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A Robust Method To Solve Mass Balances in Reversible Column

Sections

Pio Aguirre* and José Espinosa
INGAR (CONICET), Avellaneda 3657, 3000 Santa Fe, Argentina

Reversible composition profiles in azeotropic and reactive distillation were used as pieces of
new methods for the prediction of product composition regions and minimum reflux in single-
and multiple-feed columns. A simple and robust algorithm to solve the nonlinear equation system
corresponding to mass and energy balances in a reversible distillation column section for highly
nonideal mixtures is proposed. If a distillate (bottom) is specified, one additional variable has
to be set to calculate a cross section in the rectifying (stripping) part. We initially use the
concentration of the component to be eliminated in the section as the variable to be fixed. A
former direct successive substitution (DSS) procedure used in a previous paper is here analyzed,
and the conditions for convergence are discussed. A damped Newton—Raphson method (DNR)
is an alternative also presented. The new algorithm involves an improved direct successive
substitution (IDSS) outer loop and a bubble point temperature (BUTE) loop included. By
assuming the liquid phase composition at the reversible section, solving BUTE, and using
geometric considerations, a related “hypothetical” product composition can be calculated. The
difference between the real and the “hypothetical” product composition is used to recompute
the liquid phase. This method can be considered robust in view that it does not uses derivative
calculations that cause numerical drawbacks in cases that maxima, minima, or turning points
are reached. The initialization variables are the liquid mole fractions instead of temperatures
and component flow rates, resulting in a more general case-independent method. The geometrical
characteristics allow that the algorithm can be initialized in any arbitrary region of the
concentration simplex. For constant relative volatility (CRV) mixtures, a small number of
iterations are needed despite the start point selected. The convergence was found always
satisfactory independently of the start point, even when inversions in volatility order of some
components take place. Finally, a variant (secant) of imbedding homotopy continuation is
proposed to efficiently trace the complete path of the reversible profile, using the IDSS algorithm
as the corrector. This combination becomes necessary when multiple disjoint branches of a
product pinch point curve must be computed in highly nonideal mixtures. Other approaches to

the problem are mentioned and their results compared.

1. Introduction

The design and evaluation of distillation sequences
are commonly carried out to obtain optimal structures
and operating conditions which satisfy some economical
criteria. Many methods to support the selection of
distillation sequences have been developed, but most of
these are based on heuristics and shortcuts; otherwise,
they require difficult and time-consuming optimization
procedures. The fundamental literature can be found
in several review articles (Nishida et al., 1981; West-
erberg, 1985; Floquet, 1988). Among the most impor-
tant diagnosis variables, the minimum reflux of a
definite separation plays the central role in determining
optimal alternatives. Normally, the trade-off between
energy and investment costs operates as the decision
factor for single columns. Both the energy consumption
and the tower diameter increase while the number of
trays decreases as functions of the reflux value. Today
the tendency is to select a reflux value as close as
possible to the minimum.

The minimum reflux prediction can be tackled either
via rigorous or shortcut methods. In synthesis and
optimization problems shortcut methods are preferable
due to their lower computation effort. At least two such
procedures are successful in working with highly non-
ideal mixtures: the “zero volume criterion (ZVC)” (Julka
and Doherty, 1990, 1993) and the “minimum angle
criterion (MAC)” (Koehler et al., 1991). The first of
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these was developed from the computation of all the
pinch compositions which could appear in column sec-
tions operating at minimum reflux conditions.

A pinch in a distillation column section is character-
ized by the equilibrium conditions between the vapor
and liquid streams which come into contact in the same
plate. Such a situation takes place at each position in
the reversible rectification (Fonyo, 1974; Petlyuk et al.,
1981), and because of this, reversible profiles are asso-
ciated with pinch calculations. The pinch compositions
corresponding both to the stripping and to the rectifying
sides determine characteristic hyperplanes in the concen-
tration simplex (Franklin and Forsyth, 1953). The mini-
mum reflux corresponds just with the “contact” of one
of the hyperplanes of the stripping with one of the hy-
perplanes of the rectifying section. This “contact” gener-
ally occurs with an hyperplane containing the feed com-
position (Franklin and Forsyth, 1953); we refer to this
case as “feed pinch case”. For quaternary mixtures and
direct separation, one pinch of the stripping side “con-
tacts” the hyperplane conformed with three pinches of
the rectifying side. This “contact” can be mathemati-
cally determined by the zero volume criterion in the con-
centration simplex. For systems showing tangent
pinches, the design method proposed by Fidkowski et
al. (1991) can be used. The mentioned contributions
(Julka and Doherty, 1990, 1993; Fidkowski et al., 1991)
must determine the location of all the pinch points of
the distillation map for distinct values of the reflux
ratio.
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An alternative to the design was proposed through
the minimum angle criterion (Koehler et al., 1991): only
one characteristic pinch at each side of a column is
selected; the stripping pinch is associated with the
rectifying pinch by means of the energy balance. Fi-
nally, the minimum reflux condition is given when the
angle between the two composition vectors connecting
the pinch points on the reversible rectifying and strip-
ping profiles to the feed point is a minimum. Newly,
the complete reversible path must be obtained, but for
different values of the key component mole fraction.

By computing reversible profiles, one can evaluate not
only minimum reflux requirements but also heat de-
mand profiles along column sections, which can be used
in the design of distillation sequences and heat integra-
tion (Terranova and Westerberg, 1989; Koehler et al.,
1992). Furthermore, these heat profiles allow us to
identify tangent pinches showing a greater minimum
energy demand than the energy demand of the “con-
ventional” saddle or end pinch (Koehler et al., 1991).
Another important aspect involving the use of this
method is that related to the computation of the
complete reversible profiles to determine the feasible
product regions for a given feed composition (Wahnschafft
et al., 1992; Fidkowski et al., 1993; Poellmann and
Blass, 1994; Espinosa et al., 1995).

This work proposes the analysis of the equation
system of the reversible mass and energy balances. We
will also show that the method used in a previous paper,
from now on called the DSS method (Koehler et al.,
1991), always converges for constant relative volatility
(CRV) mixtures. As we will show later, if a distillate
(bottom) is specified, one additional variable has to be
set to calculate a cross section in the rectifying (strip-
ping) part. We initially use the concentration of the
component to be eliminated in the section as the
variable to be fixed. Since this algorithm is part of
others even more complex, the robustness is almost a
necessary condition. The DSS algorithm fails in prob-
lems involving highly nonideal mixtures; then, we
propose an improved method (IDSS method) which
allows us to deal with such systems. In design, the
complete reversible profile is of interest; then, imbed-
ding homotopy (Rion and Van Brunt, 1990) using
internal variables as parameters is an appropriated
method to track the path when multiple disjoint branches
of a product pinch point curve must be computed in
highly nonideal mixtures. Fidkowski et al. (1991)
propose the use of pseudo-arc-length continuation to
resolve the difficulties presented when parametric
continuation with 4 = 1/r is used for finding pinch
points. The continuation method recommended by
Fidkowski et al. (1991) is the pseudo-arc-length, predic-
tor—corrector algorithm of Keller (1987). [Fidkowski et
al. (1991) refer back to Keller (1977).] Our approach to
the corrector (the new IDSS) requires no derivative
calculations; therefore, we will develop an imbedding
homotopy algorithm without derivatives, too. In our
case the path is followed approximating the augmented
Jacobian of the solution curve with the secant in two
consecutive points. Moreover, we consider the original
problem variables (component mole fractions) as homo-
topy parameters.

