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In this work, we propose a simultaneous scheduling and control formulation by explicitly incorporating into
the scheduling model process dynamics in the form of differential/algebraic constraints. The formulation
takes into account the interactions between scheduling and control and is able to handle nonlinearities embedded
into the processing system. The simultaneous scheduling and control problems is cast as a mixed-integer
dynamic optimization (MIDO) problem where the simultaneous approach, based on orthogonal collocation
on finite elements, is used to transform it into a mixed-integer nonlinear programming (MINLP) problem.
The proposed simultaneous scheduling and control formulation is tested using three multiproduct continuous
stirred tank reactors featuring difficult nonlinearities.

1. Introduction

Traditionally, scheduling and control (SC) problems in
chemical processes have been addressed separately. From a
scheduling point of view, the interest lies in determining optimal
assignments to equipment production sequences, production
times for each product, and inventory levels that lead to
maximum profit or minimum completion time.1 Commonly,
during this task, the dynamic behavior of the underlying process
is not taken into account. Similarly, when computing optimal
transition trajectories (i.e., optimal values of the manipulated
and controlled variables) between different set of products, one
of the major objectives lies in determining the transition
trajectory featuring minimum transition time.2 When addressing
optimal control problems, it is normally assumed that the
production sequence is fixed.3 Hence, scheduling decisions are
normally neglected in optimal control formulations. In pure
scheduling problems, the transition times between the different
product combinations are assumed to be known as fixed values,
and hence, the dynamic profile of the chosen manipulated and
controlled variables is not taken into account in the optimization
formulation.

It has been recognized,4-7 however, that scheduling and
control problems are closely related problems and that, ideally,
they should be addressed simultaneously rather than sequentially
or solved without taking into account both parts. In this work,
the interactions between scheduling and control problems are
taken into account with the proposed formulation, therefore
leading to improvements in the objective function value and
avoiding suboptimal solutions.

Some early attempts to address the scheduling and dynamic
optimization problem were made by Bhatia and Biegler,4 who
used the aggregate scheduling model by Birewar and Gross-
mann8 to optimize the sizing, scheduling, and processing times
using a nonlinear programming (NLP) model. Mahadevan et
al.5 analyzed grade transition scheduling problems from a robust
closed-loop point of view. These authors did not address the

problem as a mixed-integer dynamic optimization (MIDO)
problem, although it is recognized that optimal grade transition
and scheduling problems should be approached along this line.
They obtained grade schedules by defining easy and hard to
carry out transitions. Chatzidoukas et al.9 proposed a MIDO
formulation for analyzing polymer grade transition and optimal
campaign scheduling. For solving the MIDO problem, they used
the algorithm proposed by Allgor and Barton.10 Smania and
Pinto11 used steady-state models, and discrete time decisions,
for optimizing production campaigns.

There have been more recents papers addressing the schedul-
ing and control problem. Mishra et al.6 made a comparison
between what they denote as the standard recipe approach (SRA)
and the overall optimization approach (OOA) for solving SC
problems. In the SRA approach, process dynamics, through the
direct incorporation of a process mathematical model, is
neglected, and in its place a set of correlations, obtained from
running local optimizations, are developed to capture time
domain behavior. On the other hand, in the OOA approach, the
process dynamic model is included into the formulation. The
set of ordinary differential equations modeling the related
process are discretized and transformed into a set of algebraic
equations.12-14 In particular in ref 14, the authors added
dynamics to state task networks (STN), creating a very large
and difficult to solve problem. In the present work, we are only
adding dynamics to a single unit/single stage. We think that,
even when at first sight the approach used in ref 14 and our
MIDO strategy might look similar, they are not. Our MIDO
formulation is significantly smaller than that in ref 14, therefore
leading to a mixed-integer nonlinear programming (MINLP)
problem that is easier to solve. Hence, in the OOA method, the
resulting SC problem is cast as an MINLP problem. In ref 6,
the authors claim that, because in the OOA method the number
of available degrees of freedom is larger than in the SRA
method, the optimal solution obtained by using the OOA method
will be superior to the one obtained using the SRA method, as
their two cases of study show. Although the superiority of the
OOA method for addressing SC problems is clear from their
examples, they concluded that the use of the discretization
approach to transform a MIDO problem into an MINLP problem

* To whom correspondence should be addressed. E-mail: antonio.
flores@uia.mx. Phone/Fax:+52(55)59504074. http://200.13.98.241/
∼antonio.

6698 Ind. Eng. Chem. Res.2006,45, 6698-6712

10.1021/ie051293d CCC: $33.50 © 2006 American Chemical Society
Published on Web 08/31/2006



is not feasible because of the large of number of constraints
generated when discretizing the process dynamic model.
Moreover, the authors solved the MINLP problems by a direct
approach, meaning that they did not use any decomposition
solution strategy aimed to reduce the computational complexity
faced when solving MIDO problems. They concluded that
additional work is needed to improve MIDO solution techniques.
There have been some other approaches using sequential
methods for MIDO problem solutions.15,16In this approach, only
the controlled variables are discretized; the values of the time-
dependent optimal manipulated variables are computed trough
numerical integration. There have been some recent research
efforts17 trying to guarantee global optimality when solving
MIDO problems by sequential methods.

In another recent work,17 scheduling and grade transition for
polymerization systems has been addressed. The authors
proposed a decomposition scheme specifically tailored for the
resulting MIDO problem. On the basis of previous work on
MIDO problem solution strategies,10 the authors proposed to
solve the MIDO problem as a sequence of primal and master
problems. The primal problem contains the dynamic optimiza-
tion part, while the master problem deals with the scheduling
part. The authors report good convergence properties when
analyzing scheduling and grade transition for a polymerization
plant; however, no details of the specific polymerization system
are given. As the authors recognize, their MIDO solution
strategy is highly application specific, and therefore, it would
be difficult to apply to other polymerization systems. Without
enough details about the polymerization process dynamics and
nonlinearities embedded, it is difficult to assess the robustness
of the solution strategy.

