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A model for the prediction of faceted crystal shape evolution during growth or dis-
solution is presented. An ab initio mechanistic model for the relative growth or disso-
lution rates is also described for organic molecular crystal systems. The shape evolu-
tion model proves that while growing crystals evolve toward a steady-state shape, dis-
solving crystals evolve away from a steady-state shape. Thus, crystals cannot achieve
a steady-state during dissolution. This methodology may be used to probe crystal
shapes that are obtainable by growing and/or dissolving crystals, including pharma-
ceutical crystals, inorganic materials and geological minerals. The technique has been
successfully applied to predict the shape evolution of succinic acid growing or dissolv-
ing in water. � 2007 American Institute of Chemical Engineers AIChE J, 53: 1337–1348, 2007
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Introduction

In recent years, a major focus of chemical engineering has
turned to microstructured products and materials, both crys-
talline and amorphous, such as those found in the food, phar-
maceutical and electronics industries. This focus is derived
from the unique performance and characteristics specific to
the crystalline lattice structure. Solid structure is important in
both two-dimensions, crystal surface structure, and in three
dimensions, the crystal polymorph. Crystal dissolution is use-
ful for engineering which surface structures are present, as
well as for understanding and modeling systems where
growth and dissolution occur simultaneously, such as Ost-
wald ripening or polymorph interconversion.

Surface properties of crystals depend upon which crystal
faces are exposed and their relative sizes; therefore, the crys-
tal shape is paramount in engineering the desired surface
properties. One case where surface properties and morphol-
ogy are important is in catalysis, where different index faces
possess different catalytic activity. Steady-state and dynamic
crystal morphology also affect down stream processes such
as filtering, washing and drying, as well as particle flowability

and agglomeration. Thus, the ability to understand and
manipulate crystal shapes enables both product and process
improvements.

Dissolution is a valuable mechanism for exposing crystal
planes and generating crystal shapes that are not easily
obtained through growth alone. Extensive research has been
performed for dissolution at high undersaturations (for exam-
ple, in pure solvents), such as those in chemical etching1 or
pharmaceutical efficacy;2 however, less attention has been
directed towards dissolution at low-undersaturations. The dis-
solution mechanisms in these two cases are quite different,
leading to different shapes and properties.

Dissolution at low undersaturations is also important in the
context of polymorphism. Different crystal polymorphs have
different crystal structures. As a result, different polymorphs
of the same substance usually have different physical and
chemical properties, such as solubility, melting point, color,
bioavailability and compressibility. Thus, the ability to pro-
cess and market the correct polymorphic product is vital. In
order to understand the phenomenon of polymorphism, both
the formation of polymorph, as well as their interconversion
must be understood. Polymorph formation is determined by
nucleation;3 whereas their transformation often specifically
involves dissolution.4,5

Industrial crystallizations are frequently carried out in solution.
When a solution is present, polymorphs often preferentially
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transform through a solution mediated mechanism.6 A sol-
ution mediated-phase transformation, in a constant tem-
perature-batch crystallizer, proceeds as follows. First, the
metastable form grows until the solution composition is close
to the solubility of this form. When the saturation concentra-
tion of the metastable form is reached it will stop growing.
The stable form may nucleate at any point, determined by
relative nucleation kinetics, before or after the saturation of
the metastable form is reached. Then the stable form will
grow, causing the solution to become undersaturated with
respect to the metastable form, causing it to dissolve. Once
the metastable form has completely dissolved at the expense
of the growing stable form, the stable form will grow until
the solution reaches its solubility with respect to the stable
form.4 In order to fully understand this solution mediated
polymorphic phase transformation it is necessary to be able
to model both growth and dissolution of crystals. A charac-
teristic feature of this process is that dissolution occurs at rel-
atively low-levels of undersaturation.

The shapes of dissolved crystals have been previously dis-
cussed in the context of mineralogy, crystallography and
thermodynamics. Moore suggests that the shapes of mineral-
ogical crystals result from faces becoming vertices and
vertices becoming faces.7 Frank proposes that crystals will
disappear before changes in shape have ceased,8 and Gibbs9

(page 326) wrote, ‘‘The effect of dissolving a crystal (even
when it is done as slowly as possible), is, therefore, to produce
a form which probably differs from that of theoretical equilib-
rium in a direction opposite to that of a growing crystal.’’ We
demonstrate that in order to understand the effects of dissolu-
tion on crystal shape, a model for the shape evolution in disso-
lution is required. The key difference between morphology
evolution during growth and dissolution is that growth shapes
tend to be dominated by slow growing planes, while dissolu-
tion shapes are dominated by fast moving planes.

We have developed a generalized model that provides
crystal shape evolution predictions for both growth and
dissolution. This model provides significant insight into ob-
tainable crystal morphologies, as well as conclusively dem-
onstrating that crystals do not obtain a steady-state in disso-
lution (whereas they do in growth). The model for shape
evolution in growth and dissolution, in combination with the
mechanisms for the appearance and disappearance of faces,
can be applied to any crystal system. We also describe a
method to predict the relative dissolution rates of flat faces
for molecular organic crystals at low undersaturations. The
relative velocities of stepped and kinked faces are estimated
based on diffusion limitations. The relative rates are pre-
dicted from a mechanistic model based on ideas first pro-
posed by Burton et al.10 and on the physical principles
proposed by Winn and Doherty.11 The predicted relative dis-
solution rates are combined with the shape evolution model
providing for a fully predictive model for crystal shapes
evolving during dissolution at low-undersaturations.

