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a b s t r a c t

The integrated biorefinery has the opportunity to provide a strong, self-dependent, sustain-

able alternative for the production of bulk and fine chemicals, e.g. polymers, fiber composites

and pharmaceuticals as well as energy, liquid fuels and hydrogen. Although most of the

fundamental processing steps involved in biorefining are well-known, there is a need for

a methodology capable of evaluating the integrated processes in order to identify the opti-

mal set of products and the best route for producing them. The complexity of the product

allocation problem for such processing facilities demands a process systems engineering

approach utilizing process integration and mathematical optimization techniques to ensure

a targeted approach and serve as an interface between simulation work and experimental

efforts. The objective of this work is to assist the bioprocessing industries in evaluating

the profitability of different possible production routes and product portfolios while max-

imizing stakeholder value through global optimization of the supply chain. To meet these
ends, a mathematical optimization based framework is being developed, which enables the

inclusion of profitability measures and other techno-economic metrics along with process

insights obtained from experimental as well as modeling and simulation studies.

© 2008 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

demic sources. This ensures that the data used in the decision
. Introduction

urrent chemical and energy industries are heavily reliant
pon fossil fuels, and these fuels are unsustainable and con-
ribute to economic and political vulnerability (US Department
f Energy, 2003). Biomass, a renewable resource, has incredible
otential to fulfill the energy and chemical needs of soci-
ty while minimizing environmental impact and increasing
ustainability (Bridgwater, 2003). The process of separating
iomass constituents and converting them to high value
roducts is known as biorefining, and the integrated biore-
nery provides a unique opportunity for reinvigorating an
ntire manufacturing sector by creating new product streams
Bridgwater, 2003). Economic and environmental sustain-
bility are achieved through the optimal use of renewable
eedstocks, and a need exists for a process systems engineer-
Please cite this article in press as: Sammons Jr., N. E., et al., Optimal biorefin
Chemical Engineering Research and Design (2008), doi:10.1016/j.cherd.200

ng (PSE) approach to ensure maximum economic and societal
enefit through minimizing the usage of raw material and
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energy resources as well as the cost involved in supply chain
operations intrinsic to biorefining. The bioprocessing indus-
tries are slowly becoming aware of the benefits of infusing PSE
methods to this emerging field. To maximize the applicability
of such systematic methods and to integrate experimental and
modeling work, a unique partnership has been established
consisting of researchers in academia and industry along with
government entities, equipment vendors and industry stake-
holders to procure the wide range of information necessary
such as data needed for process simulation models, infor-
mation on capacity constraints, financial data, and nonlinear
optimization techniques. This information is obtained from
a variety of collaborations to be formed and strengthened
involving industrial partners, internal academic partners in
both chemical engineering and business, and external aca-
ery product allocation by combining process and economic modeling,
8.03.004

making process is realistic and that the research addresses
problems of industrial and regulatory interest. The overall goal

neers. Published by Elsevier B.V. All rights reserved.
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of the current and future work is to develop a system that will
enable decision makers to evaluate different production path-
ways in biorefining in order to maximize net present value
while measuring and minimizing environmental impact. Once
this system is able to assist in evaluating the economic and
environmental performance of biorefining pathways, these
technologies may be constructed as a greenfield project, or
retrofitted onto an existing facility.

2. Methodology for integrating modeling
and experiments

In biorefining, the large number of possible process config-
urations and products results in a highly complex process
synthesis problem that cannot be solved using simple heuris-
tics or rules of thumb. Business decision as well as policy
makers must be able to strategically plan for and react to
changes in market prices and environmental regulations by
identifying the optimal product distribution and process con-
figuration. Thus, it is necessary to develop a framework which
includes environmental metrics, profitability measures, and
other techno-economic metrics. Such a framework should
enable policy and business decision makers to answer a num-
ber of important questions like:

� For a given set of product prices, what should the process
configuration be, i.e. what products should be produced in
what amounts?

� For a given product portfolio, how can process integration
methods be utilized to optimize the production routes lead-
ing to the lowest environmental impact?

� What are the discrete product prices that result in
switching between different production schemes, i.e. what
market developments or legislative strategies are required
to make a certain product attractive?

� What are the ramifications of changes in supply chain con-
ditions on the optimal process configuration?

In the following sections, the developed framework for
answering these questions is presented along with a discus-
sion of some preliminary results.

