Eutrophication control in lakes and reservoirs using simultaneous dynamic optimization approaches

Maria Soledad Diaz

Planta Piloto de Ingeniería Química (PLAPIQUI) Universidad Nacional del Sur – CONICET Bahía Blanca, ARGENTINA

Outline

- Motivation
- ✓ Objective
- Biological and biochemical determinations
- Global sensitivity analysis
- Dynamic parameter estimation problem
- Optimal control problem
- Simultaneous approach for dynamic optimization
- Discussion of results
- Conclusions

Motivation

Eutrophication as natural process of aging of water body

- Water bodies increasingly eutrophic due to anthropogenic inputs of nutrients
- Application of restoration strategies requires systematic study, modeling and optimization of eutrophication processes

Cultural Eutrophication

- Main anthropogenic source of nutrients: Agricultural activities (fertilization)
- Main point source: discharge of agricultural, industrial and urban wastewater
- ✓ Over enrichment of nutrients (mainly P and N)
- Increase in the production levels and biomass
- Very strong development of phytoplankton community
 - Decrease in water depth caused by sediment accumulation

Objective

- Development of ecological water quality (eutrophication) model
- Analysis of the trophic state of a water body through its composition and abundance of plankton
- Global sensitivity analysis and determination of sensitivity indices
- Parameter estimation based on available data:
- Model validation
- Study of the effect of nutrients concentration and environmental parameters on plankton population dynamics
- Determination of optimal bio-restoration policies

Trophic classification of water bodies

Oligotrophic

Mesotrophic

Eutrophic

Hipereutrophic

< [nutrients]
< Productivity

> [nutrients]
> Productivity

Trophic classification of water bodies

	OLIGOTROPHIC	MESOTROPHIC	EUTROPHIC	HYPEREUTROPHIC
Inorganic phosporus (µgl-1)	1-10	10-20	20-100	>100
Inorganic nitrogen (µgl ⁻¹)	<150	150-300	>300	
Phytoplankton (cellml ⁻¹)	2000	2000-5000	>5000	
Superficial chlorophyll a (µgl ⁻¹)	1-2	2-5	5-50	>50
Depth of Secchi disk (m)	5-10	3-5	1-3	<1

Paso de las Piedras Reservoir

Paso de las Piedras Reservoir

Provides drinking water to more than 450.000 inhabitants from Bahía Blanca, Punta Alta and to a petrochemical complex

Lake Characteristics

Area of drainage basin Perimeter of coastline Surface Mean depth 1620 km² 60 km 36 km² 8.2 m

Maximum depth Maximum volume Retention time 28 m 328 Hm³ 4 years

Paso de las Piedras Reservoir

✓ Eutrophic

 Main source of nutrients: agricultural activities

 High phytoplankton concentration during spring and summer: surface water blooms

Surface water blooms

- Natural phenomena caused by phytoplankton.
- Phytoplankton: microscopic floating algae (first link of the trophic chain).
- In favorable environmental conditions they are multiplied and concentrated in the surface,
 fast increase in algal biomass.

Photosynthesis

$106 \text{ CO}_2 + 16 \text{ NO}_3 + \text{HPO}_4^2 + 122 \text{ H}_2 \text{ O} + 18 \text{ H}^+$

Solar radiation

$C_{106}H_{263}N_{16}P + 138 O_2$

algae

i

Closterium spp.

Staurastrum spp.

Unpleasant odor and taste

Ceratium hirundinella

Anabaena circinalis

Aesthetics

Toxic Cyanobacteria

Biological determinations

Qualitative analysis

✓ Plankton net (30 μm)

 Observation to the optical microscope of the alive and fixed samples (formol 4%)

Determination based on keys

Quantitative analysis

Rutner water sampler

- ✓ *In situ* fixation with Lugol`s solution
- Phytoplankton enumeration in inverted microscope by Utermöhl method (1958)
- Phytoplankton biovolume

 \checkmark Calculation of mgC.

