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ABSTRACT
Fluctuations in rates of gene expression can produce highly erratic time patterns of protein production

in individual cells and wide diversity in instantaneous protein concentrations across cell populations. When
two independently produced regulatory proteins acting at low cellular concentrations competitively control
a switch point in a pathway, stochastic variations in their concentrations can produce probabilistic pathway
selection, so that an initially homogeneous cell population partitions into distinct phenotypic subpopula-
tions. Many pathogenic organisms, for example, use this mechanism to randomly switch surface features
to evade host responses. This coupling between molecular-level fluctuations and macroscopic phenotype
selection is analyzed using the phage l lysis-lysogeny decision circuit as a model system. The fraction of
infected cells selecting the lysogenic pathway at different phage:cell ratios, predicted using a molecular-
level stochastic kinetic model of the genetic regulatory circuit, is consistent with experimental observations.
The kinetic model of the decision circuit uses the stochastic formulation of chemical kinetics, stochastic
mechanisms of gene expression, and a statistical-thermodynamic model of promoter regulation. Conven-
tional deterministic kinetics cannot be used to predict statistics of regulatory systems that produce probabilis-
tic outcomes. Rather, a stochastic kinetic analysis must be used to predict statistics of regulatory outcomes
for such stochastically regulated systems.

IN McAdams and Arkin (1997), we analyzed proper- case occurs when two independently produced regula-
tory proteins competitively control a developmentalties of a representative single bacterial genetically

coupled link, that is, a configuration where one pro- switch. The independent, stochastic temporal patterns
of production of each regulatory protein can vary widelymoter controls a gene whose protein product regulates

another promoter. In that analysis, an integrated molec- from cell to cell. In this case, the path choice from the
competitively regulated switch would not be determinis-ular-level model of the mechanisms controlling gene

transcription and translation was developed, and the tic. Rather, the choice would be random with the proba-
bilities of alternative choices dependent on the stochas-expected time pattern of protein production from the

controlled gene was investigated using the stochastic tic properties of the gene expression mechanisms and
the design of the switch circuit. As a result an initiallyformulation of chemical kinetics (Gillespie 1977,

1992b). The results suggested that the stochastic fluctu- homogeneous cell population would partition into sub-
populations following different pathways. The pheno-ations of the reaction rates of gene expression reactions

can produce a highly erratic time pattern of protein types on each path could be radically different. In many
pathogenic organisms random variation of surface fea-production in each individual cell and a wide diversity

of protein concentrations across a cell population at tures assists in evasion of host defenses or otherwise
enhances virulence (Putte and Goosen 1992; Robert-any instant of time (McAdams and Arkin 1997). (“Sto-

chastic” is used here in the technical sense of “arising son 1992; Finlay and Falkow 1997; Strauss and Fal-

kow 1997). We suggest in this article that one sourcefrom a random process.”)
When the protein involved is a regulatory protein, of the randomness expressed in the phenotype varia-

tions can be the random thermal fluctuations in thethese fluctuations in concentration from cell to cell
reaction rates of the chemical reactions comprising thecause dispersion in the time to complete regulated
regulatory circuit.events in different cells, for example, different times to

To examine this phenomenon, we analyze herein thecomplete regulatory cascades. A particularly interesting
effect of fluctuations in gene expression rates and other
molecular-level fluctuations on lysis or lysogeny pathway
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numbers of proteins in quick succession from these intermit-circuit that partitions the population between lytic and
tently produced transcripts (McAdams and Arkin 1997).lysogenic outcomes.
[Note that the erratic time pattern, which we postulate for
protein production from the operons comprising the l deci-
sion circuit, will result so long as the mechanisms of transcript

APPROACH initiation and translation control have the following broad
statistical characteristics: (i) the statistical distributions of in-Numerous studies have shown that the fraction of l-infected
tertranscript intervals and proteins per transcript are skewedE. coli cells that become lysogenic is influenced by environmen-
and have long tails, and (ii) the mean intertranscript timetal parameters, especially the nutritional state of the cell and
interval is relatively long (McAdams and Arkin 1997).]the ratio of phage particles to cells at the time of infection.

Kinetics of conventional macroscopic coupled chemical re-[We follow Kourilsky (1973) and call this ratio the average
action systems is modeled using systems of ordinary differen-phage input (API). The API is distinguished from the number
tial equations, and there is an implicit assumption of continu-of post-infection phage particles in a specific cell which we
ously varying chemical concentration and deterministiccall the multiplicity of infection (MOI)]. We investigate here
dynamics. Two critical characteristics of chemical systems com-(i) the molecular mechanisms that cause the lysis-lysogeny
patible with these assumptions are: (i) that the number ofdecision circuit (described below) to select randomly different
molecules of each type in the reaction mix is large comparedpathways in different cells, and (ii) use of a stochastic kinetic
to thermal fluctuations in concentration, and (ii) for eachmodel of the circuit to predict the fraction selecting each
type of reaction in the system, the number of reactions is largepathway. The predicted fraction of lysogens over a range of
within each observation interval. For genetic circuits both ofAPIs is compared with the fraction assayed by Kourilsky

these presumptions are frequently invalid so that the deter-(1973). The Kourilsky experiments were selected for compari-
ministic approach to chemical kinetics breaks down.son because his experimental method was designed to mini-

In small, low-rate chemical systems it is necessary to paymize error in the percent lysogenization measured, and the
attention to the fact that changes in chemical populationmeasurements were made over a two-decade API range.
levels really occur in integral numbers of molecules, and areOur approach to kinetic analysis of the lysis-lysogeny deci-
occasioned by essentially random distinct reaction events. Itsion outcome is as follows: The cell-level kinetic model of the
has been shown that the time evolution of such a chemicalphage l lysis-lysogeny decision circuit (details below) uses the
system is a stochastic process of the Markov type (Gillespiestochastic formulation of chemical kinetics (Gillespie 1976),
1992a,b; van Kampen 1992) that is described by the chemicalincludes stochastic mechanisms of gene expression (McAdams

master equation (Gillespie 1992b; van Kampen 1992). Theand Arkin 1997), and models promoter regulation using the
solution to the chemical master equation can be calculatedstatistical-thermodynamic approach described by Shea and
using a stochastic simulation algorithm devised by Gillespie

Ackers (1985). The set of coupled stochastic equations com-
(1976, 1977, 1992b). The Gillespie algorithm correctly ac-prising the stochastic kinetic model is solved using a standard
counts for the fluctuations that occur in a well-stirred chemi-Monte Carlo algorithm (Gillespie 1976) for systems of cou-
cally reacting system.pled chemical equations to predict the fraction of cells that

will commit to lysogeny for various MOI. Over a wide API
range, infecting phage particles distribute randomly among
the target cells to produce a Poisson distribution of phage PHAGE LAMBDA DECISION CIRCUIT
particles per cell as predicted theoretically (Ellis and Del-

The regulatory mechanisms controlling the l phage lysisbruck1939). Thus, given the predicted probability of lysogeny
or lysogeny decision are generally known (Herskowitz andin individual cells at different MOIs, the predicted percentage
Hagen 1980; Friedman and Gottesman 1983; Echols 1986;of lysogens in an experimental cell population can be com-
Friedman 1992; Ptashne 1992; McAdams and Shapiroputed as the Poisson-weighted average of cell level predictions.
1995). The mechanisms of the “switch” that locks the phageThis estimate is shown to compare favorably with experimental
into one or the other of the alternate pathways are describedresults.
by Meyer et al. (1980), Meyer and Ptashne (1980), Ptashne

