphically. 

In Figure 13 the dashed curve starting at D2 shows 
the concentration profile in the rectifying section of a 
column. This profile, which ends on the acetone/ 
benzene side of the triangle, is virtually insensitive to 
small variations in the reflux ratio and therefore in the 
energy throughput. The three concentration profiles in 
the stripping section starting at bottoms product B show 
the situation at varying vapor rates s = V,lB (reboiler 
loads). The vapor flow s1 is not sufficient for the 
required separation, since the separation profile of the 
stripping section (bold) ends before it reaches the 
rectifying section profile. If the reboiler load is s2 
(dashed line), then the stripping profile just reaches the 
rectifying profile and at s3 (chain dotted line) it pen- 
etrates it. With this sharpness of separation the distil- 
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ity criterion to coplanarity of the feed composition and 
appropriate pinch points for quaternary mixtures, and 
given us a glimpse of mixtures with even more compo- 
nents [941. However, to our knowledge, Doherty and 
co-workers have not yet relaxed their assumption of a 
feed pinch and are thus still only addressing the special 
types of splits mentioned in the preceding paragraph. 

The authors have programmed and thoroughly ana- 
lyzed the column model of Doherty and co-workers in 
its most general form, leaving the assumption of con- 
stant molal overflow behind [951: a differential energy 
balance has been added to the differential mass balance 
of a column section. The results can be roughly sum- 
marized as follows: 

1. The calculation of the separation profile via the 
differential approximation produces no saving of time, 
but it certainly produces a loss of accuracy compared 
with a direct solution of the discrete, exact balance 
equations. The differential equations were integrated 
with two of the usual procedures, the Runge-Kutta- 
Fehlberg single-step procedure and the Adams-Bash- 
forth-Moulton multiple-step procedure, both being of 
the fourth order with step-size control. These proce- 
dures frequently posed the additional problem of having 
to correct negative mole fractions which occurred in the 
calculation of intermediate values in the numerical 
procedures. 

2. The repeated separation profile calculation-with 
iteration of the reflux ratio and visual and numerical 
judgment of the separation profiles in the triangular 
diagram-is, for ternary mixtures, an effective and 
accurate method of calculating the minimum energy 
requirement and is not least a valuable instructional 
aid, when one is trying to “get a feel for” the behavior 
of strongly nonideal and azeotropic distillations. For 
quaternary mixtures, however, the quasi-graphical 
method requires a considerable ability to think in three 
dimensions, and for higher numbers of components it 
is no longer practicable. 

3. The method should in principle be classed with 
the tray-to-tray methods, and consequently also suffers 
from the well-known shortcomings of such methods. The 
extreme sensitivity of separation profiles to changes in 
the product compositions-the starting values of the 
numerical integration-should be regarded as the most 
serious. This problem can mostly be observed at the 
edges of the triangular diagram and in the neighborhood 
of product region boundaries. One advantage of the 
tray-to-tray method is, however, that each tray cascade 
calculated alone gives correct mass and energy balances, 
even though the combination of two such cascades does 
not necessarily result in a correct column. 

4.4. The Significance of Pinch Point Curves. A 
new approximation method developed by the authors 
for the evaluation of the minimum energy requirement 
for ideal, nonideal, and azeotropic distillations manages 
without simulating columns or parts of columns. The 
basis of the method is the previously mentioned pinch 
point curves in both halves of the column (section 2.21, 
which are linked via the energy balance and which are 
calculated in the first step. A one-dimensional search 
algorithm then identifies the specific pinch point pair 
which determines the minimum energy requirement 
from the multiplicity of solutions via a novel geometric 
criterion. The criterion is exactly valid for ideal three- 
component separations and states that the angle be- 
tween the two vectors which point from the feed to the 
two pinch points must be a minimum. 

late contains all three components in noticeable quan- 
tities, and thus only one pinch occurs a t  the feed point. 