Cyanobacteria
 Diatoms
 Chlorophytes

Physico-chemical determinations

- ✓ Nitrates
- Nitrites
- 🗸 Ammonium
- ✓ Organic Nitrogen
- ✓ Phosphates
- Organic Phosporus
- ✓ Silice

- Water temperature
 Solar radiation
 pH
 Dissolved Oxygen
 Biochemical Demand
 - of Oxygen
 - Depth of Secchi disk

Ecological Water Quality Model

Mass balance for horizontal layers $\left[\frac{mg}{day}\right]$

$$\frac{dC_{ij}}{dt} = \sum_{k=1}^{NiN} \frac{QiN_{i,k}}{V_i} CIN_{ijk} \sum_{m=1}^{NOUT} \frac{QOUT_{i,m}}{V_i} CIN_{ij} + r_{ij} - \frac{kdA}{\Delta h_i h_i} (C_{ij} - C_{i+1,j}) - \frac{kdA}{\Delta h_i h_{i-1}} (C_{ij} - C_{i-1,j}) - \frac{C_{ij}}{h_i} \frac{dh_i}{dt}$$

$$i = \text{horizontal layer}$$

$$k = \text{Tributary inflows: El Divisorio, Sauce Grande}$$

$$m = \text{Withdrawals: drinking water+complex, Sauce Grande}$$

$$j = \text{Cyanobacteria, Diatoms, Chlorophyta, NO_3, NH_4, ON,}$$

$$PO_4, OP, BDO, DO$$

Mass balance for horizontal layers

Upper Layer

Lower Layer

 $\frac{dC_{Lj}}{dt} = \sum_{m=1}^{NOUT} \frac{QOUT_L}{V_L} C_{Lj} + r_{Lj} + \frac{kdA}{\Delta h_L h_L} (C_{Lj} - C_{U,j}) - \frac{C_{Lj}}{h_L} \frac{dh_L}{dt}$

i = L

State variables and biogeochemical processes

Rate equations (r_{ii})

Rate equations
$$(r_{ij})$$

$$r_{ij} = R_{ij,death} - R_{ij,miner} - R_{ij,sedim}$$

Death

$$R_{ij,death} = \sum_{m=1}^{5} (a_{jc} * k_{m,death} * f_j * C_{im})$$

Mineralization
$$R_{ij,miner} = k_{miner} * \theta_{miner} * exp(Temp - 20) * \frac{\sum_{m=1}^{\infty} Cim * C_{ij}}{k_{mjc} + \sum_{m=1}^{3} C_{im}}$$

$$m=1$$

Settling

$$R_{ij,sedim} = \frac{k_{j,sedim} * (1 - fD_j)}{D_i}$$

i = upper and lower layers

$$j = \mathbf{ON}, \mathbf{OP}$$

* C_{ij}

Rate equations (r_{ij})

$$r_{ij} = R_{ij,death} + R_{ij,miner} - R_{ij,uptake}$$

Death

$$R_{ij,death} = \sum_{m=1}^{3} (apc * k_{m,death} * (1 - f_{po}) * C_{im})$$

$$R_{ij,miner} = k_{miner} * \theta_{miner} * exp(Temp - 20) * \frac{\sum_{i=1}^{3} C_{im} * C_{iOP}}{km_{pc} + \sum_{i=1}^{3} C_{im}}$$

Uptake

Mineralization

$$R_{ij,uptake} = \sum_{m=1}^{3} (R_{im,growth} * a_{pc} * C_{im})$$

$$i = \text{upper and lower layers}$$

$$j = PO_4$$

Rate equations (r_{ij})

$$r_{ij} = R_{ij,nitri} - R_{ij,uptake} - R_{ij,denitr}$$

$$\mathbf{n} = R_{ij,nitri} = k_{nitri} * \theta_{nitri} * exp(Temp - 20) * \frac{C_{iNH4} * C_{iDO}}{k_{nio} + C_{iDO}}$$

Uptake

$$R_{ij,uptake} = \sum_{m=1}^{3} (a_{nc} * R_{im,growth} * (1 - PNH4) * C_{im}))$$