(1992), and Shea and Ackers (1985). It is established that
the stability of the CII protein is an important determinantSTOCHASTIC KINETICS
of the numberof lysogens produced in an infected cell popula-
tion; that the HflA and HflB proteins affect CII degradation;When concentrations of the reacting species are low and
and that CII is stabilized somehow in the presence of the CIIIreaction rates are slow, conventional deterministic chemical
protein (Hoyt et al. 1982; Rattray et al. 1984). The integratedkinetics may not describe the development of systems of cou-
functions of the switch together with other coupled regulatorypled reactions correctly (McQuarrie et al. 1964; Zheng and
mechanisms that determine commitment to execution of theRoss 1991). Rather, for such chemical systems, one has to
lysogenic and lytic pathways are described by McAdams andrecognize that the individual chemical reaction steps occur
Shapiro (1995). Immediately after lambda phage infectiondiscretely and are separated by time intervals of random
of a target E. coli population, the cell population partitions intolength. Bacterial genetic regulatory mechanisms typically in-
lytic and lysogenic phenotypes following mutually exclusivevolve low intracellular concentrations of the reacting species
regulatory pathways.and relatively slow reaction rates; the concentrations are low

The core of the lysis-lysogeny decision circuit is the four-because the majority of regulatory molecules are produced
promoter, five-gene regulatory network shown in Figure 1a.in low quantities per cell (Guptasarma 1995) and most indi-
The organization of the genetic elements of the decision cir-vidual genes (and hence their regulatory regions where the
cuit in the phage DNA is shown in Figure 1b. Reinforcementregulatory molecules bind) are present in only one or two
of the path commitment and initiation of the pathway-specificcopies per cell. The rates of genetic reactions are frequently
actions associated with the selected pathway are accomplishedso slow that many minutes may separate individual transcripts
by other coupled genes not shown (Herskowitz and Hagensuccessfully initiated (i.e., neglecting abortive initiations) from
1980; McAdams and Shapiro 1995). The circuit shown inan activated promoter. The expected erratic pattern of protein

production cited earlier results from production of random Figure 1a has two key subsystems: (i) the PRM-based switch that
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Figure 1.—The phage l
lysis-lysogeny decision cir-
cuit. (a) Bold horizontal
lines indicate stretches
of double-stranded DNA.
Arrows over genes indicate
direction of transcription.
Dashed boxes enclose oper-
ator sites that comprise a
promoter control complex.
The three operator sites,
OR1–3, of the “lambda switch”
implement concentration-
dependent logic control-
ling promoters PRM and PR.
Cro and CI dimers bind to
the three sites with different
affinities and in opposite or-
der to control the activation
level of the PRM and PR pro-
moters (Ptashne1992;Shea

and Ackers 1985). The five
boxes R1–R5 contain non-
genetic protein reaction
subsystems. In R1, R2, and
R5, “deg” indicates degra-
dation. When protein N
is available, transcribing
RNAPs can be antitermina-
ted at the NUTR and NUTL

sites; termination sites TR1

and TL1 are inoperative for
antiterminated RNAPs. The
CI dimer acts as either a re-
pressor or activator of pro-
moter PRM, depending on its
concentration. See text for
discussion of the proteases
labeled as P1 and P2 in R3
and R4. (b) l decision circuit
DNA organization. Phage-
encoded genetic elements
of the decision circuit are
located in a 5000 nucleotide
region of the phage DNA.
Genes are separated onto

leftward and rightward transcribed strands as indicated by the arrows. Rightward extensions of the antiterminated PR transcript
transcribe the O and P genes essential for phage genome replication and the Q gene that controls transcription of later genes
on the lytic pathway. Leftward extension of the antiterminated PL transcript transcribes xis and int genes essential for phage
chromosome integration and excision into and out of the host chromosome. Locations of four termination sites are indicated
by TR1–2 and TL1–2.

creates the circuit’s bistability, and (ii) the Hfl proteolytic in that cell after infection. Immediately after infection, there
are no CI or Cro molecules in the cell so the regulatory circuitsystem, which integrates environmental signals into the cir-

cuit’s behavior. is in the state labeled “S” in the lower left corners of Figure
2, a and b. At that point, PR is fully activated; PRM has only aThe core of the bistable switch is the complex biochemistry

of the PR and PRM promoters’ operator regions, which share low basal activation, and promoter PL is also activated. Tran-
scription and translation of the phage DNA is accomplishedthree overlapping operator sites (Figure 1a, OR1, OR2, OR3),

where Cro and CI dimers bind competitively and in sequence, by the host cell’s machinery.
Cro and N proteins are produced from transcripts initiatedbut in opposite order (Maurer et al. 1980; Meyer et al. 1980;

Meyer and Ptashne 1980; Ptashne 1992). Figure 2, a and at promoters PR and PL and both proteins begin to accumulate
immediately after infection. Initially terminators TR1 and TL1b, shows contour maps of the activation level of PR and PRM,

respectively, as a function of CI and Cro dimer concentration. partially block RNA polymerase (RNAP) transcription: about
50% at TR1 (Friedman and Gottesman 1983) and 80% at TL1The activation levels are calculated using the model and pa-

rameters in Shea and Ackers (1985). (Drahos andSzybalski 1981). However, as the concentration
of N increases, the N protein (with other molecules from theThe lysis or lysogeny outcome in each cell is determined

by the specific temporal pattern of CI and Cro accumulation host cell) acts to antiterminate RNAP at NUT sites upstream
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Figure 2.—Activation
contours of the PR and PRM

promoters versus Cro2 and
CI2 concentrations. Con-
tour intervals are 5% of
maximum activation of the
respective promoters. Acti-
vation levels are calculated
using the method and
parameters in Shea and
Ackers (1985). (a) PR pro-
moter. Peak activation, im-
mediately after infection, is
z0.013 open complexes/
sec (OC/s) or an average of
one OC every 1.3 min. With
no CI2, 50% repression by
z170 molecules of Cro2;
with no Cro2, 50% repres-
sion by z36 molecules of
CI2. Number of molecules
corresponding to the mo-
larity on the y-axis is indi-
cated. (b) PRM promoter.
Immediately after infection,
PRM has a low basal level of
activity. The maximum acti-
vation in the absence of
Cro2 is z0.0063 OC/s or an
average of one OC about
every 2.6 min. (One mole-
cule in an E. coli cell is ap-
proximately a 1 nm concen-
tration.) The positive slope
of PRM activity versus CI2

concentration around 100
nm enables autoregulatory
maintenance of CI concen-
tration in the stable lyso-
genic cell. (c) “Trajectory”

of one cell in concentration space from infection to initiation of lysogeny. Points plotted are at 1-sec intervals. The erratic path
is a consequence of the randomness of the protein production and degradation reactions. (d) Postinfection trajectories of the
respective lysogenic-fated and lysis-fated cell subpopulations. Bold lines are the mean trajectories. The downward slope of the
trajectory of the lysogenic subpopulation arises principally because Cro2 concentration is decreased by dilution in the growing
cell after repression of PR.

from TR1 and TL1 (Das 1992), and the average rate of transcrip- CI2 concentration will rise into the negative feedback region
of the PRM repression curve and stabilize by autoregulationtion of downstream genes, including cII and cIII, increases.

