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The open-loop optimal control strategy to regulate the crystal-size distribution of 
batch cooling crystallizers handles input, output, and final-time constraints, and is 
applicable to crystallization with size-dependent growth rate, growth dispersion, and 
fines dissolution. The objective function can be formulated to consider solid-liquid 
separation in subsequent processing steps. 

A model-based control algorithm requires a model that accurately predicts system 
behavior. Uncertainty bounds on model parameter estimates are not reported in 
most crystallization model identification studies. This obscures the fact that resulting 
models are often based on experiments that do not provide sufficient information 
and are therefore unreliable. A method for  assessing parameter uncertainty and its 
use in experimental design are presented. Measurements of solute concentration in 
the continuous phase and the transmittance of light through a slurry sample allow 
reliable parameter estimation. Uncertainty in the parameter estimates is decreased 
by data from experiments that achieve a wide range of supersaturation. The sensitivity 
of the control policy to parameter uncertainty, which connects the model identifi- 
cation and control problems, is assessed. The model identification and control 
strategies were experimentally verified on a bench-scale K N 0 3 - H 2 0  system. Com- 
pared to natural cooling, increases in the weight mean size of up to 48% were 
achieved through implementation of optimal cooling policies. 

Introduction 
Distributed parameter systems are processes with spatially 

varying states, controls, and parameters. The states, controls, 
and parameters of a crystallizer can be spatially distributed, 
but they are also distributed over a population of crystals, 
giving rise to  the challenges of characterizing and controlling 
crystallizers. The population balance approach (Randolph and 
Larson, 1962; Hulburt and Katz, 1964) provides a modeling 
framework that enables representation of the distributed na- 
ture of dispersed-phase systems such as crystallizers. 

The quality of a crystalline product is usually specified in 
terms of the crystal size, shape, and purity. Although the 
population balance approach allows consideration of the dis- 
tribution of shape and purity of a population, this study deals 
with the modeling and control of crystal size and crystal-size 
distribution (CSD). Customer quality requirements of a prod- 
uct are often stated in terms of ability to  flow, dissolution 
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rate, aesthetic appeal-all primarily functions of crystal size 
and CSD. For products to be used in photographic materials, 
size uniformity is SO critical that the CSD is the principal 
consideration of a customer. If acceptable CSD and purity 
standards are not met, the crystals must undergo further proc- 
essing steps, such as milling or recrystallization. In addition 
to customer requirements, a concern of the manufacturer is 
the CSD-influenced efficiency of downstream processes such 
as thickening and filtration, often the time-limiting steps in 
crystallization operation. 

As discussed in the review by Rawlings et al. (1993), there 
have been many attempts a t  continuous crystallizer control 
since the development of  population balance models. Despite 
the activity in the area of continuous crystallizer control, there 
have been relatively few control algorithms developed for batch 
crystallizers. 

As for any batch process, batch crystallizer control requires 
a dynamic operation policy. The control algorithms that have 
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been developed for control of batch crystallizers are limited 
to specific crystallizer configurations and do not allow incor- 
poration of constraints. The applicability of these methods has 
been restricted further by inaccurate process measurements and 
failures to properly identify models that characterize system 
behavior. As discussed by Rawlings et al. (1993) and Miller 
(1993), the limitations of measurement technology for crys- 
tallization systems has confounded parameter estimation, but 
this difficulty has been obscured by the fact that most of the 
previous studies of crystallization kinetic parameter estimation 
have not provided an assessment of the reliability of the pa- 
rameter estimates. 

This article presents the development of a flexible, model- 
based strategy for batch cooling crystallizers that handles in- 
put, output, and final-time constraints. The interplay between 
process measurements, model identification, and model-based 
control is significant. The determination of model parameter 
uncertainty allows analysis of the information content of data. 
The model identification technique discussed here includes an 
assessment of parameter uncertainty. This assessment is used 
as an aid for experimental design and to examine the sensitivity 
of the determined control policy to parameter uncertainty- 
the issue that connects the model identification and control 
problems. 

Crystallization of potassium nitrate from water in a batch 
cooling crystallizer, the system used for verification of the 
model identification technique, was chosen for experimental 
testing of the control strategy. 

Experimental Apparatus 
Figure 1 shows the bench-scale, batch cooling crystallization 

system used to test the model identification and control strat- 
egies discussed in this article. The crystallizer is a 3-L jacketed 
vessel. Samples for the Malvern 3600Ec particle sizer and the 
Anton Paar densitometer are drawn continuously from the 
crystallizer using peristaltic pumps. 

The sample stream for the densitometer is maintained free 
of solids by a IS micron screen, and a heat exchanger is used 
to keep the inlet to the two-millimeter, flow-through measuring 
cell approximately isothermal. For two-component systems, 
the densitometer has proven to allow accurate determination 
of the solute concentration of the solids-free phase. 

The Malvern 3600Ec particle sizer is an instrument that is 
based on laser light scattering. The theory behind light scat- 
tering methods for particle sizing is discussed by Boxman (1992) 
and Rawlings et al. (1993). The CSD measurement provided 
by the Malvern particle sizer is not reliable enough for the 
purposes of this study. The limitations of the particle sizer are 
due primarily to the facts that inference of the CSD from 
scattered light measurements requires the solution of an ill- 
conditioned inverse problem, and results are based on the 
assumption that the particles are spherical. As discussed by 
Witkowski et al. (1990), information about the CSD can be 
obtained from a measurement of the transmittance, the frac- 
tion of light that is transmitted through the crystal slurry. As 
explained by Rawlings et al. (1993), the transmittance meas- 
urement does not suffer from some of the problems encoun- 
tered in CSD determination. Although the Malvern particle 
sizer is used to obtain a transmittance measurement, a relatively 
inexpensive spectrophotometer could be used to make this 
measurement. 
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Figure 1. Batch crystallization system. 

The Beer-Lambert law provides a simple model that relates 
the transmittance to the CSD: 

where I is the instrument flow-cell width, L is the characteristic 
crystal size, f is the crystal distribution function (j‘;:fdL is the 
number of crystals per slurry density with size between L ,  and 
Lz),  and k,, is the surface area shape factor. As can be seen, 
there is a one-to-one relationship between transmittance and 
the second moment of the CSD. The Beer-Lambert law is based 
on the assumption that there are no multiple scattering effects. 
Miller (1993) demonstrates that this expression is valid for 
Z/Z0>0.7. For cases in which on-line measurements from light 
scattering instruments are required and the slurry density is 
very high, Jager et al. (1987) discuss the application of an 
automatic dilution unit. The challenge of this approach is 
maintaining a diluent of proper quality to assure crystal sta- 
bility and a representative sample. Alternatively, an instrument 
designed such that the path length of light is very small would 
negate the limitation of the Beer-Lambert law. 

A cascade configuration is used to control the crystallizer 
temperature. Disturbances in the ambient temperature and in 
jacket supply water temperature are rejected by a secondary 
loop that uses a simple PI controller to maintain the jacket 
temperature at its setpoint by manipulating the ratio of the 
flow to the jacket of a hot stream and a cold stream. The 
primary controller is a model-predictive controller that uses 
the crystallizer temperature measurement and setpoint trajec- 
tory to compute a setpoint for the jacket temperature con- 
troller. A “natural cooling” profile is effected by disabling 
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the primary controller and entering a step change in jacket 
temperature setpoint. 

