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Abstract--This paper addresses the problem of optimizing cyclic schedules of multiproduct continuous 
plants that consist of a sequence of stages each involving one production line that are interconnected by 
storage tanks. The problem involves a combinatorial part (sequencing of products) and a continuous 
part (duration of production runs and inventory levels). The problem is formuiated as a large scale 
mixed-integer nonlinear program (MINLP) model that involves nondifferentiabilities in the inventory 
levels for the storage tanks. Binary variables and mixed-integer constraints are used to remove these 
nondifferentiabilities. A solution method based on variants of the generalized Benders decomposition 
and outer approximation is proposed for this scheduling problem. The method consists of an MINLP 
subproblem in which cycle times and inventory levels are optimized for a fixed sequence, and an MILP 
master problem that determines the optimal sequence of production. Examples are presented to 
compare the proposed decomposition method with the direct solution of the MINLP using an 
augmented penalty version of the outer-approximation method. The results show that the compu- 
tational requirements can be greatly reduced in problems invoIving several hundred O-l variables, 
and several thousand continuous variables and constraints. 

INTRODUCTION 

Extensive reviews in batch processing have been 
recently reported in the literature (Reklaitis, 1991, 
1992; Rippin, 1992). Many of these problems can be 
posed as mixed integer optimization programs since 
the corresponding mathematical optimization 
models involve both discrete and continuous vari- 
ables that must satisfy a set of equality and inequa- 
lity constraints (Grossmann et al., 1992). These 
scheduling and planning problems are in fact often 
posed as mixed integer linear programming (MILP) 
models. 

While scheduling of batch processes has received 
considerable attention in the literature, much less 
work has been reported in the scheduling of con- 
tinuous multiproduct plants despite their practical 
importance. These arise frequently in chemical 
process industries. Petroleum refineries which have 
to process different crudes, polymer and specialty 
chemicals plants, and paper machines are three 
examples. Furthermore, one of the current trends in 
the chemical industry is to move towards continuous 
flexible multiproduct plants that can respond more 
quickly to demand changes and to the processing of 
a variety of products. 

In terms of continuous multiproduct processes, 
the planning and scheduling problem has been stud- 
ied in the Operations Research literature with the 

t To whom all correspondence should be addressed. 

assumptions of infinite horizon and single stage; this 
is known as the economic lot-scheduling problem 
(Elmaghraby, 1978). A recent solution method for 
solving this problem includes the cutting planes by 
Magnanti and Vachani (1990). The special case of a 
two product mix was applied in an oil refinery 
(Kella, 1991). The two stage problem was studied by 
Buzacott and Ozkarahan (1983) with variable pro- 
cessing rates but restricted to two products. 

In the chemical processing industry, the current 
available tools for solving the scheduling and plan- 
ning problems are single and/or multiperiod linear 
programming problems (Picaseno-Gamiz, 1989). 
There are a few studies in scheduling and planning 
reported in chemical engineering. Sahinidis and 
Grossmann (1991a) considered the cyclic scheduling 
of continuous multiproduct plants with parallel lines 
and formulated the problem as a large-scale mixed 
integer nonlinear programming (MINLP) problem. 
The authors developed a solution method based on 
generalized Benders decomposition for which they 
were able to solve problems with up to 800 binary 
variables, 23,000 continuous variables and 3000 con- 
straints. While cyclic schedules are typically con- 
sidered for plants operating at long term horizons 
with constant demand rates, short term schedules 
are considered for variable demands. An example of 
the latter is the planning of multiproduct continuous 
processes under resource constraints addressed by 
Kondili et al. (1993). Their formulation resulted in a 
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Stage 1 Stage 2 stage M 

Fig. 1. Multiproduct continuous plant with several stages interconnected by intermediate inventory 
tanks. 

mixed integer linear program that was applied to the 
short term production of a cement plant. 

It is the objective of this paper to propose an 
optimization model and solution method for the 
cyclic scheduling of multistage continuous multipro- 
duct plants. A large scale MINLP model is deve- 
loped that can handle intermediate storage between 
stages as well as sequence dependent changeovers. 
It is first shown that the handling of nondifferentia- 
bilities for intermediate storage are best handled 
with O-l variables. An effective decomposition 
method is then proposed that combines generalized 
Benders decomposition and the outer- 
approximation method. Numerical results are pre- 
sented to illustrate the usefulness of the proposed 
model and solution method. 

PROBLEM DEHIWMON 

The specific scheduling problem that will be 
addressed in this work can be stated as follows: 

Given is a number of specified products that are to 
be manufactured in a plant consisting of several 
stages that are interconnected by intermediate 
inventory tanks for each product (Fig. 1). It is 
assumed that every product must be processed in the 
same sequence throughout all the stages (i.e. flow- 
shop plant). Each stage consists of one production 
line with equipment which is interconnected with a 
fixed topology. Transition times that arise between 
the processing of two successive products are 
sequence dependent. Given are also constant 
demand rates in the form of lower bounds that are to 
be satisfied. The problem then consists in determin- 
ing the following items for a cyclic schedule: 

(A) sequencing of products 
(B) length of cycle time 
(C) length of production times 
(D) amounts of products to be produced 
(E) levels of intermediate storage and final pro- 

duct inventories. 

The criterion used is the maximization of profit, 
that includes income from the sales of the products 
and inventory and transition costs. 

MOTIVATING EXAMPLE 

In order to provide some insights into the nature 
of the decisions and trade-offs involved in the sched- 
uling of a continuous multiproduct plant, consider 
the following example that arises for instance in 
plants for manufacturing lubricants. A continuous 
multiproduct plant consisting of 2 stages must be 
scheduled to produce a minimum of 50 kg/h of A, 
100 kg/h of B and 250 kg/h of C in a cyclic operation 
mode. Each product has to go through the 2 stages 
in the same order. Data on processing rates, 
(sequence dependent) transition times, prices of 
products, intermediate storage costs and final pro- 
duct costs are given in Table 1. The transition costs 
are $760 from product A to any product in all stages, 
$750 for B and $770 for C. Several feasible alterna- 
tive schedules are shown in Fig. 2. 

Alternatives 1 and 2 have the same sequence 
A-B-C as seen in Fig. 2. Alternative 1 has a cycle 
time of 44.2 h while in 2 its value is 165.4 h. Since in 
alternative 1 the production is repeated more fre- 
quently, the inventory cost is reduced. On the other 
hand, this implies more frequent transitions. For 
example, the transition times correspond to 54.3% 

Table 1. Data for motivating example 

Prices/Demands 
product Price (Won) Demand (kg/h) 

A 150 50 
B 400 100 
C 650 250 

Processing Rates/Inventory Costs 
Stage 1 stage 2 

Processing Intermediate Processing Final 
rate storage rate inventory 

Product (kg/h) (S/ton) (kg/h) ($/ton. h) 

A 800 140.6 900 4.06 

: 
1200 140.6 600 4.06 
loo0 140.6 1100 4.06 

Transition Times (Sequence Dependent) (h) 
Stage 1 Stage 2 

Product A B C A B C 

A - 10 3 
; 

7 3 
B 3 - 6 10 
C 8 3 - 3 0 - 
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mtive I+ : Profit = $97.00 /hr 

2.76 4.5 
Stage 1 8 + 10 u 13 

stage 2 4 2.5 7 10 11.8 

Int. 
(A) (C.I 

Storage A 
(ton) 

10.0 

P- Cycle time= 44.2 -1 

I 

m : Profit = $336.90 /hr 

10.3 14.7 
Stage 1 u t - 6 116.4 

Stage 2 

ht. 
Storage 
@n) 

29.5 105.8 

(A) (B) K) 
I- Cycle time = 165.4 -I 

Alternative 3 : Profit = $411.06 /hr 
11.7 7.2 

Stage 1 87.1 

64 
Stage 2 u 79.2 

Int. 
(5) (A) m 

Storage 
)r- Cycle the = 115 

(-0 

Fig. 2. Feasible schedules for motivating example. 
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of the total cycle time in alternative 1. A larger 
profit is attained in alternative 2 due mainly to an 
increase in productivity of C (see Table 2). 