The algorithm and equations developed in the paper
are related to conventional distillation, but it should be
noted that, using the transformed composition pre-
sented in a previous paper (Espinosa et al., 1995), the
same applies to reactive distillation as well.

distillate
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Figure 1. Reversible column: control volume in the rectifying
section.

2. Model for Reversible Rectification and
Problem Characteristics

The conditions for a reversible distillation column are
the following:

(1) Heat to and from the column has to be transferred
at zero temperature difference.

(2) Without any device for a reversible pressure
adjustment no pressure drop along the column owing
to hydrodynamic resistance (friction) is allowed. The
column commonly is assumed to operate at constant
pressure.

(3) No contact of nonequilibrium liquid and vapor
streams is allowed at any point in the column, including
at the column’s top and bottom, and—above all—at the
feed point.

As opposed to requirements 1 and 2, which are
common assumptions in all approximate rectification
calculations, requirement 3 defines the inherent differ-
ences between the adiabatic and reversible rectification
models and imposes severe restrictions. The reversible
separation must go from equilibrium state to equilib-
rium state in infinitesimally small concentration steps.
Consequently, reversible rectification columns would be
infinitely high. It must be emphasized that this model
should not be confounded with the idea of equilibrium
stages, where stage-leaving streams are assumed to be
in equilibrium.

The enriching section of a multicomponent rectifica-
tion column is depicted in Figure 1. Note that in a
completely general case the locations of heat transfer
are not yet fixed. Considering that the countercurrent
liquid and vapor streams are in equilibrium, the math-
ematical formulation for isobaric operation is

Vy, —Lx,—d;=0
ZXi—1=O; Zyi—1=0
Vi~ Kx =0
vwﬂ—u+—hDZq—4;=o
P—pPp=0
Ki — Ki(x,y,T,p) =0

h — h(x,y,T,p) =0 )
with i =1, ..., n¢, nc being the number of components.



It can be shown (Kaibel, 1987; Koehler et al., 1991)
that 3nc + 7 equations are connecting any arbitrary
column cross section to the distillate. An analogous
system of equations can be derived for the stripping
section. The degree of freedom of the system is nc + 3;
consequently nc + 3 variables have to be set to com-
pletely describe the system of Figure 1. If a distillate
is specified, which requires assignment of nc + 2
variables of the product stream (nc product component
flows dj and the condenser temperature and pressure),
one additional variable has to be set to calculate a cross
section in the rectifying part. Choose, e.g., Q, as this
free variable. For any value we select, at least one
physically meaningful solution of the system of equa-
tions exists. If we wish to “move along” the column, Qy
must be varied. The column cannot operate adiabati-
cally, even if it were infinitely high. Vapor and liquid
flows have to be adjusted continuously by condensation
and vaporization to maintain phase equilibrium. Among
others, Fitzmorris and Mah (1980), Flower and Jackson
(1964), and Naka et al., (1980) devised column schemes
for which heat distribution curves could be realized.

In our previous paper (Koehler et al., 1991) we have
concluded that any approach that relies on solving the
algebraic system of equations for a given value of the
external reflux ratio or the equivalent Q, suffers from
numerical drawbacks. Julka and Doherty (1992) ob-
tained similar results. In order to produce a reliable
algorithm, our suggestion was do not use the reflux ratio
as the variable to be fixed because multiple solutions
can exist and the iterative procedure could oscillate
between distinct points and therefore it becomes more
unstable. Instead use a variable that increases/de-
creases monotonically between the column end and the
respective pinch. We resorted to the concentration of
the component to be eliminated in the section. An
additional advantage with this selection is preserved:
the material and energy balances can be decoupled and
hence, enthalpy calculations can be ignored until con-
vergence of the reduced system of eq 1 has been
achieved. We will return later to this topic.

For constant volatility order mixtures (CVOM) con-
taining nc components from which only np components
are present in the distillate, it can be seem from
Franklin and Forsyth (1953) and Nandakumar and
Andres (1981) papers that there exist at least nc — (np
— 1) solutions for the equations system at a given
external reflux ratio and for all these solutions it is
satisfied xj = 0 and y; = 0. Furthermore, these solutions
are characterized by

S[1]: x; > 0 {i = np}; otherwise x; =0

S[2]: x; > 0{i = npandi=ngy+1};
otherwise x;, =0

S[3]: x; > 0{i = npandi=ng+ 2};

otherwise x; =0

Sl x;>0{i<npandi=npy+ (j— 1)};
otherwise x; =0

S[hc—(Np—1)]: %; > 0{i = npand i = n¢};
otherwise x; =0
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Figure 2. Reversible path for a bottom: distillative alcoholic
mixture.

where nc and np represent the number of components
in the feed and in the distillate, respectively. In line
with this assertion, near ideal ternary distillative
mixtures will give two reversible paths if the distillate
contains only the two most volatile components (Koehler
et al., 1991). These curves can be plotted in the
concentration simplex by joining the solutions for dif-
ferent values of the reflux ratio. One of them follows
the triangle edge corresponding to the most volatile
components while the other completely lies within the
triangular diagram, i.e. x; = 0 for all the species.
Alternatively, if the residue curve maps are calculated
(Doherty and Perkins, 1978), the thermodynamically
optimum separation path (pinch point curve) for the
given distillate can be graphically constructed by finding
the points on the residue curves with their tangents
passing through the distillate (Wahnschafft et al., 1992).
In an analogous manner, the same occurs for near-ideal
guaternary reactive systems when a set of transformed
compositions are defined (Espinosa et al., 1995).

As we quoted above, the reversible path that com-
pletely lies within the triangular diagram can be more
easily obtained if the composition of the component to
be eliminated in the section is selected as the fixed
parameter instead of the reflux ratio (or Q,). The pinch
point curve lying in the triangle edge corresponds to a
binary system, and therefore, no iterations in concen-
trations are needed. Figure 2 shows the reversible path
(pinch point curve) in the triangular diagram for a
bottom containing 62.97% 1-butanol, 36.98% 1-propanol,
and 0.05% 2-propanol. In obtaining this curve, a
method developed in Koehler et al., (1991) was applied.