This article is organized as follows. We begin by describ-
ing the relevant mechanisms for growth and dissolution at
low-undersaturations. Then we provide methods for the pre-
diction of these rates using mechanistic models. Next, we
describe the shape evolution model, including methods for
face selection based upon mechanisms for the appearance
and disappearance of crystal faces. Finally, we provide two

examples. First, an illustrative crystal system is used to dem-
onstrate the general utility of the model for any crystal sys-
tem, organic or inorganic, where the crystal face dissolution
rates could be determined by any desired measurement or
modeling technique. Second, the dissolution of succinic acid
in water is modeled using relative dissolution rates predicted
from the models presented here.

Mechanisms of Growth and Dissolution

The mechanism for growth and dissolution of crystals
varies depending on the classification of the crystal face.12

Flat (F) faces, those containing more than one strong peri-
odic bond chain running along the plane, grow or dissolve
by the flow of steps across the surface, which are created
either by a 2-D nucleation or a spiral mechanism (see Lasaga
and Luttge13 for a discussion in the context of dissolution).
The crystallization classification of a face being ‘‘flat’’
implies only the nature of the bond chain structure in the
face. The surface of these faces will not be perfectly flat on
a molecular level. Stepped (S) faces, those containing one
and only one strong bond chain running along the plane,
grow or dissolve by the evolution of every row of steps in
the corrugated step surface. Finally, kinked (K) faces, those
which contain no strong bond chains along their planes,
grow or dissolve by the rapid incorporation or disincorpora-
tion of molecules from virtually any position on the crystal
face, since the entire surface is covered by kinks that allow
for such growth or dissolution. These kinked faces are inher-
ently roughened since they do not possess any energetic
barrier for the incorporation or disincorporation of crystal
material, and their motion is normally governed by heat
transfer or diffusion limitations. For a comprehensive discus-
sion of the classification of crystal faces, see Hartman.12,14

Flat crystal faces grow or dissolve by the flow of steps
across a crystal surface. For growth, this flow of steps occurs
by incorporation of the solute material from solution onto the
existing crystal. This process is thought to occur in four
stages. First, the solute diffuses from the bulk of the solution
(stage 1) through a boundary layer to the crystal surface. The
solute molecule then adsorbs onto the surface (stage 2),
before diffusing across it (stage 3), until it is incorporated
into the lattice (stage 4). For dissolution the same process
occurs in reverse, with the molecule first disincorporating
from the lattice, then diffusing across the surface, desorbing
from the surface and finally diffusing through a boundary
layer into the bulk solution. The most important incorpora-
tion or disincorporation location on the lattice for both
growth and dissolution is the kink site. Such kink sites have
been experimentally visualized in protein crystals.15

The growth/dissolution mechanism on flat faces is thus a
function of the method by which kinked steps are created
(see Figure 1). At low-super/under saturations flat faces will
grow/dissolve via the spiral dislocation mechanism, where a
continuous source of steps evolves from screw dislocations,
which are in abundance on the surfaces of most real organic
crystals.10 Note that a dissolution spiral can best be thought
of as a growing pit rather than a dissolving hill. In recent
years these spirals have been experimentally measured using
AFM.16–19 Alternatively, 2-D nuclei can be the source of
steps on a crystal surface. These are generally not easily
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formed at low-super/under saturations; however, at higher-
super/under saturations they are often the primary source of
steps.20 Additionally, in dissolution these nuclei preferentially
form on dislocations because that relieves additional (strain)
energy from the system (See Appendix). A final source of
steps in dissolution are the edges and vertices of the crystal.
The dissolution of a crystal edge or vertex does not contrib-
ute to the relative dissolution rate of that crystal face, rather
it will be a systematic source of a new face being formed.
This will be further discussed in the context of shape evolu-
tion. At even higher levels of supersaturation, 3-D nucleation
of new crystals dominates the crystallization, whereas in dis-
solution no equivalent phenomenon exists. At higher levels
of undersaturation, the 2-D nucleation mechanism results in
etch pitting.

Stepped crystal faces also grow and dissolve by molecules
incorporating into steps; however, in this case, the faces
themselves are corrugated and already populated by a ready
source of steps. Rather than the steps flowing across the sur-
face, each step grows or dissolves directly, leading to a per-
pendicular growth or dissolution rate. Thus, on such faces,
no dislocations or 2-D nuclei need to be present for growth
or dissolution. Along these steps, the kink sites will again be
the most likely location for the incorporation or disincorpora-
tion of molecules.

Finally, on kinked crystal faces no steps are even neces-
sary for kink sites to be formed. For kinked crystal surfaces,
the entire surface is populated by kinks which allow for the
ready incorporation (or disincorporation) of molecules.