The CI production rate is determined by the combined at a concentration in a range of 140–200 dimers per cell
(Reichardt and Kaiser 1971; Levine et al. 1979), and Crotranscript initiation rates from PRE and PRM (Figure 1a). Since

PRM is essentially OFF until there is some CI in the cell (Figure will eventually disappear due to dilution and degradation.
Though CII is produced from the same PR-initiated tran-2b), there will be no accumulation of CI (and thus potential

for lysogeny) unless PRE-initiated transcripts produce enough scripts that encode Cro, CII accumulation is initially attenu-
ated by termination of about 50% of the transcripts at TR1 andCI to get the cell into the concentration state where PRM is

activated and PR is repressed, that is, into the regime where by CII’s relatively short half-life (z2 min). Thus, initially, only
Cro accumulates in the infected cells. In the presence of CIII,Log[CI2] . z26.8 and Log[Cro2] , z27.2 (or roughly more

than 145 CI dimers and less than 55 Cro dimers, respectively). degradation of CII is reduced (Hoyt et al. 1982). In the l
lysis-lysogeny decision, the Hfl system integrates two environ-This can occur only in those cells where, by chance, there is

early, strong CII production that persists long enough to acti- mentally dependent signals into the circuit function: (i) nutri-
tional state of the cell, and (ii) the level of the phage popula-vate PRE. If, however, more than about 55 Cro dimers accumu-

late first, lysogeny will be precluded. (A nominal cell volume tion in the cell’s surrounding vicinity. This article examines
how the latter sensing mechanism works. Both sensing func-of 1.4 3 10215 liters is used here to relate molecular concentra-

tion to molecule count.) In cells where, by chance, enough tions depend on active control of CII proteolysis (Figure 1a).
At higher levels of nutrition, Hfl-related proteolytic activity isearly CI production from PRE transcripts occurs to repress PR

and activate PRM, then CI concentration will tend to continue higher so that CII and CIII have shorter lifetimes (Grodziker

et al. 1972; Belfort and Wulff 1974). This tends to reduceto increase automatically due to positive autoregulation lead-
ing to ever increasing repression of PR and PL by CI2. Eventually the mean and peak CII concentration levels, and thus the
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probability of PRE activation. So the probability of lysogeny is TABLE 1
reduced in well-fed cells. Dependence of lysogeny on MOI

Parameters for promoters PRE and PLarises because the concentration of the host-encoded Hfl sys-
tem is independent of MOI, while the number of cII and cIII

Stategenes is proportional to MOI. Thus, cells with higher MOI
DG kochave a higher probability of achieving CII concentrationneces-

No. O1 O2 (kcal mol21) (sec21)sary to activate PRE and kickstart CI production.
If a cell reaches a state where (i) the Cro feedback loop Promoter PREis established, (ii) PRM and PL are repressed, and (iii) CII

1 — — 0.0 0.0concentration is low, there is a high probability that the cell
2 — RNAP 29.9 0.00004will continue on the lytic path. On the other hand, if a cell
3 CII — 29.7 0.0reaches a state where (i) the CI feedback loop is established,
4 CII RNAP 221.5 0.015and (ii) PR and PL are repressed, there is a high probability

Promoter PLthat the cell will continue to lysogeny (McAdams and Shapiro

1 — — 0.0 0.01995).
2 Cro2 — 210.9 0.0
3 — Cro2 212.1 0.0
4 CI2 — 211.7 0.0

SOURCE DATA AND GENETIC CIRCUIT MODEL 5 — CI2 210.1 0.0
6 — RNAP 212.5 0.011Kourilsky’s measurements of lysogeny versus API: We use
7 Cro2 Cro2 222.9 0.0the experimental assays of percent lysogeny versus API in
8 Cro2 CI2 220.9 0.0Kourilsky (1973) to compare with predictions of the stochas-
9 CI2 Cro2 222.8 0.0tic kinetic model. In Kourilsky’s experiments, lambda phages
10 CI2 CI2 223.7 0.0were added at various API to exponentially growing E. coli

cultures for an incubation time that ensured near 100% phage
Promoter PRE parameters are estimated from Hoyt et al.absorption. Kourilsky’s measurements included O2 and P2

(1982), and Shih and Gussin (1983, 1984). The value ofstrains incapable of phage chromosome replication. Since the
kOC, the reaction for closed- to open-complex formation, isphage chromosome count does not increase, the postinfection
estimated from Giladi et al. (1990). Binding free energies ofdistribution of the O2 or P2 phage particles among the target
CI2, Cro2, and RNAP to promoter PL operators are assumedcells can be computed using the Poisson infection statistics
to be the same as for operators OR2 and OR3 of promoter PRmodel described below. Selection of the O2 and P2 mutants
in Shea and Ackers (1985). PR and PRM parameters are fromfor modeling eliminates the need to model chromosome repli-
Shea and Ackers (1985).cation.

In Kourilsky’s plots of log API versus the log of the percent
cells lysogenized, the shape of the rate of lysogenization versus
API curves was similar for starved and unstarved cells, but the algorithm described by Gillespie (1977). The Gillespie algo-
starved curves were systematically shifted to a 50–100 times rithm produces a stochastic realization of the temporal behav-
higher lysogenization rate with little effect on the qualitative ior of the system by calculating the probabilistic outcome of
dependence of lysogenization rate on the infection ratio [Fig- each discrete chemical event and the resulting changes in the
ure 2 in Kourilsky (1973)]. The starved cell results with number of each molecular species. In the application of the
50–100 times higher rates of lysogeny are used for comparison Gillespie algorithm to simulation of bacterial regulation, each
since the number of simulation runs necessary to estimate the simulation run provides a representative case of the sequence
fraction, f, of lysogeny varies as 1/f. and timing of events and the regulatory outcome in an individ-

Stochastic kinetic model: The stochastic kinetic model used ual cell starting from specified conditions. Multiple runs with
here to analyze operation of the l lysis-lysogeny decision cir- the same initial conditions (e.g., the same MOI) are used to
cuit includes the genetic mechanisms and the coupled protein estimate the probability that cells will enter lysogeny for these
dimerization and degradation reactions shown in Figure 1a. conditions. [About 4(1 2 p)/f 2

eP samples are required to esti-
Genetic mechanisms are modeled using explicit, though mate the probability, P, of a binary random event with 95%
approximate, reaction models of each submechanism and ex- confidence where fe is the desired maximum fractional error
plicitly including features such as termination sites. Thus, pro- in P (Feller 1968). In the present case, P is the probability
moter operator sites are modeled using the statistical-thermo- of lysogeny in each cell.] Computations were performed on
dynamic approach described by Shea and Ackers (1985). SGI workstations and parallel array supercomputers (200 node
(The stochastic version of the Shea and Ackers model of pro- Cray T3D machine at Eglin AFB, and 400 node SP2 machine
moter kinetics is produced by calculating the instantaneous at Maui High Performance Computer Center). Additional
probability of each distinct transcriptionally active state of a details on the software are available on the website: www.
promoter using the partition function, and then using this lbl.gov/zaparkin/LambdaMod.html/. Criteria described be-
probability in calculating the reaction probabilities for the low were used to categorize the outcome of each individual
transcript initiation reactions.) Transcript elongation is mod- run as a lysogenic outcome or not.
eled as a sequence of individual nucleotide steps. Translation To compare the percent lysogenization predicted by the
control is modeled as described by McAdams and Arkin simulation at various infection levels to experimental observa-
(1997). Assumptions and reaction models used for elements tions obtained by Kourilsky (1973), the Poisson-weighted
of the system are described below and listed in Tables 1 and average of the probability of lysogeny at each MOI is computed
2. The reaction models are represented as a set of coupled to estimate the expected percent lysogeny as a function of
stochastic kinetic equations. API. The theoretical Poisson probability that a given cell will

Analytical solution to such systems of stochastic reaction be infected with exactly MOI 5 M phage when API 5 A is
equations is only practical for simple reaction systems. How-
ever, numerical solutions can be computed for complex sys- P(M,A) 5

AM

A!
e2A, (1)

tems of coupled stochastic reactions using the Monte Carlo
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TABLE 2