If we sharpen the separation by reducing the mole 
fraction of benzene in the distillate (DI, bold profile in 
the rectifying section), then the second pinch appears 
in the column-in the middle of the rectifying section. 
In the figure it is found at the now abrupt change of 
direction in the rectifying section concentration profile 
on the acetonelchloroform side. Doherty denotes this 
as a “saddle pinch” and has recognized that this pinch, 
together with the feed (assumed as boiling liquid) and 
the end pinch of the stripping section (feed pinch), must 
lie on an approximately straight line (thin line in Figure 
13). Doherty uses this as the basis of his “algebraic 
method” t o  calculate the minimum energy require- 
ment: now, the specific reflux ratio is to be found, which 
leads to the colinearity just mentioned. (Note that, since 
only pinch points and the feed composition are involved 
in fulfilling the minimum reflux criterion, column 
simulations are not required but only a pinch point 
search, cf. section 2.2.) This criterion applies only to 
ternary mixtures. Here, a close relationship to the 
Underwood method becomes clear, which looks for that 
reflux ratio for which the feed pinch lies in between the 
saddle pinch and the end pinch in the other section of 
the column (cf. section 3.1). Because of the curvature 
of the separation profiles which occurs in real systems, 
Doherty’s criterion gives more accurate results, since it 
requires colinearity in a narrower range of mole frac- 
tions. The ”tangent criterion” further developed by 
Doherty is less suitable for a rapid evaluation of the 
minimum energy requirement because, to use it, the 
tangent to  a concentration profile must be calculated 
and therefore at least column section simulations are 
necessary. 
As indicated, the bold curve in Figure 13 corresponds 

to a lower minimum energy throughput but to a better 
sharpness of separation than the dashed curve. How 
can this apparent contradiction be explained? In the 
case of the low separation sharpness (dashed line) only 
one pinch occurs, viz. at the feed point in the stripping 
section. Thus separation stages can be added to the 
rectifying section-at constant energy input-to improve 
the separation until a pinch appears there (saddle pinch, 
bold line). 

In the algorithm of his algebraic method Doherty 
proposes determining the relevant pinch points via the 
system of pinch equations derived from the differential 
balances (eq 18 with dxi,,ldn = 01, but he provides no 
method of doing so. Recently, the group has addressed 
the problem of the direct pinch point calculation [go]. 

In the approaches by Doherty and co-workers con- 
cerning the calculation of the minimum energy require- 
ment (exact method: separation profile for one half of 
the column ends on the profile for the other half; 
approximating method: colinearity), it is very important 
to recognize that the authors assume that there is 
always one of the two pinch zones at the feed point. 
These approaches can therefore only handle those splits 
where only the most or only the least volatile component 
is separated from the remaining components or the even 
more restricted case where both pinch points are at the 
feed point [911. 

The methods described were first published by Levy 
et al. [IO], then extended to columns with several feeds 
[921, and-still using the assumption of constant molal 
overflow-to the distillation of heteroazeotropes [931. 
More recent publications have generalized the colinear- 
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D a  
pinch point curve 
of the rectifying seta d 

Figure 14. Minimum angle criterion for a four-component 
separation (a, light key; b, heavy key; Pr and P,, pinch points). 

Figure 14 gives a graphical explanation. The mixture 
of components abcd is separated into the top product a, 
with a small amount of component b, and the bottom 
product bcd, with traces of component a. The two pinch 
point curves originating at  the two products are given 
as chain dotted lines. Ps,2 and Pr,2 are the two pinches 
under minimum reflux; the indicated angle has its 
minimum value. Any lower or higher reflux rate-see 
pinch point pairs PS,l/Pr,1 and Ps,3/Pr,3 respectively- 
produces a larger angle. Additionally, the slanted 
dashed triangle is drawn to indicate that the concentra- 
tions of the two pinches (Ps,2 and Pr,2) and the feed are 
located on a plane (“coplanarity” [94], see section 4.3). 

Many check calculations with ideal, nonideal, and 
azeotropic mixtures indicate that this “angle criterion” 
can be used safely to provide good approximate solutions 
for nonideal and azeotropic multicomponent distilla- 
tions. There is no assumption concerning its use for 
certain separations only. More detailed information can 
be found in ref 8 and in the Ph.D. work [581. Results 
which were obtained with this method for nonideal 
mixtures in columns with side products and for sloppy 
separations are now as well available [I171 and extend 
the range of applicability of the approach. 