In this work, we propose a simultaneous approach to address
scheduling and control problems for a continuous stirred tank
reactor (CSTR) that produces multiple products. We take
advantage of the rich knowledge of scheduling and optimal
control formulations, and we merge them so the final result is
a formulation able to solve simultaneous scheduling and control
problems. We cast the problem as an optimization problem. In
the proposed formulation, integer variables are used to determine
the best production sequence and continuous variables take into
account production times, cycle time, and inventories. Because
dynamic profiles of both manipulated and controlled variables
are also decision variables, the resulting problem is cast as a
mixed-integer dynamic optimization (MIDO) problem. To solve
the MIDO problem, we use a recently proposed methodology18

that consists of transforming the MIDO problem into an MINLP
that can be solved using standard methods such as the outer-
approximation method.19,20 Roughly speaking, the strategy for
solving the MIDO problem consists of using the so-called
simultaneous approach2 for solving optimal control problems
as the way to transform the set of ordinary differential equations
modeling the dynamic system behavior into a set of algebraic
equations. Because of the highly nonlinear behavior embedded
in chemical process models, the resulting MIDO formulation
will be an MINLP problem featuring difficult nonlinearities such
as multiple steady states, parametric sensitivity, bifurcation, and
even chaotic dynamics. In summary, the contributions made in
this work are as follows: (a) a complete and more general
scheduling formulation is used; (b) a robust and numerically
stable simultaneous method is used for approaching the dynamic
optimization phase; and (c) the relationship between nonlinear
behavior and complexity for solving the MIDO problem has
been addressed.

2. Problem Definition

Given are a number of products that are to be manufactured
in a single continuous multiproduct CSTR. Lower bounds for
the product demands expressed as constant rates are specified.
Steady-state operating conditions for manufacturing each product
are also specified, as well as the price of each product and the
inventory and raw materials costs. The problem then consists
of the simultaneous determination of a cyclic schedule (i.e.,
production wheel) and the control profile for the selected
transitions. The major decisions involve selecting the sequence
(i.e., cyclic time and the sequence in which the products will
be manufactured) as well as the transition times, production
rates, length of processing times, amounts manufactured of each
product, and manipulated variables for the transition such that
the profit is maximized.

We should note that the reason the proposed scheduling
problem involves a production wheel with a cyclic schedule is
because the demand rates are assumed to be a constant.
Therefore, the key tradeoffs in determining the cycle time and
the sequence in this problem are between inventory and
transition costs as discussed by Pinto and Grossmann.21 Also
note that a cyclic schedule is equivalent to considering an infinite
horizon in which the cyclic schedule is repeated an infinite
number of times. Such a schedule is only valid and relevant
when the demand rates are constant or nearly constant, as
assumed in this paper.

3. Scheduling and Control MIDO Formulation

In the following simultaneous scheduling and control (SSC)
formulation, we assume that all products are manufactured in a
single CSTR and that the products follow a production wheel,
meaning that all the required products are manufactured, in an
optimal cyclic sequence (see ref 21 for the scheduling formula-
tion). As shown in Figure 1a, the cycle time is divided into a
series of time slots. Within each slot, two operations are carried
out: (a) the transition period, during which dynamic transitions
between two products take place, and (b) the production period,
during which a given product is manufactured around steady-
state conditions. According to this description, Figure 1b depicts
a typical dynamic operating response curve within each slot.
At the beginning of each slot, the CSTR process conditions are
changed (by modifying the manipulated variablesu) until new
desired process operating conditions (as represented by the
system statesx), leading to the manufacture of a new product,

Figure 1. (a) The cyclic time is divided into slots, and within each slot, a
steady-state production period is followed by a transition period. (b) Within
each slot, the system statesx and the manipulated variablesu remain
constant. However, during the transition period, the manipulated variables
change and so do the system states.
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are reached. Afterward, material of the new given product is
manufactured until the demand imposed on such product is met;
during this period, both the system statesx and the manipulated
variablesu remain constant. In this work, we assume that each
product is produced only once within each production wheel.
Also, we assume that, once a production wheel is completed,
new identical cycles are executed indefinitely. Notice that one
slot equals one transition.

To clarify the simultaneous SC MIDO problem formulation,
it has been divided into two parts. The first one deals with the
scheduling part, and the second one deals with the dynamic
optimization part.

3.1. Objective Function.

where φ1 deals with the product profits,φ2 deals with the
inventory costs, andφ3 deals with the transition costs; these
are defined as follows,

As shown, the total process profit is given by the amount
and cost of the manufactured products minus the sum of the
inventory costs and the product transition costs. As a measure
of the transition costs, we use a term that takes into account
the amount of off-specification material produced during product
transition. At each slot, such a term has the following form,

wheretf is the transition time in slotk, Cr is the cost of the raw
material,Tc is the duration of the production wheel cycle,xn is
thenth system state, andxjn is its desired value. Similarly,um is
the mth manipulated variable andujm is its desired value. The
above integral can be approximated by Radau quadrature as
follows:

It should be noted that this form of the transition costs will
force the system to carry out product transitions as soon as
possible, while at the end of a product transition, the states will
take the steady-state values for manufacturing a new product.

Sometimes products’ quality are specified by lower and upper
limits around a central nominal value. Imposing upper and lower
limits in the specification of products would simply require the
replacement of endpoint equations by endpoint inequality
constraints in the dynamic optimization problem discussed later.

Similarly, a more general objective function could be added to
minimize out-of-spec material or maximize productivity. One
could then certainly apply the proposed simultaneous scheduling
and control strategy to an extended version of this problem.

3.1.1. Scheduling Part. 3.1.1.a. Product Assignment.

Equation 6a states that, within each production wheel, any
product can only be manufactured once, while constraint 6b
implies that only one product is manufactured at each time slot.
Because of this constraint, the number of products and slots
turns out to be the same. Equation 6c defines a backward binary
variable (y′ik), meaning that such a variable for producti in slot
k takes the value assigned to the same binary variable but one
slot backward,k - 1. At the first slot, eq 6d defines the
backward binary variable as the value of the same variable at
the last slot. This type of assignment reflects our assumption
of cyclic production wheel. The variabley′ik will be used later
to determine the sequence of product transitions.

3.1.1.b. Amounts Manufactured.