All of the experiments discussed in this article were seeded 
crystallizer runs. The time at which the seeds were introduced 
corresponds to t = 0. With the exception of a few specifically 
noted runs, the seed crystals were taken from the 180-212 pm 
sieve class, and the seed loading was low. While it has been 
demonstrated that seeding can take place at  significantly higher 
supersaturation levels without affecting product quality (Kar- 
pinski et al., 1980), seeding was performed at or near the 
saturation temperature. 

A detailed description of the construction and operation of 
this system, and the physical properties of the KN03-H,0 
system are given by Miller (1993). 

Model Identification 
Models derived strictly from basic physical laws of nature 

do not require experimentation. Nevertheless, at least a portion 
of the model is usually empirical; in this case model identifi- 
cation is a twofold process that involves model formulation 
and parameter estimation. 

The population balance approach provides a framework for 

of crystals. The following empirical power law expressions have 
become standard for growth and nucleation rates for seeded 
crystallizers: 

where S =  (C- Csa,)/Csa, and b, is the third moment of the 
CSD with units cm'/g solvent. These expressions are appro- 
priate for cases in which the solubility of the solvent is such 
a strong function of temperature that high yield can be obtained 
with small temperature variations. Otherwise, the temperature 
dependence can be incorporated using an Arrhenius-type 
expression. 

Because of the dependence of growth and nucleation on 
concentration and temperature ( S  is a function of temperature), 
mass and energy balances are required to complete the de- 
scription of the crystallization process. General forms of the 
solute mass balance in the continuous phase and the energy 
balance are given by Miller (1993). For a jacketed batch cooling 
crystaller without fines dissolution they can be reduced to: 

determining the structure of -models- for crystallizers, but the m 

( 5 )  _- - -3p,k,.h so fL'GdL 

s,, 
dC 
dt 

kinetic parameters of the constitutive relations must be esti- 
mated for a particular chemical system. The model identifi- 
cation is not complete until the parameter uncertainty and the 
model reliability are assessed. Since the deficiency of a model 
can be due to  inadequate information content of the data used 
in parameter estimation, experiments used for model identi- 
fication should be carefully designed. 

A more detailed discussion of the issues covered in this 
section is given by Miller (1993). 

dT 
dt 

~ V C ,  -= - 3AH,p,k,.V fL'GdL- UA,( T -  T,.) (6)  

where U is the jacket heat-transfer coefficient, A,  is the heat- 
transfer area, T, is the cooling fluid temperature, m, is the 
heat of crystallization, k,, is the volume shape factor, p, is the 
crystal density, C is the solute concentration on a per-mass- 

Model formulation and solution 
As discussed by Rawlings et al. (1993), stochastic population 

balances are necessary for small populations in which the fluc- 
tuations about the mean number of particles become of the 
same order of magnitude as the mean itself; however, a de- 
terministic population balance is appropriate for most cases 
of crystallizer modeling. 

The population balance for a jacketed batch cooling crys- 
tallizer without fines dissolution is: 

where G is the crystal growth rate. The boundary condition 
for this partial differential equation is: 

( 3 )  
u ' L = L "  

where B" is the rate of formation of new crystals (nucleation 
rate), which have size Lo upon formation. 

Constitutive relations are required for growth and nuclea- 
tion. These phenomena can occur only if the solute concen- 
tration exceeds its saturation value. The supersaturation (the 
degree to which the concentration exceeds the saturation con- 
centration) is the driving force for the formation and growth 

solvent basis, and h is a conversion factor equal to  the volume 
of slurry per mass of solvent. The conversion of  the basis for 
solute concentration is done to be consistent with convention 
for batch crystallizers. Equations 2,  5 ,  and 6 are obtained by 
assuming that V,  p, and the system pressure are constant and 
the cooling system is the only mechanism for external heat 
losslgain. 

The equations given above and the following initial condi- 
tions constitute the model used in this study: 

C ( t ) = C 0 ,  t = O  (7b) 

T(r)=To,  t = O  (7c) 

Analytical solutions of the coupled set of nonlinear integro- 
differential equations of crystallizer models d o  not exist. 
Nevertheless, a variety of numerical methods have been em- 
ployed to  solve specific models on a case-by-case basis; several 
of these methods are reviewed by Rawlings et al. (1993). For 
the case of size-independent growth rate and no fines disso- 
lution, the method of moments provides a way to  reduce the 
population balance to a set of ODES, for which there are well- 
developed solution techniques (Hulburt and Katz, 1964). The 
recovery of the CSD from the quantities resulting from this 
transformation is difficult. However, the method of moments 
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is adequate for the model used in this study, because the mass 
and energy balances and transmittance equation can be ex- 
pressed in terms of the second moment of the distribution: 

given set of data could be obtained, considering the error 
structure of the measurements. 

Consider the following assumptions about the error structure 
of the measurements: independent variables are deterministic, 
errors at thejth sampling instant are normally distributed with 
zero mean and are homoscedastic, errors at different sampling 
instants are uncorrelated, and errors in the measured variables 
are independent (measured variable covariance matrix, Y ,  is 
diagonal). With these assumptions, it can be shown (Bard, 
1974) that the maximum likelihood method is equivalent to 
the minimization of: 

_- ('a) - -3p,k,hGfi, 
dC 
dt 

dT 
dt 

P v C p  --= - 3mC&vGfi2- uAc( T -  Tc) (8b) 

('4 -=exp( r -2 ka lp2) 

(9) 
10 

Therefore, predictions of the outputs of interest (concentration 
and transmittance) are provided-by this method; Even predic- 
tions of sieve analysis data-the weight mean size and the 
coefficient of variation of the CSD-can be obtained from the 
first five moments. 

The development of a solution method that is applicable to 
cases of size-dependent growth rate is given by Miller (1993). 
I t  should be noted that because of such solution techniques, 
the work presented in this article is not limited to crystallization 
with size-independent growth rate. 

Parameter estimation 
A wide variety of experimental configurations and tech- 

niques have been used for crystallization parameter estimation; 
Rawlings et al. (1993) provide a review of these studies. Pa- 
rameter estimation can be viewed as the action of an operator 
on a set of data. With this abstraction of the relationship 
between experimental data and the parameters, the require- 
ments for the unique solution of a parameter estimation prob- 
lem can be stated succinctly (Miller, 1993). Nevertheless, the 
checks to determine if the problem is well-posed are not 
straightforward. Measurements are limited and corrupted with 
noise, the model structure (on which the parameter estimation 
operator depends) may be in error, and, as is the case for 
crystallizer kinetic parameters, the parameter estimation op- 
erator is often nonlinear. Also, there are challenges that are 
peculiar to parameter estimation for distributed parameter sys- 
tems such as crystallizers (Seinfeld, 1969). 

The general nonlinear parameter estimation problem can be 
cast as a nonlinear optimization problem in which the objective 
function is a measure of how well the model solution with a 
given set of parameter values predicts the experimental data. 
The weighted least-squares objective function is a common 
choice because it is intuitive and does not involve explicit con- 
sideration of the error structure of the experimental data. It 
also allows the scaling of measurements that have different 
dimensions and weighting so that parameter estimates will be 
most influenced by the measurements felt to be most reliable. 
Although the weights can be obtained from secondary exper- 
iments, they are usually set somewhat arbitrarily. 

