
and actuators with sufficient authority to influence the
controlled variables. As always, plant understanding is
key. Biological systems in general are distributed parame-
ter, stochastic, nonlinear, time varying dynamical systems.
Process models are often derived from first principles by
domain experts, such as theoretical biologists. In some
cases data driven models are used. Biological systems tend
to exhibit multi-compartmental interactions that are usu-
ally not well understood and as a result, the interactions
cannot be accurately modeled mathematically. Control
engineers have to convert these models into a form that
is suitable for controller design. This conversion requires
a certain basic understanding of the process that can be
somewhat difficult for engineers to obtain, but is well worth
the effort.

Most process variables in biological systems can only be
measured online, if at all, under clinically controlled condi-
tions such as in a hospital. In many cases measurements are
only available at discrete intervals with long associated
dead-times. Sensor accuracy has the potential to hinder
effective control of the process variables. For example, in
Section 4 of this paper, the currently available (off-line)
assays cannot detect viral loads below 50 copies per mL
of plasma (20 for ultra sensitive assays). Drugs are often
the only actuators available to manipulate controlled vari-
ables in biological systems. For accurate control a good
actuator model is also required as the control signal used
is the drug efficacy and not the number of pills. This means
that, the dosage to end point efficacy relationship has to be
clearly defined for each drug. In cases where more than one
drug is used to treat the same condition, then consideration
has to be made for issues such as drug–drug interactions as
well as the combined efficacy. Lastly design of drug dosing
regimens should be done using clinically driven criteria.

Although the five application areas discussed in this
paper are diverse they have a number of elements in com-
mon. They all involve the use of dynamic models and they
deal with problems whose solution will yield significant
economic benefits as well as improved quality of life
through better therapy. All five problems involve the use
of advanced control, particularly model based and optimi-
zation based control. Further dynamic models for most of
the biomedical applications discussed show a great deal of
variability from patient to patient and methods to deal with
this variability have to be incorporated into the solution to
each problem. Clearly, there are some problems in the bio-
medical area that lend themselves to data based modeling.
The fact that this tutorial does not consider these problems
should not be interpreted as indicating their lack of
importance.

The biomedical process control area is one that has
great growth potential, and one for which the tools used
by process control engineers directly apply. However, the
biomedical control field has its difficulties as well. One
obvious difficulty involves the safety of any proposed
new strategy for delivering a drug. If there is any question
about the safety of a new drug policy then the policy will

not be used. There is the issue of the medical and engineer-
ing communities being open to what the other community
has to offer. It is important for both engineers and physi-
cians to find collaborators with whom they are able to
work effectively. There is also a communication issue since
engineers and physicians tend to use different terminology
and come at problems from different perspectives. For
example engineers talk about lumped parameter systems
and physicians use the term compartment models. In spite
of these difficulties, the biomedical process control holds
tremendous promise. The area is rich with interesting,
important and challenging problems, and it is hoped that
this tutorial paper will stimulate process control engineers
to look further into it.
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1. Introduction

Type 1 diabetes mellitus is a disease characterized by
complete pancreatic b-cell insufficiency. The only treatment
is with subcutaneous or intravenous insulin injections, tra-
ditionally administered in an open-loop manner. Without
insulin treatment, these patients die. Insulin was discovered
in 1921, and although now it has been purified and manu-
factured by recombinant DNA technology, one still must
individualize the treatment to mimic normal physiology
in order to prevent the complications of hyper- and hypo-
glycemia (elevated glucose levels, and low glucose levels,
respectively). The literature documents [1–3] the strong
correlation between hyperglycemic excursions and the
increase the risk of complications. The Diabetes Control
and Complications trial [1] was the landmark study of
1440 type 1 diabetic people randomized into two treatment
wings: intensive insulin delivery and standard care. Those
people who had mean blood glucose concentrations below
110 mg/dl (glycosylated hemoglobin levels less than 6.0%)
had no increase risk for retinopathy, nephropathy and
peripheral vascular disease. Those patients who had ele-
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vated glycosylated hemoglobin levels had a significant and
positive correlation with increased risk. However as the
blood glucose concentration was normalized the risk of
sever life-threatening hypoglycemia increased up to 10 fold
above the risk in those patients with hyperglycemia. Thus
the goal of achieving and maintaining normal blood glu-
cose includes accepting the risk of hypoglycemia. A recent
long-term study by the DCCT group has confirmed these
conclusions [4].