The authors have shown [I221 that rigorous minimum 
energy prediction is possible using eigenvalue theory. 
Again, pinch point calculation is performed prior to the 
evaluation of the minimum energy criterion itself. As 
an example, Figure 15 presents a split between the two 
intermediate boiling components of a non-azeotropic 
four-component mixture abcd. The non-key component 
concentrations have been set to zero in the products (a 
in B and d in D). Then plate-to-plate calculations 
starting at  the products can never leave the faces of the 
tetraedron. The calculations approach ternary pinch 
points, which can be calculated directly as described 
above and which are situated in the figure on the pinch 
point curves given on the base and on the left face of 
the tetrahedron. If even smallest traces of non-key 
components would be present in the products, the 
separations would pass by the pinch points (here Ps and 
Pr) and leave the pinch point surroundings following the 
directions indicated by thick short lines in Figure 15. 
The directions are the eigendirections of the Jacobian 
matrixes of plate-to-plate calculation evaluated at the 
pinch points. The directions point into the interior of 
concentration space. Let us now initiate rigorous 

C a 
Figure 15. Minimum energy criterion based on eigenvalue theory 
(b, light key; c, heavy key; Pr and P,, pinch points with eigendi- 
rections). 

concentration profile calculations close to the pinch 
points Ps and Pr on the eigendirections in the interior 
of concentration space: if these two concentration 
profiles (dotted lines) intersect, the minimum reflux 
ratio is found. In ideal mixtures it would, of course, be 
sufficient to check the intersection of the eigendirections 
and only minor differences would occur compared to 
rigorous predictions. In strongly nonideal mixtures, 
however, concentration profiles differ significantly from 
eigendirected straight lines. 

The installation of intermediate reboilers and con- 
densers has no influence on the minimum energy 
requirement for a given distillative separation. In the 
total of all the heat exchangers there must be so much 
energy input and output that in terms of the concentra- 
tion profile the pinch points, which control the minimum 
energy requirement, are at least reached. If, for ex- 
ample, in the distillation in Figure 5, only the energy 
quantity Q B , ~  is supplied to begin with, then the 
adiabatic separation takes place along the corresponding 
composition profile (which would end in pinch Ps,4). If 
we were then to add the heat flow AQB = Q B , ~  - Q B , ~  in 
a second reboiler, the separation would be continued 
from the new reboiler along the profile belonging to QB,~ .  
The pinch which would be reached in an infinitely long 
stripping section would be Ps,2. The extreme case is 
when the quantity QB is introduced “so late” that a 
second pinch (Ps,4) occurs in the stripping section. In 
this way intermediate reboilers and condensers can 
generate further pinch points, which, of course, must 
all lie on the pinch point curves-this underlines their 
importance. 

In recent papers Doherty and co-workers use pinch 
point curves, which they call “fixed-point branches”, for 
the design of distillation columns. With these curves 
they evaluate the number of stages and the distribution 
of the components in the bottoms product and in the 
distillate [go] or calculate minimum entrainer flows for 
extractive distillations 11241. Wahnschafft et al. [96, 
1211 also use pinch point curves for the determination 
of product regions for the separation of azeotropic 
mixtures by simple and extractive distillation. 

Also recently, Stichlmair et al. [I191 report a novel 
shortcut method to estimate the minimum reflux and 
reboil ratios for nonideal and azeotropic ternary separa- 
tions, provided that tangent pinches do not appear. 
Apart from “preferred separations” (cf. section 2. l), 
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Figure 16. 

ternary distillation at minimum reflux exhibits one 
pinch adjacent to the feed plate in one section of the 
column and a second pinch in the interior of the other 
section. However, their method dispenses with the 
calculation of the second pinch point, but rather makes 
use of the fact mentioned already that in ideal mixtures 
the feed pinch, feed, and second pinch points as well as 
the liquid concentration profile between the feed and 
second pinch must lie on a straight line. If constant 
molar overflow is valid, this profile is parallel with the 
vapor concentration profile. From the parallelism, in 
turn, the direction of the profiles can be calculated. 
Thus, on a straight line through the feed composition 
with direction found by the parallelism criterion, the 
feed pinch can be located via the system of pinch 
equations: if a straight line through an estimated feed 
pinch composition and its equilibrium vapor composition 
contains the product of the feed pinch column section, 
the minimum reflux criterion is fulfilled. This approach 
is fast but restricted to splits with a pinch at the feed 
plate. In the multicomponent case (C 7 3) this is rather 
the exception than the rule (see, e.g., Figure 4). Fur- 
thermore the method is likely to  suffer from not includ- 
ing the enthalpy balance if the mixture exhibits sub- 
stantial heat effects. 