Modeling Growth and Dissolution

Flat faces

The flow of steps in the form of a spiral about a screw dis-
location was first proposed by Frank,21 and more fully devel-
oped in the landmark paper of Burton, Cabrera and Frank.10

The first application to dissolution came later by Cabrera and

Levine.22 The BCF expression for the rate of growth or dis-
solution Ghkl, normal to a crystal surface (hkl) is

Ghkl ¼ vh

y

� �
hkl

(1)

where v is the step velocity as it propagates across the sur-
face, h is the step height, and y is the interstep distance.
Since distances are measured as positive in the outward nor-
mal direction from an origin inside the body of the crystal,
the expression is equally valid for the rate of dissolution
normal to a crystal surface (hkl). The rate will be negative
(implying a dissolving rather than a growing surface) as a
result of the step height being negative for a dissolution
spiral. An equivalent expression is

Ghkl ¼ h

t

� �
hkl

(2)

where t is the characteristic rotation time of the spiral. This
characteristic time is the time required to create one full turn
of the spiral. It is also the amount of time between consecu-
tive passes made by a step across a given location on the
crystal surface. The characteristic time for the creation of
one full turn of the spiral is

thkl ¼
Xn
i¼1

lc;iþ1 sinðai;iþ1Þ
vi

 !
hkl

(3)

where t is summed over the n sides of the spiral, vi is the
step velocity of the ith edge on face (hkl), and a is the angle
between sides of the spiral. This assumes a step velocity pro-
file consistent with Voronkov23 which can be expressed as

v ¼ 0 l � lc

v ¼ v1 l > lc
(4)

The critical length, lc, is taken to be the critical size for the forma-
tion of a 2-D nucleus of the same shape formed by the spiral.

Modeling the relative velocity of a growth or dissolution
step are completely equivalent; however, isotropic features of
an absolute growth or dissolution rate expression, such as the
entropy contribution to the free energy barrier are different.
When kink integration limits the step velocity on a flat face,
which often holds for solution crystallization,24 the step ve-
locity is directly proportional to the kink density.20 Eliminat-
ing isotropic terms, the step velocity expression for the ith

edge on face (hkl) is given by

vi � ap;i

1þ 0:5 exp
fkink;i

kT

� � (5)

where ap,i is the distance that the ith edge has propagated by
adding one growth unit. The remainder of the expression orig-
inates from the probability of finding a kink site at equilib-
rium, where fkink,i is the free energy required to create a kink
along that edge in the presence of the solution.10 Methods
have been developed to estimate this energetic interaction.25

The critical length for the side of a spiral is normally esti-
mated using a Gibbs-Thomson approach. Since one turn of

Figure 1. Relevant growth and dissolution mechanisms
over the full range of super/undersaturations.

Note that at high supersaturations in growth the crystalliza-
tion is dominated by 3-D homogeneous nucleation of new
crystals, while in dissolution at low-undersaturations there
is no direct equivalent, but etch pitting of the crystals
occurs. Additionally, the relative chemical potential differ-
ence for a change to the 2-D nucleation mechanism in
growth is at a larger value than the corresponding change to
the 2-D nucleation mechanism in dissolution. This is due to
the strain released by the preferential formation of nuclei on
dislocations in dissolution (see Appendix).
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the spiral encompasses a dislocation, it is appropriate to
include the energy associated with adding or removing a new
layer of crystal to the dislocation in the analysis. However,
this strain component to the energy is often small when com-
pared to that of the energies associated with forming a new
edge and adding or removing solute, and, thus, it will not be
included here (see Appendix for a complete justification).

While the spiral mechanism is often the mode of growth
or dissolution for flat faces at low-super/undersaturations,
some cases exist where flat faces grow or dissolve solely by
the 2-D nucleation mechanism. Modeling of the 2-D nuclea-
tion mechanism requires evaluating not only the spreading
velocity of these nuclei, but also the rate at which they form.
Such a detailed model of 2-D nucleation does not exist; how-
ever, approximate methods for predicting relative rates of
crystal faces growing by 2-D nucleation have been devel-
oped.11 These methods also have the potential for application
in dissolution.

Stepped and kinked faces

Mechanistic models for relating the relative growth or dis-
solution rate of stepped and kinked faces to those of flat
faces are less well developed. In the case of organic crystals
growing or dissolving in solution, the rates of growth or dis-
solution of their stepped and kinked faces will be limited by
diffusion. It has been proposed11 that the growth rate of these
higher index faces be estimated as an order of magnitude
higher than the corresponding flat faces. This is also a good
first approximation for the relative dissolution rates of these
faces as well. In other crystallization systems (vapor growth/
dissolution, inorganic materials, and so on.) where the rela-
tive magnitude of kink and bond energies provide for kinked
faces to grow or dissolve even more rapidly than stepped
faces, a velocity for the kinked faces should be estimated to
be much higher than the corresponding stepped faces.

Evolution of Crystal Shape

Using the earlier modeling techniques to predict the rela-
tive growth or dissolution rates of crystal faces, in conjunc-
tion with a shape evolution model, the time-dependence of
the crystal shape can be predicted. Such a model has recently
been developed in the context of growth.26 We have
extended this model to include dissolution, revealing several
novel conclusions which are independent of the method
by which relative growth or dissolution rates are obtained
(for example, from the earlier mechanistic model, experimen-
tal data or other modeling techniques.)

The model consists of a number of states equal to the num-
ber of planes that are actually present on the surface of the
crystals (real planes), plus those that could appear on the sur-
face of the crystal through growth or dissolution (virtual
planes). The evolution of each real face is governed by an or-
dinary differential equation. Coupled to this set of differential
equations is an algebraic condition that determines whether or
not a virtual plane will appear on the crystal at the next time
step. If a virtual plane does not appear, it is moved with the
same velocity as the edge or vertex on which it is located
until the next time step. First, we present the differential
equations describing the shape evolution. Then, we describe

the method for determining the list of candidate planes.
Finally, the condition for face appearance is explained.