Parameters for transcription and translation reactions

Reaction/event Parameter References and comments

Transcription reactions

k22 5 30 nt sec21 Selected as an average rate. Measured elongationRNAP·DNAn →k22
RNAP·DNAn11

rates vary widely, depending on DNA template
and cell state (Gotta et al. 1991; Kennell and
Riezman 1977; Kornberg and Baker 1992;
Vogel and Jensen 1994)

k23 5 5 nt sec21RNAP·DNANut(L,R) →k23 RNAP·DNANut(L,R)11

k24 5 0.145 (m sec)21 Selected to produce termination and antitermina-RNAP·DNANut(L,R) 1 N ↔k24

k25
RNAP·N·DNANut(L,R)11

k25 5 0.1 sec21 tion consistent with Li et al. (1992) and Whalen

et al. (1988)

k26 5 30 nt sec21RNAP·N·DNANut(L,R) →k26
RNAP·N·DNANut(L,R)11

k27 5 15 nt sec21 Selected to yield 50% termination at N 5 0 nmRNAP·DNATR1 →k27
RNAP·DNATR111

(Dambly-Chaudiere et al. 1983; Friedman and
Gottesman 1983)

k28 5 15 sec21RNAP·DNATR1 →k28 RNAP 1 DNATR1

k29 5 30 nt sec21 Assumption that antiterminatedRNAP passes termi-RNAP·N·DNATR1 →k29
RNAP·N·DNATR111

nator freely

k31 5 5 nt sec21RNAP·DNATL1 →k31
RNAP·DNATL111 Selected to yield 80% termination at N 5 0 nm

k32 5 25 sec21RNAP·DNATL1 →k32 RNAP 1 DNATL1 Selected to yield 80% termination at N 5 0 nm

k33 5 30 nt sec21 Assumption: antiterminated RNAP passes termina-RNAP·N·DNATLI →k33
RNAP·N·DNATL111

tor freely
Translation reactions

k34 5 0.002 (m sec)21 (Kennell and Riezman 1977; Sorensen and Ped-Ribosome 1 RNARBS →k34
Ribosome·RNARBS

ersen 1991)

k35 5 100 nt sec21 (Adhya and Gottesman 1982; Kennell and Riez-Ribosome 1 RNAn →k35
Ribosome·RNAn11

man 1977; Sorensen and Pedersen 1991)

k36·RNase 5 0.2 sec21 Adjusted to get an average of 10 proteins per tran-RNase 1 RNARBS →k36 RNase
script

Average number of proteins per transcript
(all transcripts) 10 (Kepes 1963; Yarchuk et al. 1992)

where P(M,A) is the probability of a cell having MOI 5 M, at growing cells roughly offset the effects in slower growing
API 5 A (Ellis and Delbruck 1939). The expected fraction cells.
of lysogens at a given API, Flysogens, is then 2. The volume of the cell grows approximately linearly from

1 3 10215 to 2 3 10215 liters. (The maximum difference
Flysogens(A) 5 o

M
P(M,A).F(M), (2) in volume between linear and exponential cell growth

models is ,6% with negligible effect on simulation re-
where F(M) is the estimated probability of lysogeny for cells sults.)
with various MOIs as estimated using the stochastic kinetic 3. Host housekeeping molecules relevant to phage gene ex-
model. pression and phage protein degradation are constitutively

expressed and regulated at constant concentration, which
is the same in all cells. This implies, for example, that

Modeling Assumptions all enzymes required for metabolic pathways, etc., are
expressed at levels consistent with a healthy bacterium
and that cytoplasmic concentrations of proteases, RNAP,1. Dispersion in cell generation times can be neglected. Thus
ribosomes, and metabolic substrates are maintained dur-all runs used a cell cycle time of 35 min, consistent with
ing the early postinfection period when the lysis-lysogenythe cell cycle time reported by Kourilsky (1973). E. coli
decision is being resolved. Both RNA polymerase andcell generation times are observed to be approximately
ribosomes are present in the cell in relatively large num-normal distributed with standard deviation of about 22%
bers, however, the free polymerase and ribosome concen-of the mean (Plank and Harvey 1979). The neglect
trations are thought to be a fraction of the total and toof dispersion in cell generation times is equivalent to

assuming that any growth rate-related effects in faster be buffered by exchange with units that are engaged in
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other reactions. Under these conditions, fluctuations in
polymerase and ribosome concentrations would be rela-
tively small.

4. Regulatory effects of host proteins such as integration
host factor and RNase III on phage l gene expression
are assumed to be equivalent for all cells and constant
over time. For example, the effect of integration host
factor on PL activity (Giladi et al. 1990) is assumed to be
included in the kinetic parameters of the promoter and
to be independent of phage MOI.

5. Effects such as macromolecular crowding or two-step bind-
ing to DNA or RNA that might affect reaction kinetics
are assumed to be subsumed into the kinetic parameter
characterizing the reaction.

6. Intermediate reactions (as with sigma-factors or other sub-
elements) in assembly of the RNAP and ribosome com-
plexes are not rate limiting. Instead, we assume either (i)
that the host cell maintains an effective concentration of
transcriptionally and translationally available concentra-
tions of these molecular complexes that are in rapid ex-
change with their binding sites on the DNA or RNA, or
(ii) that the component subunits are in rapid equilibrium
with functionally active assemblies (Shea and Ackers

1985; Ptashne and Gann 1997). The rate-limiting step
in transcript initiation is assumed to be the closed- to
open-complex isomerization reaction (McClure 1980).

7. Phage gene expression is stochastic, consistent with the
mechanisms described by McAdams and Arkin (1997).

8. An average of 10 proteins are produced per transcript for
all genes (Kepes 1963; Shea and Ackers 1985). Transcript
degradation rates and ribosome binding rates are chosen
to produce that average yield.

9. In Kourilsky’s experiment the E. coli cells were unsynchro-
nized, hence they were presumably infected at random
times in the cell cycle (Kourilsky 1973). We assume all
infections occur early enough in the cell cycle so that cell
growth only affects operation of the decision logic by
dilution effects on concentrations of phage-encoded mol-
ecules. The initial rates of phage protein production from
PR- and PL-initiated transcripts in each host cell are inde-
pendent of cell volume. However, for the same rate of
protein production, the consequent rate of change in
phage protein concentration is cell size dependent so that
timing of subsequent events could be slowed somewhat
for larger cell size at infection time. Most cells that are
fated to become lysogens are committed by 10 to 15 min Figure 3.—The solid lines in (a) show the time course of
(causing, for example, the cessation of Cro2 production the average intracellular Cro2 and CI2 concentrations at MOI

6. The shaded region indicates the 61 s range as estimatedshown in Figure 3c). Most infections early in the cell
by determining the 16th and 84th percentile points in thecycle are thus resolved before the next cell division. For
population at each time. (b, c) show the same data, but forinfections occurring late in the cycle, if commitment has
the two subpopulations with different phenotypic fates. Thenot occurred before division, the phage chromosomes
concentration profiles of the two regulatory dimers in eachand proteins at division are randomly shared between the
subpopulation are similar for the first few minutes, but divergedaughter cells when the cell divides. Then the phage
into a substantially different time pattern after about 7 min.infection continues, but with lower MOI. For the O2 or
Common experimental methods for assaying time evolutionP2 phage mutants, the average postdivision MOI is halved,
of protein concentrations would yield data equivalent to thesince phage chromosome replication is not possible. Halv-
average value curves in (a), masking the differences in theing the MOI reduces the probability of lysogeny in the
diverging subpopulations.daughter cells. This suggests that neglecting cell division

leads to some degree of overestimation of the probability
of lysogens in the simulation.