The maximum likelihood method enables the estimation of 
weights for the data along with the estimation of parameters. 
If  one assumes that the model structure is correct, then the 
deviations between the data and the model predictions are due 
to random (and possibly biased) errors in the measurements. 
The maximum likelihood method can be thought of as deter- 
mining the parameters that maximize the probability that a 

where N,,, is the number of measured variables (that is, con- 
centration, transmittance, and so on), Nd is the number of 
samples of each measured variable, e,  = y,, - J,,, and yo and 
jjf, denote the actual and model-predicted values of the ith 
measured variable at the j th sampling instant. In this study, 
the successive quadratic programming code NPSOL (Gill et 
al., 1986) was used to solve this optimization problem. 

The method also yields an estimate for the elements of the 
diagonal measurement error covariance matrix: 

(10) 
1 Nd vll=$=- 2 e2,(e*) 

N d  , = I  

where 8* is the set of optimal parameters. 
Equations 9 and 10 correspond to the assumptions given 

above, but the maximum likelihood method is not restricted 
to these assumptions (Bard, 1974). 

Interpretation of estimates 
Although many crystallization parameter estimation studies 

do not provide an assessment of the reliability of the parameter 
estimates, the model identification is not complete until the 
parameter uncertainty is considered. As discussed above, the 
estimation process can be thought of as a nonlinear operator 
that transforms a data set with random errors into an estimate 
of the parameters. The parameter estimates are random vari- 
ables with a probability distribution that depends on the nature 
of the estimator and on the distribution of the measurement 
errors. The distribution of the estimates, commonly referred 
to as the sampling distribution, can be used to establish a region 
of confidence for the parameter estimates. 

If many replicates of the experiments used to estimate pa- 
rameters were available, the sampling distribution could be 
rigorously characterized. However, replicate data from most 
crystallization experiments are difficult and time-consuming 
to obtain. 

An approximation of the confidence region can be obtained 
by assuming that the model can be represented by linear func- 
tions in the vicinity of the estimate: 

Y,(e)-~,(e*)+B,(e-O*) (1 1) 

whereY:(O) = PI, (0), . . . , jNd (O)] ', and B, is the N,, x Np matrix 
(where Np is the number of parameters) given below: 
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With the linearized model and the assumption that the meas- 
urement errors are random and normally distributed, the es- 
timates are normally distributed, and the quantity: 

is distributed as x 2  with Np degrees of freedom (Bard, 1974). 
V is the measurement error covariance matrix. Therefore, let- 
ting & '  = CYZ,B:V- 'B, ( V ,  is the parameter covariance matrix 
for the linearized problem), 

where Pr( El denotes the probability of some event E. In other 
words, the approximate lOO(1- a)Vo confidence region from 
the linearization method is the ellipsoidal region defined by: 

(8 - O * ) V , -  '(8 - O * )  = x$a) (13) 

where 8 represents the true parameter set. 

measurements are not equal: 
Note that for cases in which the sampling rates of different 

where B,l is the 1 x N, vector defined as: 

The meaning of the report of a confidence region is usually 
not immediately clear for cases in which N p > 2 ;  therefore, 
confidence intervals-Pr {k [0* f hO(a)] ] = ( 1  - a)-are often 
desired. Conservative estimates of these can be obtained by 
locating the box in the parameter space that circumscribes the 
ellipsoid. 

Experimental design 
Experiments should be designed such that the data contain 

information sufficient for reliable parameter estimates. As dis- 
cussed by Rippin (1988), experimental design involves choices 
of experimental configuration, variables measured, and op- 
erating conditions, each of which can influence the information 
content of the data. 

An assessment of parameter uncertainty allows a precise 
statement of the goal of experimental design: choose the ex- 
perimental configuration, measurements, and operating con- 
ditions such that the confidence region is minimized. 

The test system for the control strategy discussed subse- 
quently was a batch KN03-H20 crystallizer. This is advanta- 
geous for experimental design, because the dynamic nature of 

Table 1. Results of Parameter Estimation Based on Concen- 
. tration Measurements 

Estimate 8.014 1.10 14.710 0.85 
Interval *0.423 *0.12 +6.268 *2.48 

batch crystallization allows much information about a system 
to be obtained from a single run. 

An exploration of the remaining choices of experimental 
design-measured variables and operating condition-is pro- 
vided by Rawlings et al. (1993). It is shown that measurement 
of continuous-phase concentration, the sole data source in 
many parameter estimation studies, provides insufficient in- 
formation for identifying a model. Although the model fit is 
good, there are many combinations of parameters that have 
roughly the same ability to predict the observations. This is 
illustrated by the large uncertainty shown in Table 1 for the 
parameter estimates resulting from concentration measure- 
ments; the parameters are those for the kinetic expressions 
given in Eq. 4. 

As intuition would suggest, solid-phase information is nec- 
essary to obtain kinetic parameters for both crystal growth 
and nucleation. Although there is a limit to  its range of appl- 
icability, the Beer-Lambert law provides the model given by 
Eq. 1 that relates the CSD and the transmittance measurement; 
the result is a one-to-one connection between transmittance 
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Figure 2. Concentration and transmittance data and pre- 
dictions from model with parameters given in 
Table 1. 
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0.54 , 1 Table 2. Parameter Estimates Resulting from Concentration 
and Transmittance Measurements from Two Batch Runs 

Estimate 8.918 1.32 17.207 1.78 
Interval *0.127 j~0.03 *0.356 *0.09 

and the second moment of the CSD. The fit of the model with 
the parameters obtained using concentration data from a nat- 
ural cooling run is shown in Figure 2. The fit to the concen- 
tration data is good, but the fit to the transmittance data is 
not satisfactory. 

As shown by Rawlings et al. (1993), the transmittance data 
used together with the concentration data provide sufficient 
information for reliable parameter estimation. The uncertainty 
in the parameter estimates can be reduced further through 
experiments with operating conditions chosen to achieve a wide 
range of supersaturation. The parameter estimates resulting 
from concentration and transmittance measurements from 
batch runs with two different cooling profiles is given in Table 
2. The model fit is shown in Figure 3. 

The seed load used in the experiments discussed above was 
quite light. The rationale behind this was that experiments with 
light seed loading would be expected to yield more information 
about nucleation than experiments in which the solute is pri- 
marily deposited on the seeds. This initial condition is another 
operating variable that could be used to affect the quality of 
parameter estimation. 
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Figure 3. Fit of model with parameters given in Table 2 
to concentration and transmittance data. 
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Figure 4. Data from seeded, isothermal batch crystal- 
lization of naphtalene from naphthalene-tol- 
uene solution. 

Naphthalene-toluene system 
The methodology described in this article is not limited to 

inorganic chemical systems with cubic crystal morphology such 
as potassium nitrate and water. A similar approach, but with 
a weighted least-squares objective function, has been applied 
to model identification for batch crystallization of naphthalene 
from a naphthalene-toluene solution; the details are given by 
Witkowski et al. (1990). Concentration and transmittance data 
obtained by Witkowski for an isothermal run is given in Figure 
4. The naphthalene crystals of this organic system are plate- 
like, and the character of the system is much different from 
the aqueous KN0,-H,O system with nearly cubic crystals. 
Nevertheless, parameter estimation based on the concentration 
and transmittance measurements was accomplished. I t  should 
be pointed out that the convergence of the optimization prob- 
lem and the quality of the resulting parameter estimates are 
inferior to those obtained for the KN03-H20 system. 