On the other hand, if the condition of CVOM is not
valid, which is the case for azeotropic and reacting
mixtures, multiple stationary points can be found. For
highly nonideal ternary distillative and quaternary
reactive mixtures (Wahnschafft et al., 1992; Espinosa
et al., 1995) geometric explanations can be given.
Assuming a product containing all the components
present in the feed stream, then there exists at least
one pinch point curve (a branch) for a given distillate
that represents the thermodynamically optimum sepa-
ration. However, an additional pinch point curve
(another branch) can appear when the highly nonideal
behavior of the mixture gives rise to inflections in the
residue curves, and therefore, a new solution to the
reversible model equations there exists. For CVOM no
inflections in the residue curves appear and, hence, only
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Figure 3. Multiple branches of a bottom pinch point curve:
reactive mixture containing CH3sOH, i-C4Hg, MTBE, and n-C4H1o
(inert).

one pinch point curve corresponds to a given distillate.
Figure 3 shows two pinch point curves for a given
bottom composition in a quaternary reactive mixture
for which a new set of transformed compositions were
defined (Espinosa et al., 1995) in order to apply the well-
known geometrical properties of distillative mixtures to
reactive ones.

As can be seen in Figure 3, multiple solutions can also
appear for a given inert transformed composition (i.e.,
for any line parallel to the CH3;OH/i-C4Hg axis above
the bottom composition) due to the disjoint branches of
the pinch curve. Hence, for these difficult cases a
homotopy continuation method must be used to reach
the desired solution. Since the complete path must be
obtained, an imbedding continuation method is also
desirable. Despite the concepts above, the selection of
the mole fraction of the component to be eliminated as
the parameter is again an option better than the reflux
ratio. In fact, at each of the branches of the pinch point
curve multiple solutions can exist for a given value of
the reflux ratio. This behavior typically appears in
columns operating at minimum reflux conditions show-
ing tangential pinches (Koehler et al., 1991). In addi-
tion, describing the complete path by varying r (i.e., from
0 to 1.2rmin) is also inconvenient because a small change
in the reflux ratio causes a jump of the pinch concentra-
tion at the tangential pinch location. For this reason,
the algorithm proposed by Terranova and Westerberg
(1989) that uses the reflux ratio as the fixed variable
can only be applied for near-ideal mixtures. Fidkowski
et al. (1991) recommend a pseudo-arc-length continua-
tion algorithm.

The approach presented here is to solve the equation
system given by eq 1 only when the concentration of a
pivot component in a section is the fixed parameter. As
we mentioned above, with this concentration selection,
the energy balance and the enthalpy calculations are
dropped from the system of eq 1. This problem appears
to be similar to a flash calculation of types | and IV
according to the classification given by Boston and Britt
(2978) in which that problem can be solved either by
the theta method or by the method proposed in that
paper. However, these procedures cannot be satisfac-
torily extended to solve eq 1. In fact, we have found
that for cases including inversion in the volatility order
between any nonkey species and one key component,
adapted theta methods must be controlled and modified
during the same iteration which leads to oscillating
behavior of the system. The structural difference caus-
ing this is clearly due to the sign change in the first

equation of the system of eq 1 (Terranova and Wester-
berg, 1989). Furthermore, for CVOM, any adaptation
of the theta method is not satisfactory because of the
great number of equilibrium calculations needed for the
system given by eq 1.

In the following sections we will expose two method-
ologies based on direct successive substitution. The first
direct successive substitution (DSS) method (Koehler et
al., 1991) was generated by rearranging the reduced
equation system given by eq 1 in such a way to obtain
a set of recursive formulas. The coefficients of these
formulas must be corrected in each iteration (solving a
bubble point temperature subroutine BUTE), and they
contain the prefixed values of the problem and the
relative volatilities of all the components. This method
was employed for most cases including mixtures show-
ing inversion in the volatility order. However, conver-
gence to negative concentrations or even no convergence
after 2000 iterations in some special difficult cases was
found. In this paper we demonstrate that under con-
stant relative volatility (CRV) assumptions, the algo-
rithm proposed in Koehler et al. (1991) converges for
all initial liquid concentration values selected to start
the calculation.

Also a damped Newton—Raphson (DNR) method is
presented for this special equation system and the
characteristics of this method are analyzed.

In addition, an improved direct successive substitu-
tion (IDSS) method is developed on the basis of the
geometrical conditions that must be fulfilled by the
compositions of the liquid and vapor phases at a given
cross section and by the product composition. By
assuming the liquid phase composition at the reversible
section and solving the bubble point temperature sub-
routine (BUTE), a hypothetical product composition can
be calculated. The concentration errors between the
hypothetical product composition and the real product
composition are used to recompute the liquid phase and,
after normalization, to return to the first step.

Finally, when the goal is to find the complete revers-
ible path, the IDSS method is used in combination with
(secant) imbedding homotopy continuation. The results
of several recent contributions (Terranova and Wester-
berg, 1989; Fidkowski et al., 1991; Poellmann and Blass,
1994) are mentioned.

3. Direct Successive Substitution Procedure

In a previous paper (Koehler et al., 1991), a direct
successive substitution procedure generated to solve the
equations system given in eq 1 was presented. The eq
1 system was rearranged to satisfy the following re-
quirements:

(i) For any given initial value of the liquid phase
composition used to start the calculation, the conver-
gence must be assured. In other words, global conver-
gence should be guaranteed.

(i) The number of equilibrium calculations should be
the minimum into each iteration.

For this method we will demonstrate that, for CRV
mixtures, condition i is asserted, needing for ii only one
equilibrium calculation for all the procedure. For
mixtures showing either inversion in the volatility order
or great changes in the values of the volatilities, neither
condition i nor condition ii can be demonstrated; the
success for convergence depends strongly upon the start
point. Furthermore, it has been found that multiple
solutions can occur, some of these with negative con



centrations; in most of such cases the algorithm con-
verges to the nonphysical solution.

In order to show how the system is rearranged and
conditions i and ii are satisfied, consider the following
mass balances for the rectifying section,

Vy; — Lx; = d; (2

V=L+D 3)

and the equilibrium relationship,
X

yi - —

zxiai

where o; is the relative volatility of component i.
Rewriting eq 2 for the two most and least volatile
components Ic and hc that do appear in the column
section, eliminating the liquid flow L, and using egs 3
and eq 4, leads to

(4)

®)

V= _&(% — %) (6)

Qe = O\ Xye Xhe

If xnc is the prefixed variable, and the mixture shows
constant relative volatility for all the components, eq 6
has the form

V=)t o )
where v and ¢ are constant values for all the problems:

0‘hcdlc
Qe = Opye

@= d 1 Qe (8)
=d |—-——""——
¢ Ybhe th(alc - O‘hc)

It is important to note that once we have fixed the heavy
key component composition, the vapor flow rate V
depends only of the light key component mole fraction.
This occurs due to the severe restriction imposed by the
thermodynamical equilibrium over the liquid and vapor
compositions at any point of the reversible enriching
section.