Denitrification

$$R_{ij,denitr} = k_{denitr} * \theta_{denitr} * exp(Temp - 20) \frac{C_{iNO3} * k_{no3}}{k_{no3} + C_{iDO}}$$

i = upper and lower layers $j = NO_3$

Rate equations (r_{ij})

 $R_{ij,death} + R_{ij,miner} - R_{ij,uptake}$ rii

Death

Mineralization

$$R_{ij,death} = \sum_{m=1}^{3} (anc * k_{m,death} * (1 - f_{ON}) * C_{im})$$

 $R_{ij,miner} = k_{miner} * \theta_{miner} * exp(Temp - 20) * \frac{\sum_{i=1}^{3} C_{im} * C_{iON}}{kmpc + \sum_{i=1}^{3} C_{im}}$

Uptake

$$R_{ij,uptake} = \sum_{m=1}^{3} (a_{nc} * R_{im,growth} * PNH4 * C_{im})$$

$$i = \text{upper and lower layers}$$

$$j = \mathbf{NH}_{4}$$

✓ Local vs. Global Sensitivity Analysis

Quantitative variance-based Global Sensitivity Analysis

- Model independent
- Incorporate the effect of range of input variation and its pdf
- Allow multidimensional averaging
- Allow parameter grouping

Given model output Y=f(x), x vector of input factors

Output variance

$V(Y) = E(V(Y|x_i)) + V(E(Y|x_i))$

 $\frac{E(V(Y|x_i))}{V(E(Y|x_i))}$ mean output variance that remains if x_i fixed (known) $\frac{V(E(Y|x_i))}{V(E(Y|x_i))}$ expected reduction in output variance if x_i fixed

Sensitivity index input x_i

$$S_i = \frac{V(E(Y|x_i))}{V(Y)}$$

Decompose model output Y = f(x), as the sum of terms of increasing dimensionality

$$f(x_1, \dots, x_k) = f_0 + \sum_{i=1}^{k} f_i(x_i) + \sum_{1 \le i < j \le k} f_{ij}(x_i, x_j) + \dots + f_{1,2,\dots,k}(x_1, \dots, x_k)$$

If input parameters are mutually independent $(\int f_{i_l,...,i_s} dx_k = 0)$ unique decomposition of *f* such that the summands are orthogonal.

$$V = \sum_{i=1}^{k} V_i + \sum_{1 \le i < j \le k} V_{ij} + \dots + V_{1,2,\dots,k}$$

 $V_{i'}$ $V_{ij'}$ $V_{1,2,...,k}$: Variance of *fi*, *fij*, *f1*, 2, ..., k

 $1 = \sum_{i=1}^{k} S_i + \sum_{1 \le i < j \le k} S_{ij} + \dots + S_{1,2,\dots,k}$ Sobol' sensitivity indices

Higher orders indices calculation: computationally expensive Total sensitivity index $S_i^T = \frac{E(V(Y|x_{-i}))}{V(Y)}$

Calculation of Sobol' sensitivity indices (Monte Carlo)

✓ Generate two independent random sets ξ and ξ' , let $\xi = (\eta, \zeta)$; $\xi' = (\eta', \zeta')$

✓ Evaluate

 $\stackrel{\bullet}{\bullet} f(\eta, \zeta) \\ \stackrel{\bullet}{\bullet} f(\eta, \zeta') \\ \stackrel{\bullet}{\bullet} f(\eta', \zeta)$

✓ Calculate

$$\frac{1}{N} \sum_{i=1}^{N} f(\xi_i) \xrightarrow{p} E(Y)$$

$$\frac{1}{N}\sum_{i=1}^{N}f^{2}(\xi_{i}) \xrightarrow{p} V(Y) + E^{2}(Y)$$

$$\frac{1}{N}\sum_{i=1}^{N} f(\xi_i) f(\eta_i, \zeta_i) \xrightarrow{p} V_y + E^2(Y)$$

Sobol' indices $S_{i} = \frac{V_{y}}{V(Y)}$ $S_{i}^{T} = 1 - \frac{V_{y}^{T}}{V(Y)}$