The sequence in alternative 3 is B-A-C. Note 
from Table 1 that smaller transition times are 
incurred with this sequence (9 h per cycle vs 24 h per 
cycle in stage 1, 6 h per cycle vs 21 h per cycle in 
stage 2). The cycle time is 115 h with which an even 
larger productivity of C and corresponding increase 
in profit are obtained (see also Example 2). 

One can see in Table 2 that the demand of A (the 
less valuable product) is satisfied at its minimum for 
all alternatives and that in alternatives 2 and 3 the 
production of C is greatly increased. In terms of 
both intermediate and final product storage there is 
a direct relation with the cycle time. 

What this example shows is that the interactions 
and trade-offs involved in the scheduling of con- 
tinuous multiproduct plants are complex. There 
exists an optimal cycle time that is largely deter- 
mined by the sequencing of products, inventory 
levels and transition times. Therefore, there is a 
clear incentive for developing systematic techniques 
to handle the scheduling problem. 

MATHEMATICAL MODEL FOR SCHEDULING 

In order to simplify the scheduling problem the 
proposed model will rely on the assumption that 
each product must be processed in the same 
sequence at each stage. This assumption is in 
general reasonable since in most practical systems 
the difference between the production rates in suc- 
cessive stages is not very large. The basic ideas of 
the model are as follows: 

(a) NP time slots are postulated at each stage 
(Fig. 3). where NP is the number of products. These 
time slots represent the sequence of the processing 
of the products. However, the product assignment 
to each slot and its processing times are variables to 
be determined. Binary variables are used to model 
the potential assignment of product to time slots. 
Transition time variables are activated depending on 
the assignment. 

(b) The inventory cost between stages is assumed 
to depend on the maximum level of material that is 

Tahlc 2. Production rates and inventory levels of final products 

Inventory lcvcls of final 
Production rates products 

(kg/h) <ton) 

Alternative A B C A B C 

: 
50 122 2Y3 2.w 4.29 9.52 
50 107 700 7.81 14.52 42.31 

3 50 122 757 5.43 I 1.20 27.17 

accumulated between stages as in Buzacott and 
Ozkarahan (1983). Constraints will be developed to 
determine the maximum inventory levels that 
ensure that the start time in stage m + 1 is such that 
it does not deplete the contents of the inventory 
from the products processed in stage m. As seen in 
Fig. 4 the maximum level of inventory depends on 
the relative start times of two successive stages. The 
break points in the inventory profiles can be 
modeled with equations that involve max-min oper- 
ators which are nondifferentiable [see equation (6) 
and Appendix A for a more detailed description]. It 
is important to note that since the process is con- 
tinuous, the start time of a subsequent stage can 
begin before the end time has been reached in the 
previous stage [see Fig. 4(b)]. 

(c) The inventory cost of final products is 
assumed to depend on the average amount of mate- 
rial to be stored. This average amount can be deter- 
mined in closed form as discussed in Sahinidis and 
Grossmann (1991a) (see also Appendix A). 

In the proposed model, the following are the 
indices: 

Products i,j= 1,. . . , NP 
Stages m=l,...,M 
Timeslotsk=l, _. _ ,NP 

The following are the variables: 

Yik 

Ziik 

TSkn, 

Tekm 

TPkm 
TPPik,, 

TC 

wpikm 

Y&n, 

akrn 

IO&m zlkn, 

ImaXknr 

zpikn, 

O-l variable to denote if product i is 
assigned to slot k 
O-l variable to denote if product i is 
preceded by product j in slot k 
start time of stage m in slot k 
end time of stage m in slot k 
processing time of stage m in slot k 
processing time of product i at stage m 
in slot k 
cycle time 
amount produced of product i at stage 
m in slot k 
processing rate of stage m in slot k 
mass balance coefficient in stage m in 
slot k 
break point for inventory level between 
stages m and m + 1 (see Fig. 4) 
break point for inventory level between 
stages m and m + 1 (see Fig. 4) 
maximum inventory level at slot k 
between stages m and m + 1 
inventory capacity at slot k between 
stages m and m + 1 for product i 

and the following are the parameters: 
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Stage 1 

stage2 

Stage M 

I k=l , k-2 
1 a** 

k=l ,. k=2 

, k&P, 

k=NP me. I 
0 
: 

for m 

lprodwtiwsignedtoslotk 
yilr- ()w 

Time Slot 

I- -.- - - - 1 TlWtSlUOIb 
k=l ,, k-2 k=NP . 

I *em b I m mJ==W3 I ------_ 

I w 

time 
Fig. 3. Time slots of a plant with one production line per stage. 

4 
PI 

minimum demand rate of product i 
price of product i 

Maximize 

a k, 

YPim 

%j,,, 

Cinv,, 

mass balance coefficient from product i WPikM 

in stage m 
Profit=C xpi,,- 

i k i k “I 
processing rate of product i at stage m 
transition time from product i to prod- 
uct j in stage m 
cost coefficient for inventory of product 

CinVfi 
i at stage m 

cost coefficient for inventory of final 
product i 

- 

transition cost between product i and 
product j subject to: 
upper hand processing time of product i 

at stage m 
upper hand of inventory of product i at 
stage m. 

Tyik=lvi 
The MINLP model for the scheduling problem is 

as follows. 

lz!s?ekm stage m 
_ Tphn+l , 
Tskm+l Tekm+l 

stage m+l 

Inventory 
level 

-j$ ,$k=l Vk 

(24 

PI 

%Jn k 
Tekm 

w TN=+1 
I 

T&m+1 Tekm+l 

A 

Tskm+l - Tskm Tekm+l - Tekm lime 
Fig. 4. Inventory levels of products between stages (time slot k). 
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Zjjk *yik +yik__I - 1 V&j Vk 

WPan, = YPirnTPPikrts vi Vk 

wPikm = air,t + I WPikm+ 1 Vi Vk 

Vk 

Vk 

TP~“, = Tek,, - Tsk,,, Vk 

Tsk+ ,,,a = Teknt + c 2 rijmzijk + I 
1 i 

k=l. 