10. The target cells are infected effectively simultaneously so 12. A cell becomes committed to lysogeny if there is (i) a
that no temporal infection effects or phage infection- sufficient time-integrated concentration of CII to activate
dependent immunity occurs. PRE, and (ii) [CI2] . [Cro2] at the end of the 35-min cell

11. The cell is assumed to be a homogeneous, well-stirred cycle. Activation of PRE was defined as an average activation
medium so the concept of “protein concentration” is valid level of one open-complex per 2 min over a contiguous
and spatial effects are averaged out. [E. coli signaling pro- 4-min period. This level of CII production would also
teins have been shown to diffuse distances comparable to activate the other CII-dependent l promoters, Panti-Q and
the cell dimensions in much less than a second (Ishihara PI, that function in execution of the lysogenic pathway

(McAdams and Shapiro 1995). CI2 concentration greateret al. 1983).]
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than that of Cro2 at the end of the cell cycle is an additional regions, neglecting the differences between transcription rates
for different nucleotides. (Transcription through terminationindication that activation of PRE occurred early enough

and was productive enough to lock on the CI feedback and antitermination sites is described below.)
Termination: At termination sites, transcribing RNAPs slowloop.

down (i.e., the average interstep time parameter is larger) and
there is a probability of transcript termination at the site.

Reaction Models When the RNAP is antiterminated upstream of the terminator
site, the termination site is then modeled as the “normal”The following paragraphs describe the models used for the
DNA described above.mechanisms of the lysis-lysogeny decision circuit. Reactions

Antitermination: The reactions to assemble the antitermi-and parameters are listed in Tables 1–3. Parameters in the
nated form of RNAP at NUTL and NUTR sites (Figure 1a)kinetic model are derived from the sources cited in Tables
depend on l N protein concentration. The antitermination1–3. Considerations underlying selection of the CII and CIII
reaction complex also involves Rho and at least four additionalproteolysis reaction models and rate parameters are described
host factors: NusA, NusB, NusG, and S10 (Whalen et al. 1988;below.
Mason and Greenblatt 1991; Li et al. 1992; DeVito andPhage gene expression: The genetic mechanisms associated
Das 1994). These factors are assumed to be constitutivelywith transcript initiation and translation control produce the
expressed and present in the necessary concentrations so thatlargest component of the stochastic effects that lead to diver-
the concentration of N is limiting. In vitro studies suggestgent phenotypes in the l infection system. The following ge-
that in the presence of the proper host factors, the fractionalnetic reactions are modeled: operator/promoter binding,
readthrough of a downstream terminator increases in propor-transcript initiation, transcription, initiation of translation,
tion to the concentration of N until there is full antitermina-translation, and initiation of mRNA degradation. The tran-
tion at N concentrations between 50 and 100 nm (Whalen etscription model includes mechanisms for the two RNAP termi-
al. 1988; Li et al. 1992; DeVito and Das 1994). Under thesenation sites, TR1 and TL1, and antitermination at the NUTR conditions the antitermination process at the NUT site is mod-and NUTL sites (Figure 1a).
eled as a single-step reaction assumed to be a pseudo-first-Operator/promoter binding and control of transcript initiation:
order reaction with the rate chosen such that antitermination

Shea and Ackers (1985) describe a statistical mechanical/
of RNAP is near 100% for N concentrations above about 75thermodynamic approach to modeling the PR/PRM promoter
nm. This parameter choice fits the experimental dependencecomplex. We use the same approach to model PL repression
of fractional readthrough of a downstream terminator as aby CI2 and Cro2 and PRE activation by CII using the parameters
function of N concentration (Whalen et al. 1988; Li et al.in Table 1. The instantaneous probability of each distinct
1992; DeVito and Das 1994).occupancy state of a promoter is assumed to be determined

Translation: Translation control is modeled as describedby the partition function defined in accord with the Shea/
by McAdams and Arkin (1997), based on the mechanismAckers formulation, and we use the probability in the stochas-
described by Yarchuk et al. (1992). In that model, a competi-tic formulation of kinetics as defined by Gillespie (1977,
tion between ribosome and RNase E binding determines the1992b). A key assumption is that effector molecule binding
average number of proteins produced per transcript. In thereactions at a promoter occur much faster than the rate of
stochastic kinetic model of the l circuit, this ribosome-RNase Etranscript initiation at the promoter. With this rapid equilib-
competitive binding reaction is treated as a stochastic chemicalriumassumption, the binding state of the promoter is modeled
reaction. The temporary occlusion of the ribosome bindingby randomly choosing the promoter state at each instant using
site after a successful ribosome binding event is modeled.the probabilities given by the partition function (Shea and
Motion of a translating ribosome on a transcript is modeled

Ackers 1985). If the promoter state selected is one from which
similarly to the model of motion of a transcribing RNAP onRNAP can initiate transcription, then that transcript initiation
DNA described above. If one ribosome by chance overtakesreaction is included in the list of possible reactions for the
another in the model, the progression of the former is haltednext Monte Carlo calculation in accord with the Gillespie
until the latter moves ahead. The average ribosome step timealgorithm. Whenever the Monte Carlo calculation determines
is selected to be shorter than the RNAP step-time parameter,that a transcript is initiated from one of the promoters, a new
producing ribosome queuing as is observed (Kennell andtranscribing RNAP is “initiated” on the corresponding DNA
Riezman 1977; Yarchuk et al. 1992). As with the transcriptiontranscription object. The promoter activation functions in Fig-
model, the statistics of the interstep times are assumed to beure 2 show the resulting average rates of transcript initiation
described by the exponential probability function.as a function of CI2 and Cro2 concentrations. Occlusion of

Phage protein dimerization and degradation: The principalthe promoter site by the footprint of a recently launched
reactions involving phage-encoded proteins in the decisionRNAP is included in the model.
circuit are identified in the boxes labeled R1 to R5 in FigureTranscription: A transcript elongation model estimates the
1a. Reactions in R1 include degradation and dimerization of CI;time delays between transcript initiation and arrival at the end
R2 includes dimerization and degradation of Cro; R3 and R4ofeach coding region on the operon. This delay, plus the delay
include competitive degradation of CII and CIII by the two hostuntil an effective level of signaling molecules is accumulated,
cell proteases (see below); and R5 includes degradation of N.determines the timing of regulatory molecule concentrations

CI and Cro dimerization and degradation: Degradation of CIthat control regulatory networks. The movement of transcrib-
and Cro is modeled as occurring predominantly by proteolysising RNAP along the DNA is modeled as a sequence of indepen-
of the monomeric form, a common degradation mode fordent one-nucleotide reaction steps. Each such reaction is as-
multimeric proteins (Shea and Ackers 1985; Gottesman andsumed to be unidirectional, that is, RNAP movement is
Maurizi 1992). The dimerization reactions are assumed toassumed to be strongly forward-biased. It is assumed that there
be characterized by fast forward and reverse reaction ratesis a single rate-determining reaction for each RNAP step and
whose ratio, the dissociation constant, is 20 nm (Shea andthat each forward step has constant probability of occurring
Ackers 1985). The dynamics of decay of multimeric proteinper unit time, leading to an exponential distribution of in-
populations is not exponential in general. Rather, the dynam-terstep times. The exponential is characterized withan average
ics and specifically, the measured lifetimes, depend stronglystep-time parameter. The same average step time was used

at each nucleotide position and for coding and noncoding on the forward and reverse rates of the multimerization reac-
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TABLE 3

Parameters for housekeeping and nongenetic reactions

Reaction/event Parameter References and comments

Housekeeping reactions
Available RNAP RNAP 5 30 nm McClure (1980, 1983)
Available ribosomes Ribosomes 5 500 nm