The ability to obtain reasonably reliable parameter estimates 
indicates that the method is applicable to the naphthalene- 
toluene system. The difficulties encountered probably indicate 
a deficiency in the experimental design. The data shown in 
Figure 4 is qualitatively similar to that obtained from the KN03- 
H 2 0  system. However, the data from the naphthalene-toluene 
system correspond to an isothermal run. Therefore, the noise- 
to-signal ratio is accentuated by the small dynamic range of 
the measurements. Also, the information content of the data 
is less than that obtained for the KN03-H20 system, because 
the variation of the supersaturation over the run is much smaller 
for isothermal operation. 
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Verification of parameter estimation technique 
The maximum likelihood method requires some assumptions 

about the measurement error structure. Parameter estimation 
should be followed by a review of these assumptions. For 
example, Eq. 9 is based on the assumption that the errors in 
the concentration and transmittance measurements are inde- 
pendent; this assumption was verified by using a check of the 
residuals, qJ. 

Another assumption was that there is no autocorrelation 
(serial correlation) in the errors of each of the measurement 
types. Tests of this assumption for the ith measurement type 
are also usually based on  the residuals. A commonly-used 
indicator of autocorrelation is referred to as the 1st autocor- 
relation, which is the correlation between the series e,, and the 
series of residuals shifted one step, e,,,- ,). The residuals for 
the model fit shown in Figure 3 indicate significant autocor- 
relation. In fact, the 1st autocorrelations for the concentration 
and transmittance measurements are 0.78 and 0.72, respec- 
tively. As explained by Brook and Arnold (1985), high auto- 
correlations could suggest that the model neglects some physical 
effects, but the presence of  high autocorrelations is not a basis 
for model rejection and does not mean that the estimated 
parameters are biased. Bard (1974) points out that for models 
fitted to  good data, nonrandomness of residuals is the rule 
rather than the exception; this is because any neglected effects 
are prominent when the fit is very good, as in the case of these 
crystallization experiments. 

For a particular model and experimental design, the decision 
to use linear statistics to  obtain parameter confidence regions 
for the linearized model should also be reviewed. The validity 
of the linear statistics can be tested using a Monte Carlo study. 
To do so, the following procedure was followed: 

The data set shown in Figure 3 was used as the base data 
set. 

500 “replicate runs” were constructed by adding error 
to  the base data set according to  pseudo-random numbers 
drawn from a normal distribution with zero mean and co- 
variance V-the assumed error structure. Parameter estimation 
corresponding to the minimization of Eq. 9 is based on a 
diagonal measurement error covariance matrix with 
V,, = uf = 5:. For this study, i =  1 corresponds to  concentration 
measurements, and i = 2 corresponds to  transmittance meas- 
urements. For the base-case parameter estimation, Eq. 10 gives 
3, = 0.0005 and 3, = 0.009; these values were used to construct 
the Monte Carlo replicate data. 

For each Monte Carlo replicate data set, it was recorded 
whether or not the parameter estimates fall in the linear sta- 
tistics confidence region defined by Eq. 13. This check was 
performed for various confidence levels (that is, various values 
of a). 

The results of  this study are summarized in Figure 5. This 
Monte Carlo study does not deal with the issue of the adequacy 
of  the model structure or the validity of the error structure 
assumption; however, it does confirm that the elliptical con- 
fidence regions from linear statistics adequately characterize 
the parameter uncertainty for the system of this study. 

Although it is not practical to  perform enough experiments 
to allow construction of a confidence region, a replicate data 
set was obtained by repeating the two experiments used in the 

50 60 70 80 90 100 
Linear Statistics Confidence Level 

Figure 5. Comparison of linear statistics with Monte 
Carlo analysis of 500 replicate data sets. 
Perfect agreement corresponds to the diagonal. 

parameter estimation summarized in Table 2. The parameter 
estimation results for the replicate data are given in Table 3. 
A comparison of  Tables 2 and 3 demonstrates agreement be- 
tween the results from the two data sets. 

Table 4 gives the parameter estimation results obtained using 
data from all four runs. These parameters are used as the 
nominal parameters in subsequent discussion. 

The addition of the solid-phase information provided by the 
transmittance measurement significantly reduces uncertainty 
in the parameter estimates for the K N 0 , - H 2 0  system. The 
combination of data from experiments with various cooling 
profiles further reduces the parameter confidence region. The 
improvement is illustrated by a comparison of Tables 1 and 
2. The parameter estimates given in Table 1, 2, and 4 are 
consistent (with only a few exceptions, the confidence intervals 
for each parameter overlap), and the confidence regions are 
consistently reduced as more information is added. 

Further Model Validation 
As discussed by Denn (1986), the objectives of the problem 

must be considered when determining the quality of a model. 
The model is of sufficient quality if it allows prediction of the 
variables of interest with desired accuracy. It has been estab- 
lished that, even over a wide range of operating conditions, 
the model identified for the KN0,-H,O system provides ac- 
curate and reproducible predictions of concentration and 
transmittance. 

Sieve analysis yields qualitative information about a sample 
of crystals and, while subject to  several sources of error, does 
provide measurements of the weight mean size, L,,, and the 
coefficient of variation, c.u.,  of the CSD. For further model 
validation, sieve analysis was performed on the products of 
several crystallization runs and the results compared with model 
predictions. A comparison of sieve analysis measurements and 
model predictions of L,,,, and C . U .  for several experiments is 

Table 3. Parameter Estimates Resulting from Replicate Runs 
of those Used to Obtain Table 2 

Estimate 8.817 1.32 16.766 1.69 
Interval +O.147 +0.04 +0.602 h O . 1 5  
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Table 4. Parameter Estimates Resulting from Concentration 
and Transmittance Measurements from Four Batch Runs and 

Taken as Nominal Parameters of KN03-H20 System 

In (k,) g In (kb) b 

Estimate 8.849 1.32 17.142 1.78 
Interval rt0.112 *0.03 *0.360 *0.09 

given subsequently, but Figures 6 and 7 show the results from 
two sample runs. 

Figure 6 gives the model prediction and the sieve analysis 
results for the product of a crystallization experiment. There 
is reasonable agreement between the experimental and model- 
predicted maximum crystal size and location of the primary 
mode of the distribution. The weight mean size and coefficient 
of variation also agree fairly well-experiment: L,, = 460 pm, 
c. u. = 0.36; model prediction: L,, = 450 pm, c. u. = 0.47. 
Nevertheless, the experimental sieve analysis does show an 
unexpectedly low presence of crystals in the smaller size classes 
and an unexpectedly high peak at around 550 pm. This could 
be explained by agglomeration of small crystals during the 
drying process. 