Shape evolution

The simplest expression for a faceted crystal shape evolu-
tion model follows the perpendicular distance of each crystal
face in time

dHi

dt
¼ Gi; i ¼ 1; . . . ;N (6)

where Hi and Gi are the perpendicular distance and normal
velocity of face i, respectively, and N is the number of real
crystal faces, which may change as the crystal evolves. This
shape evolution equation is equally valid for both growth
and dissolution; but in either case, it has no apparent steady-
state. By appropriately nondimensionalizing the variables,
steady-state features of the model can be revealed. From this
point, the absolute and relative growth and dissolution rates
will be distinguished by the subscripts G and D, respectively.
Choosing the perpendicular distance of a reference face, Href,
as the characteristic length, and growth rate of the same ref-

erence face, GG;ref ¼ dHref

dt
, as the characteristic velocity; the

dimensionless perpendicular distance of face i is xi ¼ Hi/
Href, and the (dimensionless) relative growth velocity of face
i is RG,i ¼ GG,i/GG,ref Using these dimensionless variables
we can reformulate the dynamic model as follows

dxi
dt

¼ GG;ref

Href

ðRG;i � xiÞ; i ¼ 1; . . . ;N � 1 (7)

dHref

dt
¼ GG;ref (8)

At each point in time the convex hull of the crystal reveals
the crystal shape.

A dimensionless warped time then can be defined for

growth, dxG ¼ GG;ref

Href

dt, and Eq. 7 can be rewritten in fully

dimensionless form suitable for growth

dxi
dxG

¼ RG;i � xi; i ¼ 1; . . . ;N � 1 (9)

As time increases, the warped time also increases during
growth since both the characteristic velocity (GG,ref) and
length (Href) are positive during growth. For dissolution the
characteristic velocity is now the dissolution rate of the refer-

ence face, GD;ref ¼ dHref

dt
. For the warped time to increase as

the time increases in dissolution, the warped time must be

redefined, dxD ¼ �GD;ref

Href

dt, since the characteristic velocity

is now negative while the characteristic length is still posi-
tive. Eq. 7 then can be rewritten in a fully dimensionless
form suitable for dissolution

dxi
dxD

¼ xi � RD;i; i ¼ 1; . . . ;N � 1 (10)

A steady-state of these systems corresponds to the condition
when each of the states of the model, those corresponding to

1340 DOI 10.1002/aic Published on behalf of the AIChE May 2007 Vol. 53, No. 5 AIChE Journal



both real and virtual faces, are at a value such that they do
not change with time.

Under constant relative growth rate conditions, the growth
form of the model is a linear system of ordinary differential
equations, with all the eigenvalues equal to �1; therefore, it
has the expected result of the steady-state being unique and
stable. It is defined by

xssi ¼ RG;i; i ¼ 1; . . . ;N � 1 (11)

which is often expressed in the equivalent forms

RG;i

xssi
¼ 1 or

Gss
G;i

Hss
i

¼ GG;ref

Href

; i ¼ 1; . . . ;N � 1 (12)

Thus, the relative perpendicular distance of each face is
equal to its relative growth rate, which is precisely the Cher-
nov condition.27 Since the crystal shape always evolves
towards its unique stable steady-state, the evolution trajecto-
ries will depend on the initial condition; however, the final
shape will always be identical. Also, disturbances in the sys-
tem will be relatively unimportant since the crystals will
again evolve toward the same steady-state shape after the
disturbance is mitigated. The crystal shape will become more
and more self-similar as the system approaches its steady-state.
When the system is at the steady-state value, the crystal will
evolve with self-similar shape. Under nonconstant relative
growth conditions,28 Eq. 9 must be coupled to the mass and
energy balances that describe the evolution of the temperature
and supersaturation fields (which determine the change in
growth rate). In this case, the steady-state equations must be
coupled to the steady-state mass and energy balances. The
overall model (both dynamic and steady-state) is then nonlin-
ear, with all the consequences that this implies.

Under constant dissolution conditions, the dissolution form
of the model is also a linear system of ordinary differential
equations; however, all of the eigenvalues are equal to þ1.
Thus, the unique steady-state of the system

xssi ¼ RD;i; i ¼ 1; . . . ;N � 1 (13)

is conclusively shown to be unstable. In fact, since the steady
state is unstable, the system will constantly be evolving away
from the steady-state. As a result, the initial condition will
have an effect on the resulting evolution trajectory, as well
as possible crystal end shapes. Additionally, disturbances
will affect the shapes obtainable in dissolution. As the crystal
dissolves and moves away from the steady-state, it will
become less and less self-similar. (It is mathematically feasi-
ble for the crystal to obtain a self-similar shape in dissolu-
tion, by the disappearance of all, but a single set of planes at
equal distances dissolving at equal rates; however, the crystal
will not uniquely evolve toward that specific shape for any
but the most special initial conditions nor will it maintain
that self-similar shape except in the most perfect of dissolu-
tion conditions.) Under nonconstant dissolution conditions
Eq. 10 must be coupled to the mass and energy balances,
and the model is, like the growth model, also nonlinear.

Candidate face selection

In order to fully describe crystal shape evolution, a method
to select all of the relevant planes for the simulation is neces-

sary. Since the slow growing planes are important in growth
and there are relatively few of those, including all of them in
a growth evolution simulation is a feasible, as well as correct
selection. However, in dissolution, since the fast dissolving
planes are important and there are an infinite number of these
planes, selecting all of them is not feasible. Additionally, only
specific planes will appear via specific molecular mechanisms
during dissolution. Zhang et al.26 demonstrated the possible
macroscopic manifestations of new faces appearing and disap-
pearing at edges and vertices during generalized shape
changes specifically for growth. Here we present the molecu-
lar mechanisms that determine which specific faces can appear
during dissolution. The candidate faces are then determined
by an algorithm for selecting all of the planes necessary to
perform a successful growth or dissolution shape prediction.