 $\frac{1}{N}\sum_{i=1}^{N}f(\xi_{i})f(\eta_{i},\zeta_{i}) \xrightarrow{p} V_{v}^{T} + E^{2}(Y)$

Sensitivity Indices: S_i

Cyanobacteria

Sensitivity Indices: S_i

Sensitivity Indices: S_i

Dynamic Parameter Estimation Model

Parameter Estimation Problem Process Model $f(\dot{x}, x, v, u, p, t) = 0$

$$g(x, y, u, p, t) = \mathbf{0}$$

Variable Bounds $x_{L} \leq x \leq \overline{x_{U, y_{L}}} \leq y \leq \overline{y_{U}}$ $u_L \le u \le u_U, \ p_L \le p \le p_U$

> **Initial Conditions** $x(t_0) = x_0$

Objective Function $min\phi = \frac{1}{2} \sum_{i=1}^{NI} \sum_{j=1}^{NV} \sum_{k=1}^{NL} \left(x_{ij}^M - x_{ij} \right)^T V^{-1} \left(x_{ij}^M - x_{ij} \right),$ $V = diag \left\{ \sigma^2 \right\}$

Simultaneous Approach for Dynamic Optimization

Nonlinear Programming Problem

Application of Barrier method

As $\mu \rightarrow 0$, $x^*(\mu) \rightarrow x^*$

Sequence of barrier problems for decreasing μ values

Barrier Method Algorithm: Primal-Dual Approach

Parameter Estimation Problem

Input data

- ✓ Descriptive data for lake
- ✓ Temperature, solar radiation, lake depth time profiles
- Inflows and outflows time profiles
- ✓ Nutrients concentration profiles in inflows
- ✓ Initial conditions

✓ State variables profiles for upper and lower layer (measured)

Numerical Results

(Estrada et al., 2008a,b)

Symbol	Parameter	Estimated
$k_{cyanob,growth}$ (d ⁻¹)	Max growth of cyanobacteria	0.210
<i>Ic</i> (ly/d)	Optimal growth radiation cyano	109.9
$k_{diatom,growth}$ (d-1)	Max growth of diatoms	0.405
<i>Id</i> (ly/d)	Optimal growth radiation of diatoms	24.52
$k_{cyanoph,growth}$ (d ⁻¹)	Max growth of chlorophytes	0.654
Ig (ly/d)	Optimal growth radiation chlorophytes	89.74
kON,miner (d-1)	Rate coeff. mineralization ON	0.092
kOP,miner (d-1)	Rate coeff. mineralization OP	0.015
Knio (mg/l)	Half-sat. conc. for oxygen lim. of nitrification	0.343

Time horizon: 365 days – Data frequency: twice a week DAE: 20 differential equations, 60 algebraic equations, NE =40 NC=3 NLP: 10432 nonlinear equations, 52 Iterations, 4 barrier problems

Numerical Results

Diatoms

Numerical Results

Cyanobacteria

Bio-restoration policies

 Excessive nutrients that promote algal growth were identified as the most important problem in 44% of all U.S. lakes surveyed in 1998 (U.S. EPA 2000)

✓ Nutrient management:

- How much do nutrients have to be reduced to eliminate algal blooms?
- How long will it take for lake water quality to improve once controls are in place?
- How successful will restoration be, based on water quality management goals?
- Are proposed lake management goals realistic and cost effective?

Bio-restoration policies

Artificial wetland

- Built for nitrogen and phosphorus removal (Lopez et al., 2007)
- Next to El Divisorio
 Stream
- Global retention: 64% (phosphate)
- Derivation of tributary inflows through wetland