Cell volume (t) 5 (1 1 k0 *t) 3 10215 liters k0 5 4.76 3 10218 liters To double initial cell volume of 10215 liters
sec21 in 35 min

Nongenetic reactionsa

k1 5 0.0007 sec21 Selected to yield a Cl/Cl2 life time of approxi-CI →k1 ( )
mately 40 min (Reinitz and Vaisnys

1990) in the concentration range between
20 and 100 nm

k2 5 0.05 m
21 sec21

Burz et al. (1994); Shea and Ackers (1985)2·CI ↔k2

k3
CI2

k3 5 0.5 sec21

k4 5 0.0025 sec21 Selected to match Cro/Cro2 lifetime of ap-Cro →k4
( )

proximately 30 min (Reinitz and Vaisnys

1990) in the concentration range between
20 and 100 nm

k5 5 0.05 m
21 sec21

Reinitz and Vaisnys (1990); Sauer (1979)2·Cro ↔k5

k6
Cro2

k6 5 0.5 sec21

k7 5 0.00231 sec21
Gottesman and Gottesman (1981)N →k7 ( )

P1 concentrationb P1 5 35 nm Adjusted to match the % lysogeny vs. API
data (Kourilsky 1973)

k8 5 0.01 m
21 sec21 Selected to match CII half-life in GottesmanCII 1 P1 ↔k8

k9
P1·CII

and Gottesman (1981)
k9 5 0.01 sec21P1·CII →k10 P1

k10 5 0.002 sec21

k11 5 0.01 m
21 sec21 Selected to match CIII protection of CII deg-

CIII 1 P1 ↔k11

k12
P1·CIII radation (Hoyt et al. 1982; Rattray et al.

1984) and CIII half-life Kornitzer et al.
(1991a,b)

k12 5 0.001 sec21

P1·CIII →k13
P1

k13 5 0.0001 sec21

P2 concentration P2 5 140 nm

k14 5 0.00025 m
21 sec21 Selected to match CII half-life in GottesmanCII 1 P2 ↔k14

k15
P2·CII

and Gottesman (1981)
k15 5 0.065 sec21P2·CII →k16

P2

k16 5 0.6 sec21

k17 5 0.01 m
21 sec21 Selected to match CIII protection of CII fromCIII 1 P2 ↔k17

k18
P 2·CIII

degradation (Hoyt et al. 1982; Rattray

et al. 1984) and CIII half-life (Kornitzerk18 5 0.01 sec21P2·CIII →k19
P2

et al. 1991a,b)
k19 5 0.001 sec21

a The ( ) notation indicates degradation.
b The parameters on this and following lines for the CII/CIII proteases (here labeled P1 and P2) are those corresponding to

the “Full” curve in Figure 6a. The Hfl-related parameters below are adjusted to match half-lives of their targeted proteins and
to match the percent lysogeny vs. API data in Kourilsky (1973) as described in the text.
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tions and on the initial concentration of each subspecies. Lon protease, and Lon is also thought to be responsible for
degrading the Hfl proteins (Gottesman and GottesmanReaction parameters for the stochastic kinetic model here

were selected to match experimental measurements of life- 1981). Reported data on N degradation fit a first-order decay
curve (Gottesman and Gottesman 1981); thus N probablytimes.

Degradation of CII and CIII: Two membrane-bound protein does not saturate the protease. Accordingly, N degradation is
modeled as a first-order reaction.complexes, HflA (Cheng et al. 1988) and HflB (Banuett et

al. 1986; Herman et al. 1995; Kihara et al. 1997), act todegrade Cell growth: The linear cell growth assumption was imple-
mented as a constant probability of adding a small fixed vol-CII. HflB is thought to degrade CIII (Herman et al. 1995).

Initial studies identified HflA as a nonessential membrane- ume increment each instant of time. Each run was started at
an initial cell volume of 1 3 10215 liter and continued untilbound GTP-utilizing protease (Cheng et al. 1988; Zorick and

Echols 1991; Noble et al. 1993). However, later experiments the volume doubled to 2 3 10215 liter over 35 min of simulated
cell time.report that HflA is probably a regulator of HflB activity and

that HflB is the major protease responsible for CII degrada-
tion. Additional evidence for proteolytic activity of HflB is
provided by in vitro experiments with purified protein (Her- RESULTS
man et al. 1995; Kihara et al. 1997; Shotland et al. 1997).

Time course of pathway selection: Figures 4 and 5The Hfl proteolytic system has other host protein targets in
addition to CII (Cheng and Echols 1987; Herman et al. 1993; show the temporal trajectory of the concentration of
Herman et al. 1995). Both HflA and HflB respond to host key protein molecules in one lytic and one lysogenic
environmental signals. There is some evidence that HflA activ- case selected from runs at MOI 6. (Figure 2c is based
ity is directly or indirectly affected by the catabolite-activating

on the same two cases.) The two cases show the ran-protein/cAMP system, which has been shown to reduce pro-
domness in the intracellular regulatory protein concen-teolytic activity in response to carbon-source starvation (Hoyt

et al. 1982; Banuett and Herskowitz 1987). CIII protects tration trajectories and the differences in the trajector-
CII from proteolysis (Hoyt et al. 1982; Rattray et al. 1984; ies for the divergent developmental paths possible in
Banuett et al. 1986) even in the absence of HflA and HflB two initially identical cells. Of the phage-encoded pro-
activity, which implies the existence of yet another proteolytic

teins shown in Figures 4 and 5, Cro2 and CII are ex-pathway for CII degradation (Kihara et al. 1997). In summary,
pressed earliest in both the lytic and lysogenic cases.although phenomenology of the proteolysis of CII and CIII
Cro2 appeared within 1 min of infection (Figure 5b)is relatively well characterized, the exact mechanisms whereby

HflA, HflB, and perhaps another unidentified protein control and CII appeared within 2 min (Figure 4a). Protein
degradation of CII and protection of CII by CIII are not expression in the two cases began to diverge after about
known. 5 min. Both the lytic- and lysogeny-fated cases experi-The half-life of unprotected CII has been observed to be

enced a nearly equal burst of CII production at thisanywhere from 5 min (Hoyt et al. 1982) to less than 30 sec
time (Figure 4a), however, in the lysogeny-fated case,depending on conditions (Rattray et al. 1984). The short

half-life of CII and the relatively low concentrations of CII there was a simultaneous burst of CIII production (Fig-
protein and HflA/B suggest that binding of CII to the Hfl ure 4b). So lysogeny resulted in this case because, by
proteins is tight and fast. Two alternative mechanisms have chance, the bursts of CII and CIII were both large and
been hypothesized for the protection of CII by CIII (Cheng

simultaneous so that CII degradation was slowed and itet al. 1988): (i) competitive binding of CII and CIII to the Hfl
survived long enough to activate PRE and kickstart CI(and perhaps another) proteolytic complex, or (ii) direct CIII

binding to CII to form a proteolysis-resistant complex. Avail- production. Figure 4c shows that the CII/CIII proteases
able experimental data does not differentiate between the two were strongly inhibited by the bursts of CIII production
alternatives. In order to select among candidate models, we in the lysogenic case. CI2 concentration (Figure 5a) in
investigated alternative reaction mechanisms seeking a reac-

the lysogenic case began to grow at about 12 min justtion system that meets four constraints: (a) yields a 2-min half-
after CII concentration peaked. The growing CI2 con-life for CII in the range of initial concentrations spanning
centration repressed PR and stopped Cro production.50–100 nm (Gottesman and Gottesman 1981; Cheng et al.