Face appearance at edges in dissolution

Flat faces are primarily bounded by edges containing a
periodic bond chain, since the dominant faces of a grown
crystal usually contain multiple bond chains. This allows for
the crystal edges to be sources of steps in dissolution. In this
case, the steps will be kinked in an identical fashion to a spi-
ral edge and will act as a source of steps along both crystal
faces with which it intersects. If the steps that emanate from
a crystal edge are spaced identically to those on the spirals
they will merely contribute to the layer-wise dissolution of
the crystal faces. However, the actual spacing will be a dis-
tance of one growth unit since the removal of one row of
growth units immediately allows for a second row to be
exposed and then kinked. Thus, the edges can cause the for-
mation of a new crystal face or faces rather than just contrib-
uting to the layer-wise dissolution of the adjacent crystal
faces. Subsequently, as long as the face that is first exposed
is not itself a flat (F) face (see section on Mechanisms of
Growth and Dissolution for a description), only one new face
will appear at this edge in dissolution since there is no driv-
ing force for any of the growth units on that face to be
removed faster or slower than any others. We have neglected
the effect that the bulk diffusion field would have on the pos-
sibility for some of the growth units along that edge to be
removed faster than others, providing for additional faces to
appear and hence rounding or smoothing to occur. Therefore,
two cases need to be considered, corresponding to whether
or not the initial face that could appear is an (F) face.

First, consider which crystal face initially appears along
the edge between the (001) and (010) faces in Figure 2a.
This face is the one that is exposed when the first row of
growth units are removed, exposing two rows of growth units
that will exist as the new face (Figure 2b). Thus, the new
face will be the crystallographic plane that is precisely in the
middle of the two previous planes that intersected at the
edge. In this case, after those two new rows of growth units
are exposed, they then become kinked and are removed
(Figure 2c). This now leaves three rows of growth units that
are exposed. If they do not compose an (F) crystal face then
they all can be kinked and removed leaving four new rows
of growth units, and so on (Figure 2d). This process contin-
ues providing for the macroscopic appearance of a single
new crystal face (Figure 2e–f). Each of the rows of growth
units are removed at the same speed since we have neglected
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the influence of bulk diffusion, and they each have the same
kink energy. The proper indexing of this additional crystal
face is straightforward with the given knowledge of the
growth unit and the unit cell.

If the three rows of growth units that were exposed (Figure
3d) comprised an (F) crystal face, then the middle row can-
not be readily kinked, while the two adjacent rows are still
present, since a bond connects these rows to one another.
Thus, only the outer two rows can be kinked and removed,
which now allows for the previous middle row to also be
kinked along with the two newly exposed rows (Figure 3e).
This process continues providing the possibility for exposing
two new crystal faces. In other words, the intermediate flat

face that began to appear could not readily dissolve, causing
the formation of a new face between it and each of the adja-
cent crystal faces (Figure 3f–h). Again, we have neglected
the effect of the macroscopic diffusion field providing for an
equal rate of removal of growth units limiting the smoothing
of the edge that may occur. The indexing of these new crys-
tal planes directly follows from the known information of the
growth unit and the unit cell.

Face appearance by vertex dissolution

While the edge of a crystal first needs to be kinked in
order for growth units to be removed, crystal vertices provide

Figure 2. Dissolution at the edge of the (001) and (010) faces.

Since the first appearing face (011) is not a flat face, it is the only face that appears.

Figure 3. Dissolution at the edge of the (001) and (010) faces.

Since the first appearing face is a flat face (011), it does not appear macroscopically, rather two other faces ((021) and (012)) do appear.
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for an already kinked molecular position. Because the growth
unit at the vertex is in a kinked position it can be readily
removed revealing a layer of growth units beneath (Figure
4a). This is an additional mechanism by which new faces
can appear in dissolution. Similarly to faces appearing at
edges, the face that is exposed in removing this molecule
may or may not be an F face. If it is not, again only a single
new crystal face could appear with the succession of mole-
cules being removed, since all of the newly exposed mole-
cules are equally likely to be removed. The indexing of this
face is identical in determination to those new faces formed
at the edges (Figure 4b–f). If the newly exposed face is an F
face, additional planes will develop between it and the adja-
cent planes. Each of the possible combinations that could
develop in this situation are not enumerated here; however,
they directly follow from the method described earlier for
edges.

Candidate face selection algorithm

In the previous sections, we have outlined the microscopic
mechanisms for the appearance of new faces at edges and
vertices. When describing a crystal shape evolution those
new faces are just one of the three classes of faces that must
be included. First, any candidate faces that are on the initial
shape must be included in the superset. Second, each flat (F)
face must be included. Finally, as described earlier, each
face that exists at an edge or vertex formed by adjacent sets
of those flat faces must also be included. The combination of
these three types of faces provide for the total superset of
candidate faces.

Test for face appearance

In order to fully describe crystal shape evolution, a method
to predict the appearance and disappearance of faces is also
required. Zhang et al.26 determined the condition for face

appearance during growth. In growth, new faces appear when
the magnitude of a virtual-face velocity is below a critical
value, such that its appearance on the growth form is favor-
able. A similar condition exists for crystals in dissolution,
where new faces appear when the magnitude of a virtual
face velocity is above a critical value such that its appear-
ance is favorable.