4.6. Minimum Energy Requirement with a Tan- 
gent Pinch. There is one important special case, in 
which the occurrence of the pinch points does not satisfy 
the conditions described up to now. Figure 16 shows 
the strongly nonideal acetone/water system, where the 
equilibrium line has a point of inflection. Besides the 
equilibrium line the diagram displays the operating 
lines for the two column halves at minimum reflux (solid 
line) for the separation of a liquid feed XF at its boiling 
point. Here, a so-called tangent pinch controls the 
minimum energy requirement: The operating line of the 
rectifying section is tangent to the equilibrium curve 
at concentration XT when the condenser load is Q c , ~ .  The 
operating lines of the stripping and rectifying sections 
do not touch the equilibrium line where they meet. The 
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Figure 17. Tangent pinch point in the concentration vs energy 
plot. 

concentration profile in the stripping section is thus, in 
spite of the minimum reflux condition, not ended by a 
pinch. 

The evaluation of tangent pinch points is connected 
t o  the problem of multiple solutions of the systems of 
pinch equations. In Figure 16 additional balance lines 
are drawn (dashed lines) in the rectifying section for 
the given distillate and five different condenser loads 
Qc. Each point where balance line and equilibrium line 
either intersect or touch represents a solution of the 
system of pinch equations. For QCJ and Q c , ~  there is 
only one solution, for each of the limiting cases Q c , ~  and 
Q c , ~  there are two, and for all the energy quantities in 
between there are three. This is explained in more 
detail in Figure 17, in which the mole fraction of acetone 
at the points of intersection is shown as the ordinate 
for each energy value. The solution curve as a function 
of the energy has two turning points. This makes it 
clear why algorithms using heat exchanger loads or the 
reflux ratio as free variables in evaluating the minimum 
energy requirement must encounter greater problems 
with nonideal mixtures. Whether an equation solver 
converges, and what solution it reaches in the area of 
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multiple solutions, depends on the initial values at the 
start of the search. If every solution is to be found, then 
the system of pinch equations must be solved using 
varying start values. To overcome these problems Fid- 
kowski et al. [I151 suggested a continuation method to 
follow the path of pinch points. 

Hence, a tangent pinch always reveals itself by a local 
maximum in the reversible energy profile [8, 1151 
(Figure 17, Q c , ~  required at XT). This criterion is 
independent of the number of components and can 
easily be evaluated with the help of a search procedure. 

Figure 17 also helps to understand the comment by 
Levy and Doherty [971, that tangent pinch points 
correspond to jumps (discontinuities) in the profile of 
the termination points of distillation. In the kind of 
tray-to-tray calculation mentioned in section 2.2-in 
which the number of trays is continually increased-only 
one pinch point can be obtained in each case, since the 
course of the calculation (seen from the column end) 
terminates at the first point of intersection of the 
operating line with the equilibrium line in a termination 
point of distillation. For each condenser load 0 < QC < 
Q c , ~  there is, for the adiabatic separation profile starting 
from the distillate, a termination point in the range 
between XD and XT. If a reflux “slightly greater” than 
Q c , ~  is chosen, then the mole fraction of acetone at the 
pinch attained changes instantaneously to the value z’. 
The part of the curve between x‘ and XT quasi disap- 
pears. 

4.6. Minimum Energy Requirement without a 
Pinch: Comments on the Product Region Bound- 
aries. A serious problem in the development of azeo- 
tropic distillation sequences is the prediction of the 
attainable column products for a given feed mixture. 
This also applies particularly for the calculation of the 
minimum reflux ratio, because all of the approximation 
and some of the exact methods (among others Tavana 
and Hanson [SI]) assume the knowledge of physically 
correct column products. Tools for the rapid and reliable 
bracketing of the product limits for azeotropic separa- 
tions have been the subject of several publications [e.g., 
96, 98-100, 118, 121, 1251 and are continually being 
researched. Still, residue curves play a most important 
role in this context. 