The concentration x; for the remaining species can be
expressed from egs 2 and 3 as
d.

Vi) -1+ D

i=z=he, i=lc 9)

By using the nonkey component balance and the heavy
component balance, a more convenient expression for
Xj can be obtained:

bV
o — e (04— 0 O
i /"i:a;_(l -] (10
hc™i hc™i Ybhe hc

where again the coefficients #; and u; are constant for
the problem if the mixture shows constant relative
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Figure 4. DSS method for a CRV mixture.

volatility. From eqgs 7 and 10, the summation of mole
fractions for the nonkey components results:

1
X = (11)
%Cc z[(1/’/)(|c) + @l — w

In addition, the mole fraction summation over all the
components must be equal 1; therefore, the following
relationship must be obeyed at convergence:

X + Xi =1 — X (12)
i=hc
i=lc

Into the iterative procedure we define

1— X
O=——— (13)
Xic T X
iZhc
i=lc

with ® = 1 holding at the solution. From eq 11 we have
an expression of ® as a function of xc:

1 - th
@ - -
Xo[1 + 9(x)]

1
(X)) = Z (14)
i=fe [y + X (em — i)l
i=lc
Let us examine the function defined as
1— X
X, . =— (15)
71+ 9(x,0)

This function plotted against x|, the iterative variable,
is shown in Figure 4 for a ternary mixture showing CRV
behavior (x,c = 0.20). The coefficients of eq 10, from
which this function is derived, are fixed values only
under the two following conditions: constant relative
volatility and fixed xne. In Figure 4, the function X is
also depicted. From this figure it is easy to recognize
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that the successive substitution procedure, also sketched
in Figure 4, based on the following recursive calculation,
1-—x,

new __ c

Ic 1 + g(XOId)

Ic

(16)

will result convergent assuming only nonnegative con-
centrations at the start point. It can be shown that eq
15 has only nonnegative coefficients and, hence, the first
and second derivative show constant signs for x;c = 0.
In fact, introducing eqgs 8 and eq 10 into eq 15 we get

1— X
X, =
Q= Oy e dype oy — 0|t
1+ Z _— X ————
i [ Qe — 0y Xnedi Qe = Otpe

iZlc

17)

which under the assumptions: a;c > o > opc results in
an expression in x;c with strictly positive first and
strictly negative second derivatives (see the Appendix).

In addition, ©x,. tends to values greater than zero
when xic tends to zero and asymptotically to 1 — Xp
when the iterative variable tends to infinity. Because
of this, the iterative function is a strictly monotonically
increasing function of the light key mole fraction defined
between 0 and 1 — xn.. From these characteristics, it
follows that |(©x,)'| < 1 at the solution. Therefore, the
direct substitution procedure will be convergent for any
starting value x,.° greater or less than the value of the
Xic corresponding to the solution.

It must be kept in mind that Figure 4 shows the
solution process based on the rearranged equations
obtained from eq 1 and assuming constant relative
volatility. The analysis for the CRV mixtures will be
also applicable to situations in which relative volatilities
change but only if those changes are small. On the
other hand, convergence cannot be assured for highly
nonideal systems. For these mixtures, the iterative
function is not necessarily an strictly monotonically
increasing function with strictly positive first and
strictly negative second derivatives because the coef-
ficients of eq 17 (or a; and b; of eq Al in the Appendix)
are now composition and temperature dependent. As
a result of this, new terms must be considered in the
calculation of the first derivative of eq 17 and |[(Ox)’|
< 1 at the solution is not guaranteed.

The algorithm proposed in our earlier paper for both
ideal and nonideal mixtures will be here summarized:

Vapor and liquid flows and their compositions for any
cross section in a reversible rectifying section (i.e., under
assumption of vapor—liquid equilibrium) can be calcu-
lated according the following algorithm, if distillate
concentrations are given:

(1) Since the degree of freedom is 1, the concentration
of the least volatile component xy is selected as the
parameter.

(2) Estimate the concentrations for the liquid phase:
Xi,izhc-

(3) Compute the vapor—liquid equilibrium by means
of a bubble point temperature routine, the k; values, and
consequently a; = ki/kne values.

(4) Calculate V from the following equation which is
equivalent to egs 7 and 8:

v (%_%)/(m_&) (18)
Xhe X/l \Xne %

C
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Figure 5. DSS method for a ternary alcoholic mixture: compari-
son between the algorithms with a; constant and with correction
in the relative volatilities (y; = 1) (see Table 1).

Table 1. Data and Results Corresponding to the
Graphics of Figure 5

1. components ethanol (Ic) 1-propanol 1-butanol (hc)
2. relative volatility at  4.7750 2.2003 1.0000

solution, q;

3. (Qlilxe~1 — Qilxe~0), % 12,91 5.01 0.00

4. distillate component 0.905 33 0.077 92 0.016 75
flow rate, d;

5. start point for 0.10 0.70 0.20
iterative calculations

6. solution point 0.645 18 0.154 82 0.200 00

7. number of iterations

DSS, a; = constant DSS,yi=1 IDSS DNR
4 8 7 5a

a8 With Vinitiat = 1, Tinitiat = 352.8 K, Tso1 = 358.3 K, V5o = 1.13.

(5) Calculate the new compositions X;i=nc USINg eq 9.
(6) Compare the new liquid compositions to the old
ones, and if convergence is not yet achieved, normalize
all xj i=nc with the following expression and return to 3).

1d 1- Xhe
new __ 0
A — (19)
old old
X T+ X
iZhc
i=lc

(7) Otherwise, solve the energy balance for Q.

The bubble point temperature routine is a direct
successive substitutions calculation in the temperature,
based on the approximations given by Holland (1963):

Nc Kl
In yi = ? + K, (20)

The expression used in step 6 to normalize the new
concentrations, agrees with eq 15 for i = Ic. In CRV
mixtures concentrations other than x,c and vapor—liquid
equilibrium recalculations are not required. CRV as-
sumption converts the above-stated algorithm in the
procedure depicted in Figure 4.

In Figure 5 and in Table 1, a ternary system of
alcohols is used to show the results of the above-
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Figure 6. DSS method for the highly nonideal mixture: acetone—
chloroform—benzene, Ic = acetone (see Table 2).

00

Table 2. Data and Results Corresponding to the
Graphics of Figure 6

1. components acetone (Ic) chloroform benzene (hc)

2. distillate component  0.905 33 0.077 92 0.016 75
flow rate
3. start point for 0.1 0.6 0.3
iterative calculations
4. solution point 0.455 83 0.244 17 0.300 00
5. number of iterations
DSS IDSS DNR
35 8 72

aWith Vinitial = 1, Tinitia = 330.67 K, Tsg = 337.45 K, Vgq =
2.99.

described procedures. The algorithm given through egs
18, 9 and 19 with correction in the relative volatilities
(yi = 1) generates a curved trajectory requiring a total
of eight iterations to reach the solution. On the other
hand, the DSS with constant volatilities needs only four
iterations to converge and the trajectory is almost flat.
Both methods merge to the same solution because the
volatility values for the CRV case were chosen with this
purpose. Note that even in this “good system” a poor
estimation of the relative volatilities could give a wrong
solution if the algorithm with CRYV is used.