For each of the new faces that potentially appear at the
edges and vertices, a macroscopic test for whether that face
can appear must be considered. Consider an allowable virtual
face that is not on the crystal Fv, with Miller index (hvkvlv),
and normal growth or dissolution rate Gv located at the ver-
tex Pijk of three intersecting faces Fi, Fj and Fk, with growth
or dissolution rates Gi, Gj and Gk. The spatial velocity vector
vijk of this vertex point is

vijk ¼
hi ki li
hj kj lj
hk kk lk

2
4

3
5
�1

Gi

Gj

Gk

2
4

3
5 (14)

The projection of this velocity onto the normal direction
of Fv is then given by

qv ¼
vTijknv

knvk (15)

where r1
Tr2 represents the inner (dot) product between vectors

r1 and r2, kr1k represents the norm of vector r1, and nv repre-
sents the vector normal to face (hvkvlv). In general, the veloc-
ity vectors Gvnv and vijk will not be parallel, but Gvnv and
rvnv are parallel, so their magnitudes (speeds) can be directly
compared.

In growth, a face will appear if Gv is less than rv. In this
case face Fv is growing at a rate below the critical value rv,
for its appearance causing it to ‘‘grow in’’. Otherwise, when

Figure 4. Dissolution at the vertex of the (100), (010), and (001) faces resulting in the appearance of a single plane
(111).
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Gv is greater than rv, face Fv will not grow in. In dissolution,
a face will appear if |Gv| is greater than |rv|. In this case face
Fv is dissolving at a rate above the critical value |rv|, for its
appearance causing it to ‘‘dissolve in’’. Otherwise, when |Gv|
is less than |rv|, face Fv will not be able to ‘‘dissolve in’’.

Results

Here we present the results of implementing the evolution
model in both growth and dissolution modes. First we present
the results of an illustrative system for the case of dissolution
where kinked and stepped faces dissolve at approximately the
same rate (growth or dissolution of organics in solution).
Then we present the results for the same illustrative crystal
system where kinked faces dissolve much more rapidly than
stepped faces (vapor growth/dissolution of organic or inor-
ganic materials). These examples highlight the versatility of
the model to cope with any system dissolving at low-undersa-
turations. Finally, we present the results of combining both
the microscopic features of the mechanistic growth and disso-
lution rate predictions, for a small molecule organic solute in
solution, in combination with the macroscopic features of the
shape evolution methods. These results for succinic acid
growing and dissolving in water further demonstrate the evo-
lution towards a steady-state during growth in contrast to the
evolution away from the steady-state in dissolution. The pre-
viously discussed features of face appearance under different
initial conditions are also highlighted.

Example illustrative system

The illustrative system contains a single growth unit per
unit cell with the unit cell parameters a ¼ 1 Å, b ¼ 1 Å,
c ¼ 1 Å, a ¼ 908, b ¼ 908 and g ¼ 908. Two sets of peri-

odic bond chains exist in the system. One set of two periodic
bond chains run along the h010i and h001i directions, while
a second set of bond chains runs along the h100i direction.
Each set of periodic bond chains has its own characteristic
energy. Thus, the relative growth and dissolution rates of the
{100} plane family will be different than that of the {010}
and {001} plane families. The relative growth and dissolu-
tion rates of the {100} plane families are set as 2 and �2,
while the relative growth and dissolution rates of the {010}
and {001} plane families are set as 1 and �1. We use the
steady-state growth shape as the initial condition for the dis-
solution evolutions, thus, the only additional candidate planes
are those that are located at the edges and vertices of the ad-
jacent flat faces. There are twelve planes at the edges of the
adjacent flat planes corresponding to the {011}, {101} and
{110} plane families. Additionally, there are eight planes at
the vertices formed by adjacent sets of flat planes corre-
sponding to the {111} plane family.

First, we dissolve the crystal under the conditions which
are appropriate for dissolution of an organic crystal in solu-
tion, where the kinked and stepped faces dissolve approxi-
mately equally rapidly, in this case with a dissolution rate of
�10. Figure 5a shows the steady-state growth shape, which
is the starting shape for the dissolution evolution. Figure 5b–d
shows the shape changes during the dissolution evolution. As
the crystal dissolves it becomes more needle-like, and, as
expected during dissolution, the shape becomes less self-simi-
lar. Since the dissolution rate of the virtual faces at the verti-
ces is similar to that of the faces at the edges, intermediate
planes only appear at the edges, but not at the vertices. Also,
no more faces should be added to the candidate set since the
molecules at the newly formed edges cannot be removed any
more rapidly than those on the stepped faces that formed in
the first instant.

Figure 5. Dissolution shape evolution of the illustrative system under the condition, where the relative dissolution
rate of stepped faces and kinked faces are approximately equal.
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We now report results of a dissolution simulation for a
crystal under the conditions where kinked faces dissolve
more rapidly than stepped faces. Thus, we now dissolve the
stepped faces (corresponding to the {011}, {101} and {110}
plane families) with a dissolution rate of �10 and the kinked
faces (corresponding to the {111} plane family) with a disso-
lution rate of �30. The simulation is again initialized with
the steady-state growth shape (Figure 6a). Figures 6b–d show
the results for the dissolution evolution. Note that faces now
appear at the vertices and edges as expected. Thus, the
resulting dissolution shapes are more diamond-like and
equant, than the more needle-like crystals in Figure 5. Again,
only those sets of faces selected here are needed to describe
the evolution under the condition of neglecting effects of the
bulk diffusion field. None of the molecules at any of the new
vertices on the dissolving crystal can be removed more rap-
idly than the molecules on the adjacent kinked faces.