An infinite reflux ratio transforms the differential 
balance (eq 18) formally into the differential equation 
of an open evaporator 

(19) -- - yi - xi (i = 1, ..., C) hi,, 
dn 

the solution of which represents the composition changes 
in the residue remaining in a still during evaporation: 
it is known as a residue curve. Residue curves were 
introduced by Schreinemakers [I011 as long ago as 1901 
and often adopted in the literature [21, 98, 102-1041. 
Doherty and Perkins [88,105-1071, as well as Doherty 
and Caldarola [1081, have supplemented and restruc- 
tured this fund of knowledge for ternary mixtures, and 
have linked it to distillation with noninfinite reflux. Due 
to azeotropic points, families of residue curves, entered 
on triangular diagrams, often form several curve bundles 
(e.g., figures in ref 211, who are separated by boundary 
curves. It is a good approximation to say that these 
boundary lines must not be crossed by the concentration 
profiles of distillation columns. They are therefore 
relevant as limits of the product region for flowsheet 
and column design and hence also for the specification 

of column products in the calculation of the minimum 
energy requirement. 

Looking back at Figure 5,  we recognize a first 
interesting connection between residue curves and pinch 
point curves. The pinch point curve leaving bottoms 
product B (chain dotted) marks the termination points 
of all possible concentration profiles in the stripping 
section. The residue line-drawn dotted-and also 
starting from the bottoms product-is the separation 
profile of an adiabatic distillation at total reflux. Con- 
sequently all the concentration profiles starting from a 
product are bounded by the pinch point curve and the 
residue curve [961. A second important connection 
between residue curves and pinch point curves is the 
fact-which will not be further discussed here-that, for 
ternary mixtures, the latter can be generated in a very 
simple way from residue curve maps using a tangent 
construction [581. 

A special case of the determination of the minimum 
energy requirement will now be explained with the help 
of the acetonekhloroformhenzene system in Figure 18. 
The residue curve boundary has been drawn and for a 
bottoms product B lying slightly below this curve, the 
pinch point curve, which runs in the direction of the 
acetone corner. The residue curve through B runs to 
the chloroform corner. If for product B the load on the 
reboiler of an adiabatic column having a stripping 
section of arbitrary length is varied, then the following 
observation is made [961: for small loads the adiabatic 
separation profile of the stripping section ends at the 
pinch points (e.g., PI, Pz) on the branch of the pinch 
point curve which leaves the bottoms product. Some of 
the concentration profiles cross the residue curve bound- 
ary from the convex side. This possibility has already 
been explained geometrically by Petlyuk [851, in which 
his separation profile construction corresponds to that 
of Kirschbaum [1091. Above a certain value of the 
reboiler load this is no longer possible, and the concen- 
tration profiles remain in the lower distillation region 
and end there in stationary points (e.g., PB, P4). At least 
two branches of the pinch point curve must therefore 
exist, and on each branch there must be not only a 
region which has a physical meaning and represents 
pinch points for the stripping section, but also a region 
which cannot be reached. The latter is shown by a 
dashed portion of the pinch point lines. 

Consequently, in a column whose feed F lies in the 
lower distillation area (Figure 181, the bottoms product 
B can only be obtained if the boilup rate is so high that 
the separation profile of the stripping section does not 
lead into the upper distillation area, but stays in the 
lower one. This minimum value can already cause the 
concentration profiles of the rectificaton and stripping 
sections to cross each other, without a pinch occurring 
in the column. The number of separation stages does 
thus not become infinite-this case is shown chain- 
dotted. This special case of a minimum energy through- 
put without a pinch will not be handled by any of the 
published approximation procedures. Exact column 
simulations are here unavoidable. 

Continuing a little further with this line of thought, 
there must be-in nonideal systems-separations in 
which the minimum reflux ratio is infinite. That is, for 
a feed in the lower distillation area a bottoms product 
is specified just on the residue curve boundary. Only 
the separation profile for total reevaporation of the 
bottoms product-the residue line-will then stay in the 
lower region; all concentration profiles for lower reboiler 
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acetone 

azeotrope/b/ 

residue CI 

\ chlc--’--- \ second branch Denzene 

of pinch points 
Figure 18. Pinch curve branches and minimum energy condition without a pinch. 