Obviously, serious convergence difficulties can take
place in working with mixtures showing high deviations
from the ideality. We now present some difficult cases
where the DSS algorithm fails; however it must be noted
that the method works well for near-ideal systems.

In Figure 6 and in Table 2 the system acetone—
chloroform—benzene was selected as test case where
volatility order changes do appear. The form displayed
in Figure 4 is drastically altered due to the changes in
the volatilities as can be recognized in Figure 7. It is
important to note that eq A2 (see the Appendix) apply
no longer because the terms involving the derivative of
the relative volatilities with compositions were omitted.
The DSS algorithm converges to the solution in oscil-
lating form in 35 iterations. Figure 8 and Table 3 show
the same system but with other distillate specifications.
For this case, the iterative function presents two
neighboring solutions (one of them without physical
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Figure 7. Relative volatilities against light component mole
fraction (Ic = acetone): cross section corresponding to the examples
of Figures 6 and 8.
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Figure 8. DSS method for the highly nonideal mixture: acetone—
chloroform—benzene, Ic = acetone (see Table 3).

Table 3. Data and Results Corresponding to the
Graphics of Figure 8

1. components acetone (Ic) chloroform benzene (hc)

2. distillate component  0.95 0.03 0.02
flow rate
3. start point for 0.1 0.6 0.3
iterative calculations
4. solution point 0.517 476  0.182524 0.300 000
5. number of iterations
DSS IDSS DNR
86 (nonphysical solution) 8 72

a8 With Vinitiat = 1, Tinitiat = 329.9 K, Tso1 = 336.3 K, V5o = 2.75.

sense). The method diverges from the physical solution
to converge in oscillating form to the nonphysical one
in 86 iterations. Finally, Figure 9 and Table 4 cor-
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Figure 9. DSS method for the highly nondeal mixture: acetone—
chloroform—benzene, hc = benzene (see Table 4).

Table 4. Data and Results Corresponding to the
Graphics of Figure 9

1. components acetone (Ic) chloroform benzene (hc)

2. bottom component 0.02 0.25 0.73
flow rate
3. start point for 0.05 0.55 0.40
iterative calculations
4. solution point 0.05 0.312 76 0.637 24
5. number of iterations
DSS IDSS DNR
19 7 62/8b

aWith Vinitiat = 0.05B. P With Vinitia = 0.025B, Tinitias = 347.8
K, Tso = 345.8 K, Vs = 0.07B.

respond to a reversible bottom cross section of the same
system; in Figure 10 the relative volatilities are plotted
against xpc. Two physical solutions can be recognized,
each of which corresponds to one of the branches of the
pinch point curve. As pointed out in Wahnschafft et
al. (1992), two branches of the pinch point curve for a
given product composition are possible if the residue
curves on which the product is located show an inflec-
tion. This inflection must be such that there exist other
tangents to residue curves which point through the
product (Figure 11). From Figure 9 it can be seen that
the fixed point on the left is unstable while the one on
the right is stable. Provided that the starting point for
the heavy key component mole fraction is placed to the
right of the unstable fixed point, the DSS will converge
to the stable fixed point. Nineteen iterations were
necessary to achieve the solution from xp® = 0.40.

It is evident that, for these cases, the DDS iterative
procedure does not guarantee the goals regarding to
global convergence and minimum number of equilibri-
um calculations.

4. Damped Newton—Raphson Algorithm for Eq
1 System

A Newton—Raphson algorithm (NR) was developed
for the equations system given through eq 1. The basis
equations were arranged according to the extension of
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Figure 10. Relative volatilities against heavy component mole
fraction (hc = benzene): cross section corresponding to the example
of Figure 9.
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Figure 11. Multiple branches of a bottom pinch point curve for
the highly nonideal mixture: acetone—chloroform—benzene (see
Table 5).

Table 5. Reversible Stripping Path by Homotopy
Continuation: Statistics

Bottom Pinch Point Curve
component acetone chloroform benzene
composition 0.02 0.23 0.75

statistics: total number of Euler’s predictions = 18,
total number of Euler’s predictions discarded due to
step-length control parameters = 5, total number of
cross-section iterations = 34, efficiency % = useful
number of cross-section iterations/total number of
cross-section iterations = 68

Disjoint Branch of the Bottom Pinch Point Curve
component acetone chloroform benzene
start point? 0.001 0.998 0.001

statistics: total number of Euler’s predictions = 25,
total number of Euler’s predictions discarded due
to secondary step-length control parameters = 11,
total number of cross-section iterations = 63,
efficiency % = useful number of cross-section
iterations/total number of cross-section iterations = 48

a8 This point was corrected to achieve the initial point of the
curve.



the ideas used for flash calculation. The n¢c — 1 liquid
flow rates of components i, i = hc, and the temperature
were selected as iterative variables. The liquid concen-
tration of the heavy component is the fixed parameter.
The discrepancy functions F; in terms of the iterative
variables are

I, +d, l; l;
- KXy, T.p)— x=— (21)

VDY

F,=
Z(Il + dl)

Note that the defining equation of the heavy compo-
nent mole fraction in terms of the liquid flow rates is
considered as an active constraint during the calcula-
tions. Numerical partial derivatives were done. A
damped methodology (DNR) was also introduced by
means of the step size factor 8, with 0 < g < 1.
Numerical unstabilities were found when either tem-
perature or liquid flow rates were poorly estimated at
the initialization step. As an example, in some highly
nonideal systems, 5 K temperature difference between
the initial value and the solution can generate a
temperature correction that exceeds the limits of the
vapor-pressure correlation leading to the divergence of
the algorithm, even when the component liquid flow
rates are assumed with the values of the solution.
Other problems encountered are those related to the
presence of dominant values in the Jacobian and the
related errors produced. Finally near-singular and
singular Jacobians were also observed in some tests for
highly nonideal systems. For such difficult cases a path-
following method was carried out. Moving away from
an exact solution obtained by means of the DNR in an
“easy to solve region” of the concentration simplex, a
parametric displacement in xp. is used to trace the
solution path from the “easy to solve region” to the
desired value of xn¢, Xnc being the path-following param-
eter. The initial temperature and the liquid flow rates
used in a forward point are the solutions in the actual
point. The path becomes identical to the distillate pinch
profile with this selection. Once an “easy” solution is
obtained, the value of xn¢ is smoothly varied from the
actual toward the original value for which the problem
was “difficult”. This methodology is time-consuming
and its success is subject to the possibility of finding
points in the convergence ratio of the DNR method.