1 i 

T&m =s TSkn, + I 

Tel,, c Tekm + I 

Vk 

Vk 

(3) 

Vm (4a) 

m=l...M-1 

(4b) 

Vm (4c) 

Vm 

(4) 

Vm (4e) 

Vm (5a) 

. NP-1Vm (5b) 

(5c) 

m=l...M-1 

(5d) 

m=l...M-1 

(5e) 

Vm (5f) 

Ilk,, = ?‘kmmin{TSkm+ I - TSkm. @km) + lokn, 

Vk m=l...M-1 

(6a) 

12kHz = (yknr - uknr+ i’Yknr+ I )m={% Tek, - TSk_,,+ I I+ Ilk, 

Vk m=l...M-1 

(6b) 

13k,# = - a*“,+ #km+ ~min{Tek~,+ I - TeknaT TPknl+ I I+ 12kptl 

Vk m=l...M-1 

(6~) 

Vk m=l...M-1 

(W 

Vk m=l...M-1 

(6e) 

0 e 13m,,, s Imax,,,, 

Imaxh, = C IPikrn 

Vk 

Vk 

m=l...M-1 

(69 

Vm (W 

iPi.bn - u!arytk s (1 Vi Vk 

C WPikMadiT,. Vi 
I 

yik. Ziik = 0. 1 

m=l...M (6h) 

(7) 

WPiktw* YI.w+ TPJ’iknr 3 Tpk,,, . TeA ,,,. TSk,,, . Tc. 

Imax,,,, . Ipih, a 0. 

In (1). profit is defined as the sum of sales reve- 
nue, the inventory cost for the intermediate pro- 
ducts as a function of maximum levels, the transition 
cost and the average inventory cost for the final 
product. The cost coefficients in the objective func- 
tion are assumed to be scaled so as to yield a profit in 
annual terms ($/yr). Also note that the inventory 
cost coefficients Cinv,, and Cinvf, have different 
units ($/ton) and $/ton.h, respectively. 

According to constraints (2) exactly one time slot 
must be assigned to one product and vice versa. 
Again, the total number of time slots will be exactly 
the total number of products. 

Equation (3) states the fact that the transition 
variable: 

i 

1 if product i is preceded by 

z$ = 
product j at the beginning 
of time slot k, 

0 otherwise 

has to be linked with the assignment variables yik in 
such a way that zp= 1 if both yjk and yj&, are one. 
On the other hand, if at least one of them is zero, 
the constraint becomes redundant and, since tran- 
sitions represent cost terms in the objective func- 
tion, the optimization of the model will drive these 
transition variables to zero. It should be noted that 
“--1” is the cyclic operator and it denotes the pre- 
vious time slot in the cycle. If, for example, there 
are three times slots (1, 2 and 3) the notation yields 
l--l = 3. 

Another way of enforcing the condition in (3) is to 
use the following set of constraints: 

2 Ztjk = yi,.., Vj Vk 

C Ziik= yik Vi Vk. (9) 

According to (S), exactly one transition from 
product j occurs in the beginning of any time slot if 
and only if j was being produced during the previous 
time slot. In (9), exactly one transition to product i 
occurs in the time slot if and only if i is being 
produced during that time slot. These constraints 
were proposed in Sahinidis and Grossmann (1991a). 
The authors showed that this formulation is tighter 
than the constraints in (3). Furthermore, it requires 
fewer constraints. 

In equations (4) the mass balances. processing 
rates and amounts produced are considered. The 
mass balance between stages m and m + I is estab- 
lished for all products, according to the mass 
balance coefficients in (4b). These account for the 
fact that material can be added or removed at each 
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stage m. In (4a) one calculates the amounts pro- 
duced in all stages and for all products which are 
proportional to the production time. The 
proportionality constant is the processing rate 
(which is product and stage dependent). In (4c), the 
processing rate in time slot k is defined according to 
the assignment variable y,,. Equation (4d) states 
that the time devoted to the production of product i 
at time slot k and stage m is zero unless product i is 
assigned to that time slot (in this case y, = 1). The 
parameter UK8 is a valid upper bound for the pro- 
cessing times which are related in (4e). Note that 
according to (2) and (46) exactly one processing 
time is non zero in the summation term of (4e). 

Equations (5) represent the timing constraints. In 
(5a) the length of the processing time is defined as 
the difference between the end time and start time. 
In order to calculate the start time Ts~+~._, [equa- 
tions (5b) and (.%)I one has to account for the end 
time in the previous time slot (Tq,,) and any tran- 
sition time tijm, (which are sequence and stage depen- 
dent). In stage 1 the start time of the first time slot 
depends only on the transition times, since no pre- 
vious time slot exists. Constraints (Sd) and (5e) 
ensure that production in every stage always 
initiates and terminates after production in the pre- 
vious stage. The length of the cycle time is defined in 
(5f) as the maximum over all stages m. The length of 
the cycle time in stage m is equal to the summation 
of the lengths of all the time slots (which include 
processing and transition times). 

Inventory levels for intermediates (see Appendix 
A) are represented through the constraints in (6) 
which are nondifferentiable since they involve min 
and max operators to define inventory levels as 
functions of end and start times which may have 
different relative positions. The break points in the 
inventory profiles flk,, i2*, and mkn, are modeled in 
(6a), (6b) and (6~) (see Fig. 4). These values are 
bounded in (6d), (6e) and (6f) by the variable 

Imaxknr which determines the maximum inventory 
level for the intermediate products (Ipikm) in (6g) 
and (6h). The parameter l&, is an upper bound for 
the inventory levels. Again, according to (2) and 
(6h) only one term is non zero. 

Constraint (7) states that demand must be satis- 
fied for all products in the plant and that production 
may be exceeded. It should be noted that in these 
problems it is not always easy to specify feasible 
demands. A simple procedure is presented in 
Appendix B to test the feasibility of specified 
demands. 

The model given by equations (l)-(9) corre- 
sponds to a nondifferentiable MINLP problem. 
Note that the only nonlinearities present in the 

model are the objective function (due to the cycle 
time Tc and the last term) and constraints (6a), (6b) 
and (6c) since the processing rates yk,,, for each slot k 
and stage m are variables. 

It is also important to note that the model can be 
applied to the particular case in which the sequence 
of products is fixed (yik is known). Constraints (2) 
can then be removed. The variables ziik are directly 
calculated as well as the processing rates ykm. In 
this case the only nonlinear term is the objective 
function. 

EXACT LINEARIZATION TECHNIQUE 

The nonlinearities in constraints (6a), (6b) and 
(6~) involve bilinear terms in which one of the 
variables is the processing rate ykm. In order to 
remove these nonlinearities we first disaggregate the 
variables denoting the start and end times of the 
time slots. The variables TSPik, and Teik,,, are intro- 
duced, where the former is the start time of product 
i in stage m and slot k and the latter is the.end time 
of product i in stage m and slot k. The aggregated 
values T.s~,,, and Tek, are equal to the summation of 
the disaggregated times over all the products. 
Equations (lob) and (lib) are required in order to 
guarantee that, together with (2) only one value of 
the disaggregated variables is non-zero. Note also 
that with this disaggregation equation (4~) is not 
required since the variables ykm can be expressed in 
terms of the parameters ypin,. This yields the follow- 
ing constraints: 

Tsk,, = 2 TsPik, Vkm=l.. . M-l (lOa) 
I 

TSPiton - ULY. ,,so ViVkm=l.. . M-l (lob) 

Tek,, = c Tep,, Vkm=l.. .M-1 (lla) 
I 

=P,knr - uK,yikeo ViVkm=l.. . M-l (llb) 

Ilk,, = 2 b’Pinr midTSPikm+ I - TSPimm TPPin.m 1) + Iok,,, 

i 

Vkm=l...M-1 (12a) 

m=& TePfknl - TSPlkr,, + , )I + b,,, 

Vkm=l...M-l(12b) 