There is some discrepancy between the sieve analysis results 
and the model prediction, but they do demonstrate the same 
qualitative characteristics. It should also be noted that, while 
there are several sources for error in the sieve analysis, the 
analysis results are reproducible. The sieve analysis results for 
two replicate runs are given in Figure 7 .  The measured weight 
mean sizes for the two runs agree to within 16 pm, the coef- 
ficients of variation vary by only 0.03. 

NLP Statement of Open-loop Optimal Control 
Problem 

As discussed by Rawlings et al. (1993), there have been some 
studies of the determination of the temperature profile for a 
batch cooling crystallizer that optimizes some objective func- 
tion that is based on the CSD. Unfortunately, the methods 
posed in these studies are restricted to very specific crystallizer 
configurations (for example, crystallizers with fines dissolution 
cannot be considered), and their applicability is limited by the 
difficulty of incorporating constraints. The method discussed 
in this section removes these limitations. 

30 , 
experimental - 

prediction __._.. 25 

20 t 

1 
Size (microns) 

Figure 6. Comparison of sieve analysis results and the 
model prediction for a crystallizer product. 
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Figure 7. Sieve analysis results for two replicate ex. 
periments. 

The general, multivariable, open-loop optimal control prob- 
lem can be stated as a nonlinear programming (NLP) problem, 
for which there are standard algorithms (Rawlings et al., 1993). 
Consider the case in which the crystallizer temperature is the 
manipulated variable. If the temperature is parameterized as 
piecewise linear, and the constraints consist of nonlinear state 
constraints and linear constraints on the temperature, then the 
optimal control problem can be restated as the following NLP 
problem: 

min W ,  x ( q ;  0)  
T Crystallizer Model 

subject to: b, 5 A T S  b, (NLPl) 
h ( x ( t , ) )  = O  i=  1, . . . , m 
g ( x ( t i ) ) r O  i=  1, . . . , rn 

where r, is one of rn points in time over the run, A is a constant 
matrix with n columns, and T is a vector of temperature values 
at n points in time between t = 0 and t = r,. 

For the control problems discussed subsequently, the suc- 
cessive quadratic programming code NPSOL (Gill et al., 1986) 
was used to solve the NLP problem. 

Final-time constraints 
There are cases in which constraints on final-time states of 

the system are necessary. In the absence of final-time con- 
straints, there are many objective functions for which the so- 
lution of the optimal control is trivial but undesirable. For 
example, to minimize the number of nucleated crystals (fines) 
in the product, optimal operation would simply be a constant 
temperature profile at the saturation temperature-no for- 
mation of new crystals. The objective function would be at a 
global minimum, but the yield would be zero. 

Final time constraints allow the consideration of variables 
such as crystallizer yield. For a batch crystallizer, there is a 
one-to-one relationship between final solute concentration and 
yield. Therefore, if a desired yield is determined to correspond 
to a final concentration of, say C,, then a minimum yield is 
assured by imposing the final-time constraint: 
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This constraint clearly fits into the framework of Eq. NLPl. 

Input constraints 
Due to  the physical limitations of equipment, there are usu- 

ally bounds on manipulated variables and constraints on the 
rate at which they can be changed. NLPl allows the incor- 
poration of such constraints. 

Because the temperature profile is parameterized as piece- 
wise linear, a rate-of-change constraint and bounds on the 
temperature can be expressed as a set of linear constraints: 

0 - 1  1 

where Z is an n x n identify matrix, R,,, is the maximum al- 
lowable cooling rate, T,,, = [ T,,,,,, . . . , T,,,] ', T,,, = [ T,,,, . . . , 
TmaxlT, T = [ T ( t l ) ,  . . ., T ( t n ) J T ,  and A t , = t , + , - t , .  These con- 
straints can be enforced in NLPl by defining A, b,, and b, 
accordingly. 

An illustration of the implementation of a cooling rate con- 
straint is given below. 

State constraints 
There may be cases in which there are path constraints on 

the states (that is, constraints on the states of the crystallizer 
over the course of a batch run). For example, to  attempt to 
avoid homogeneous nucleation, an upper bound on the su- 
persaturation over the run may be desired. But the methods 
by which to  deal with state path constraints are not as trans- 
parent as for final-time and input constraints. 

There have been several methods suggested for handling path 
constraints. A path constraint can be converted to  a set of  
nonlinear constraints by time discretization of the states of  
interest; this is only an approximation and it can lead to  a very 
large number of nonlinear constraints. Bryson and Ho (1975) 
suggest augmenting the objective function with the integral of 
the path constraint violations; this, however, requires the choice 
of a suitable weighting parameter. 

Sargent and Sullivan (1978) suggest converting the path con- 
straints into a final-time constraint by defining a new state 
variable that is equal to  the integral of the squares of the path 
constraint violations. Consider the case in which there are p 
path constraints of the form: 

If a new state variable is defined as: 

where q is the number of system states, the path constraints 

are satisfied if and only if the terminal constraint x,, , (tf) = 0 
is satisfied. 

This method avoids the computational difficulties of the 
time discretization technique and the arbitrary nature of the 
penalty function approach. An example of the implementation 
of this method to impose a state path constraint is given below. 

Control scheme example 
Downstream processes such as thickening and filtration are 

often time consuming steps-sometimes the production-lim- 
iting steps. The formulation of the control problem given by 
NLPl allows consideration of the efficiency of downstream 
processes. 

Compared to  unimodal distributions, there are indications 
that the precipitate permeability and filtration efficiency are 
lower for bimodal CSDs-an inherent property of products 
of seeded crystallizers. Thus, the minimization of the ratio of 
the final mass of nucleation-formed crystals, mn( f,), to  the 
final mass of seed crystals, rn5(f,), would be expected t o  fa- 
vorably affect the rate of filtration. This optimal control prob- 
lem corresponds to the solution of NLPl with: A equal to  the 
identity matrix, b,= [T, ,,,. . .TmlnlT, b,,= [T,,,,,. . .TmaxlT, and the 
following objective function and constraint: 

c,. - c ( t / )  2 0 

where the constraint represents the requirement of a minimum 
acceptable yield. For this problem C, was selected to  be the 
final solute concentration resulting from cooling at a constant 
rate to T =  T,,,,,. 

For the kinetic parameters of the KN03-H20 system given 
in Table 4, the temperature profile that is predicted t o  minimize 
m,(t/)/rn,(f/) for the KN03-H20 system is given in Figure 8; 
the corresponding supersaturation profile is also given. The 
results for natural and linear cooling profiles are given for 
comparison. The optimal cooling policy requires a very rapid 
temperature decrease at  the end of the batch run. Because of 
physical constraints or to  avoid fouling of the cooling surface, 
this large cooling rate might not be feasible. As explained 
above, the control algorithm can handle a cooling rate con- 
straint. Figure 9 shows the results of limiting the cooling rate 
to  O.l"C/min. To meet the yield constraint, the temperature 
must start its descent earlier for the case in which the cooling 
rate is constrained, resulting in an earlier and less pronounced 
supersaturation peak. 