2. Glucose control in healthy individuals

The normal physiologic insulin secretion has two pro-
files: the basal secretion (to provide a background rate of
insulin to the body) and the meal-related bolus secretions.
The variables that dictate the basal insulin needs for an
individual include growth and development, hormonal sta-
tus, age, gender, stress levels, health status, and activity
level. In addition, the amount and composition of food dic-
tate the meal-related needs [5]. In order to normalize the
glucose levels of insulin dependent, type 1 diabetic patients,
all variables need to be included into an algorithm for insu-
lin delivery. The insulin requirement can therefore vary
from a minimal need of 0.5 units per kilogram per day in
quiet times, up to 2.0 units per kilogram per day at maxi-
mal stress situations [6]. After an initial dose is prescribed
the dose needs to be adjusted and based on the blood glu-
cose level. This method of insulin delivery is fraught with
continuous risk of hyper- and hypoglycemia because the
moment-to-moment fluctuations in glucose are not ade-
quately treated with intermittent subcutaneous insulin
injections [7]. The optimal insulin delivery protocol would
therefore be one in which the blood glucose monitoring
and insulin dosing would be continuously managed in
real-time. The meal-related insulin need also is difficult to
derive and allow for the incorporation of carbohydrate into
the meal plan and minimize the postprandial glucose peak
[8]. The normal pancreas has two phases of insulin delivery,
a first phase consisting of an immediate bolus and a second
phase of prolonged insulin delivery. The first phase is nec-
essary to depress the glucagon secretion from the pancre-
atic a-cell and thus turn off the hepatic output of glucose.
The variables that dictate the basal insulin needs for an
individual include growth and development, hormonal sta-
tus, age, gender, stress levels, health status, and activity
level. The second phase of insulin secretion is needed to
metabolize the slower acting carbohydrates. The normal
b-cell has its first priory to prevent hyperglycemia. It
depends on the a-cell to secrete glucagon to prevent late
postprandial hypoglycemia.

The b-cell’s response to a rapidly rising blood glucose is
to increase the insulin secretion rate, to sustain an absolute
blood glucose concentration is to decrease the insulin secre-
tion rate; however, the only way the b-cell can respond to a
falling blood glucose concentration is to turn off the insulin
secretion. Of course, there is no way the b-cell can retract
the insulin once it is given. The b-cell depends on the other

counter-regulation hormones to be secreted to buffer the
falling glucose concentration. The hormones that play a
major role in counter-regulation are glucagon, epinephrine,
cortisol and growth hormone. This delicate balance is per-
fectly orchestrated to maintain blood glucose within a nar-
row range.

The top portion of Fig. 1 shows the 24-h continuous
readout of blood glucose concentrations of a lean, healthy,
non-diabetic male who eats between 250 and 300 g of car-
bohydrate a day, in a random fashion. Despite the varia-
tion and timing of his food, exercise and activity level,
his blood glucose is maintained at a mean value of
98.5 mg/dl with a standard deviation of 6.1 mg/dl. In con-
trast, the bottom portion of Fig. 1 shows the 24-h contin-
uous glucose pattern of a type 1 diabetic patient who has
a mean blood glucose of 204.7 mg/dl and wide fluctuations
of glucose concentrations throughout the day of 102.2 mg/
dl, standard deviation. These glucose excursions are impli-
cated as the major risk associated with diabetes for both
severe hyperglycemia and hypoglycemia complications.
His treatment with insulin injections is not based on these
moment-to-moment glucose results, but rather is a stan-
dard prescription based on infrequent, intermittent finger-
stick glucose monitoring.