Example succinic acid

Succinic acid is a C4 dicarboxylic acid used in the food,
pharmaceutical and cosmetic industries. Its growth evolution
in aqueous solution was previously reported29 using a 2-D
shape evolution model. However, a 2-D shape evolution is
not sufficient for a dissolution study since it cannot account
for the effect of new faces appearing at edges or vertices that
are not in the 2-D plane of study. Our results reported below
show that the crystal quickly loses its plate-like 2-D appear-
ance during dissolution.

The relative growth and dissolution rates of succinic acid
in water have been calculated using the spiral growth model.
Because the growth and dissolution occurs in solution,
growth and dissolution of both stepped and kinked faces will
be limited by diffusion and thus approximately equal for
both. Thus, their velocities are both assumed to be an order
of magnitude faster than the slowest growing or dissolving
face. Winn and Doherty25 calculated the desired kink and
edge energetics, and the resulting spiral shapes for the imple-

mentation of the spiral model. The relevant flat faces on
succinic acid correspond to the {100}, {020} and {011}
plane families which have relative growth and dissolution
rates of 1.0, 4.19 and 2.98, respectively. For this study, bond
chains with kink energies less than RT in energy are not con-
sidered strong bond chains, and do not count toward a face
being considered flat.

First we must select the set of candidate planes. The faces
in the list above correspond to the flat faces required in the
list of candidate planes. The {111} family of planes does
contain two bond chains, thus, it would be classified as a flat
plane; however, since one of the bond chains has an energy
of interaction with the solvent required to form a kink less
than RT at room temperature (weak bond chain), it will act
as a stepped face in dissolution. Thus, the 18 planes in the
{111}, {111}, {002}, {120}, {120} and {031} plane families
are those at the edges formed by the flat faces, and the 12
planes corresponding to the {102}, {102}, and {131} plane
families are the planes at the vertices formed by the adjacent
flat faces. Those are also all included in the candidate set of
planes. Finally, any faces on an initial condition, but not in
that list are added to the superset.

The seed for the growth evolution is chosen to be the suc-
cinic acid equilibrium shape. The relative surface energy
values for each of the planes are 1, 1.09, 0.48 and 1.65,
respectively, for the {100}, {020}, {011} and {111} plane
families. These values were calculated by including only in-

Figure 6. Dissolution shape evolution of the illustrative
system under the condition where the relative
dissolution rate of kinked faces is much faster
than the dissolution rate of stepped faces.

Figure 7. Shapes of succinic acid crystals growing in
water from the predicted equilibrium shape
(a), to its steady-state growth shape (e).

An experimentally grown crystal shape is shown in f. (Part
e not to scale).
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ternal solute-solute interactions within the succinic acid crys-
tal. The resulting equilibrium shape is shown in Figure 7a
(as determined from the Wulff construction). The relative
growth rate of the stepped and kinked faces are all chosen to
be an order of magnitude larger (Ri ¼ 10) than the slowest
growing face. The predicted growth evolution of succinic
acid is shown in Figure 7a–e. As Gibbs9 (page 325) sug-
gested ‘‘a large crystal, thus, formed, will generally be
bounded by those surfaces alone on which the deposit of
new matter takes place least readily—the relative develop-
ment of the different kinds of sides—will not be such as to
make S(ss) [total surface energy] a minimum.’’ In other
words, the shape of a grown crystal is not determined solely
by thermodynamics, but rather by the relative growth rates of
the crystal faces. The resulting steady-state shape is similar
to experimental measurement (Figure 7f).

This steady-state growth shape is taken as the seed shape
for predicting a dissolution evolution, which is shown in Fig-
ure 8a–f. Since all of the faces on this seed shape are already
in the candidate face list from above, that list is sufficient for
the dissolution prediction. A single new face appears at each
edge, and since none of those faces that appear are flat faces
only one new face is maintained at each edge. Again, the
{111} set of faces does have a second bond chain in them;
however, the energy of that chain is very low (1 kJ/mol<<
RT), and is for these purposes not considered to be a flat
face when interfaced with the solvent. Thus, it will appear as
a single face in dissolution rather than two adjacent faces
appearing. Since the (virtual) planes at the vertices dissolve
at approximately the same rate as the faces at the edges, no

faces appear at the vertices because the molecules at the ver-
tices are just as easily removed from each of the edges that
form the vertex.

As the eigenvalue analysis of the system of differential
equations suggested, it is immediately apparent that there is
a steady-state growth shape that the crystal evolves towards
during growth. It is more difficult to visually determine if
there is a steady-state shape that the crystal evolves toward
or away from during the dissolution evolution. To this end
the dimensionless perpendicular distance xi, is plotted against
the warped time x, for several faces in both the growth evo-
lution (Figure 9a) and the dissolution evolution (Figure 9b).
The reference face for growth is {100}, and the reference
face for dissolution is {111}. For the growth evolution, each
of the dimensionless perpendicular distances approach the
steady-state value (which is equal to the dimensionless
growth rate Ri). Also note that the {111} faces disappear in
the course of the growth evolution before it can approach the
steady-state value. For the dissolution evolution, as expected,
the dimensionless perpendicular distance indeed evolves
away from the steady-state value. Figure 9b highlights the

Figure 8. Shape of a succinic acid crystal dissolving in
water from the steady-state growth shape.

Figure 9. Relative perpendicular distance vs. warped
time for selected crystal faces of succinic
acid in aqueous solution.

Note that during growth (a) the relative distance
approaches a steady-state value, while during dissolution
(b) the relative distance moves away from the steady-state
value.
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fact that crystal shapes evolve away from their steady-state
values in dissolution.