Optimal control problem: Tributary inflows derivation

 Case 1: Control variable: Tributary inflows profiles derivation to wetland for bio-remediation

$$\min \int_{0}^{tf} \left(\sum_{j=phyto} C_{j}(t), -0.25 \right)^{2} dt$$

st

DAE Eutrophication model

 $0 \le F_{WETLAND} \le 0.5F_{DIVISORIO}(1/d)$

Case 1: Numerical results

NE = 40, NC = 3

NLP: 10581 nonlinear equations

Optimal control problem: Inlake bio-restoration

 Case 2: Control variables: Tributary inflows profiles derivation to wetland for bio-remediation and Zooplankton concentration profiles (Removal of zoo-planktivorous fish)

$$min \int_0^{tf} \left(\sum_{j=phyto} C_j(t) - 0.25 \right)^2 dt$$

st

DAE Eutrophication model

 $0 \le F_{WETLAND} \le 0.5 F_{DIVISORIO}^{(l/d)}$ $0.01 \le C_{zoo} \le 5(mg/l)$

Case 2: Control and state variables profiles

(Estrada et al., 2008d)

= 40, NC = 3 NLP: 10741 nonlinear equations

NE

Conclusions

 Biological and physico chemical determinations at two depth level in Paso de las Piedras Reservoir. Current data collection at eight levels.

Development of rigorous eutrophication model

✓ Global sensitivity analysis: ranking of input parameters

✓ Formulation of parameter estimation problem subject to DAE system

 Parameter estimation problem solved with advanced dynamic optimization techniques: simultaneous approach

Resolution of optimal control problem: bio-restoration policies

References

- Arhonditsis, G. B. and Brett, M. T., Eutrophication model for Lake Washington (USA) Part. I. Model description and sensitivity análisis. *Ecol. Model.* 187, 140-178, 2005
- Biegler, L.T., A. Cervantes, A.Waechter, Advances in simultaneous strategies for dynamic process optimization. *Chem. Eng. Sci.* 57: 575-593, 2002
- Estrada V., E. Parodi, M.S. Diaz, "Dynamic Parameter Estimation Problem For A Water Quality Model", *Chem. Eng. Transactions*, **11**, 247-252, 2007
- Estrada V., E. Parodi, M.S. Diaz, Developing a Lake Eutrophication Model And Determining Biogeochemical Parameters: A Large Scale Parameter Estimation Problem, *Comp. Aided Chem. Eng.*, 23, 1113-1118, 2008
- Estrada V., E. Parodi, M.S. Diaz, Development of eutrophication biogeochemical models: global sensitivity analysis and dynamic parameter estimation, submitted to *J. Appl. Ecology*, 2008
- Estrada V., E. Parodi, M.S. Diaz, A simultaneous dynamic optimization approach for addressing the control problem of algae growth in water reservoirs through biogeochemical models, *FOCAPO*, June 2008, Boston, USA
- Jeppesen, E., Søndergaard, M., Jensen, Havens, Anneville, Hampton, Hilt, Kangur, Köhler, Lammens, Lauridsen, Portielje, Schelske, Straile, Tatrai, Willén, Winder. Lake responses to reduced nutrient loading: an analysis of contemporary long-term data from 35 case studies.Freshwater Biology, 50, 1747–1771, 2005.

References

- López, N., Alioto, Schefer, Belleggia, Siniscalchi, E.Parodi. Diseño de un humedal artificial para remoción de nutrientes de un afluente al Embalse Paso de las Piedras (Argentina). *AIDIS*, Uruguay, 10-15, 2007.
- Parodi, E.R., V. Estrada, N. Trobbiani, G. Argañaraz Bonini, Análisis del estado trófico del Embalse Paso de las Piedras (Buenos Aires, Argentina). *Ecología en tiempos de Cambio*. 178, 2004.
- ✓ Raghunathan, A., M.S. Diaz, L.T. Biegler, An MPEC formulation for dynamic optimization of distillation operations, *Comp. Chem. Eng.*, 28, 2037, 2004.
- ✓ Rodriguez, M., M.S. Diaz, Dynamic modelling and optimisation of cryogenic systems, *Applied Thermal Engineering*, 27, 1182-1190, 2007.
- ✓ Sobol', I. M., Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. *Math. Comput. Simulation* 55, 271-280, 2001.
- Søndergaard, M., Jeppesen, E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Applied Ecology, 44, 1089–1094, 2007.