13k#pj= -c (ain#+lw%n+I 

I 

minITepik,,,+ I - Tepi~,R1 Tppikal+ I )) + Q,,, 

Vkm=l...M-l.(12c) 
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One final constraint should be added to the inven- where A Tek,,,+ , = Tek,,,, , - TeA ,,,. 

tory levels. Since the scheduling is for cyclic oper- The main difficulty with this procedure, is that 
ation, one must ensure that there will be no build-up apart from yielding nonlinear functions it involves 
or depletion after a cycle. One possible way is to nonconvexities. In fact, as will be shown later in the 
define as in equation (13): paper, computational experience has revealed the 

I%,,, = 13r,,, Vkm=l.. .M-1. (13) existence of multiple local optima even for smatl 

With these reformulations the optimization prob- 
problems with the use of the equations in (16) (see 

lem becomes linearly constrained. although nondif- 
Example 1) _ 

ferentiabilities in (12) are present. Mixed integer representation 

TREATMENT OF NONDlFFERENTIABlLITIES 
The function C#I = max{O.f(x)} can be represented 

The nondifferentiabilities can be removed either 
by the two following inequalities as discussed in 
Raman and Grossmann (1991): 

by using smooth approximations (Duran and 
Grossmann, 1986b; Balakrishna and Biegler, 1992) OS@ --f(x)< U,(l -y) 

or by modeling the max-min operators with O-l (IV 

binary variables (Raman and Grossmann, 1991). 
OS@< my. 

Smooth approximafion 
In the above formulation y is a O-l binary variable 

The smoothing technique proposed by 
and U,(i= 1,2) are upper bounds. Note also that: 

Balakrishna and Biegler (1992) will be considered. y=o+lp=o 

It is based on a hyperbolic approximation to convert 
the nondifferentiable function r$ = max{O.f(x)} to a 

y= l-+#=f(x). 

continuous nonlinear function of the form: Applying the same transformation to the min 

iT Vf(x)’ + r2 f(x) 
operators [see equation (IS)], equations (12a), (12b) 

@ 2 -7 
(14) and (12~) can be written as: 

note that: 

iff(x) a0 (for c-0): @-f(x) 

iff(x)<O(forc-+O): #=O 

Typical values for E are in the range 0.01-0.0001. 
Note also that in this reformulation even iff(x) is a 
linear function the approximation will introduce 
nonlinearities to the model. Hence the reformula- 
tion can be applied directly to the nonlinear equa- 
tions in (6b). For equations (6a) and (6c) before 
applying the approximation, one has to rewrite the 
min operators as follows: 

minCfl(x),f2(x)I= - max(-D(x). -$Xx)) 

=./l(x) - max{O.fl(x) -f2(x)I. (15) 

The reformulated equations are then: 

II L,,, = Q,, + ~a,,,{ TPS,~ - +[ Tpxa, - A Tsa,,, + I 

+~/(TPL,,,-AT~,,,,,,)‘+&‘]} 

Vkm=l...M-1 (Ma) 13b,, = - 2 [apt,,+ 17,,,,+ t 

where A Ts~,,, + I = TsA,,,+ I - TsA,,, 

G,,, = 11 P,,, + (YL,,, - akrrl + IYA,,, + I ) { i [ Th,,, - %,,, + I 
( TPPA,,, + I - 9L )I + 1&,,, 

+ d/(7-e,,,, - T.sI.,,+ I 1” + ~‘11 0~ &A,,, - TpplA,,,+ , + TeplA,,,+ , - Vk ~TI = 1 . . . M - 1 

t/km= 1 _ . _ M-l (16b) Tep,~,,, s Ui,,,( 1 -xi,,, 1 (1Xc) 

13r,,, = 12r,,, - ax,,,+ c+,,~+ ATpk,,,+ I 0 s q&, =s U~~,,Jx;:,,, 
- ~[TPA,,,+I-AT~~,,,+I 

+~(Tp~,,,-ATe~,,,+,)‘+&‘l) 
where xl/. ,,,. XL and XL,,, are O-I binary variables. 

Although the equations remain linear. one can 
Vkm=l...M-I (l6c) clearly see that the mixed integer representation 
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Table 3. Data for Example 1 

Price ($/ton) Demand (kg/h) 

FUIU 1 oo 
I50 50 

IICW, 730 

stegc 1 stage 2 

Proc. rate lnvcntory cost Proc. rate Inventory cost 
(kg/h) (S/ton) (kg/h) ($/ton.h) 

1200 50 6Ou 4.06 
x00 50 900 4.06 

low 50 11(K) 4.06 
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introduces a large number of binary variables. In 
fact, the number of binary variables added to the 
problem is NP* x (M- 1) (NP is the number of 

products and M is the number of stages). 
In summary, the proposed scheduling model with 

the mixed integer representation is as follows: 

maximize objective function (1) 
subject to constraints (21, (81, (91, (4a-b) 

(4d-e), (5), (101, (Pl) 
(111, (181, (131, 
(6d-h) , (7). 

The use of the smooth approximation introduces 
equations (16) in place of constraints (lo), (11) and 

(18). 
The following example illustrates the perfor- 

mance of both the smooth approximations and 
mixed integer representation for modeling the non- 
differentiabilities. 

EXAMPLE l-FIXED SEQUENCE PROBLEM 

The example considered is a small problem 
involving the production of three products (A, B 
and C) in two stages. Consider the case of the fixed 
sequence B-A-C. The problem reduces to a NLP 
with the use of smooth approximation and to the 
MINLP (Pl) for the mixed integer representation. 
Note that for the last case the only nonlinear equa- 
tion is the objective function. The data for the 
problem are given in Table 3. The transition costs 
are the same as for the motivating example. 

Given an arbitrary initial point the MINLP con- 
verges to the solution shown with the Gantt chart in 
Fig. 5(a). The optimal profit of $723/h is obtained 
with a cycle time of 207 h. Using the NLP model 
with the smooth approximation, the solution con- 
verges to two different optima, depending on the 
choice of the initial point. Using as the initial point 
the solution given by the MINLP case, the NLP 
converges to the same solution. However, given the 
same arbitrary point used as the initial guess for the 
MINLP, the optimal profit obtained is only $687/h 

and the corresponding cycle time is 201 h [see Fig. 

VII. 
It is important to note that both solutions are 

feasible. This means that the demands are satisfied. 
For example, in the first solution the production 

rates for A, B and C are 100, 50 and 738 kg/h and 
for the second case are 100,SO and 735 kg/h respec- 
tively. The main difference between the two solu- 
tions is in the arrangement of the intermediate 
inventory levels. One can see in Fig. 5 that apart 
from the fact of having a smaller profit, the second 
solution is clearly worse since the inventory levels 
are much larger. Besides, there is no apparent 
justification for having the shift in the schedule of 
stage 2 with respect to stage 1. 

The MINLP model was composed of 9 binary O-l 
variables, 143 continuous variables and 164 con- 
straints; 10.1 CPU (IBM-6000) were required to 
solve this problem with DICOPT + + (Viswanathan 
and Grossmann, 1990). The NLP model with the 
smooth approximation involved 134 variables and 
137 constraints; 2.1 CPU s were required with 
GAMS/MINOS (Brooke et al., 1988). 