Equation 7a states that the total amount manufactured of each
producti must be equal to or greater than the desired demand
rate times the duration of the production wheel, while eq 7b
indicates that the amount manufactured of producti is computed
as the product of the production rate (Gi) times the time used
(Θi) for manufacturing such product. The production rate is
computed from eq 7c as a simple relationship between the feed
stream flow rate (F°) and the conversion (Xi).

3.1.1.c. Processing Times.

The constraint given by eq 8a sets an upper bound on the time
used for manufacturing producti at slotk. Equation 8b is the
time used for manufacturing producti, while eq 8c defines the
duration time at slotk.

3.1.1.d. Transitions between Products.

max{φ1 + φ2 - φ3} (1)

φ1 ) ∑
i)1

Np Ci
pWi

Tc

(2)

φ2 ) ∑
i)1

Np Ci
s(Gi - Wi /Tc)

2Θi

(3)

φ3 ) ∑
k)1
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∑
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hf k ∑
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((x1
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2 + ... +

(xf ck
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n)2 + (u1
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k)
2 + ... + (uf ck

m - ujk
m)2) (4)

1

Tc

∫0

tf [∑
n

(xn - xjn)2 + ∑
m

(um - ujm)2]Cr dt (5)

∑
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∑
f )1

Nfe

hf k ∑
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Npc Crtf ckΩc,Ncp

Tc
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f ck - xj1

k)
2 + ... +

(xf ck
n - xjk

n)2 + (u1
f ck - uj1

k)
2 + ... + (uf ck

m - ujk
m)2)

∑
k)1

Ns

yik ) 1,∀i (6a)

∑
i)1

Np

yik ) 1, ∀k (6b)

y′ik ) yi,k-1, ∀i, k * 1 (6c)

y′i,1 ) yi,Ns
, ∀i (6d)

Wi g DiTc, ∀i (7a)

Wi ) GiΘi, ∀i (7b)

Gi ) F°(1 - Xi), ∀i (7c)

θik e qmaxyik, ∀i, k (8a)

Θi ) ∑
k)1

Na

θik, ∀i (8b)

pk ) ∑
i)1

Np

θik, ∀k (8c)

zipk g y′pk + yik - 1, ∀i, p, k (9)
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The constraint given in eq 9 is used for defining the binary
production transition variablezipk. If such variable is equal to
1, then a dynamic transition will occur from producti to product
p within slot k; zipk will be zero otherwise.

3.1.1.e. Timing Relations.

Equation 10a defines the transition time from producti to prod-
uct p at slot k. It should be remarked that the termtpi

t stands
only for an estimate of the expected transition times. Because
such transition times depend on process dynamic behavior, they
will be computed iteratively as part of the scheduling and control
formulation. Good initial estimates of the transition times can
be obtained from open-loop dynamic optimization runs between
all pairs of products. If the transition times happen to be difficult
to evaluate, or if the number of combinations of product
schedules turns out to be large,tpi

t values could be set as 4×
the reactor open-loop residence time. First, one needs to guess
transition time values (tpi

t ), solve the MIDO problem, and
check if the computed transition time values (θk

t ) are long
enough to allow safe and smooth grade transition dynamic
behavior. Frequently, large dynamic variations in the states and
manipulated variables behavior are an indication that, by
increasing the guessedtpi

t values, better and smoother dynamic
grade transition behavior could be obtained. Normally, in few
iterations, one can easily obtain acceptable grade transition
dynamic behavior. Equation 10b sets to zero the time at the
beginning of the production wheel cycle corresponding to the
first slot. Equation 10c is used for computing the time at the
end of each slot as the sum of the slot start time plus the
processing time and the transition time. Equation 10d states that
the start time at all the slots, different than the first one, is just
the end time of the previous slot. Equation 10e is used to force
that the end time at each slot be less than the production wheel
cyclic time. Finally, eq 10f is used to obtain the time value
inside each finite element and for each internal collocation point.

3.1.2. Dynamic Optimization Part.To address the optimal
control part, the simultaneous approach2 for solving dynamic
optimization problems was used. In this approach, the dynamic

model representing the system behavior is discretized using the
method of orthogonal collocation on finite elements.22,23Accord-
ing to this procedure, a given slotk is divided into a number of
finite elements. Within each finite element, an adequate number
of internal collocation points is selected, as depicted in Figure
2. Using several finite elements is useful to represent dynamic
profiles with nonsmooth variations. Thereby, the set of ordinary
differential equations comprising the system model is approx-
imated at each collocation point, leading to a set of nonlinear
equations that must be satisfied.

3.1.2.a. Dynamic Mathematical Model Discretization.

The constraints given by eq 11 are used to compute the value
of the system states at each one of the discretized points (xfck

n )
by using the monomial basis representation.xo,fk

n is the nth
system state at the beginning of each element,Ωlc is the
collocation matrix, andx̆fck

n is the first-order derivative of the
nth state. Notice that, when working with the first element,
xo,1k

n represents the specified initial value of thenth state. Also
notice that, in the present formulation, the length of all finite
elements is the same and computed as

3.1.2.b. Continuity Constraint between Finite Elements.

In the simultaneous approach for dynamic optimization prob-
lems, only the states must be continuous when crossing from
one given finite element to the next one; algebraic and
manipulated variables are allowed to exhibit discontinuity
behavior between adjacent finite elements. That is the reason
continuity constraints are not formulated for algebraic and
manipulated variables. We use eq 13 to force continuous state
profiles on all the elements at the beginning of each element
(xo,fk

n ), and they are computed in terms of the same monomial
basis used before for defining the value of the system states.

3.1.2.c. Model Behavior at Each Collocation Point.

Equation 14 is used for computing the value of the first-order
derivatives of the systems at finite elementf of collocation point
c in slotk. Those equations simply represet the right-hand sides
of the dynamic model. Because our scheduling and control
formulation is system independent, we have used the notation
fn to represent the right-hand side of thenth ordinary differential
equation describing any desired dynamic system.

3.1.2.d. Initial and Final Controlled and Manipulated
Variable Values at Each Slot.