5. The New (IDSS) Algorithm for Eq 1 System

It was shown that both changes in the relative
volatility order involving the extreme boiling compo-
nents and strong dependence of the K; values with the
composition drastically alter the stability of the DSS
method and really reduce the convergence radii of the
DNR algorithm. Maxima, minima, or turning points in
the error functions F were detected. The latter were
noted especially in our path following with the DNR
where initial temperature and liquid flow guesses must
be carefully selected. In fact, the path following pro-
posed in section 4 was applied to the same case as that
depicted in Figure 11 using DNR. To initialize the path,
vapor flow rates assumed between 0.1 and 0.2 times the
bottom flow rate prevent convergence, while values from
0.2 to 0.7 lead to the path through the bottom composi-
tion. From the last value, the reached solution is
located in the disjoint branch. Hence, there exist no
numerically reliable ways, when using DNR, to find
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initial values for all the disjoint branches of the product
pinch point curve.

A robust method, based on geometrical characteristics
of the problem, that can be easily initialized in any
region of the simplex, is presented. The following main
ideas are introduced in order to obtain the algorithm:

(i) The first idea is to use a modification of the DSS
method. In fact, this approach will not demand deriva-
tive calculations which cause numerical drawback in
cases where maxima, minima or turning points are close
to the solution. An additional advantage is the fact that
no matrix inversions or Jacobian approximations are
required. Furthermore, all the parameters involved in
the calculation of numerical derivatives, i.e., indepen-
dent variable increments, are avoided, giving rise to a
more general case-independent method.

(i) The second idea is to use a criterion for adjusting
the concentrations according to the most important
variables detected in our experience. Corrections in all
the liquid concentrations introduced into the iterative
procedure should be made in a problem-independent
way. The DNR is more problem-dependent since the
temperature is strongly dependent on the class of
mixture considered and, therefore, its initial value is
difficult to estimate. To achieve these objectives, the
following conditions are considered satisfied:

First, assuming the liquid phase compositions:

(a) The BUTE subroutine always converges and the
equilibrium vapor composition can be calculated.

(b) Not only the vapor phase composition (in equilib-
rium with the assumed liquid) but also a set of hypo-
thetical distillates corresponding to reversible columns
can be evaluated. Only one additional variable should
be fixed to completely determine one element of the
hypothetical distillate composition set. The hypothetical
distillate mole fraction of the heavy component hc is
selected because of similar arguments as described for
the selection of xyc as parameter in computing reversible
rectifying sections. Moreover, the hypothetical distillate
composition was determined by fixing the composition
of the hc component at the same value as in the real
distillate.

(c) If this hypothetical distillate is just the real
distillate, the solution was found; otherwise the differ-
ence between both composition vectors is a measure of
how far the assumed liquid composition is from the
solution.

Second, it is admitted that liquid phase concentration
of component i, i = hc, can be satisfactorily corrected
according to the error evaluated in the distillate com-
position for the same component. Hence, the difference
between the real and the hypothetical distillate con-
centration of component i gives a way to compute the
new liquid concentration of component i. This decom-
position, performed over the modified equation system
which include the error functions with the hypothetical
distillates, is appropriate for both ideal and highly
nonideal mixtures. A typical error function shape
calculated for such problems is depicted in Figure 12.
A variant of homotopy continuation allows to assess to
all these solutions when multiple solutions (multiple
branches) are present. How to adapt the IDSS for the
continuation algorithm will be explained later.

Vapor and liquid flows and their compositions for any
cross section in a reversible rectifying section (i.e., under
assumption of vapor—liquid equilibrium) can be calcu-
lated according to the following suggested algorithm,
provided that distillate concentrations are given:
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Figure 12. Typical error function in IDSS algorithm for highly
nonideal mixtures.

(1) Since the degree of freedom is 1, the concentration
of the least volatile component Xy is selected as the
parameter.

(2) As the initialization step, estimate two values for
the composition vector x©@ and x® and calculate: the
vapor—liquid equilibrium and © and g® according to
the general definition:

(22)

(3) Calculate the hypothetical distillate compositions
according to the reversible mass balances and using the
corresponding value of 5. This value guarantees that
the concentration of the hc component in the hypotheti-
cal distillate remains constant.

K) — (K K) (K K .
ve, =y + A —x) i=he (29)

(4) From the two previously computed points, calcu-

late the new liquid compositions:

k+1) _ (k) IDii ~ Yoi k-1) _ K
X; =X t—= —~(Xi = X")
D 6
D,i yD,l

i =hc
(24)

and normalize.

(5) Calculate yy*&k™D, gkt and yp k),

(6) If the relative error of the last hypothetical
distillate becomes smaller than a prefixed ¢, the solution
is found and go to 8; otherwise continue.

(7) Update all the variable values according to

7K . 2 _, Z(k-1) (25)

set k = k + 1 and return to 4.
(8) Solve the energy balance for Q,, and stop.
Figure 13 shows the geometric basis of the IDSS
algorithm for a ternary system. Note that it is not
necessary to initialize either the component vapor or
liquid flow rates or the temperature with this method.
Only two liquid composition vectors (with xuc constant)

Light component

Heavy component

Figure 13. Geometric bases of the IDSS algorithm for a ternary
system.

are needed for starting the IDSS algorithm. Tables 1—4
show the number of iterations necessary to achieve
convergence in the previously analyzed examples. For
some special difficult cases as those corresponding to
Figures 11 and 12, a variant of homotopy continuation
is useful to achieve all the solutions. In addition, when
homotopy continuation is carried out, it is possible to
trace the complete path through the product composi-
tion and all the disjoint branches of the pinch point
curve. The works of Wahnschafft et al. (1992) for
azeotropic mixtures and Espinosa et al. (1995) for
reactive distillation clearly show the importance of
obtaining these curves.

6. Secant Homotopy Continuation Method for
Reversible Distillation

A disadvantage of Newton’s method is that topological
phenomena which generate singularity, or near-singu-
larity, of the Jacobian matrix can prevent convergence.
Newton’s method is therefore only locally convergent
and relies on initial estimates close to the solution for
convergence (Rion and Van Brunt, 1990). Frequently,
a large or even global convergence domain is desirable
and the imbedding homotopic continuation methods
allow for a greatly expanded convergence domain. In
addition, multiple solutions can be easily encountered
and dependence of the solution on problem parameters
determined. When Newton’s method is used in the
correction step, the procedure to performing homotopy
continuation can be summarized as follows (Rion and
Van Brunt, 1990):

The path can be constructed by differentiating the
equation set with respect to the arc length of the
solution curve to obtain an initial value problem, using
an Euler-type predictor to approximate a forward point
on the path, using Newton—Raphson or DNR to correct
back to the exact path, and repeating until the point of
interest is reached. When the entire solution path is
of interest, one of the original problem parameters can
be considered as the imbedded parameter.