There have been attempts to characterize the metastable 
region of crystallization, the region between saturation and 
spontaneous homogeneous nucleation. The saturation con- 
centration can usually be represented as a simple, often linear, 
function of temperature. The metastable limit is the concen- 
tration above which there is spontaneous homogeneous nu- 
cleation. While it is usually dependent on the cooling rate, it 
is often characterized as a curve that is approximately parallel 
to the saturation concentration. With this type of character- 
ization of the metastable region, spontaneous nucleation would 
be avoided by imposing a simple upper bound on C -  Cs,,: 
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Figure 8. Temperature and supersaturation profiles for 
batch crystallizer. 
Cooling policies illustrated include natural cooling, constant-rate 
or linear cooling, and cooling controlled to minimize final-time 
value of m,/m,. 

g ( x ( t ) )  = (metastable bound)-(C- C,,,)zO 

As discussed above, such a constraint on the path of a state 
of the crystallizer can be incorporated into the solution of the 
optimal control problem. To do so, g(x( t ) )  can be substituted 
into Eq. 14 to define an additional state variable that is con- 
strained to a final-time value of zero. The result of placing a 
bound on the path of C- C,,, is demonstrated in Figure 10. 

The predicted effects of implementing temperature profiles 
to minimize the final-time value mn/ms, with and without con- 
straints, are summarized in Table 5 .  Experimentally, the prod- 
uct of a batch crystallizer can be analyzed by sieve analysis. 
It is usually impossible to distinguish the difference between 
nucleated and seed crystals with sieve analysis, so this technique 
cannot provide a measurement of mn/ms. The weight mean 
size, L,, which can be assessed using sieve analysis, is included 
in Table 5 to provide a reference for the experimental study 
discussed in the section given below on experimental imple- 
mentation. Notice that the optimal temperature profiles have 
a positive effect on the weight mean size. 

Effectiveness of Method 
In batch crystallization, nucleation and growth compete in 

the depletion of the solute concentration. Therefore, as Jones 
(1974) suggests, controlling the CSD of the crystallizer product 
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Figure 9. Demonstration of addition of cooling rate con- 
straint of 0.1 OClmin. 
Profiles are those for minimization of the final-time value of m,/ 
m,. 

may be regarded as optimally distributing a resource among 
a population. 

Maximizing terminal seed size and minimizing nucleated 
crystal mass are similar problems in that the ideal for both is 
exclusive allocation of the solute to the seed crystal with no 
new crystal formation. While this ideal is not attainable, the 
difference in the order of the dependence of growth and of 
nucleation on supersaturation does allow one phenomenon to 
be favored over the other. 

For the KN03-H20 system, 

G = e~p(8.849)(S)'.~~ B" = exp(l7. 142)(S)'.7s$3 

The order of the dependence of nucleation rate on S is greater 
than that of growth rate. Therefore, the magnitude of both 
rates decrease as supersaturation is decreased, but the ratio of 
growth rate to nucleation rate increases. This explains the 
supersaturation profiles for the optimal control example given 
previously (see Figure 8). Optimal operation corresponds to 
keeping the supersaturation very small over most of the run. 
Only at the end of the runs is there a peak of supersaturation, 
leading to rapid growth of existing crystals and bursts of new 
crystals; the timing is such that deposition of solute to new 
crystals is minimized because of the limited opportunity for 
their growth. 

As shown in Table 5 ,  the benefit of implementing an optimal 
cooling profile for the KN03-H20 system should be substantial. 
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Figure 10. Implementation of a constraint on the max- 
imum allowable value of C-C,,,. 
Profiles are those for minimization of the final-time value of 
m,/m,. 

The benefit is verified by the experimental implementation 
discussed subsequently. The attainable benefit could be more 
or less significant, depending on the difference in the depend- 
ence of the growth and nucleation rates on supersaturation. 
To illustrate, consider a hypothetical chemical system with the 
following kinetic expressions: 

G =  e~p(8.849)(S)’.~~ B“= e~p(l7.142)(S)~-’~ji~ 

This is a system with the same growth kinetics as the KN0,- 
H 2 0  system, but the order of dependence of nucleation rate 
on supersaturation is 2.78 instead of 1.78. As can be seen from 
Table 5 ,  optimal cooling for the K N 0 3 - H 2 0  system leads to a 
predicted 33% decrease in the terminal value of m,/m, com- 
pared to that of natural cooling and a 20% decrease compared 

Table 5. Summary of Predicted Effects of Minimizing 
m,(tf)/m,(tf) 

Max. 
Seed Size L,, 

Cooling Policy m h ,  Gm) ( rm)  

Natural 26.5 895 439 
Linear 22.0 959 487 
Optimal 17.5 1,042 524 

w/Cooling rate constraint 18.5 1,023 521 
w/0.0065 Bound on C-C,,, 17.6 1,042 527 

Table 6. Summary of Predicted Effects of Minimizing m,(tf)/ 
m#,) for Hypothetical Chemical System 

Cooling Policy m,/m, L , ,  (!4 
Natural 6.18 876 
Linear 3.64 1,139 
Optimal 1.98 1,458 

to that of linear cooling. As shown in Table 6, the relative 
benefit of optimal cooling for the hypothetical system is ap- 
proximately twice as great. 

The impact of model identification on the control problem 
can be illustrated by considering the result of using the poorly 
determined parameters given in Table 1 -those resulting from 
concentration data alone. The boundary condition of the pop- 
ulation balance equation (the nuclei density) is: 

For the parameters based on concentration data alone, the 
order of dependence of the nuclei density on supersaturation 
is of the opposite sign of that corresponding to parameters 
from more informative data. The use of the parameters given 
in Table 1 would have led to a significantly different (and 
erroneous) optimal cooling profile; for the cooling profiles 
shown in Figure 8, these parameters would suggest that the 
natural cooling profile would have been superior to the linear 
and “optimal” cooling profiles. 

Sensitivity of Optimal Profile to Model Parameters 
Model-based control policies are, of course, determined us- 

ing a nominal set of parameters. While these parameters are 
not known with total certainty, the parameter estimation 
scheme provides an assessment of the uncertainty. An analysis 
of the sensitivity of control policies to parameter uncertainty 
and the impact of the uncertainty on the performance of the 
control strategy constitute a link between model identification 
and model-based control. 

The optimal control problem can be stated as: 

u = X(8)  

where 32 is a nonlinear operator, and u is a vector representing 
the optimal profile of the manipulated variable for a given set 
of parameters, 8.  

Let 6u be the difference between the optimal profile deter- 
mined for parameters B and for that determined for B * ,  the 
nominal set of parameters: 

One way to examine the relationship between the optimal 
control policy and the parameter uncertainty is to determine 
the 8 in the confidence region that “maximizes” 
6u = X(B) - ‘ X ( B * ) .  In other words, one approach is to find the 
worst-case deviation of the optimal control policy from the 
nominal profile for a given parameter confidence region. Max- 
imizing 6u requires the definition of a norm of 6u. While there 
are several reasonable choices. the 2 norm: 
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II 6u 112 = 6u%u 

provides a measure of the overall deviation of an optimal 
profile from the nominal optimal profile. 

The vector that is amplified most (in the 2-norm sense) by 
the linear matrix operator L is the first column of the right 
singular matrix of L.  The singular value decomposition can 
be performed efficiently by routines in LINPACK (Dongarra 
et al., 1979). 

Linearizing X about the nominal parameter set allows an 
approximate statement of the optimal control problem: 

According to this linear approximation of the control problem, 

6u = L(8 - 8 * )  = L68 

and the 60 that maximizes 6d6u is a multiple of 68,,,,,, the 
first column of the right singular matrix of L .  In other words, 
the vector BOW,,,, is the direction in which 8* can be perturbed 
that should lead to the largest change in u. 