1988), (b) produces an approximately 6-min half-life for CIII As a result, the Cro2 concentration declined in the lyso-
in the absence of CII (Kornitzer et al. 1991a), (c) yields geny-fated case after 12 min (Figure 5b). In contrast,
CIII protection of CII consistent with Hoyt et al. (1982) and in the lytic-fated case no CIII production occurred so
Rattray et al. (1984), and (d) functions in the overall simula-

the unprotected CII rapidly degraded and did not acti-tion model to produce the simulated percent lysogeny as a
vate PRE enough to start the CI expression feedback loop.function of API consistent with Kourilsky (1973). Constraint

(d) proved the most restrictive. The best satisfaction of the Without expression of CI, Cro2 production continued
constraints (a) through (d) was obtained using a proteolytic (Figure 5b) and lysis ensued.
system in which CII and CIII are competitive substrates for two Figure 2c shows the intracellular CI and Cro dimerindependent proteases. The resulting reaction mechanism is

concentration trajectory for the lysogenic-fated case atshown in Figure 1a and rate parameters used are in Table 3.
MOI 6 (identical data as Figure 5) superimposed onOne protease (called P1) is more specific than the other but

saturates at very low concentrations of CII; the other (called the PR and PRM promoter activation contours. The CI2
P2) is only slightly less specific, does not saturate, and has a repressor concentration began to autoregulate its own
much higher maximal activity. These proteases correspond to concentration 20 min after infection; thereafter, the
HflB and the putative second protease identified by Kihara

CI2 concentration remained constant and PRM activationet al. (1997).
slowly increased as Cro2 concentration was diluted inDegradation of N: The half-life of the antitermination-control-

ling protein N is approximately 5 min. Degradation is by the the growing cell (Figure 2c, arrow). The concentration
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Figure 5.—Time evolution of Cro and CI dimer concentra-
tions for the same two simulation runs at MOI 6 as Figure 4.
For the lysogenic case (bold), the high CII concentration after
6 min (Figure 4a) leads to the accumulation of CI2 (a) and
cessation of Cro production (b). Dilution and degradation
causes Cro2 concentration to decline thereafter. For the lytic
case, in contrast, the initial burst of CII is not sustained (Figure
4a) so that PRE is not significantly activated and CI production
is negligible (a). Cro2 growth begins immediately after infec-
tion (b) and, in lytic cases, continues building until it represses
both PL and PRM thus ending the possibility of lysogeny.

Figure 4.—Time evolution of CII and CIII concentration
for two cases at MOI 6 illustrating a lytic and a lysogenic (bold) cells with corresponding initial conditions, e.g., a partic-outcome. The pattern of protein concentration growth is dis-

ular MOI. Figure 3a shows the estimated statistical distri-tinctive and different for every simulation run. Lysogeny re-
bution of the CI2 and Cro2 concentration trajectoriesquires early, higher CII concentration as in (a) so that pro-

moter PRE is activated, and protein CI and its dimer begin to for the subset of cells at MOI 6. (For all plots in Figure
accumulate to turn on PRM and repress Cro production. The 3, the bold lines are the average concentration of the
high CIII concentration in the lysogenic case in (b) protected indicated species and the lighter lines are the 61sCII from degradation. The percent proteolytic activity in (c)

range.) The lysis- and lysogeny-fated subsets shown incalculated by ((k10 · ([P1] 1 [P1 · CII])/(total P1)) 1 (k16 ·
Figure 3, b and c, each experience a different pattern([P2] 1 [P2 · CII])/(total P2)))/(k10 1 k16) indicates the

percentage of the total protein activity available for the degra- of Cro2 and CI2 concentration growth statistics, distinct
dation of CII. (Figure 5 shows additional protein concentra- from each other and from the combined statistics. Fig-
tions from the same simulation runs.) ure 2d shows the same average Cro2 and CI2 concentra-

tion trajectories for the lysogenic-fated and lytic-fated
cases at MOI 6 superimposed on the PR and PRM pro-trajectory for the lytic case in Figure 5 is not shown in
moter activation contours.Figure 2c to avoid confusing the figure. However, the

Lysogenic fraction: Kinetic model estimates com-oval on Figure 2c indicates the region where the concen-
pared to experiment: The experimental lysogeny frac-trations stabilized at 12 min after infection.
tion data shown in Figure 6b for starved O2 (h) andEstimated statistics of concentration trajectories: The
P2 (s) mutants are from Figure 2 of Kourilsky (1973).Monte Carlo solution to the stochastic kinetic equations
For the higher API values in Figure 6b, Poisson statisticsproduces a database of representative time-dependent
of infection (Equation 1) predicts that some cells wouldsamples of the concentration trajectories as the infec-
have quite high infection levels. At some infection level,tion progresses for each molecular species in the reac-
the phage processes must become disruptive to the hosttion system. Analysis of this database provides estimates

of the statistical parameters of the infection progress in cell processes so that the assumptions underlying the
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kinetic model become invalid. To address this possibility range of difference between the resulting estimates of
the fraction of lysogens. The hatched area in Figure 6awe solved for two sets of CII/CIII proteolysis parameters:
indicates the corresponding range of differences in thefirst, for the best match to the experimental O2 and
probability of lysogeny vs. MOI resulting from the differ-P2 data for all available API (Figure 6a, labeled “Full”,
ent proteolytic model parameters. Both curves in Figuresymbol: j), and, second, for the best match considering
6a show negligible lysogenization at MOI , 3 and aonly API values #6 (Figure 6a, labeled “Lower”, symbol:
rapid increase in lysogeny for MOI . 3. Corresponding.). Points in Figure 6a (j and .) reflect the estimated
points in Figure 6b yield the solid lines bounding theprobability of lysogeny in individual infected cells vs.
hatched region. These estimates of the fraction of lyso-MOI from solution of the stochastic kinetic model equa-
gens in an infected cell population versus API are calcu-tions for these two different choices of Hfl parameters.
lated as the Poisson-weighted sum of points for differentThe vertically hatched area in Figure 6b indicates the
MOIs in Figure 6a for corresponding cases using Equa-
tion 2. The match with experiment is good at the critical
low MOI values, but falls above observed values at high
MOI. We attribute the overestimation of the percentage
lysogeny at high API in Figure 6b predominantly to
disruption of host cell processes at high infection levels.

The three curves labeled Poisson-n show the hypothet-
ical fraction of lysogens vs. API expected for a “threshold
model,” where all cells with MOI $ n are assumed to
become lysogens. The solution of the stochastic kinetic
model exhibits rapid onset of lysogeny for MOI . 2
(Figure 6a), representing an approximation to a thresh-
old process in the decision circuit produced by the rein-
forcing effects of production from multiple promoters
and earlier antitermination as MOI increases. At low
APIs, both the experimental points and the stochastic
model predictions for the O2 and P2 mutants lie be-
tween the idealized threshold model predictions for
thresholds at MOI 3 and MOI 4.

Digital mutants: Additional tests of the kinetic model
by predictions of other experimental observations are
needed; however, we are unaware of additional, inde-
pendent measurements for similar strains and condi-

Figure 6.—Comparison of results from stochastic kinetic
model and experimental results from Kourilsky (1973) for
fraction of lysogens produced vs. MOI. (a) Simulation results
for fraction of cells producing lysogens (j, .). Curve labeled
“Full” results from choice of proteolysis parameters to match
the full experimental data set in (b); curve labeled “Lower”
results from proteolysis parameters chosen for best match
to experimental points at lower API values in (b). Vertically
hatched area in (b) indicates the range of difference between
the resulting estimates of the fraction of lysogens. Results with
several “digital mutants” are shown in (a): O2T2, termination
sites removed (x); O2N2, hence no-antitermination (d);
O2Coop2, noncooperative binding of CI dimers at OR1–3 (r).
(b) Solid lines bounding the hatched region are the predicted
fraction of lysogens for the Full and Lower cases in (a) calcu-
lated by weighting the results shown in (a) by the theoretical
Poisson statistical distribution of the number of phage per
cell at each API. Experimental points for the fraction of lyso-
gens for O2 (s) and P2 (h) strains. Experimental points are
from Figure 2 in Kourilsky (1973) for cells starved before
infection. The three curves labeled Poisson-n in (b) show
the hypothetical fraction of lysogens vs. API expected for a
“threshold model” where all cells with MOI $ n are assumed
to become lysogens. (c) Curves labeled O2N2/50 and O2T2/
50 are predictions for “digital mutants.” See text for explanation.