The introduction of PSE methods into biorefining research
provides a systematic framework capable of seamlessly inter-
facing results generated in simulation studies as

well as experimental work. Such a framework is impera-
tive when attempting to combine knowledge and information
from a variety of research areas and disciplines. Fig. 1 illus-
trates the flow of information throughout this framework in
order to evaluate available biorefining technology and study
the effects of technological breakthroughs and market fluctu-
ations on the answers to the above questions. The objective
of this approach is first to create a library of rigorous simula-
tion models for the processing routes along with a database
of corresponding performance metrics. Wherever possible,
experimental data is used to validate the performance of
the simulation models, and for processes that commercial
software packages are incapable of describing adequately,
the performance metrics are initially based on experimental
results until a satisfactory model has been developed. Existing
optimization techniques are then used in order to determine
Please cite this article in press as: Sammons Jr., N. E., et al., Optimal biorefin
Chemical Engineering Research and Design (2008), doi:10.1016/j.cherd.200

a list of candidate solutions that display maximum economic
performance subject to constraints on capacity and material
balances, and the final process design is selected among the
n d d e s i g n x x x ( 2 0 0 8 ) xxx–xxx

most profitable allocation schemes with an acceptable level of
environmental impact.

Fig. 2 shows a schematic representation of the strat-
egy employed for identification of characteristic performance
metrics of the individual subprocesses. The simulation mod-
els for each process are developed by extracting knowledge
on yield, conversion, and energy usage from empirical as well
as experimental data. These models are then used to deter-
mine variable cost in terms of necessary labor, maintenance,
and utilities, as well as fixed cost to be capitalized over an
extended yet finite period of time.

Next, if a given process requires the use of a solvent,
molecular design techniques such as group contribution are
employed to identify alternative solvents that minimize envi-
ronmental and safety concerns. The solvent design problem
can be solved utilizing either reverse problem formulation or
mixed-integer nonlinear programming, but the combination
of reverse problem formulation with property clustering have
been shown to provide a robust solution (Eljack et al., 2006;
Eden et al., 2003; Harper and Gani, 2000).

Process integration techniques are then used to optimize
the simulation models. Energy integration involves the use
of thermal pinch analysis to design heat exchanger net-
works, and this is accomplished using commercially available
software (El-Halwagi, 1997). Software is also available to per-
form mass integration, which takes place through the use of
tools such as mass pinch diagrams and source-sink mapping
(El-Halwagi and Maniousiouthakis, 1989; El-Halwagi, 1997).
Process integration is an integral step in the model develop-
ment as it ensures optimal utilization of biomass and energy
resources.

Finally, the optimized models are used to generate data for
the economic as well as environmental performance metrics.
The estimation of environmental performance is achieved
through the use of the US-EPA Waste Reduction (WAR) algo-
rithm (Young and Cabezas, 1999). It should be noted, that
only the economic and environmental performance metrics
are incorporated in the solution framework described below,
thus decoupling the complex models from the decision mak-
ing process. This approach allows for continuously updating
the models as new data becomes available without having to
change the selection methodology. Similarly, if new processes
are to be included for evaluation, an additional set of metrics
are simply added to the solution framework, thus making it
robust and flexible.

3. Methodology for biorefinery
optimization

The optimization framework, which combines the library of
processing routes and corresponding economic performance
metrics with a numerical solver, is given in Fig. 3. It should
be noted here that the environmental performance is not
included as an objective function. Environmental impact is
difficult to quantify in terms of profit or net present value
unless there were monetary penalty functions applied to the
categories of impact, thus making it impractical to include
environmental impact in the objective function of gross profit.
Multi-objective optimization in which Pareto solution curves
are defined will result in environmental impact indicators
ery product allocation by combining process and economic modeling,
8.03.004

being minimized (Pistikopoulos et al., 1995). But because
maximum shareholder value is attained only with optimal
economic performance, these solutions with minimized envi-

dx.doi.org/10.1016/j.cherd.2008.03.004
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Fig. 1 – Overall data flow.
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onmental impact would not be pursued since the solutions
ould have an adverse effect on shareholder value in com-
arison to the economic optimum. One example of this is

f optimization were to focus on purely minimizing environ-
ental impact, in which the framework would consequently

dentify the trivial zero impact facility as a solution, corre-
ponding to no biomass being processed at all and no value
eing added to the firm or industry in question.