3. Artificial pancreas

In order to normalize the glucose levels of insulin depen-
dent, type 1 diabetic patients, the algorithms for the devel-
opment of an artificial pancreatic islet need to exploit all
the measured variables that the normal islet insulin secre-
tion utilizes and quickly increase or decrease the insulin
secretory. The insulin secretory rate can therefore vary
from a minimal need of 0.5 units per kilogram per day in
quiet times, up to 2.0 units per kilogram per day at maxi-
mal stress situations. In the case of type 1 diabetic people,
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Fig. 1. Twenty-four hour continuous glucose profile for a normal
individual (top) and an individual with type 1 diabetes (bottom). The
stars denote calibration points for the sensor obtained with a finger stick
measurement.
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after an initial dose is prescribed the dose needs to be
adjusted and based on the blood glucose level. This method
of insulin delivery is fraught with continuous risk of hyper-
and hypoglycemia because the moment-to-moment fluc-
tuations in glucose are not adequately treated with
intermittent subcutaneous insulin injections. The optimal
insulin delivery protocol would therefore be one in which
the blood glucose monitoring and insulin dosing would
be continuous (real-time). A block diagram of an auto-
mated glucose control strategy is shown in Fig. 2.

The meal-related insulin need also is difficult to derive
and allow for the incorporation of carbohydrate into the
meal plan and the minimization of the postprandial glucose
peak.

Perhaps the only way to mimic normal pancreatic func-
tion is to provide both the a-cell and the b-cell secretion to
maintain as near normoglycemia as possible. Technology
needs to be created to monitor glucose frequently and use
a glucose-controlled, insulin delivery system to provide
the optimal insulin treatment protocol. To this end an arti-
ficial pancreatic islet is urgently needed.

4. Control strategies for automated insulin delivery

The challenge of automating insulin delivery for diabetic
patients using implantable pumps and glucose sensors has
received considerable attention over the last 10–20 years.
Recent surveys and tutorials provide excellent overviews
of diabetes control strategies from a control engineering
perspectives [9–13].

Early diabetes control papers in the 1960s involved clin-
ical studies using both glucose and insulin infusions that
were calculated using on–off control or special nonlinear
control algorithms (e.g., the ‘‘Biostator’’ algorithm). The
latter can be interpreted as nonlinear proportional-deriva-
tive (PD) controllers that are related to standard gain
scheduling technique [11]. Since these early studies, many
diabetes control papers have been concerned with auto-
mated insulin infusion using standard or modified PID
control algorithms. These feedback control strategies are
often enhanced by feedforward control action based on a
known ‘‘meal challenge’’, i.e., an insulin bolus is calculated
assuming that the meal time and content are known.

PD controllers have received considerable attention due
to concerns that integral control action can lead to insulin
overdosing and subsequent hypoglycemia, during and after
meals. However, this potential problem can be overcome
reduced by judicious use of ‘‘anti-reset windup’’ with the
integral control action. For most of these PID control
papers, the proposed controllers were evaluated in simula-
tion studies of postprandial responses; but a few experi-
mental applications to dogs or humans have also been
published. However, direct comparisons of latter papers
can be difficult due to differences in the experimental con-
ditions (e.g., intravenous vs. subcutaneous sensors and
pumps, different types of insulin and insulin analogs, etc.).

Model-based control strategies have also been proposed
for the diabetes control, with model predictive control
(MPC) receiving considerable attention in recent years
[9,11,13]. MPC strategies are attractive for diabetes control
for many of the same reasons that they have been very suc-
cessful in the process industries [9]: (i) the ability to control
both linear and nonlinear processes; (ii) inherent handling
of inequality constraints, (iii) prediction of future behavior,
and (iv) ease of model parameter updating. Both linear and
nonlinear models have been considered. A key issue is the
availability of a dynamic model that is reasonably accurate
for the current patient conditions.

MPC evaluations for diabetes control problems have
demonstrated that improved glucose control can be
achieved in comparison with conventional PID control
strategies. Most of these evaluations have been on simu-
lation studies. However, a European consortium has
reported successful clinical applications based on a nonlin-
ear compartmental model used as the model in an MPC
demonstration for insulin delivery [14].