Figure 2. Simultaneous discretization approach for dealing with dynamic
optimization problems. Each slotk is divided intoNfe finite elements. Within
each finite elementf, a set ofNcp collocation pointsc is selected.
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The desired value of each state at the beginning of slotk (xin,k
n )

is computed in eqs 15 and 16. Equation 17 define the values of
the state variables at the end of each slotk (xjk

n). It should be
stressed that the state values at the beginning and end of each
slot k are given by the corresponding steady-state values (xss,i

n )
calculated a priori.xss,i

n simply stands for the steady-state value
of the manufacturing producti. They can be easily obtained
from open-loop steady-state simulation of the processing system.
Similarly, eqs 18 and 19 define the values of the manipulated
variables at the beginning of each slotk (uin,k

m ) and at the end of
the slotk (ujk

m). Equation 20 enforces the system states to take
the desired state values at each slotk. A similar situation occurs
with the values of the manipulated variables. Equation 21 fixes
the values at the first finite element and first collocation point
of each slotk (u1,1,k

m ) as the value that such variable takes at the
beginning of the same slotk. Equation 22 determines the values
of the manipulated variables at the last finite element and last
collocation point of slotk (uNfe,Ncp,k

m ) as the desired steady-state
value of the same variable at slotk (ujk

m). Finally, eq 23
determines the values of the system states at the beginning of
each slot (xo,1,k

n ).
3.1.2.e. Lower and Upper Bounds on the Decision Vari-

ables.

Equations 24a and 24b simply constrain the values of both the
system states and manipulated variables to lie within acceptable
lower and upper bounds.

3.2. Solution Algorithm. To solve the simultaneous schedul-
ing and control problem, the simultaneous approach for solving
dynamic optimization problems was used to transform the
MIDO problem into an MINLP whose solution was attempted
by the well-known outer approximation approach20 as imple-
mented in the DICOPT software. Although the solution of the
resulting MINLP is direct, the determination of some variables
related to the dynamic optimization part requires an iterative
procedure. The transition timestpi

t and the number of finite
elementsNfe are the two main variables that must be determined
in an iterative manner. Initiallytpi

t can be set to an upper value

of 4× the reactor open-loop residence time, while settingNfe

) 20 tends to produce good dynamic transition profiles. Of
course, both variables need to be updated depending upon the
quality of the results and/or if the MINLP turns out to be
infeasible for a set oftpi

t and Nfe guessed values. Figure 3
depicts the iterative procedure that was used to solve the
simultaneous scheduling and control problem. Since we rely
on local NLP solvers, and no special provisions are taken to
rigorously estimate the bounds with the MILP master problem,
the global optimum solution cannot be guaranteed. As will be
seen in the examples, useful solutions can still be obtained with
the proposed approach.

It should be stressed that, although the transition timestpi
t

are not considered as decision variables, the transition times
obtained from the algorithm depicted in Figure 3 will be very
close to those obtained by consideringtpi

t as decision variables.
The only reason to prefer the optimization formulation as
presented in this work, compared to the case in which the
transition time becomes a decision variable, is because the
present optimization formulation is simpler to deal with.
Insisting in using the transition time as a decision variable will
only increase the nonconvexity of the underlying optimization
formulation. Therefore, according to our experience, solving
scheduling and control MIDO problems, as proposed in the
present paper, will make it easier to solve the resulting
optimization problem

4. Case Studies

To test the proposed simultaneous scheduling and control
formulation, three case studies, with different numbers of
products and different degrees of nonlinear behavior embedded
in the model, were addressed. In all the cases, CSTRs were
used to manufacture the desired products. The case studies range
from CSTRs featuring quasi-linear behavior (first case study)
to CSTRs with input multiplicities (second case study) and
output multiplicities (third case study). In all the cases with
embedded nonlinear behavior, the operating conditions were
chosen around nonlinear behavior regions. We did so because

x̃k
n ) ∑

i)1

Np

xss,i
n yi,k, ∀n, k (17)
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m e umax
m , ∀m, f, c, k (24b)

Figure 3. Iterative algorithm for the solution of the simultaneous scheduling
and control problem.
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most chemical processes featuring optimality conditions tend
to exhibit regions of highly nonlinear behavior24 and to have
an exact idea about the complexities of solving MIDO problems
with embedded nonlinearities. Hopefully, this will allow us to
identify research areas where MIDO formulations/algorithms
require improvements.

4.1. CSTR with a Simple Irreversible Reaction. The
following reaction,

takes place in an isothermal CSTR for manufacturing five
products, A, B, C, D, and E. The dynamic composition model
is given by

whereCo stands for feed stream composition andQ is the control
variable for the dynamic transition in the production of one
product to another. Using the following values of the design
and kinetic parameters,Co ) 1 mol/L, V ) 5000 L,k ) 2 L2/
(mol2‚h), and the five values of the volumetric flowrateQ shown
in Table 1, the five concentration steady statesCR, shown in
the same table, are obtained. All the examples featured in this
work require the steady-states values of the manipulated (u)
and controlled variables (x) for manufacturing each one of the
products. In addition, Table 1 also features values of the demand
rate (Di), product cost (Ci

p), and inventory cost (Ci
s).

Solving the MIDO scheduling and control problem using
GAMS/DICOPT, the optimizer selects the cyclic Af E f D

f C f B production wheel as the one which maximizes the
profit. The objective function value turned out to be $7889,
while the total cycle time was 124.8 h. Additional information
concerning processing times at each slot, production rates, total
amounts of each product, transition times, and initial and ending
times at each slot are shown in Table 2. Regarding the dynamic
behavior of the reactor during product transitions, Figure 4
displays the dynamic profiles of both the manipulated variable
(Q) and the controlled variable (CR). It is interesting to note
that, if the transition times were to be reduced by 1 h, the optimal
sequence changes to Ef D f C f B f A and the objective
function increases to $9685, which shows the impact of
optimizing the transition times in this problem.