Since multi-objective optimization is impractical with-
ut monetizing environmental impact, the objective of the
ptimization step is to use pre-existing, robust optimiza-
ion programs to identify candidate solutions that maximize
conomic performance. The candidates are then ranked
Please cite this article in press as: Sammons Jr., N. E., et al., Optimal biorefin
Chemical Engineering Research and Design (2008), doi:10.1016/j.cherd.200

ccording to environmental performance, and thus, environ-
ental performance is used as a screening tool. If a candidate

Fig. 2 – Strategy for identificatio
satisfies the environmental objectives, then the optimal pro-
duction scheme has been identified. If none of the candidates
satisfy the environmental impact constraints, then the desired
economic performance requirements are relaxed until a solu-
tion with acceptable environmental performance has been
identified. It should be emphasized that by decoupling the
complex models from the optimization and decision making
framework, the methodology is more robust and also provides
added flexibility by only having to update the performance
metrics for a given process as new information, e.g. a new
catalyst with higher conversion, is identified. This approach
is analogous to the reverse problem formulation framework
used for decoupling the complex constitutive equations from
ery product allocation by combining process and economic modeling,
8.03.004

the balance and constraint equations of an individual process
model (Eden et al., 2004). The design targets linking the two

n of performance metrics.

dx.doi.org/10.1016/j.cherd.2008.03.004
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Fig. 3 – Methodology for identification of optimal biorefinery structure.
reverse problems are constitutive or property variables, which
in this framework are represented by performance metrics.

4. Scope and complexity of biorefinery
production problem

A plethora of combinations of possible products and process
configurations exists for the conversion of biomass into chem-
icals and fuels. Fig. 4 provides an illustration of some of the
many processing steps and possible products available in a
biorefinery, but it should be noted that it does not include all
possibilities and serves primarily to illustrate the complexity
of the product allocation problem. The diamonds represent
products that can either be sold or further processed to other
products, while the boxes denote conversion processes that
may be comprised of several processing steps.

It should be noted here that coal is a possible feedstock
in the biorefinery illustrated in Fig. 4. Biomass denotes any
type of fuel that has an organic source, and this designa-
tion ranges from renewable plants and short growth forests
Please cite this article in press as: Sammons Jr., N. E., et al., Optimal biorefin
Chemical Engineering Research and Design (2008), doi:10.1016/j.cherd.200

to more established non-renewable fuels such as coal and
fossil fuels. But because of the recognition of the need to pro-
vide energy with minimal environmental impact, the solution
may indeed apply to any type of bio-based fuel but would be
most helpful in analyzing energy production from renewable
feedstocks.

5. Generalized model visualization and
optimization

A generalized biorefinery model based on Fig. 4, which has
been used to develop the structure of the optimization frame-
work, is given in Fig. 5. The model structure was formulated
to include a variety of basic complexities encountered in
the decision making process, e.g. whether a certain product
should be sold or processed further, or which processing route
to pursue if multiple production pathways exist for a given
product. The objective function maximizing the overall profit
of the biorefinery is given below:

Profit=
∑

m

⎛
⎝∑

k

TSmkCs
k−

∑
i

∑
j

RmijC
P
mij−CBM

m

∑
j

Rm1j

⎞
⎠ (1)
ery product allocation by combining process and economic modeling,
8.03.004

Using this nomenclature, the first set of terms in Eq. (1) rep-
resents the sales revenue from the products made from each

dx.doi.org/10.1016/j.cherd.2008.03.004
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Fig. 4 – Schematic of biomass conversion and biorefinery production rates.
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ioresource m. TSmk is a variable that denotes the produc-
ion rate of product k from bioresource m that is sold to
he market. Cs

k is the sales price of product k which is a
calar and is determined through a survey of published prices
Please cite this article in press as: Sammons Jr., N. E., et al., Optimal biorefin
Chemical Engineering Research and Design (2008), doi:10.1016/j.cherd.200

nd vendor quotes. The second set of terms represents the
otal processing cost incurred by the pathways pursued in

Fig. 5 – Generalized bi
production. Rmij is a variable that represents the processing
rate of route ij while CP

mij is a scalar that represents the cost
of processing bioresource m through route ij and is deter-
mined through simulation models and process economics.
ery product allocation by combining process and economic modeling,
8.03.004

The third set of terms represents the total cost of the biomass
resource m, and this is broken down into the scalar pur-

orefinery model.

dx.doi.org/10.1016/j.cherd.2008.03.004
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Fig. 6 – Illustration of case study: unsolved decision making
tree with variable designations.
6 c h e m i c a l e n g i n e e r i n g r e s e a r

chase price of bioresource m in CBM
m and the combined rate

of biomass processed by the plant in Rm1j. Although both
TSmk and Rmij are variables in the optimization program, they
are not independent since the variables are related to each
other via mass balance constraints around the product points.
Appendix A shows a detailed list of these mathematical
representations.

This generalized model, where the objective function and
constraints are linear, is easily solved using commercially
available software. It should be noted here that while earlier
work such as the proposed solution by Sahinidis et al. (1989)
incorporate process models into the optimization problem,
the proposed framework separates the wide range of biorefin-
ing models from the optimization portion, thus reducing the
complexity of the problem for the solver while maintaining the
robustness achieved with proven optimization techniques.