The results obtained so far for fixed sequences 
have not revealed existence of multiple optima for 
the mixed integer representation, although no guar- 
antee of global optimality (convexity characteriza- 
tions) have been derived for the model. On the 
other hand, a large number of binary variables is 
introduced to the model which can make the solu- 
tion computationally expensive. 

SOLUTION PROCEDURE 

As shown in the last section the max-min opera- 
tors in the inventory constraints (12) can be 
removed using the differentiable MINLP formula- 
tion (Pl) which can be solved in principle by the 
methods developed in the literature: generalized 
Benders decomposition (Geoffrion, 1972; Sahinidis 
and Grossmann, 1991b) and outer approximation 
(Duran and Grossmann, 1986a; Kocis and 
Grossmann, 1989; Viswanathan and Grossmann, 
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stage 1 - 

S~ge2-__-_-_____-,-_ 

A Cycletime=207h 

214 ‘I-ii(h) 

(a) MINLP solution. Profit = $723 /h 

Stage 1 - 

Stage2 *-------_ 
..a-_ 

Inmj( Cycle time = 201 h 
hvm 
Level 

(-1 loo 

50 

1 / 
/I / 

201 . . . 5370 5571 Tiie 0 

(b) NLP solution. Profit = $687 /h 

Fig. 5. Gantt chart for the solutions of Example 1. 

1990). However, even with these reformulations it is 

clear that both size and complexity are major issues 

in the solution of such a model. 

An algorithm which is based on combining gener- 

alized Benders decomposition [v-GBD method as 

defined by Sahinidis and Grossmann (1991b)] and 

outer approximation (augmented penalty method) is 

proposed in this paper and compared to the outer 

approximation method implemented in the code 

DICOPT+ + (Viswanathan and Grossmann, 1990). 

Figure 6 illustrates the proposed solution method. 

The motivation behind this method is to consider 

the optimization of the cycle time for a fixed 

sequence as a subproblem and the optimization of 
the sequence as part of a master problem. The basic 

steps are as follows: 

Step I (initiuliration) 

Determine an initial assignment by fixing the 

binary variables y,. Set Profit”= Z, piyi,+,. ProW = 

- 00 and q = 1. Select the convergence parameter E. 

i.e. the desired e% optimality of the solution. 

Fixed sequence 
optimizatiau 

Fig. 6. Proposed solution method. 



Optima1 cyclic scheduling x07 

Step 2 

Solve the MINLP subproblem (Pl) with fixed Y, 
using DICOPT+ + to optimize the cycle time. The 
solution of this problem ProW can be used to 
update the lower bound: ProfitL = max{Profit’, 
ProfitY}. If (Profit” - ProfitL)/Profit”~e/lOO, stop. 
Otherwise, go to Step 3. 

Step 3 

Construct and solve a Senders MILP master 
problem to determine new assignment variables y,. 
The solution of this problem yields an upper bound 
for the profit. The MILP master is given by: 

ProfitU = max r7 

subject to: 

r =G L’(Yik) r=l. 

2 yik= l 
k 

c yik= 1 

i 

PER’ y,={o, 1) Vi Vk 

where L’ is the Lagrangian defined as: 

Vi 

Vk 

(1% 

4 (20) 

(24 

WI 

M-l 

M-l 

+ 2 2 x PLf?,(TL, - Yik 1 
i k ,,,=I 

M-l 

+ c c 2 ,&,(X;~w, - Yik) 
i k n, = I 

M-l 

+ 2 2 2 j&,(&u - yik ) 

+ 2 c c j&>(TsP:k,,, - &hk ) 
, h ,,a = I 

M-l 

+ c 2 c ~L(TepL,,, - u;r,&k ). (21) 
I !. I,, = I 

In the above expression Profit” is the value of the 
objective function in (1) and ,& ,,,, ,& ,,,, p$ ,,,, ph,,, are 
the Lagrange multipliers of constraints (4d). (oh). 
( ItJb), (1 I b) respectively. The Lagrange multipliers 
j4:k,,,. PU:~,,!. ,&,,, correspond to constraints (22a). (22b) 
and (22~). which will be described later in this 
section. 

Step 4 

Tf (Profit”-ProfitL)lProfitu~e/lOO, stop. 
Otherwise, set q = q + 1 and return to step 2. 

Note that in step 2 the interesting feature is that 
an MINLP subproblem is being solved as opposed to 
an NLP subproblem. The justification for this is 
simply that the solution to the MINLP in step 2 
corresponds to the solution of an equivalent NLP 
which, however, is nondifferentiable. This subprob- 
lem is equivalent to the scheduling problem for fixed 
sequence. The binary variables are xBn,, x&n, and .&, 
which are used to model the nondifferentiabilities in 
(18). In order to reduce the search in the subprob- 
lem, the following logic constraints can be added: 

yi~-_r,l~,,,~O ViVkm=l.. .M-1 (22a) 

YiR-_&,,,~O ViVkm=l.. .M-1 (22b) 

Y,k--_&,,>t, ViVkm= 1. . . M- 1. (22c) 

The cuts (22a), (22b), (22~) state that when the 
product i is not assigned to time slot k, i.e. Yik = 0, all 
the corresponding binary variables will also have the 
value zero. Furthermore, the following additional 
cuts can be introduced: 

~x~~,,,~l Vi m=l.. . M-l (23a) 

;x;,,+l Vi m=l.. . M-l (23b) 
k 

~xfk,,,~l vi m=I...M-1 (23~) 

-&.._I Vkm=l...M-1 (24a) 
, 

~x;,,,~l Vk m=l...M-1 (24b) 
i 

2x;:-,,+I Vk m=l...M-1. (24~) 
i 

Constraints (23a). (23b), (23~) and (24a). (24b). 
(24c) reflect the fact that exactly one product will be 
assigned to one time slot and vice versa. Therefore 
at most one binary variable will be necessary to 
describe the inventories for every product and every 
time slot. 

It should also be noted that in order to avoid 
infeasible MINLP subproblems it is possible to add 
slack variables to the demand constraints in (7) as 
discussed in Sahinidis and Grossmann (1991a). 

As a means of achieving faster convergence, the 
master problem of Benders in step 3 is strengthened 



808 J. M. PINTO and I. E. GROSSMANN 

by the incorporation of valid upper bounds. Such 
bounds are linearizations of the subproblem objec- 
tive function, resulting in an outer approximation 
strategy (Duran and Grossmann, 1986a). Instead of 
linearizing the objective function itself, the tech- 
nique is performed on a valid upper bound function, 

wpiknt cl 
Profit=2 C~~7-z 

i k 

X TPPikM- (25) 

In (25) C, is an underestimation of the transition 
costs over the stages. This is taken as the summation 
of the smallest possible transition costs for the pro- 
ducts. Based on the solution xq = (Wp,X,,, Tdf, 

Tpp$“,) of the subproblem in iteration q we can 
include the following outerlinearization of (25) into 
the master problem of iteration q + 1: 

- - 

model and its solution method. The solution of the 
master MILP problems was obtained with the code 
OSL (IBM, 1991) that performs a branch and bound 
search. The MINLP problems were solved with the 
outer approximation code DICOPT + + version 
2.4.1 (Viswanathan and Grossmann, 1990), includ- 
ing the subproblem in the proposed method. Three 
examples are presented: Example 2 illustrates the 
case in which the selection of a sequence with non- 
minimal changeover leads to an optimal schedule. In 
Example 3, a 5 product, 2 stage problem is studied 
and variations in parameters are performed. 
Example 4 deals with a larger problem consisting of 
8 products in 3 stages. 

rj Z Profit 3 Profit(x) 2 Profit(x4) 

+ VProfit(xY) (x -xv). (26) 
EXAMPLE 2-TRADE-OFF BETWEEN CHANGEOVER 

TIMES AND TOTAL COST 

In this way the variables Wpikw~ Tc and Tppikn, 
must be included in the master problem along with 
the constraints (4a), (4b), (4d), (4e) and (5f). 