1645Stochastic Kinetic Analysis

tions. Accordingly, we include in Figure 6c testable pre- gene expression. The random developmental path
choice between the lysogenic or lytic path in individualdictions of rates of lysogeny for several “digital mutants”

based on changes in the stochastic kinetic model re- cells was shown to result from the inevitable fluctuations
in the temporal pattern of protein concentration growthflecting several mutant cases. The curve labeled O2N2

in Figure 6c reflects our prediction of the percent lysog- caused by the molecular-level thermal fluctuations in
rates of rate-determining reactions within gene expres-eny for a digital mutant with the function of the N

protein disabled in the kinetic model and all other pa- sion mechanisms. The resulting differences in concen-
tration between the regulatory proteins controlling therameters as for the curve labeled “Full”. (We use the

“O2” notation to indicate replication deficient, i.e., ei- bistable switching elements of the decision circuit led
to different path selections in different cells. The esti-ther O2 or P2, mutants.) This is the prediction of per-

cent lysogeny from the kinetic model for a starved O2N2 mated variation with API of the fraction of a phage
l-infected cell population that become lysogenic wasmutant; the curve labeled N2/50 is the corresponding

prediction for an unstarved O2N2 mutant. [The “un- shown to be consistent with experimental observations.
This analysis indicates how molecular level thermalstarved” estimate is derived by dividing the “starved”

estimate by 50, consistent with the observation by Kou- fluctuations can be exploited by the regulatory circuit
designs of developmental switches to produce differentrilsky (1973) that starved cells systematically exhibited

increased lysogeny by 50–1003.] The predicted level phenotypic outcomes. Such regulatory mechanisms will
produce diverse phenotypes even in clonal cell popula-of lysogeny is reduced for the O2N2 case because the

transcribing polymerases are never antiterminated and tions maintained in the most homogeneous laboratory
environments. In such systems environmental signalsproduction of CII and CIII is always lower than when N

production leading to RNAP antitermination is possible. can act on the parameters of the regulatory circuit to
bias the probabilities of path choice under differentThe curve in Figure 6a labeled “O2Coop2” shows the

predicted probability of lysogeny for a digital mutant conditions.
Even in nondifferentiated cell populations, the con-where CI binding to the PR–PRM operator sites is made

noncooperative in the kinetic model, reducing the effec- centration of regulatory proteins within individual cells
will vary widely from the average concentration mea-tiveness of positive autoregulation of PRM. The predicted

experimental fraction of lysogens (not shown) is close sured by laboratory procedures. In situations where
there are divergent phenotype subpopulations as ana-to the curves for the O2N2 cases in Figure 6c. The

dashed line labeled O2T2 in Figure 6c is the estimate lyzed herein, the concentration trajectories of each sub-
population can differ radically from each other andfor another starved digital mutant with the TR and TL

termination sites disabled (the line labeled O2T2/50 is from the average measured for the full population (Fig-
ure 3). For these situations, experimental methodsfor unstarved mutants). The reduced slope of lines for

the O2T2 mutant in Figure 6c is due to the predicted (such as various cell sorting techniques) that profile the
distribution of individual cell parameters are necessary.increase in the estimated probability of lysogeny for cells

with MOI 1 and 2 for this mutant as shown in Figure 6a. In any case, the function of regulatory circuits that deter-
mine cell fates is determined by protein concentrations
within each cell, and the temporal pattern of these intra-

DISCUSSION
cellular concentration trajectories is completely differ-
ent from any averaged measurement (compare FigureStochastic gene expression and competitive genetic

regulatory mechanisms: In preceding sections a stochas- 3 with Figures 4 and 5).
Role of termination sites in the l circuit: The simula-tic kinetic model of the l lysis-lysogeny genetic regula-

tory circuit is used to estimate the dynamical behavior tion results with hypothetical “digital-mutations” affect-
ing termination effectiveness of the TR1 and TL1 termina-of the circuit, including effects of random patterns of

TABLE 4

Examples of other cases of bistable regulatory mechanisms producing stochastic phenotypic outcomes

Organism Bistable locking mechanism Function

E. coli Pap system (Woude et al. 1996) Differential methylation of Phase variation in pili expression, affecting
alternative Lrp binding sites virulence

E. coli Fim system (Robertson 1992) Invertible DNA segments Phase variation, type I pili, affecting virulence
phage Mu (Putte and Goosen 1992) Invertible DNA segments Phase variation in tail leading to different host

specificity
Salmonella typhimurium Hin system Invertible DNA segments Phase variation in flagellin alters antigen

(Putte and Goosen 1992) response
Moraxella bovis (Marrs et al. 1988) Invertible DNA segments Phase variation in pilin alters antigen response
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tion sites demonstrate that both removal of these sites formulation of chemical kinetics, the kinetics of the rate-
and removal of the antitermination effects of the N limiting step(s)will dominate the overall kinetics of a series
protein have major effects on the level of lysogeny, but of cascaded chemical reactions. So, stochastic processes
in opposing directions (Figure 6a). We conjecture that affecting transcription control, posttranscriptional edit-
the function of these phage-encoded features in the ing, or message transport may be screened by the final
phage regulatory circuit design may be to adjust the translation control mechanism. Another possibility is
level of the phage lysogenic response to an “optimum” that the stochastic pattern of signal protein production
range for phage survival. may only cause uncertainty in timing of regulatory

Other stochastic switching mechanisms: Although the events, not uncertainty in outcome. Within broad limits
specific analysis reported here deals with regulation of the duration of many cellular functions may be less
the phage l infection, regulatory circuits based on bista- important to proper cellular function than the proper
ble genetic regulatory mechanisms are used in many sequencing of events. For example, cells halt at various
organisms to produce subpopulations of distinct pheno- checkpoints until conditions (e.g., restoration of essen-
types by random phenotype switching. Table 4 shows a tial nutrients, completion of precursor cellular events)
small sample of well-known cases of bistable regulatory for further progress are satisfied (Hartwell and Wein-

mechanisms in regulatory circuits that produce stochas- ert 1989; Kaufmann and Paules 1996; Wells 1996).
tic phenotype outcomes. Many examples are found in In this case, the indeterminism relates to whether the
pathogenic organisms. Conventional deterministic ki- cell will progress or not progress along a developmental
netics does not model statistics of regulatory systems path at any instant, rather than to a choice among alter-
that produce probabilistic outcomes. A stochastic ki- nate stable pathways. So, the regulatory decision logic is:
netic analysis as used in this paper for the l decision “HALT until CONDITIONS are met then PROCEED,”
circuit can be used to predict statistics of regulatory where “CONDITIONS” are sensed environmental or
outcomes for these stochastically regulated systems. cellular signals. The result is dispersion across the cell
Such stochastic kinetic analyses may also permit im- population in the rate of progression along prescribed
proved exploitation of information in the statistics of pathways rather than dispersion in outcome.
phenotypic outcomes.
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