A diabetic person’s response to insulin can vary signifi-
cantly for a variety of reasons. For example, insulin sensi-
tivity varies with the time of day (e.g., the ‘‘dawn
phenomena’’) and the fitness and health of the individual.
Stress and exercise levels also affect a person’s insulin sen-
sitivity. Furthermore, the timescales of the variations for a
diabetic can vary from hours to months. Thus, a practical
automated glucose control strategy will have to be adaptive
to some extent in order to accommodate changing and
unknown patient conditions. Hovorka [12] has recently
published a detailed review of adaptive control strategies
for both type 1 and type 2 diabetes. He considers strategies
for two types of situations: (i) infrequent glucose measure-
ments are available (e.g., four to seven measurements per
day) and (ii), frequent glucose measurements are available
(e.g., every 5 min). This survey paper contains an extensive
bibliography.

For batch industrial processes, run-to-run control strat-
egies have been successfully used to provide improved con-
trol based on experience with one or more recent batches.
Run-to-run (R2R) control strategies have also been devel-
oped for diabetes control, by considering glucose data for
a meal response or an entire day to be the ‘‘batch’’ of inter-
est. For example, Zisser et al. [15] reported an experimental

Fig. 2. Block diagram of a glucose feedback control system (SC denotes
subcutaneous glucose measurement, as per the current technology).
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R2R application where the glucose control improved signif-
icantly over a two week period based on infrequent glucose
measurements, 60 and 90 min after the start of a meal.

In the next section, two successful applications of
advanced control strategies to diabetes control are
summarized.

5. Applications of advanced process control strategies

Parker et al. [16] were the first to publish a model predic-
tive control approach for the management of glucose levels
in type 1 diabetic patients. Their research was a simulation
study that employed the Sorensen [17] model as the ‘‘vir-
tual patient’’. They explored several approaches to model
development, including: (i) direct identification from
patient data using rich signals, (ii) reduced order numerical
models that were derived from the original compartmental
model, and (iii) linearized versions of the compartmental
model coupled with a state estimator. The state estimator
was used for inference of the (unmeasured) meal distur-
bance, providing a form of feedforward control without
the need for direct knowledge of the meal. They also
explored the estimation of key physiologic parameters
on-line, using a Kalman filter.

In simulation studies [16], the MPC with state estima-
tion approach demonstrated that meals would be compen-
sated for without the direct knowledge of meal timing and/
or content. The blood glucose levels were controlled to
near-normal levels, and there were no significant concerns
of hypoglycemia. Thus, this approach advocated a com-
pletely patient-free solution with full automation of insulin
delivery. Measurement noise and patient uncertainty (para-
metric mismatch) were also managed, including estimation
of key patient parameters. MPC has been tested in numer-
ous clinical trials in Europe, as part of the European ADI-
COL project, with successes reported for postprandial
(post-meal) stabilization [14], as well as 24-h control with
ICU patients [21]. This experience demonstrates the prom-
ise of advanced algorithms for regulated insulin delivery.

Run-to-run control (or iterative learning control – ILC)
is a methodology for dealing with engineering systems that
exhibit a cyclic behavior [18]. The key idea is that certain
disturbances are persistent across repeated ‘‘cycles’’ in a
process (such as raw material impurities in the batch pro-
duction of a polymer). Instead of repeatedly correcting
for the persistence disturbance from an initial (incorrect)
condition, this algorithmic approach formulates an update
on a time scale of the entire cycle (i.e., one correction
allowed at the end of the batch) that minimizes the effect
of the persistent disturbance. Viewed from another per-
spective, the run-to-run algorithm starts on a cycle that is
poorly controlled, and refines to the control action over
the course of multiple cycles until a nearly perfect con-
trolled cycle is obtained.