It is interesting to compare the optimal MIDO solution against
the second- and third-best cyclic solutions. Moreover, to
compare the performance of DICOPT when solving MIDO
problems, the second- and third-best optimal solutions of all
the examples were always computed using SBB (other MINLP
solver available in GAMS). In the present example, the second
best solution, which was obtained by adding an integer cut, is
in fact a slight variation of the previous one. In this case, the
optimizer selects the cyclic Af D f E f C f B processing
sequence with profit $7791 and a cycle time of 125 h. To learn
the reasons why the first production sequence turns out to be
better than the second one, we need to analyze the numerical
values of each one of the terms of the objective functionφ1,
φ2, andφ3. Those values turn out to be [32397, 23262, 1247]
and [32463, 23330, 1234] for the first and second solutions,
respectively (see Table 3 for information regarding optimal
values of the additional decision variables). From this informa-
tion, we see that both solutions have similarφ1 andφ2 values.
However, the difference between those solutions is the transition
cost: the second solution features a larger transition cost, and
this makes it suboptimal compared to the first one. Dynamic
product transitions for this production sequence are depicted in
Figure 5. As can be seen, the dynamic product transitions feature
a shape that resembles the results of the best MIDO solution.

Figure 4. Optimal dynamic profiles for the volumetric flow rate and reactor
concentration during product transition for the first case study.

Table 2. Simultaneous Scheduling and Control Results for the First
Case Studya

slot product
process
time (h)

production
rate

(kg/h)
w

(kg)
transition
time (h)

T
start
(h)

T
end
(h)

1 A 41.5 9.033 374.31 5 0 46.4
2 E 23.3 1250 29 162.3 5 46.4 74.7
3 D 2.06 607 1 247.7 5 74.7 81.8
4 C 4.48 278.72 1 247.7 5 81.8 91.2
5 B 12.48 80 998.2 21 91.2 124.7

a The objective function value is $7889 and 124.8 h of total cycle time.

Table 3. Simultaneous Scheduling and Control Results for the First
Case Study, Second Best Solutiona

slot product
process
time (h)

production
rate

(kg/h)
w

(kg)
transition
time (h)

T
start
(h)

T
end
(h)

1 A 41.5 9.033 374.31 5 0 46.4
2 D 2.06 607 1 249.4 5 46.4 53.6
3 E 23.4 1250 29 270.4 5 53.6 82
4 C 4.48 278.72 1 249.4 5 82 91.5
5 B 12.48 80 999.5 21 91.5 125

a The objective function value is $7791 and 125 h of total cycle time.

Table 1. Process Data for the First Case Studya

product Q (L/h) CR (mol/L)
demand

rate (kg/h)
product

cost ($/kg)
inventory
cost ($)

A 10 0.0967 3 200 1
B 100 0.2 8 150 1.5
C 400 0.3032 10 130 1.8
D 1000 0.393 10 125 2
E 2500 0.5 10 120 1.7

a A, B, C, D, and E stand for the five products to be manufactured. The
cost of the Raw Material (Cr) Is $10.

3R98
k

P, -RR ) kCR
3

dCR

dt
) Q

V
(Co - CR) + RR (25)
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Regarding the third-best MIDO optimal solution, the optimiz-
er selected the cyclic Bf A f E f C f D production se-
quence with profit $6821.6 and a cycle time of 127 h. Information
about the decision variables of this solution can be found in
Table 4. As we can see, the third optimal solution has a larger
objective function value decrease compared to the second one.
Analyzing the [φ1, φ2, φ3] ) [31967, 23352, 1794] values, we
notice that the third solution features a decrease inφ1 (the profit

associated to product manufacture is smaller) and an increase in
φ3 (larger transition cost). This cost combination makes this
production sequence worse than the first and second ones, even
though the shape of the dynamic transitions looks similar to the
first and second cases, as depicted in Figure 6. The CPU times
(IBM laptop, 1.6 Ghz, Windows XP) needed for MIDO problem
solution were 13.8, 67, and 27.8 s for the best, second, and
third solutions, respectively.

4.2. CSTR with Simultaneous Reactions and Input Mul-
tiplicities. The following set of reactions

is carried out in a continuous and isothermal stirred tank reactor
displayed in Figure 7. Products A, B, and C are manufactured
using different values of the feed stream volumetric flow rates
of the reactants R1, R2, and R3.

The dynamic mathematical model of the above system is as
follows.

where the kinetic expressions follow simple mass action
law kinetics,

Figure 5. Optimal dynamic profiles for the volumetric flow rate and reactor
concentration during product transition for the first case study, second best
solution.

Figure 6. Optimal dynamic profiles for the volumetric flow rate and reactor
concentration during product transition for the first case study, third best
solution.

RB ) k2CR1
CR2

(33)

Table 4. Simultaneous Scheduling and Control Results for the First
Case Study, Third Best Solutiona

slot product
process
time (h)

production
rate

(kg/h)
w

(kg)
transition
time (h)

T
start
(h)

T
end
(h)

1 B 12.7 80 1 012.5 21 0 33.7
2 A 42.04 9.033 379.7 5 33.7 80.7
3 E 23.3 1 250 29 125.4 5 80.7 109
4 C 4.6 278.72 1 265.6 5 109 118.6
5 D 2.09 607 1 265.6 6 118.6 127

a The objective function value is $6821.6 and 127 h of total cycle time.

2R1 98
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A

R1 + R2 98
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B
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k3

C
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)
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(26)
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)
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)

(QR3
CR3

i - QCR3
)

V
+ Rr3

(28)

dCA

dt
)

Q(CA
i - CA)

V
+ RA (29)

dCB

dt
)

Q(CB
i - CB)

V
+ RB (30)

dCC

dt
)

Q(CC
i - CC)

V
+ RC (31)

RA ) k1CR1

2 (32)

6704 Ind. Eng. Chem. Res., Vol. 45, No. 20, 2006



and

whereQR1, QR2, andQR3 are the feed stream volumetric flow
rates of reactants R1, R2, and R3, respectively.Ci is the reactant
concentration,C is the product concentration,V is the reactor
volume, andk1, k2, andk3 are the kinetic rate constants.Q is
the total feed stream volumetric flow rate. The design and kinetic
parameters are shown in Table 5.

The operating conditions leading to the manufacture of each
one of the A, B, and C products are shown in Table 6; also
shown is the steady-state information concerning each product.
From the information contained in this table, we see that the
residence time of product A is larger than the corresponding
ones of products B and C. In fact, product A features a residence
time value that is exactly double products B and C residence
times. This indicates that transition from any product to product
A will be slower than that from product A to any other product.