REMARKS 

The proposed decomposition method may fail to 
identify the global optimum. This is due to the 
presence of nondifferentiabilities in the subprob- 
lems which, even if they are modeled with mixed 
integer constraints, makes the projected (master) 
problem nonconvex. Therefore, the Benders cuts 
are not guaranteed to provide valid bounds to the 
objective function (see Sahinidis and Grossmann, 
1991b). Appendix C illustrates through a small 
example one situation where the Benders method 
[v-GBD method as defined by Sahinidis and 
Grossmann (1991b)] might fail to find the global 
optimum on a nondifferentiable MINLP. 

In principle, a possible way of solving the 
sequencing and scheduling problem would be to 
solve the problem in two levels: (1) the sequence is 
selected first by minimizing the total changeovers; 
and (2) the optimal schedule is determined for that 
fixed sequence. The purpose of this example is to 
demonstrate that this does not necessarily yield the 
optimal solution. There are complex interactions in 
the model between transition, inventory costs and 
profit that do not always allow this problem 
decomposition. 

It should also be noted that if the MINLP model is 
solved directly without the decomposition scheme 
there is in fact no difficulty with the nondifferentia- 
bilities as these are treated with O-l variables. In 
this case the only source of nonconvexity is the 
objective function which consists of fractional terms 
[see equation (l)]. 

Consider the case of three products A, B and C 
being processed in two stages. The prices and 
demands of the products, processing rates and 
inventory costs are the same as in the motivating 
example (see Table 1). The transition times are 
given in Table 4 with transition costs being pro- 
portional to them. The optimal schedule is given in 
Fig. 7 with sequence A-B-C and total changeover 
of 34 h (12 for stage 1 and 22 for stage 2). The 
corresponding profit is $297/h with a cycle time of 
195.6 h. 

COMPUTATIONAL RESULTS 

It is important to note that the optimal schedule 
does not give rise to the smallest changeover time. 
The sequence A-C-B has a total changeover of 29 h 
(25 for stage 1 and 4 for stage 2) but then the optimal 
profit for this sequence is only $251/h with a cycle 
time of 232.6 h. 

The modeling system GAMS (Brooke et al., 1988) Despite the results of the example above, it is 
was used in order to implement the scheduling likely that in many cases decomposing the problem 

Table 4. Transition times for Example 2 

stage 1 stage 2 

Product A B C A B C 

A - 5 8 I1 1 
B 10 3 z 5 
C 4 7 - 6 1 - 
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C 

Stage 1 - 1 4 

stage2 L 11 5 2 

+-------------* 

Cycle time = 195.6 h 

Level 
(ton) 

10 

5 

Time (h) 

809 

Fig. 7. Optimal solution of Example 2. 

by determining first the sequence with minimum EXAMPLE 3-A 5 PRODUCT, 2 STAGE PROBLEM 

changeover times followed by the optimization for 
fixed sequence may produce the same solution of the This example consists of 5 products to be pro- 
overail MINLP model. In this case, however, the cessed in 2 stages. Data are shown in Table 5. There 
solution of the MINLP of step 2 in the proposed are 100 binary variables (25 assignment variables 
procedure is still required. and 75 logical variables for the inventory levels), 527 

Table.5. Prices, demands, processing rates, inventory costs and transition 
times in Example 3 

Product 
Prices/Demands 

Price ($/ton) Demand (kg/h) Demand (%) 

A 4oMl 60 8.0 
6 1500 54 7.2 
C 6500 500 66.8 
D 3000 45 6.0 
E 2500 90 12.0 

Product 

Processing Rates/Inventory Costs 
stage I Stage 2 

Processing Intermediate Processing Final 
rate storage rate inventory 

(kg/h) (Won) (kg/h) ($/ton.h) 

A 

D 
E 

1170 121.8 1120 4.06 
1340 121.8 1290 4.06 
1340 121.8 1340 4.06 
1210 121.8 1160 4.06 
1340 121.8 1290 4.06 

Transition Times (Sequence Dependent) (h) 
Transition times (h)-stage 1 Transition times (h)-stage 2 

Product A B C D E A B C D E 

A - 10 10 10 10 
3 

3 3 12 4 
10 - 

1 
4 2 - 

2 
12 4 

10 1 4 2 3 1 12 4 

D 10 4 4 - 4 12 12 12 - E 10 2 2 4 - 4 4 4 12 ” 
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Cycletime-%Q.Eh -------------__-__c 

15 kmay~i 
t- O-0 n 

l:h_ . _ . J[ 
100 260 300 460 500 Tim=&) 

Fig. 8. Gantt chart and intermediate inventory level for 
Example 3. 

Table 6. Production rates and inventory levels of final products for 
Example 3 

Production Increase over Inventory levels of 
rates minimum demand final products 

Product (kg/h) (Wh) (ton) 

A 60 0 33.2 
B 54 0 29.9 
C 989 489 548.1 
D 4.5 0 24.9 
E 90 0 49.9 

Fig. 9. Profit vs cycle time for Example 3 

continuous variables and 727 equations. The compu- 
tational times are shown in Table 10. The transition 
costs are proportional to the transition times in the 
first stage and each transition hour costs $760/h. 

The schedule of the optimal solution, obtained by 
both the outer approximation and the proposed 
method is shown in Fig. 8. In the optimal solution 
the production of C tends to be high (see Table 6), 
since it is the most valuable product. Also the 

production of C in the 2 stages is almost simulta- 
neous in order to reduce intermediate inventory 
levels. The optimal profit is $6513/h for a cycle time 
of approx. 24 days (569.8 h). 

The influence of the cycle time on the profit is 
illustrated in Fig. 9. We can notice that the profit 
decreases rapidly for small cycle times since in that 
case the transition costs are significant _ On the other 
hand, for larger cycle times, as inventory costs are 
increased, changes in the profit become less sensi- 
tive to the selection of the cycle time. 

The transition times were modified in order to 
determine their impact in the schedule (see Fig. 10). 
Smaller transition times allow reduced cycle time 
lengths while yielding higher productivity and there- 
fore larger profits are achieved. Also, note that the 
cycle time and profit are quite sensitive for + 10% 
changes in the transition times. The final inventory 
costs are related to the length of the cycle time in the 
opposite way: large cost values require a small cycle 
time, as it is seen in Fig. 11. Changes in the intenne- 
diate inventory costs for this specific example did 
have almost no consequence in the optimal schedule 
and profit. 

EXAMPLE &AN 8 PRODUCT, 3 STAGE PROBLEM 

A larger system consisting of 8 products and 3 
stages is considered. Data for the problem are given 
in Table 7. The processing rates for each product are 
different for different stages and the transition costs 
are all sequence dependent. The demands are also 
given as a percentage of the total demand of 

-60 40 -20 0 20 40 60 -60 40 -20 0 

%cLsyc tmdtionthres SC-W trammoa5mes 

Fig. 10. Optimal cycle time and profit vs variation in transition times (Example 3). 
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Fig. 11. Optimal cycle time and profit vs final inventory cost (Example 3). 