Without including any constraints on capacity of the pro-
cessing steps, the solution is a single-product configuration
in which all available biomass is converted into the most
profitable product. However, if constraints are imposed on
the most profitable route, the framework identifies the addi-
tional products and processing routes required to maximize
the overall profit, thus leading to a polygeneration facility
(Sahinidis et al., 1989). Approximate capacity constraints are
based on a variety of sources, e.g. existing equipment, ven-
dor data and qualitative process information provided by
academic and industrial collaborators. In order to effectively
address the strategic planning objectives of business deci-
sion makers, it is necessary to incorporate the total capital
investment as a constraint in the formulation. The capital
investment for a given unit or process can be approximated
as a function of its capacity or processing rate, and both linear
and nonlinear expressions have been successfully imple-
mented in the framework. Inclusion of capital cost constraints
is crucial for practical application of the results, i.e. enabling
evaluation of the potential benefits to be obtained for a given
maximum investment by retrofitting an existing facility or
constructing new plants.

6. Model demonstration

Many adjustments were made to the parameters such as sales
price, processing cost, processing rate conversions, and capital
investment functions, and constraints were added on capacity
as well as minimum and maximum sales quantities. These
Please cite this article in press as: Sammons Jr., N. E., et al., Optimal biorefin
Chemical Engineering Research and Design (2008), doi:10.1016/j.cherd.200

modifications were made to determine if the code would give
the product distributions that were intuitively determined to
maximize profit. In every case, the code returned the solutions

Fig. 7 – Illustration of biomass to
including predictable results on the product distribution as
well as the pathways necessary to manufacture the product
while maximizing value.

To illustrate one particular, simplified example, a case
study was performed on a potential biorefinery involving the
conversion of chicken litter to syngas, which could be either
sold on the market via a pipeline to a local customer, or
converted on site into hydrogen or electricity. Conversion
into hydrogen takes place through a water gas shift reac-
tion, while electricity is produced through the usage of a
combined cycle power island. Base case simulation models
were constructed, and data on conversion rates for yields on
the gasification, electricity generation, and water gas shift
reaction were obtained from literature (Larson et al., 2006;
Gadhe and Gupta, 2005). In this example, there are no sol-
vents involved in any of the aforementioned processes, so
the step of using property clustering to find safer, more
environmentally sound solvents is bypassed. Fig. 6 shows
ery product allocation by combining process and economic modeling,
8.03.004

the possible pathways for production and sale of these
chemicals on the commodity market, and Figs. 7–9 illus-
trate the simulation models used in the case study. Due

syngas simulation model.

dx.doi.org/10.1016/j.cherd.2008.03.004
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Table 1 – Fixed cost, variable cost, annual output, and cost per output of each simulation model

Biomass to syngas Syngas to electricity Syngas to hydrogen

Total fixed cost $112,302,000 $100,091,000 $461,527,000
Annualized fixed cost @ 8% interest over 25 years $10,401,000 $9,270,000 $42,745,000
Total variable costs $13,618,000 $15,301,000 $202,114,000
Total annual product costs $24,019,000 $24,571,000 $244,859,000
Annual output 4.018*108 kg 1.065*106 MWe 8957*108 m3

Cost per output $0.0598/kg $23.07/MWe $0.273/m3

Fig. 8 – Illustration of syngas to hydrogen simulation model.

Fig. 9 – Illustration of syngas to power black box model.
Details of equipment used in combined-cycle power island
are available in Larson et al. (2006).
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Fig. 10 – Illustration of case study: solved decision making
tree with flowrate values and objective function.
o the complexity of the combined cycle power island, a
lack box power generation model is presented for simplic-
ty.

In order to gauge the economic performance of the
hree processes, it was necessary to procure information on
xed cost, variable cost, and market prices for both feed-
tock and possible products. The equipment needed for
he simulation models was used to determine the fixed
ost components of all three processes, and this infor-
ation is shown in Table 1. Similarly, variable cost was

etermined using pre-defined design heuristics, and the
ariable cost is a sum of utilities, operating labor, operat-
ng supervision, maintenance, operating supplies, laboratory
harges, overhead, and administrative cost as defined by
hose heuristics (Peters et al., 2003). This component is
lso included in Table 1. Market prices were obtained
hrough a survey of suppliers, and these prices are listed in
able 2.
Please cite this article in press as: Sammons Jr., N. E., et al., Optimal biorefin
Chemical Engineering Research and Design (2008), doi:10.1016/j.cherd.200