In reaction systems featuring intermediate products, as the
problem at hand, there is the risk of input multiplicities. This
kind of nonlinear behavior creates a situation where the same
state value is obtained for two different values of the manipu-
lated variable. From a closed-loop control point, this behavior
is undesirable since, under certain conditions, it has been related
to the presence of right-hand plane zeros,25 which limit the
response speed of the closed-loop system. The emergence of
right-hand plane zeros makes the use of proportional-integral-
derivative (PID) controllers impractical because of slope sign
changes.26 Until now, the only way of dealing with input
multiplicities has been to use a controller able to deal with those
systems or by system redesign. In our case, for the operating
and processing conditions shown in Tables 5 and 6, the reaction
system displays input multiplicities as shown in Figure 8. Input
multiplicities were only found for the B and C products;
monotonic behavior was always observed for the A product.

Information regarding the demand rate and inventory and
product costs is shown in Table 7, while simultaneous optimal
scheduling and control results are shown in Table 8. As shown
there, the optimizer selected the cyclic Cf B f A production
sequence. Figure 9 depicts the optimal state transitions for this
production sequence.

Similarly to the first case of study, we found the second best
optimal production sequence. The optimizer selected the cyclic
A f C f B production sequence (see Figure 10). The first
and second solutions feature the same objective function value,
production times, process rates, etc. as shown in Table 8 for
the second production sequence; the sequence in which products
are manufactured is the only difference between both production
sequences. The reason both production sequences feature the
same values of the decision variables is due to the fact that the
production sequence is cyclic and the time horizon is infinite.
Hence, the sequences Cf B f A and B f C f A are
equivalent. Analogously to the steady-state optimal results, the
dynamic optimal transition trajectories of the second and first
solutions are the same. The CPU times for the MIDO problem

solution were 291 and 685 s for the best and second solutions,
respectively.

4.3. CSTR with Output Multiplicities. To compute dynamic
optimal transition trajectories around highly nonlinear regions,
the CSTR model as proposed by Hicks and Ray27 was used.
Because the original parameters set used by these authors did
not lead to multiple steady states, some of the values were
modified in order to end up with a multiplicity map. In
dimensionless form, the model is given by

wherey1 stands for dimensionless concentration (c/cf), y2 is the
dimensionless temperature (T/Jcf), yc is the dimensionless
coolant temperature (Tc/Jcf), yf is the dimensionless feed
temperature (Tf/Jcf), and u is the cooling flowrate. Table 9
contains the numerical values of the parameters used in this
work; this set of parameter values leads one to operate around
the multiplicity region shown in Figure 11.

Our goal is to manufacture four products denoted as A, B,
C, and D. Operating conditions are also displayed in Figure
11. Note that the A and B products are manufactured around
open-loop stable steady states. The C operating point is located
at the point where a stability interchange, together with a Hopf
bifurcation point, takes place. Finally, the D product is
manufactured around a completely unstable open-loop operating
region. In all the cases, the manipulated variable is the cooling
flow rateu. One of the aims of this case study is to demonstrate
that, even in the face of highly nonlinear operating regions and

Figure 7. CSTR flowsheet for the second case study. Products (A, B, and
C) are manufactured using different combinations of the reactants (R1, R2,
and R3).

Table 5. Steady-State Design and Kinetic Information for the
Second Case Study

parameter value units parameter value units

CR1

i 1 mol/L CC
i 0 mol/L

CR2

i 0.8 mol/L V 6000 l

CR3

i 1 mol/L k1 0.1 L/(min‚mol)

CA
i 0 mol/L k2 0.9 L/(min‚mol)

CB
i 0 mol/L k3 1.5 L/(min‚mol)

Table 6. Processing Conditions Leading to the Manufacture of the
A, B, and C Products of the Second Case Study.a

prod QR1 QR2 QR3 CR1 CR2 CR3 CA CB CC

A 100 0 0 0.333 0 0 0.666 0 0
B 100 100 0 0.1335 0.0869 0 0.0534 0.3131 0
C 100 0 100 0.0837 0 0.1048 0.021 0 0.3951

a The cost of the raw material (Cr) Is $5.

RC ) k3CR1
CR3

(34)

Rr1
) -RA - RB - RC (35)

Rr2
) -RB (36)

Rr3
) -RC (37)

Q ) QR1
+ QR2

+ QR3
(38)

dy1

dt
)

1 - y1

θ
- k10 e-N/y2y1 (39)

dy2

dt
)

yf - y2

θ
+ k10 e-N/y2y1 - Ru(y2 - yc) (40)
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open-loop unstable systems, our proposed simultaneous schedul-
ing and control formulation is able to perform satisfactorily and
to determine an optimal scheduling and control solution.
Information regarding the production rate, demand rate, and
inventory costs is shown in Table 10.

In this case, the Af B f C f D scheduling turned out to
be the optimal cyclic production sequence. The profit is $7657
with a total cycle time of 100.6 h. The rest of the optimal values
of the decision variables are shown in Table 11. It should be

Figure 8. Input multiplicities in the second case study. (a) and (b) refer to product B usingQ°R1
andQ°R2

as continuation parameters, respectively. Similarly,
(c) and (d) refer to product C usingQ°R1

and Q°R3
as continuation parameters, respectively, whileCb and Cc stand for composition of products B and C,

respectively.

Table 7. Demand Rate and Product and Inventory Costs for the
Second Case Study Reaction System

product demand (kg/m) product cost ($/kg) inventory cost ($)

A 5 500 1
B 10 400 1.5
C 15 600 1.8

Table 8. Simultaneous Scheduling and Control Results for the
Second Case Studya

slot product
process
time (m)

production
rate

(kg/m)
w

(kg)
transition
time (m)

T
start
(m)

T
end
(m)

1 C 204.2 89.52 18273.3 15 0 219.2
2 B 44.5 71.31 3174.4 15 219.2 278.7
3 A 23.8 66.7 1587.2 15 278.7 317.5

a The objective function value is $32 388 and 317.5 m of total cycle
time.