Table 7. Prices. demands. processing rates, inventory costs and transition times in Example 4 

Product 
Prices/Demands 

Price (f/ton) Demand (kg/h) Demand (%) 

4mJ 24 4.4 
1500 12 2.2 
6500 350 64.4 
3000 30 5.5 
2500 60 11.0 
3700 10 1.8 
loo0 40 7.4 
2OtX.J 18 3.3 

Product 

Processing Rates/Inventory Costs 
Stage 1 stage 2 

Processing Intermediate Processing Intermediate 
rate storage rate storage 

(kg/h) (S/ton) (kg/h) (S/ton) 

stage 3 

Processing Final 
rate inventory 

(kg/h) (S1ton.h) 

1170 121.8 1120 121.8 
1340 121.8 1290 121.8 
1340 121.8 1340 121.8 
1210 121.8 1160 121.8 
1340 121.8 1290 121.8 
1340 121.8 1340 121.8 
950 121.8 950 121.8 

1210 121.8 1290 121.8 

1120 
1860 
1340 
1420 
l940 
1340 
950 

1860 

4.06 
4.06 
4.06 
4.06 
4.06 
4.06 
4.06 
4.06 

Transition Times (Sequence Dependent) (h) 
Product A B C D E F G H 

- 
3 

1; 
4 
4 
2 
3 

2 
2 
8 

10 
3 

10 
4 

3 
- 

1 
12 
4 
4 
3 
2 

3 
1 

- 
12 
4 
4 

9 

1 
1 

12 

Stage 2 
12 
12 
12 
- 
12 
12 
12 
12 

Stage 3 
8 

: 
- 
10 
8 

10 
8 

4 
4 
4 

12 
- 

1 
4 
4 

4 
4 
4 

12 
1 

- 
4 
4 

5 
3 

12 
4 
4 

- 
3 

10 
10 
10 
10 

10 
8 

10 

s 
3 
8 

10 

:: 
10 
10 
8 

10 
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stage1 11 A, , 
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s-e OW 
stages 1-2 

20 
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-we (ton) 
Stages 2-3 

Fig. 12. Optimal schedule for Example 4. 

Table 8. Production rates and inventory levels of final products for 
Example 4 

Production Increase over Inventory levels of 
rates minimum demand final products 

Product (k/h) &g/h) (ton) 

A 24 0 16.2 
B 12 0 8.1 
C 1039.2 689.2 701 
D 0 20.2 
E 

z 
0 40.5 

F 10 0 6.7 
G 40 0 27 
H I8 0 12.1 

544 kg/h. The transition costs are $750 from product 
B to all products in the 3 stages, $770 for C and $760 
for the remaining products. The MINLP problem 
consists of 448 binary O-l variables, 1970 continuous 
variables and 3002 constraints. 

The optimal schedule has a profit of $6609/h and a 
cycle time of approx. 28 days (674.6 h). The 
sequence, processing times and intermediate storage 
profiles are shown in Fig. 12. Note that the demands 
are satisfied for all products, but since C is the most 
valuable product its processing largely exceeds the 
demand as seen in Table 8. The processing times 
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Table 9. Processing times and transition times for optimal schcdulc of 
Example 4 

Proccssing Times (Transition Times) (h) 
Stage A C B E FF H D G 

1 13.8 523.2 6.0 30.2 5.0 10.0 16.7 28.4 
(10) (1) (2) (1) (1) (4) (12) (10) 

2 14.5 523.2 6.3 31.41 5.0 
(3) (1) (4) (1) (4) c:;; 

17.4 28.4 
(12) (2) 

3 14.5 523.2 $1 21.8 5.0 
(2) (1) (10) (4) ;; 

14.3 28.4 
00) (10) 

Table 10. Computational performance of problems 

Problems 

Products stages Algorithm 
Major 

iterations 
CPU time 

(s)* 

Solver times (%) 

Subproblem MILP master 

3 2 Proposed method 2 6.5 94.80 5.u) 
DICOPT+ + 3 3.9 55.98 44.02 

4 2 Proposed method 4 16.3 89.66 10.34 
DICOPT+ + 3 8.7 48.40 51.60 

4 4 Proposed method 3 52.5 96.86 3.14 
DICOPT+ + 3 47.4 29.93 70.07 

5 2 Proposed method 4 28.4 84.83 15.17 
DICOPT + + 5 44.5 42.11 57.&9 

S 4 Proposed method 6 252.7 94.44 5.56 
DICOPT+ + 4 262.6 15.49 84.51 

6 3 Proposed method 
DICOPT + + 

2 184.1 so.34 19.66 
824.4 9.31 90.69 

7 2 Proposed method 4 186.4 33.31 66.69 
DICOPT + + 3 319.7 20.21 79.79 

7 3 Proposed method 
DICOPT + + 

4 707.2 44.02 55.98 
832.3 15.33 84.67 

8 3 Proposed method 7 2931.6 21.63 78.37 
DICOPT + + 3 5630.9 3.60 %.40 

9 2 Proposed method 5 2433.2 9.45 90.55 
DICOFT + + 5 3238.6 7.95 92.05 

l Workstation HP 9000-750. 

and the transition times in all stages for the optimal 
schedule are shown in Table 9. 

COMPUTATIONAL TRENDS 

While computational trends with problem size are 
difficult to establish for MINLP scheduling prob- 
lems, the computational results of 10 problems for 
different number of products and stages is reported 
in Table 10. The corresponding sizes of the MINLP 
problems are given in Table 11. Note that Examples 
2, 3 and 4 presented previously correspond to the 
first, fourth and ninth entries in these tables. 

Table 11. Size of MINLP problems 

Problems 

Products stages 
o-l 

variables 
Continuous 

variables Constraints 

3 2 36 191 293 
4 2 64 334 486 

5” 2” 160 100 614 527 1142 727 
S 4 250 947 1697 
6 3 252 1070 1688 
7 2 1% 1087 1353 
7 3 343 1479 2242 
8 3 44a 1970 3002 
9 2 324 1919 2171 

CXE 18:9-D 

As can be seen from Table 10 the proposed 
method generally requires, as one might expect, a 
larger number of major iterations. Note also that for 
both methods the percentage of CPU time spent on 
solving the MILP master problem increases with 
problem size, although the increase is less dramatic 
in the proposed method due to the fact that the 
combinatorial part of the model is decomposed. 
Note also that in the first three problems 
DICOFT + + requires less time than the proposed 
method (up to a factor of 2). This trend, however, is 
reversed in the last five problems where the pro- 
posed method typically achieved savings of a factor 
of 2 and up to 4 in one case. While these trends may 
not be totally conclusive, they do seem to indicate 
that the proposed decomposition method becomes 
increasingly attractive for larger problems. 

CONCLUSIONS 

The cyclic scheduling of multistage multiproduct 
continuous plants has been discussed in this paper. 
It has been shown that the problem can be modeled 
as a large scale MINLP model which involves non- 
differentiabiities in the inventory equations. Two 
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alternative ways of handling the nondifferentiabili- 
ties were tested: smooth approximation and mixed 
integer representation. The latter was found to 
avoid the multiple local optima which were obtained 
with the former. However, this representation has 
the drawback of increasing the combinatorial part of 
the model. 