For the KN03-H20 system: 

0*=[8.849 1.32 17.142 1.781' 

For the optimal control problem of minimizing the final- 
time value of mn/m,, the singular value decomposition of the 
finite difference approximation of L gives: 

68,,,,,=[-0.161 0.930 -0.065 0.3241' 

Figure 11  gives the results of solving the optimal control 
problem after perturbing the nominal parameter by 
*O. 1(68,,,,,). The analysis presented above suggests that the 
effect of perturbation of 8' by an equal or lesser amount in 
any other direction should be less than that illustrated in Figure 
11. 

As discussed, the lOO(1 - a)Vo approximate parameter con- 
fidence region is a hyperellipsoid that is bounded by: 

68' v,- '60 = xi@) 
where xho is a random variable of a chi-square distribution 
with Np degrees of freedom. The parameter sets in the con- 
fidence region that differ most from 8* are the endpoints of 
the major axis of the hyperellipsoid. For Q, = m,( l f ) /ms (  f,), 

major axis endpoints 

*68,,,=[-0.029 -0.006 0.349 0.0901' 

Perturbing 8' by *68,,, leads to an imperceptible change in 
u. As illustrated by Figure 11, perturbation of the same mag- 
nitude (ll6Oll=O.36) in the direction of 68,,,,, leads to a signif- 
icant change in the optimal u. 

While perturbing 8' by a multiple of 68,,,,, can lead to a 

,,.... ... . ... .... . . . . .  

Time (minutes) 

Figure 11. Sensitivity of control profile to parameter un- 
certainty. 
Optimal control policy for nominal parameters and for param- 
eter sets perturbed by k0.1 (66',,,,,) and k0.36 (66',,,,,). 

markedly different predicted optimal temperature profile, 
0.36(68,,,,,) is well outside of the 95% confidence region. The 
task of finding the parameter perturbation within the confi- 
dence region that has the greatest effect on 6u can be stated 
as: 

For the 95% confidence region of the KN03-H20 system, 
y=0.004, which does not lead to a perceivable change in u 
from that determined for the nominal set of parameters. In 
other words, the sensitivity analysis suggests that for the tight 
confidence region of the KN0,-H,O kinetic parameters, the 
parameter uncertainty is not a concern in the determination 
of an optimal open-loop control policy. 

Experimental Implementation of Open-loop Con- 
trol 

The bench-scale crystallizer with a KN03-H20 chemical sys- 
tem was used to test the model-based control strategy. The 
example discussed above in which the objective was to minimize 
the terminal value of m,/m, was posed to possibly benefit 
efficiency of subsequent processing steps. This policy was cho- 
sen for implementation. As discussed, it is usually impossible 
to experimentally evaluate m,/m,, but the policy that minimizes 
m,/m, is expected to have measurable effects on variables that 
can be assessed. 

The temperature measurements for typical runs of natural, 
linear, and optimal cooling policies are shown in Figure 12. 
To incorporate the physical limitations of the cooling system, 
the optimal control policy was subject to a cooling rate con- 
straint of 0.1 "C/min. As shown, the temperature control sys- 
tem was able to track the linear and optimal temperature 
trajectories. 

Figures 13-15 present the concentration and transmittance 
data corresponding to the natural, linear, and optimal cooling 
profiles shown in Figure 12. A comparison of these figures 
demonstrates the relationship between the temperature profile 
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Figure 12. Experimental temperature data for natural, 
linear, and optimal cooling. 
Setpoint trajectory tracking is also shown. 

and the system output variables. The figures also demonstrate 
the effectiveness of the model in predicting the behavior of 
the system. The model parameters used were those given in 
Table 4-those obtained from the experiments for model iden- 
tification. 

The effect of the temperature profiles on the product of the 
crystallizer is demonstrated by the weight mean sizes given in 
Table 7; these are results from sieve analysis for the runs 
corresponding to  Figures 13-1 5 .  The model predicted mean 
sizes are also given. 

The sieve analysis results of several runs are given in Table 
8. The initial concentrations of the runs were all approximately 
0.493 g KNOJg H20. With the exception of the case with 
higher seed loading (noted in the table), the only difference in 
the operating conditions for the runs was the cooling policy 
used. Because the final temperatures for the runs were not all 
equal, the yields were not consistent. To assess the effect of 
the cooling policy, runs with similar yields should be compared. 
(The crystallizer yields shown in the table were computed from 
the initial and final concentration measurements.) 

There are several sources of error in sieve analysis. From 
observations made during these experiments, the most likely 
source of error was agglomeration of small crystals during 
drying, which would be consistent with the unexpectedly high 
values of L,, and low values of the coefficient of variation. 

There is error in the sieve analysis results, and there is un- 
doubtedly some error in the model, so it is not surprising that 
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Figure 13. Concentration and transmittance measure- 
ments and model predictions for natural 
cooling operation. 

there is some disparity between the measured and model-pre- 
dicted values of L,. Nevertheless, the qualitative effect of the 
cooling policy is the same: the weight mean size can be increased 
by using a linear cooling profile instead of allowing natural 
cooling, and a further increase can be realized by using the 
optimal cooling policy. 

As discussed, the increase in L ,  obtained by using cooling 
policies other than natural cooling is attained by avoiding the 
strong peak in supersaturation that is characteristic of natural 
cooling. The supersaturation data for natural, linear, and op- 
timal cooling runs are given in Figure 16. 

Table 8 includes the results from the implementation of an 
optimal control policy in which the seed loading was higher 
than that of the other runs-loading was higher by a factor 
of 10. The difference between the optimal temperature tra- 
jectories implemented for the lower and the higher seed loading 
was not very great. However, as shown by a comparison of 
Figures 15 and 17, the difference in the system behavior was 
significant. The high seed loading led to  an immediately per- 
ceivable transmittance decrease. The seed load was high enough 
that the solute deposition on the seed crystals resulted in a 
decrease in the concentration early in the run, while there was 
a relatively long induction period for the case of low seed 
loading. It should be noted that the model is able to  predict 
the system behavior for the high seed loading experiment, even 
though model identification was performed using data from 
low seed loading experiments. 
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Figure 14. Concentration and transmittance measure- 
ments and model predictions for linear cool- 
ing operation. 

Performance indices other than that used in the above dis- 
cussion may be determined to be more beneficial, and the use 
of temperature as the lone manipulated variable may be deemed 
to be inadequate for a particular system. The technique is 
flexible enough to accommodate other performance indices 
and manipulated variable choices. 

Conclusions 
Supersaturation can be achieved by chemical reaction, tem- 

perature change, solvent evaporation, feed rate changes, and 
introduction of an additive. The size and CSD of a crystallizer 
product are governed by the rates of nucleation and growth, 
both of which are driven by supersaturation. Because nuclea- 
tion and growth compete for a resource (the solute) and are 
driven by the same variable (supersaturation), the control prob- 
lem is challenging and requires a careful characterization of 
the kinetics of the two phenomena. 