Table 2 – Market prices of feedstock and possible
products

Market price

Chicken litter feedstock $0.010/kg
Syngas $0.214/kg
Electricity $53.370/MWe
Hydrogen $0.220/m3
In this example, the objective function to be maximized is
as shown in Eq. (2)

max Profit = Revenuesyngas + Revenuehydrogen

+ Revenueelectricity − Costsyngas − Costhydrogen

− Costelectricity − Costfeedstock (2)

This objective function is subject to constraints based on mass
balances of the individual processes in which a multiplicative
conversion rate has been determined so that the conversion
of feedstock to output of a given process is linear. The opti-
ery product allocation by combining process and economic modeling,
8.03.004

mization program also contains constraints on the amount
of feedstock available, so that a pre-determined feed basis
will determine how much is produced, which in turn will be

dx.doi.org/10.1016/j.cherd.2008.03.004
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related to gross profit through market prices, processing cost,
and feedstock cost.

Due to the simplicity of the problem, the optimization was
executed in one iteration through the use of CPLEX in 0.035 s
and determined the optimal objective value of $1.922/s profit.
The execution of the optimization code verified the results
obtained from manual calculation; producing syngas from
chicken litter and selling it on the market would maximize
profit due to the high costs involved in converting the syngas
to hydrogen or electricity. Fig. 10 illustrates the active pathway
chosen by the optimization program. This simple case study
will be expanded to include a much wider range of products,
production pathways, and feedstocks in order to become a cru-
cial decision support tool in the emerging field of biorefining.

7. Conclusions and future work

A general systematic framework for optimizing product port-
folio and process configuration in integrated biorefineries has
been presented. Decoupling the process models from the
decision-making framework reduces problem complexity and
increases robustness. The next phase of this work involves
development of additional process models for the generation
of performance metrics, specifically information on conver-
sion, yield, and production cost for economic metrics and data
to be used to generate a measure of environmental impact.
From there, process integration will be utilized to optimize the
process models by reducing energy usage, material consump-
tion, and waste streams.

An alternative formulation of the product allocation prob-
lem will be developed using a combination of general
disjunctive programming (GDP) with the use of genetic algo-
rithms (GA) as proposed by Odjo et al. The current formulation
of the problem is a mixed-integer nonlinear problem (MINLP),
and the use of GA and GDP has been shown to solve non-
convex, discontinuous optimization problems more efficiently
than the iterative MILP-NLP approach used in many solver
programs. The alternative formulation would involve con-
structing logical disjunctions to map out the decision making
tree and decoupling the system of disjunctions from the opti-
mization portion of the framework. The disjunctions will then
be converted into “chromosomes” of decision variables, and
genetic algorithms will then be used to determine which
combination of mixed integers would result in the optimal
solution. At this point, the computation time and objective
values of optimal solutions between the two solution meth-
ods will be compared to determine which formulation is more
effective in solving this general problem (Odjo et al., 2008).

The framework will also become a stronger financial tool
through the incorporation of various economic ideas and anal-
yses. The use of net present value as a profitability measure in
a similar fashion to Sahinidis et al. (1989) will enable the inclu-
sion of the cost of capital, interest expenses, depreciation, and
tax consequences of pursued decisions. The development of
qualitative predictive models for capital investment and inclu-
sion of capital amortization into the objective function will
also increase the strength of the framework. Incorporation of
options theory into the framework will allow management
to develop financial strategies in response to events in the
market or legislative environment. Finally, optimization under
Please cite this article in press as: Sammons Jr., N. E., et al., Optimal biorefin
Chemical Engineering Research and Design (2008), doi:10.1016/j.cherd.200

uncertainty will be studied to quantify the effects on process
configuration resulting from minute changes in product prices
(Banerjee and Ierapetritou, 2003). This, in combination with
n d d e s i g n x x x ( 2 0 0 8 ) xxx–xxx

implementing superstructure generation techniques, will lead
to increased robustness of the methodology and thus better
recommendations (Chakraborty and Linninger, 2003).

Appendix A. List of mathematical
representations

Cs
k scalar, sales price of product k

CBM
m scalar, purchase price of bioresource m

CP
mij scalar, cost of processing material from bioresource

m through route ij
i subscript for processing level, or number of pro-

cessing steps from raw material, i.e. 1 for direct
processing of raw material, 2 for subsequent process-
ing step

j subscript for pathway at that particular processing
level

k product subscript
m subscript denoting type of biomass resource
Rmij variable, amount processed in route ij from biore-

source m
TSmk variable, total amount of product k produced from

bioresource m to be sold to market, related to Rmij

through mass balance equations
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