The solution of the scheduling problem can in 
principle be accomplished with the outer approxi- 
mation method as implemented in DICOPT+ + . 
However, in order to tackle larger problems a solu- 
tion approach based on generalized Benders 
decomposition and outer approximation has been 
proposed. As has been shown with the numerical 
results, the computational requirements of the pro- 

posed method are reasonable. Also, the examples 

have shown the economic potential and trade-offs 
involved in the optimization of these systems. 
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APPENDIX A 

On the Inventory Equations 

The inventory equations for intermediates given in (6) 
are derived, in addition to the modeling of the inventory 
for final products in equation (1). Although not present in 
the model, inventory costs for feedstocks can be handled in 
a similar way as the inventories for final products in the 
objective function. 

Znuentories of intermediates 

Let i be the product assigned to time slot k. Consider its 
production between stages m and m + 1. The intermediate 
storage increases with production in stage m and decreases 
with production in stage m + 1. 

ZO,, is the intermediate inventory level at the beginning 
of the cycle. With the start of production in stage m its 
level increases with a constant rate ykrn until the beginning 
of production in stage m + 1. Another possibility that may 
happen is that the production in stage m+ 1 begins only 
after the end of processing in stage m. In this case, the rate 
of increase in the intermediate level is constant at y,_ 
throughout the processing in stage m. These two possible 
cases are represented in equation (6a): 

Ilk,, = y*,min{ T&, + , - %,, , Tpr,,, I+ IOk, 

Vkm=l...M-1. (6a) 

At the start of production in stage m+ 1 the inventory 
level is II,_,. As seen in equation (6b): 

12, = (ok,” - Q*,,+ I~k,n+I haxCO, Te,,,, 
- Ts *nr+ I) + Zl/u~ Vkm=l...M-1 (6b) 
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there is a net production or depletion of the intermediate 
that depends on the processing rates in both stages. In 
other words, if yk,,, > ak,,,yk,,, there is an increase in the 
intermediate level; if the opposite happens the level 
decreases. Note that a,,, is the mass balance coefficient 
in stage m + 1. In case the production in stage m ends 
before the start of production in stage m + 1 the level of 
intermediate remains constant. 

At the intermediate level Q,, there is a decrease to the 
level 13/, due to the production in stage m + 1. Its rate is 
given by the processing rate or,,,+,. The situation is analo- 
gous to the one in equation (6a). The production in stage 
m + 1 may begin either after the end of production in stage 
m + 1 in which case the depletion occurs throughout the 
processing time Tp,,, , or before its end in which case only 
the difference of the end times has to be accounted for. 
Equation (6~) represents the two possibilities. 

+ I2knt Qkm=l... M-l. (62) 

The general cases are represented in Fig. 4. In Fig. 4(a) 
the processing in stage m + 1 begins after the production is 
over, while in Fig. 4(b) it is shown the case in which the 

processing in stage m + 1 begins before the end of produc- 
tion in stage m. Note that in the latter case. the inventory 
level decreases between II, and &,,(yk,,,< ak,,,+,yk,,,+,). 

Finally, some particular cases may occur. Firstly, the two 
stages may begin and finish processing at the same time. In 
this case the processing rates are the same and there is no 
formation of intermediate inventory. In other words, the 
two stages behave as a single stage. Secondly, the process- 
ing may begin at the same time but due to a smaller 
processing rate in stage m + 1 the processing finishes later 
[see Fig. At(a)]. Thirdly, the processing in both stages may 
finish at the same time, but due to a smaller processing rate 
at stage m its processing starts earlier [Fig. Al(b)]. Finally, 
it may happen that the processing in stage m finishes 
exactly at the beginning of processing in stage m + 1, in 
which case the inventory profile is as in Fig. Al(c). 

Inventories of final products 

The inventory cost of the final product is proportional to 
the integral of the inventory function along time. Given for 
product i the minimum constant demand rate di, the 
quantity Wpik,/Tc is the actual demand being satisfied, 
according to equation (7). Therefore, the average amount 
produced is given by: 
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In order to satisfy the demand rates the amount W,,,, of 
product i in the last stage divided by the cycle time must be 
equal to the demand rate di. Therefore: 

Y=@ Gballol 

#==O - . 
b 

I 2 w 

Fig. Cl. Feasible region for small example. 

wi= 2 wPVM 
YPiM-~ 

> 
TPPM. (AlI 

k 

The corresponding integral can be calculated by the 
triangle area, as seen in Fig. A2. This area is equal to: 

WPikM 
yp(pinr-~ > TPPwTC. (A2) 

The resulting cost formula for the final inventory is the 
following: 

final inventory cost =i c c ( ypiM - %) TppikM. (A3) 
i k 

Note that in (A3) the cycle time vanished since the profit 
is calculated over a unit time basis. 

APPENDIX B 

Feasibility of the Scheduling Problem 

A very important issue in tbe scheduling problem con- 
sidered in this paper is whether there will be a feasible 
solution for a given set of demands. Elmaghraby (1978) 
considers this question for the single machine problem. He 
proposed an IP formulation that examines the sufficient 
and necessary conditions. In the present case, this formula- 
tion is more complex. However, a simple necessary con- 
dition can be derived to check feasibility of a given set of 
parameters. This condition can be verified prior to the 
sotution of the model. 

Consider equation (5f). Dividing both sides by Tc and 
neglecting the transition times (second term): 

Wm. 031) 

Using equations (4a) and (4e), (Bt) becomes: 

F WPikM= d,TC Vi. @3) 

Note that only one term in the summation is non zero. 
Moreover, equation (B3) is equivalent to equation (7) 
satisfied at equality. Substituting (B3) in (B2) for m=M 
yields: 

?&=I. (B4) 

For the remaining stages (m = 1, . , M - 1) the same 
condition holds except that the mass balance coefficients 
(xi,,, have to be taken into account: 

Note that the inequalities in (B4) and (B5) can be easily 
tested to verify whether a feasible schedule might exist for 
a given set of demands. 

APPENDIX C 

Counterexample for the Nondifferentiable MINLP 

Consider the small example below: 

subject to: 

Minz=-4u+2w++y (Cl) 

u=max{O,w-1) (W 

wc2y (C3) 

wz=2y (C4) 

U=O y=o, 1. (C5) 

The feasible space of this nondifferentiable MILP in the 
u-w space is shown in Fig. Cl. Due to the presence of the 
max operator in constraint (C2), the feasible region is 
nonconvex. 

The problem possesses only 2 possible solutions at 
(w, y, u) = (O,O,O) and (w. y, u) = (2,1,1) with objective 
function values of z = 0 and z = l/2, respectively. Although 
the first point corresponds to the global minimum, the 
application of the proposed method may lead to the first 
point. 

Let us consider y = 1 as being the initial value of the 
complicating variable (step 1). The subproblem is solved, 
yielding the values (w. y, u) = (2,1,1). Note that equations 
(C3) and (C4) are equivalent to w =2y. The Lagrange 
multipliers for equations (C3) and (C4) are I, = 0 and 
&= - 2. Therefore, the Lagrangian for the master prob- 
lem is given by: 

Z(y)=-$y+4. (C6) 

The solution of the master problem is Z(l)= l/2. 
Hence, the global minimum at y = 0 is not identified. 