In order to further demonstrate that there is not a unique
(or stable) end-shape in dissolution, a second dissolution evo-
lution is reported using a second initial condition for succinic
acid dissolving in water. The second evolution also highlights
that the attempted appearance of a flat face at an edge results
not in that face appearing, but rather two others appearing.
This second initial condition is shown in Figure 10a. The dia-
mond plate-like shape is dissolved using the same dissolution
rates as in the previous example. The superset of candidate
faces from the previous example is also sufficient for this
case. The predicted dissolution evolution is shown in Figure
10b–f. Note that two new faces appear at each end of the dia-
mond plate since there is an additional set of flat planes
({002}) at those edges. The resulting dissolution shapes in
this case are dramatically different from the dissolution
shapes obtained with the previous initial condition.

Conclusions

We have developed a model that determines the shape of
crystals as they dissolve or grow. The nondimensional form
of the model proves that during growth, crystals evolve
towards a unique steady-state; however, in dissolution, crys-
tals evolve away from the unique steady-state. This model
requires only crystallographic information as well as relative
growth and dissolution rates of a set of candidate crystal
faces. These values can be taken from either experiments or
predictions. For organic molecular systems in solution, we
have also demonstrated a methodology for predicting the rel-
ative growth and dissolution rates providing for a fully pre-
dictive methodology for the determination of dynamic crystal
shape evolution for those systems.

We have quantitatively demonstrated that crystals in dis-
solution obtain a completely different set of crystal shapes.

Additionally, different crystal planes are exposed during dis-
solution than can be obtained through growth alone. In
growth, since crystal shapes evolve towards their steady-
state, disturbances in the system will have a negligible effect
over time; however, in dissolution, any disturbance to the
system will affect the shapes that are obtained. Thus, in dis-
solution a much higher degree of control is necessary over
the process.

The use of both growth and dissolution in a cycling mode
also is a potentially useful area of research for manipulating
crystal shape. By utilizing the nonreversibility of the growth,
and dissolution shape predictions, due to anisotropy in rela-
tive growth and dissolution rates or the systematic disappear-
ance of crystal faces; a series of growth and dissolution steps
could provide for an additional processing technique to
improve crystal shapes.
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Appendix

In dissolution, the transition from the spiral to the 2-D
nucleation mechanism occurs at a relatively lower-chemical
potential difference, than the same transition occurs in
growth. Also, during dissolution, as the undersaturation is
increased etch pitting occurs. Both of these phenomenon are
a result of the fact that 2-D dissolution nuclei preferentially
form on dislocations, whereas growth nuclei preferentially
form away from dislocations.
In order to understand this phenomenon, a Gibbs-Thomp-

son analysis is performed for the case of forming a disc-
shaped nucleus both on and away from a dislocation in both
growth and dissolution. Equation 16 shows the change in
free energy upon the formation of such a disc-shaped nucleus
on both a flat (left) and dislocated (right) surface for growth,
and Eq. 17 shows the same for dissolution

DG ¼ � pr2h
Vm

Dmþ 2prhg;

DG ¼ � pr2h
Vm

Dmþ 2prhgþ hEdisloc

(16)

DG ¼ pr2h
Vm

Dmþ 2prhg;

DG ¼ pr2h
Vm

Dmþ 2prhg� hEdisloc

(17)

Here, r and h are the radius and height of the disc, Vm is the
molar volume of the solute, g is the surface energy, Edisloc is
the strain energy per unit depth of the dislocation, and Dm ¼
m � msat is the chemical potential difference between the sol-

ute in solution and in the crystal phase (Dm > 0 in growth,
Dm <0 in dissolution). The first term in each equation repre-
sents the change in volume energy, the second term ex-
presses the surface energy change and the third term, for the
equations on a dislocation, is the strain energy associated
with adding or removing an additional dislocated layer of
solute. Many expressions have been proposed for the energy
of the dislocation, the most widely used are those proposed
by Cabrera and Levine22 and van der Hoek et al.30 Plots of
DG vs. r calculated from these nucleation equations for a-
glycine in water are shown in Figure A1 using the strain
function of van der Hoek et al.
In growth, the energy barrier for the formation of a nucleus

is lower when it is formed away from the dislocations; how-
ever, in dissolution the barrier is lower when the nucleus is
formed on the dislocation. This is because adding a layer of
dislocated material in growth adds to the amount of strain
energy in the system, whereas removing a layer of dislocated
material from the surface relieves an additional amount of
strain energy. Thus, in dissolution, nuclei will preferentially
form on dislocations, while in growth they will preferentially
form on terraces away from the dislocations. At higher levels
of undersaturation, the 2-D nuclei are removed from the
same location repetitively which results in the formation of
etch pits. Additionally, since the barrier for the preferred
location in dissolution is smaller than the barrier for the pre-
ferred location in growth, the transition to the 2-D nucleation
mechanism occurs at a lower relative chemical potential dif-
ference in dissolution compared to growth (see Figure A1).
Finally, despite these energetic preferences in growth and
dissolution, the value for the critical radius is very similar
for both cases. Thus, we use the critical length calculated
from the traditional Gibbs-Thompson analysis for shape cal-
culations since this does not require knowledge of the physi-
cal property value Edisloc.
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Figure A1. Gibbs-Thompson plots of a disc shaped a-
glycine nucleus in water for both dissolution
(a) and growth (b) for both the case including
the dislocation energy (dashed line) and
excluding the dislocation energy (solid line).
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