Of the few studies that have focused on control of batch 
cooling crystallizers, most have dealt with determining a cool- 
ing profile that optimizes a performance index that is stated 
in terms of the moments of the CSD. As demonstrated by 
Bohlin and Rasmuson (1992) via simulation and experimentally 
by Chianese et al. (1984), even the qualitative benefits expected 
from optimal cooling profiles are not necessarily realized, at 
least not reproducibly. Poorly characterized kinetics and in- 
accurate process control (that is, poor implementation of pro- 
files) are the probable causes of the shortcomings. 
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Figure 15. Concentration and transmittance measure. 
ments and model predictions for optimal 
cooling policy implementation. 

The results given in this article demonstrate that there are 
effective techniques for computing and implementing an op- 
timal manipulated variable trajectory, the objective function 
for which allows consideration of downstream process effi- 
ciency. The interplay between model identification and the 
model-based control strategy were discussed, and an illustra- 
tion was given of the difficulties that can arise if the system 
kinetics are poorly characterized. It has been shown that with 
careful experimental design, the kinetic parameters and their 
confidence regions can be estimated from measurements of 
solute concentration and light transmittance through a crystal 
slurry sample. The parameter confidence regions obtained in 
this study are elliptical regions based on linear statistics, but 
a Monte Carlo study was used to demonstrate that the elliptical 
regions provide a reasonable representation of the actual con- 
fidence regions for the KN03-H20 test system. 

At least for the KN03-H20 system, the kinetic characteri- 
zation is sufficiently reliable to assure the desired system be- 

Table 7. Effects of Temperature Profiles on Weight Mean Size 
of Crystallizer Product 

Measured Model-Predicted 
Cooling Policy L ,  (pm) L w m  (rm) 
Natural 449 448 
Linear 630 493 
Optimal 666 514 
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Table 8. Weight Mear. Size and Coefficient of Variation of 
Crystallizer Product of Several Runs 

Cooling Yield Measured Predicted Measured Predicted 
Policy ("C)  (g) L ,  (elm) L,,, ( w )  c.0. c. v. 

28.2 98 449 448 0.40 0.47 
Natural 28.3 99 460 450 0.36 0.47 

28.4 93 465 448 0.37 0.47 

28.1 101 630 493 0.41 0.46 
Linear 28.1 103 564 492 0.39 0.47 

28.5 92 532 492 0.36 0.47 

28.1 102 666 514 0.49 0.50 
Optimal 28.4 91 507 48 1 0.44 0.50 

'27.8 107 574 470 0.26 0.22 

'High seed loading used in run. 

havior. In fact, the model was shown to accurately predict the 
behavior of the system, even in operating regions significantly 
different from the experiments used for model identification. 
Implementation of a model-based optimal cooling policy on 
the KN03-H,O system led to increases in the weight mean size 
of up to 48% compared to that of natural cooling. 

As shown from a simulation study of a hypothetical chemical 
system, the impact of the optimal temperature profile on the 
final CSD is strongly dependent on the growth and nucleation 
parameters. In other words, an optimal temperature profile 
could be more or less effective than was realized on the KN03- 
H,O system, depending on the kinetics of the system. For 
chemical systems for which temperature manipulation is de- 
termined to be ineffective for affecting the CSD, the consid- 
eration of additional or alternative manipulated variables may 
be necessary. For example, Jones et al. (1984) have investigated 
the feasibility of using fines dissolution. The framework of 
the control strategy presented in this article is flexible with 
respect to the choice of manipulated variables. 

Due to the accuracy with which the model characterizes the 
system and the ability to precisely follow a given manipulated 
variable trajectory, feedback offers no real advantage for the 
KN03-H20 system used in this study. Nevertheless, for a par- 
ticular system, the plant/model mismatch, the deviations from 
the nominal trajectory, or the system disturbances may be 
significant. Possible disturbances of an industrial process in- 
clude improper seeding (for example, adding incorrect size or 
amount of seeds, or seeding at the incorrect system state) and 
batch-to-batch variations (usually due to impurities and solvent 

0.06 r I 
natural - 

Linear 
optimal ........ ~ 

0 10 20 30 40 50 60 70 80 
Time (minutes) 

Figure 16. Experimental relative supersaturation data 
for natural, linear, and optimal cooling. 
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Figure 17. Concentration and transmittance measure- 
ments and model predictions for optimal 
cooling policy implementation with high 
seed loading. 

effects). In other words, there are cases in which feedback 
compensation would be beneficial. For such cases, Rawlings 
et al. (1993) provide suggestions for incorporating feedback. 
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Notation 
A = linear constant matrix 

A, = heat-transfer area for cooling crystallizer 
b, = vector of lower bounds of linear constraints of NLP problem 
b, = vector of upper bounds of linear constraints of NLP problem 
B = rate of crystal formation mechanisms 
B, = matrix for linearized model at j th  sampling instant 
B" = rate of crystal nucleation at size Lo 
cp = heat capacity 
C = solute concentration (mass solute/mass of solvent) 

C,,, = solute saturation concentration (mass of solutehass of sol- 
vent) 

c. v. = coefficient of variation of weight-size distribution 
e,, = error between measurement and prediction, y , , - R  

s, 
Eb = nucleation rate activation energy 
Et = growth rate activation energy 
f = crystal distribution function 
g = crystal growth rate order 
g = vector of inequality constraints 

e, (s,) = energy of scattered light measured by detector of inner radius 
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G =  
h =  
h =  

AH,. = 
j =  

k, = 
k, = 
k,. = 

I =  
L =  
L =  

Lwm = 
Nd = 
N,,, = 
Np = 

Rmax = 
s =  
t =  

t, = 
T =  
T =  

T,. = 
Tmm = 
Tmax = 

u =  
v =  
v =  
v, = 

Y,, = 
Y,, = 

x =  

crystal growth rate 
conversion factor, volume of slurry per mass of solvent 
vector of equality constraints 
heat of crystallization 
slurry density power law coefficient for nucleation rate 
expression 
crystal surface area shape factor (surface area equals k J 2 )  
nucleation rate coefficient 
crystal volume shape factor 
light path length 
characteristic particle or crystal size 
linear matrix operator for sensitivity analysis 
weight mean size 
number of measurement samples during an experiment 
number of quantities measured 
number of parameters estimated 
maximum allowable cooling rate 
supersaturation, ( C -  Csa,)/Csal 
time 
final time of batch run 
temperature 
vector of temperature values at n points in time between 
r = O  and t = t f  
coolant temperature 
lower bound on crystallizer temperature 
upper bound on crystallizer temperature 
heat-transfer coefficient 
volume of the crystallizer’s contents 
measurement covariance matrix 
parameter covariance matrix for the linearized problem 
vector of system states 
ith measurement taken at the j th  sampling instant 
model prediction for the ith measurement taken at the j th 
sampling instant 

Greek letters 
joint confidence limit 
chi-square statistic with Np degrees of freedom 
maximum possible deviation from B’ within confidence re- 
gion-major axis endpoints 
parameter deviation direction that has largest effect on op- 
timal control policy 
scaling factor 
vector of parameters 
nominal parameters set 
ith eigenvalue 
kth moment of the CSD = JrfLkdL 
third moment of the CSD with units cm3/g solvent 
(hE’fL’dL) 
density of the crystallizer contents 
crystal density 
variance of ith measured variable 
objective function 
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