Table 9. Parameters Values for the Third Case Study Featuring
Output Nonlinearities

θ 20 residence time Tf 300 feed temperature
J 100 (-∆H)/(FCp) k10 300 preexponential factor
cf 7.6 feed concentration Tc 290 coolant temperature
R 1.95× 10-4 dimensionless heat

transfer area
N 5 E1/(RJcf)

Table 10. Process Data for the Third Case Studya

product demand (kg/h) product cost ($/kg) inventory cost ($)

A 100 100 1
B 200 50 1.3
C 400 30 1.4
D 500 80 1.1

a A, B, C, and D stand for the four products to be manufactured.
Information about the steady-state design for each one of the products is
shown in Figure 11. The cost of the raw material (Cr) Is $10.

Table 11. Simultaneous Scheduling and Control Results for the
Third Case Studya

slot product

process
time
(h)

production
rate

(kg/h)
w

(kg)
transition
time (h)

T
start
(h)

T
end
(h)

1 A 28.3 559.9 15 831.7 10 0 38.3
2 B 13.1 613.6 8 044.9 10 38.3 61.4
3 C 13.4 656.1 8 748.9 10 61.4 84.8
4 D 5.8 688.3 4 022.5 10 84.8 100.6

a The objective function value is $7657 and 100.6 h of total cycle time.
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remarked that, in this case study, we have two products (C and
D) whose manufacture demands to operate around open-loop
unstable operating points. The computation of open-loop

dynamic optimal trajectories for open-loop unstable systems is
difficult to carry out using dynamic optimization strategies based
upon the so-called sequential approach.28 On the other hand,

Figure 9. Optimal schedule and dynamic profiles for reactor concentrations and volumetric feed flow rates for the second example.
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the simultaneous approach29 efficiently and naturally deals with
this type of problem without using tricks such as closed-loop
stabilization of the originally unstable system and then running

the dynamic optimization problem. In a previous work,29 we
have provided some theoretical explanations why the simulta-
neous approach copes with open-loop unstable systems. Not

Figure 10. Optimal schedule and dynamic profiles for reactor concentrations and volumetric feed flow rates for the second example, second solution.
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surprisingly, the minimum transition time, independently of the
type of transition, is 10 h. This result is in agreement with
previous calculations related to the open-loop dynamic optimi-
zation of the same reaction system.30 Another point to stress is
that our SSC formulation is able to cope with product transitions
between highly nonlinear regions. As a matter of fact, the Bf
C transitions involves transition from an open-loop stable to an
unstable system through a Hopf bifurcation point where
oscillatory behavior emerges.

From the open-loop poles shown in Table 12, we should
expect to have an oscillatory response for product transitions
because most of the poles have a nonzero imaginary part.
Product transitions ending at product D should feature the
weakest oscillatory behavior because its imaginary part is rather
small. These observations are supported by looking at the
dynamic profiles of both the manipulated and controlled
variables as depicted in Figure 12. Moreover, we would like to
highlight the fact that the nonlinear nature of the product
transitions addressed in this case study can also be appreciated
in the dynamic behavior of the manipulated variableu. In the
previous two case studies, the manipulated variable(s) always
featured a simple steplike form mainly due to the presence of
mild nonlinearities embedded into the system. However, in the
present case study, the dynamic optimal shape of the manipu-
lated variable is not obvious. This is particularly true for the B
f C and the Cf D product transitions that are placed deeper
into the unstable region.

For comparison purposes of the present solution, we found a
second suboptimal solution featuring the cyclic Df A f C f
B production sequence. In this case, the objective function value
was $6070.6 and 104.4 of total cyclic time. The rest of the
optimal values of the decision variables are shown in Table 13.
This solution is suboptimal because the optimizer decided first
to manufacture product D and from there to carry out the product
transition for starting the manufacture of product A. This product
transition turns out to be more expensive because it is hard to
perform, since it involves the widest variation in the open-loop
pole location. From there, the optimizer keeps making product
transitions that are not the best ones in terms of the transition
costs. From product A, the optimizer selects to carry out a
transition toward product C and from here to product B. Those
product transitions are definitely not the best ones in terms of
transition costs. To support the past statements, we computed
theφ1, φ2, andφ3 terms, as defined in eqs 2-4, of the objective
function of the present case study. For the first optimal solution,
these values turn out to be [φ1, φ2, φ3] ) [25553.2, 17633.8,
263], while for the second suboptimal solution those values are
[25303, 18252, 981], in the same order. From this comparison,
we can see that the profit associated with product manufacture
and inventory costs are similar for both production sequences.
The main difference lies in the transition costs. This explains
why the cyclic Df A f C f B production sequence is a
suboptimal solution. The dynamic profiles of both system states
and the manipulated variable are depicted in Figure 13. Again,
the nonlinear behavior embedded into the present system can
be seen in the shape of the manipulated variable between product
transitions.The CPU times for MIDO problem solution were
254 and 47 s for the best and second solutions, respectively.

Figure 11. Multiplicity map (s stable solution,- - unstable solution).

Figure 12. Optimal schedule and dynamic profiles for the third case study.

Table 12. Open-Loop Poles for Products A, B, C, and D of the Third Case Study

product

pole A B C D

1 -0.1352+ 0.1566i -0.0430+ 0.1548i 0.0164+ 0.1147i 0.0524+ 0.0440i
2 -0.1352- 0.1566i -0.0430- 0.1548i 0.0164- 0.1147i 0.0524- 0.0440i

Table 13. Simultaneous Scheduling and Control Results for the
Third Case Study, Second Solutiona

slot product

process
time
(h)

production
rate

(kg/h)
w

(kg)
transition
time (h)

T
start
(h)

T
end
(h)

1 D 6.07 559.9 4176.7 10 0 16.07
2 A 28.9 613.6 16177.2 10 16.07 55
3 C 13.9 656.1 9084.3 12 55 80.8
4 B 13.7 688.3 8353.4 10 80.8 104.4

a The objective function value is $6070.6 and 104.4 h of total cycle time.
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5. Conclusions

In this work, we have addressed the simultaneous cyclic
scheduling and control problem for several multiproduct CSTRs.
Rather than assuming constant transition times and neglecting
process dynamics, a mathematical model, able to describe
dynamic process behavior during product transition, was
embedded into the optimization formulation. Solving the
scheduling and control problem taking into account process
dynamics is the rigorous way to address scheduling problems.