Table 1. A Brief Extract of Methods for Calculating the Minimum Energy Demand (Methods Ranked in Order of 
Increasing Accuracy and Increasing Computational Effort) 

~ ~~ 

selected 
recommended 

order type of calculation literature examples comments 
approximation 1 

methods 

2 

3 

rigorous 4 
problem solutions 

5 

6 

Underwood‘s method 
for simple columns and 

... complex columns 
modified and extended 

Underwood method 

pinch point criteria 

tangent pinch criterion 

column partitioning 

rigorous column 
simulation with a 
large number of stages 

13-1 7,22-26 
... 

60,66, 70-74 
52-57 

8.117 

10,88,89,92,94 

8,97,115 

79,81,122 

76, 77, 78,82 

loads lead into the upper distillation region. Hence 
residue curve boundaries cannot be crossed by distilla- 
tion mass balance lines from the convex side. Residue 
curve boundaries thus mark the limit of the product 
area in one direction. 

5. Concluding Remarks 
Stimuli for the development of fast procedures for the 

calculation of minimum energy requirements arise from 
the wish to appraise the operating point for the energy 
requirement of as many alternatives as possible during 
the design and analysis of distillations. In spite of 
numerous valuable attempts, a universal procedure, 
which supplies the minimum energy requirement for 
nonideal, multicomponent distillations at the touch of 
a button, has not yet been found. 

well-suited for ideal multicomponent mixtures 
(constant molal overflow and constant relative 
volatility); dangerous with increasing nonideality 
of the mixture; also cover complex column sequences 

allow to deal with certain nonideal cases (e.g., binary 
azeotropes) by formation of pseudocomponents 
or pseudoconcentrations; range of applicability has 
to be checked for each specific case 

nonideal and azeotropic multicomponent mixtures; 
cover certain complex column sequences 

direct and indirect splits 

(also multicomponent systems) 

methods, because column parts have to be simulated 
rigorously, but avoids entire column simulations; 
so far only published for simple distillation columns 

time-consuming, but increased computer performance 
may facilitate this total-simulation approach 

fast and (very) good approximation solutions for 

same quality, but methods are restricted to the 

rapid exact solution for this special case 

more computational effort than the approximation 

Table 1 gives a brief commented selection of the most 
important approaches in use today. Methods are ranked 
in order of increasing accuracy for nonideal mixtures 
and increasing computational effort. Algorithms for an 
exact calculation suffer to  some degree from consider- 
able convergence problems, and only very few successful 
examples are available. The “manual” simulation- 
supported calculation is, in spite of vastly improved 
computer performance, still time-consuming and only 
justified if the minimum energy calculation is a seldomly 
required task. Approximation procedures on the basis 
of the idealizing Underwood equations can in many 
cases only be used successfully if great care is taken. 
Newer approaches for nonideal mixtures which strive 
for the exact calculation of the pinch points and the 
pinch point curves are-in the experience of the 
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authors-very promising. They must, however, first 
prove themselves, and require more development work. 
It is most important that these approaches for calculat- 
ing the minimum energy requirement should cover 
special cases and complex column schemes also. 
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Nomenclature 
B, D ,  F = bottoms, distillate, and feed flow rates, kmol/s 
C = number of components 
H = enthalpy flow, kW 
h = molar enthalpy, kJ/kmol 
Ahv = enthalpy of vaporization, kJ/kmol 
K, = distribution coefficient (K, = y ,  /x,) 
L = liquid flow rate, kmolls 
n = number of stages 
p = pressure, Pa 
P = pinch point 
q = degree of condensation of the feed (q = LFIF)  
QB = reboiler energy input, kW 
QC = condenser energy withdrawal, kW 
r = reflux ratio ( r  = L I D )  
S = side stream flow rate, kmolls 
T = temperature, K 
V = vapor flow rate, kmol/s 
x , ,  y L  = liquid or vapor mole fraction of component i, moll 

Greek Letters 
a, = relative volatility of component i with respect to  

q, q,  0 = Underwood’s parameters 

Subscripts  
B = bottoms 
C = component C 
D = distillate 
F = feed 
i = component 
j = counter in summations 
min = minimum value 
P = pinch 
r = rectifying section 
s = stripping section 
T = tangent pinch 

Superscripts 
L = liquid phase 
V = vapor phase 

mol 

component C 
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