In a recent clinical trial, we were able to exploit the 24-h
cycle for insulin bolus dosing as a ‘‘cycle’’ that can benefit
from run-to-run control [15,19]. We described in subse-

quent papers a technique for optimizing a patient’s insulin
therapy (timing, amount) through the use of so called run-
to-run control [19,20]. The similarities between the diabetic
patient and the batch reactor recipe which motivate the
application of this technique are

1. the recipe (24-h cycle) for a human patient consists of a
repeated meal protocol (typically 3 meals) with some
variance on meal type, timing, and duration,

2. there is not an accurate dynamic model available to
describe the detailed glucose response for an individual
to the meal profile, and

3. there are selected measurements available that might be
used to characterize the ‘‘quality’’ of the response for a
24 h day, including maximum and minimum glucose
values.

As noted in the original algorithm reference [19,20], the
key elements of the algorithm are that it is measurement-

based (as opposed to model-based) and the independent
variable of the control loop is the batch number. Thus a
solution is implemented as an open-loop policy for each
batch (24-h cycle), and the feedback allows refinement over
successive batches (days). Of particular interest in the pres-
ent context is the fact that the limited measurement infor-
mation of the patient’s blood glucose level is translated
into quality measurements (max/min glucose). In this
way, the patient’s sampling protocol does not need to be
rigorously synchronized to a particular time every day,
and the resultant quality variables are exactly the type of
variables that a medical professional would use to evaluate
the efficacy of a particular insulin regimen.

The results of the clinical trial [15] demonstrated a large
fraction of the patients responded favorably to the algo-
rithm, and the algorithm’s predictions were in line with
the medical doctors’ recommendations. Continuing studies
are addressing the robustness of the algorithm with respect
to variability in meal content.

6. Summary

In this section, we have highlighted some of the chal-
lenges and promising approaches concerning controller
design for an artificial pancreas. The technological chal-
lenges associated with the delivery of insulin, as well as
the measurement of glucose (e.g., subcutaneously), are
quickly coming into focus and the medical technology
companies have solutions on the market. One of the key
challenges will be the design of robust control strategies
to ‘‘close the loop’’ under normal patient lifestyle that
includes physical activities, variable meal timing and con-
tent, and conditions of illness and stress. Such a control
strategy may require patient intervention (e.g., alerting
for a meal or exercise), but must be able to maintain a sta-
ble glucose level in between meals as well. Perhaps no single
control algorithm will accomplish this goal for all patients,
and thus different categories of patients will require
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alternate algorithms. On the other hand, a common frame-
work, such as MPC, may be quite robust, with individual
customization required for patient models, estimation com-
ponents, and/or cost functions.

Fault detection/diagnostics and monitoring controller
performance will be critical factors in the success of an
ambulatory artificial pancreas. The glucose control strat-
egy may require adaptation to compensate for unantici-
pated conditions. For example, model updating or
‘‘pattern recognition’’ to determine the appropriate model
for current conditions, for example, a particular stress
state. Early trials of MPC with human patients are encour-
aging [14,21], and many research groups are currently test-
ing these algorithms in diverse patient populations. The
next five years will likely witness dramatic progress in the
design and evaluation of sophisticated strategies for con-
trol of glucose in subjects with type 1 diabetes.
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1. Overview

Cancer is the most common disease-related cause of
death for American adults under age 85 [1]. It is estimated
that >$190 billion will be lost to cancer-related effects in
2006, including treatment, lost productivity, etc. [1]. Cancer
is a class of diseases characterized by an imbalance in the
mechanisms of cellular proliferation (growth) and apopto-
sis (programmed cell death) [2]. When left untreated, this
imbalance results in the growth of cancerous malignancies,
including solid tumors and blood–borne disease, among
others, and the resulting death of the host organism [3].
Once cancer is detected, it is removed, if possible (in the
case of accessible solid tumors), and treatment is initiated.
Radiation, surgery, and chemotherapy are common treat-
ment methods [4]. However, it is common for cancer to
spread throughout the host organism, a process called
metastasis, prior to its reaching a detectable size, approxi-
mately 1 mm3. Hence, chemotherapy is often applied alone,
or in combination with the above methods, as it is the pri-
mary method of non-site-specific treatment and distant
metastases require a systemic treatment [5].

2. Cancer as a class of diseases

Some diseases are characterized by the inadequate (or
overabundant) supply of a particular endogenous sub-
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