Because the IDSS algorithm was developed without
derivative calculations, a modification of the classical
homotopy continuation procedure, which uses derivative
calculations in the prediction step, must be sought. It
must be considered that, since the entire solution path



is of interest, we consider the original problem variables
(component mole fractions) as homotopy parameters.
The most important aspects included in our variant are
as follows:

Prediction Step. The unit tangent vector obtained
from the augmented Jacobian inversion at the predic-
tion step (in the classical homotopy continuation pro-
cedure) was replaced by a secant prediction using the
last two points on the homotopy path. In our method,
the unit secant vector is defined on the mole fraction
space. To obtain the two starting points of the continu-
ation algorithm, the IDSS is solved for in the vicinity
of pure components or azeotropes. Note that all the
points belonging the homotopy path are indeed the
pinch point curve in the concentration simplex.

Correction Step. Once an estimate to the homotopy
path is predicted using the last two points (secant
prediction), the IDSS method is employed to correct back
to the exact homotopy path. In order to solve the
reversible equation system, one of the problem variables
must be held constant. In our case, the local continu-
ation variable (a component mole fraction) is chosen as
the one whose component of the secant vector from the
previous iteration has the largest absolute value (Rion
and Van Brunt, 1990). This task is easily performed
by changing xnc in the above-stated IDSS algorithm by
any of the component mole fractions (including Xxc). That
is, the correction step involves the possibility of selection
of different component mole fractions as homotopy
variables according to the topology of the product pinch
point curve.

Step-Length Control. Further improvement is
achieved in continuation procedures when step-length
controls are applied to the predictor. The main objec-
tives are not to jump to other paths and not to skip
portions of the solution curve. We closely follow the
algorithm of Georg (1980) but adapted to our problem.
This algorithm has been adopted by many researchers
such as Wayburn and Seader (1987) and Frantz and
Van Brunt (1987). The primary step-length control is

As; = As;_,f3

where As;—; = step length used for a previous (secant)
continuation step, As; = step length for the next (secant)
continuation step, and 8 = 0igeal/0, Oigeal eing the ideal
turning angle and 6 the local turning angle.

The local turning angle can be estimated from the last
two unit secant vectors as

0 = cos [T, ' T]]

with T; = unit secant vector at the current continuation
step and Tj-1 = unit secant vector at the previous
continuation step.

Secondary Step-Length Control Parameters in-
clude the number of IDSS corrections needed to con-
verge to the exact solution from the prediction, the
initial size of the corrector step, the turning angle, and
the maximum and minimum step length.

The disjoint branches of the product pinch point curve
can be tested by inspect all the vertices of the composi-
tion simplex. Additional information about azeotropes
can be useful too. In general all the unstable (stable)
nodes must be tested as probable initial points for the
calculation of the pinch point curves for the bottoms
(distillates).

It is important to note that the algorithm involves the
possibility of selection of different homotopy variables
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Figure 14. Thermodynamically reversible path via (secant)
homotopy continuation using IDSS algorithm as the corrector (see
Table 6).

according to the topology of the product pinch curve.
Table 5 shows the statistics in obtaining the reversible
paths corresponding to Figure 11. Figure 14 and Table
6 newly emphasize the computational economy and
robustness of the method. Finally, in Figure 15 the
reversible path for a nine-component mixture including
hydrocarbons of very different boiling points is pre-
sented. As can be seen, our method is robust for
determining all the pinch points of both the rectifying
and stripping map for any specified key component mole
fraction.

Other relevant contributions to solve this problem
have been done. The work due to Terranova and
Westerberg (1989) gives an algorithm to obtain column
pinch temperatures versus reboiler and condenser du-
ties (temperature—heat diagrams) by using the reflux
ratio as fixed parameter to solve any reversible cross
section. The complete rectifying path is constructed by
varying the reflux ratio from 0 to 1.2rnyin. In a previous
paper (Koehler et al., 1991), we have concluded that the
mentioned approach fails for highly nonideal mixtures.
However, the algorithm works well for near ideal
systems.

Fidkowski et al. (1991) propose the use of pseudo-arc-
length continuation to resolve the difficulties presented
when parametric continuation with 4 = 1/r is used for
finding fixed (pinch) points. In parametric continuation,
one can attempt to track all the branches of pinch points
from the pure components and azeotropes (r — o, 1 =
0) by gradually decreasing the value of the reflux ratio
and using the most recently calculated fixed points as
a initial guess for a new point on a branch. The problem
with this approach is that the method fails where the
Jacobian becomes singular. Therefore, a simple Euler—
Newton continuation is not sufficient, and an arc-length-
based continuation method is required. The continua-
tion method recommended by Fidkowski et al. (1991)
is the pseudo-arc-length, predictor—corrector algorithm
of Keller (1987). The algorithm is robust for determin-
ing all the fixed (pinch) points of both the rectifying and
stripping map for any specified reflux ratio.

Finally, a recent paper concerning product boundaries
of homogeneous azeotropic distillation (Poellmann and
Blass, 1994) develops a totally different approach to
solve the reversible profiles. The thermodynamically



570 Ind. Eng. Chem. Res., Vol. 35, No. 2, 1996

Table 6. Reversible Rectifying Path by Homotopy Continuation

point Xacetone Xchloroform Xbenzene no. of IDSS corrections (itc)
12 0.948 4019 0.040 639 4 0.010958 7
2b 0.905 3300 0.077 9200 0.016 750 0
3 0.862 257 8 0.115 686 5 0.022 0557 1
4 0.7125190 0.247 568 7 0.039912 3 1
5 0.637 774 2 0.302 359 8 0.059 866 0 2
6 0.598 3517 0.317 8410 0.083 807 3 2
7 0.570 882 6 0.317 4449 0.111 6725 2
8 0.548 3350 0.309 367 1 0.142 297 9 2
9 0.504 817 8 0.280 453 6 0.214 728 6 3
10 0.414 609 2 0.208 458 1 0.376 9327 2
11 0.317 7135 0.142 396 6 0.539 8899 2
12 0.212 028 4 0.085 748 2 0.702 223 4 3
13 0.099 632 5 0.037 272 9 0.863 094 6 3
14 0.042 027 2 0.015295 8 0.942 6770 3
15 0.013 0859 0.004 711 2 0.982 202 9 2
16 0.005 841 2 0.002 098 0 0.992 060 8 1

statistics: total number of Euler’s predictions = 18, total number of Euler’s predictions discarded due to
step- length control parameters = 4, total number of cross-section iterations = 35