Because highly optimized chemical processes tend to operate
around nonlinear operating regions, we selected as case studies
three problems involving reaction systems, two of which display
highly nonlinear behavior in the form of input and output multi-
plicities, Hopf bifurcation points, and open-loop unstable oper-
ating regions. Even in the face of nonlinear behavior, the proposed
simultaneous cyclic scheduling and control formulation was able
to find optimal production sequences. However, convergence
toward the optimal solution turned out to be harder to achieve
as the nonlinearity of the system increased. Moreover, the pre-
sence of nonlinearities creates nonconvexities in the optim-
ization formulation, probably leading to suboptimal solutions.

From the results of the third example, we notice that the perfor-
mance of SBB for finding MIDO optimal solutions was superior
to the one displayed by DICOPT. It is well-known that the
strength of DICOPT lies in solving problems with large number
of binary variables and mild nonlinearities. On the other hand,
SBB should produce better results for systems with a relatively
small number of binary variables but harder nonlinearities. This
was indeed the behavior observed from both solvers in example
3, which is the one that mainly features these characteristics.

It should be noticed that the scheduling and control problem
is addressed in an open-loop manner (e.g., no control system is
present). In this approach, once the sequence order and optimal
control policies are determined, one should then decide how to
closed-loop track such optimal trajectories.31 In fact, this is one

of the major advantages of the simultaneous dynamic optimiza-
tion approach over other dynamic optimization approaches (e.g.,
sequential approaches). Our approach is able to deal with state
transitions, even if the initial or final (or both) steady states are
open-loop unstable.29 If the sequential approach for optimal
transition involving open-loop unstable steady states is used,
such a procedure will not succeed in computing such trajectories,
simply because, since sequential approaches use numerical
integration for optimal trajectories computation, it is well-known
that unstable steady states cannot be reached by numerical
integration. Therefore, before computing optimal transition
trajectories, the sequential approach requires that all the unstable
modes be removed. Most of the time, this is done by incorporat-
ing a feedback controller. However, in this case, the optimal
transition will depend on the sort of controller and the way in
which it was tuned.

In this work, only local solutions to the resulting discretized
MINLPs were sought. Presently, the computation of global
solutions to NLP problems does not seem to be an easy task.
The available software (e.g., BARON32) tends to work ef-
ficiently mostly for small- and medium-size problems with mild
nonlinearities. The complexity problem grows when dealing with
MINLPs. Because of these reasons and to keep computational
complexity on a reasonable level, in this work we only used
local MINLPs solution techniques such as that embedded in
the DICOPT solver. Of course, the computation of global MIDO
solutions is a problem that deserves to be seriously considered,
and we hope to address this problem in the future.

It must be stressed that, for solving the resulting MIDO
problems, no special initialization method was used. Only initial
estimates for the states and manipulated variables were provided.
To obtain such initial estimates, linear interpolations between
the initial and final states and manipulated variables were used.
Using the DICOPT and SBB programs, no initialization of the
integer variables is needed, since the programs obtained them
by initially solving a relaxed NLP problem. Of course, valid
lower and upper bounds on all the continuous decision variables
have to be imposed, but most of the time they are easy to
propose. The GAMS files used for solving the examples
discussed in this paper are available to interested readers to make
sure they can indeed reproduce our results.

From the results obtained in this work, dealing with larger-
dimension systems featuring stronger nonlinear behavior, MIDO
formulations, like the one presented, need to be improved to
cope with complex dynamic systems. The direct solution of
MIDO problems for systems with the above-mentioned char-
acteristics does not look feasible, and it might require excessive
CPU time. Therefore, a decomposition strategy that exploits the
natural structure of scheduling and control MIDO problems
needs to be developed. Other interesting extensions of the
present work consist of the case when several reactors operate
in parallel33 and of the simultaneous optimization of planning,
scheduling, and control.34,35
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Nomenclature

Indices

products) i, p ) 1, ...,Np

slots) k ) 1, ...,Ns

finite elements) f ) 1, ...,Nfe

Figure 13. Optimal schedule and dynamic profiles for the third case study,
second best solution.
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collocation points) c, l ) 1, ...,Ncp

system states) n ) 1, ...,Nx

manipulated variables) m ) 1, ...,Nu

Decision Variables

yik ) binary variable to denote if producti is assigned to slotk
y′ik ) binary auxiliary variable
zipk ) binary variable to denote if producti is followed by

productp in slot k
pk ) processing time at slotk
tk
e ) final time at slotk

tk
s ) start time at slotk

tfck ) time value inside each finite elementk and for each
internal collocation pointc

Gi ) production rate
Tc ) total production wheel time (h)
xfck

n ) nth system state in finite elementf and collocation point
c of slot k

ufck
m ) mth manipulated variable in finite elementf and
collocation pointc of slot k

Wi ) amount produced of each product (kg)
θik ) processing time of producti in slot k

θk
t ) transition time at slotk

Θi ) total processing time of producti

xo,fk
n ) nth state value at the beginning of the finite elementf of

slot k

xjk
n ) desired value of thenth state at the end of slotk

ujk
m ) desired value of themth manipulated variable at the end
of slot k

xin,k
n ) nth state value at the beginning of slotk

uin,k
n ) mth manipulated variable value at the beginning of
slot k

Xi ) conversion

Parameters

Np ) number of products
Ns ) number of slots
Nfe ) number of finite elements
Ncp ) number of collocation points
Nx ) number of system states
Nu ) number of manipulated variables
Di ) demand rate (kg/h)
Ci

p ) price of products ($/kg)
Ci

s ) cost of inventory [$/(kg/h)]
Cr ) cost of raw material ($)
hfk ) length of finite elementf in slot k
ΩNcp,Ncp ) matrix of Radau quadrature weights
θmax ) upper bound on processing time
tip
t ) estimated value of the transition time between producti

andp

xss,i
n ) nth state steady value of producti

uss,i
m ) mth manipulated variable value of producti

F° ) feed stream volumetric flow rate
Xi ) conversion degree
xmin

n , xmax
n ) minimum and maximum value of the statexn

umin
m , umax

m ) minimum and maximum value of the manipulated
variableum

γNcp ) roots of the Lagrange orthogonal polynomial
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