step-length,
local continuation

ASJ' = Aijleidead@

turning angle, initial length of

point variable index ASj < ASmax 6 = cos™[T;-1-Tj], rad the corrector step
1
2
3 1 (acetone) 0.0573 0.011 007 4 0.000 687 3
4 1 0.2000 0.003 808 3 0.000 83 2
5 1 0.1000 0.151 346 5 0.0157152
6 1 0.0500 0.386 136 2 0.0194141
7 1 0.0339 0.412 7294 0.016 166 4
8 3 (benzene) 0.0430 0.244 892 7 0.0104375
9 3 0.0920 0.150 421 2 0.013 274 6
10 3 0.2000 0.051 147 3 0.009 893 5
11 3 0.2000 0.044 074 6 0.009 105 6
12 3 0.2000 0.063 853 5 0.0136359
13 3 0.2000 0.052 8370 0.011 627 6
14 3 0.1000 0.027 434 3 0.002 936 2
15 3 0.0500 0.009 035 5 0.000 475 6
16 3 0.0125 0.002 908 8 0.000 037 7

step-length control: 6igeal = 71/6; secondary step-length control parameters: Asmax = 0.2, itCmax = 6,

initial length of the IDSS correction vector < 0.05

aVapor compositions in equilibrium with the distillate. ° Distillate compositions.
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Figure 15. Thermodynamically reversible path via (secant)
homotopy continuation using IDSS algorithm as the corrector
(hydrocarbon mixture).

optimum path was interpreted as a curve in mole
fraction space with the temperature as parameter. A
system of linear equations for the derivative of the
profile with respect to the temperature was given.
Numerical integration of this derivative initiated at a

point on the desired profile yields the profile quickly and
accurately. To apply this method, analytical derivatives
for the activity coefficient model (Taylor and Kooijman,
1991) are required during the evaluation of the dif-
ferential equation. Figure 11 of that paper is very
similar with Figure 11 of our paper.

7. Conclusions

In this paper, the equation system describing revers-
ible sections in distillative and reactive columns was
rearranged. On this basis, it was demonstrated that
the direct successive substitution method (DSS) pre-
sented in a previous paper becomes globally convergent
if constant relative volatility (CRV) mixtures are in-
volved. Despite the good behavior for near-ideal mix-
tures, inversions in the volatility order and high cross
dependence among K; values and compositions prevent
the convergence of this algorithm.

Also, multiple solutions were recognized when the
mole fraction of the pivot component was fixed in order
to solve the reversible model. Geometric explanations
were given to demonstrate the existence of multiple
branches of a product pinch point curve. This informa-
tion is very important to improve the solution strategy
of the problem.



Two methodologies were studied to overcome the
difficulties encountered when the DSS procedure fails.

A damped Newton—Raphson (DNR) method was first
developed with component liquid flow rates and tem-
perature as iterative variables. Solving problems with
nonideal mixtures, the method shows high sensitivity
with the initial variable guesses. In such cases numer-
ical unstabilities arise because of a near singular
Jacobian or extreme temperatures are computed. How-
ever, when a path-following procedure was used to trace
the reversible profiles, the DNR showed good behavior.
Finally, the initialization of the different disjoint branches
of the reversible profiles remains a difficult task for this
algorithm.

A new successive substitution method (IDSS) based
on the geometrical characteristics of the problem was
proposed. The initialization of the algorithm can be
made from any start point because of the convergence
can be considered almost global. DNR is locally more
efficient than the IDSS, but the worse the initialization,
the better the performance of the IDSS over the DNR.

Finally, a variant of homotopy continuation was
implemented using a unit secant vector in the mole
fraction space as predictor and the IDSS algorithm as
corrector. The computational efficiency of this combina-
tion is very adequate for finding multiple solutions
corresponding to multiple branches of a product pinch
point curve. The disjoint branches can be easily deter-
mined by initiating the calculation at the nodes (pure
components and azeotropes) of the composition simplex.
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Nomenclature

B = bottom product flow rate, mol/s

D = distillate flow rate, mol/s

d; = distillate component flow rate, mol/s

h = molar enthalpy, J/mol

Ki = equilibrium ratio, K; = yi/X; or yi*/X;

Ki, K, = constants in the approximation given by Holand,
eq 20

L = liquid flow rate, mol/s

nc = number of components

p = pressure, kPa

Q = energy, W

r = reflux ratio

As = step length used during continuation step

T, T; = temperature, unit secant vector to homotopy curve
at step j

V = vapor flow rate, mol/s

Xi, Yi = phase composition, mol/mol

Z = vector of variables in IDSS algorithm

Greek Letters

o; = relative volatility, o = Ki/Kp¢

p = step-size factor in damped Newton—Raphson, § = L/D
in the IDSS algorithm and step-length multiplier in the
(secant) homotopy continuation algorithm

yi = activity coefficient

€ = tolerance

©® = function defined by eq 13 in the DSS algorithm

6 = local estimate of the turning angle between secant
vectors to homotopy path

A = parametric continuation variable

ni, ui = coefficients defined in eq 10

W, ¢ = coefficients defined in eq 8
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Subscripts

D = distillate
hc = heavy component
i = component index

ideal = ideal value of the turning angle, homotopy algo-
rithm

initial = initial value of a iterative variable
j = iteration number in homotopy algorithm
Ic = light component

min = minimum

r = reversible

sol = solution value of a iterative variable

Superscripts

D = distillate

k = iteration number in IDSS algorithm
L = liquid phase

new = new value

old = old value

V = vapor phase

Appendix. Characteristics of the Iterative
Function Corresponding to the DSS Algorithm

The function x;c © is given by

1= X
ch® = (Al)

1+

i#he a; + DX

i=lc

and their first derivative is

b;
(1 —Xpo) 5
d@ch I¢h% (ai + blxlc)
= (A2)
dx;, 2
1+
Iiz C (a.l + b|X|c)
which results strictly positive for x,c > 0.
The second derivative is
x|y ———
d?0x,, 7T (a; + X))
dch2 1+ Z ; :
=T (@ + bxc) :
b.2

1
(1=Xp) ) ————
i‘zzhcc (a; + bx,)°*
2

.i;c a; + b,

i=hc

(A3)
1+

By rearranging eq A3, the sign of the second derivative
becomes
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d°ex, b 2
sign = sign Z —

b.2

1+ (A4)

i;cC (a; + bx,)° _i;c a; t b

i=h i=hc

Assuming Ic = 1, hc = nc, where nc is the number of
component presents, we have

d’Ox,, e
sign = sign Z —_+
Xmcz =2 (a + biXIc)4
nc—1 nc—1 bibj bi2
2 2 2 Z -
= F (gt bix) (@ k)T EE (8 + bixy)
nc—1 bi2 nc—1 nc—1 bi2
'; (& +bxp)*! = jie’ (@ + bixlc)3(aj + bjXe)

(A5)
and rearranging the summations we have finally

b b; 2

i j

d2®X|C nc—1 nc—1 a.l + blxlc aJ + bJX|C
sign =—

sign
dX|C2 l; =1 (& bix)(a; + byx)

b2
S——
orld (& + bixe)

i=
which is a strictly negative function for x;; > 0.
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