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Simultaneous Cyclic Scheduling and Control of a Multiproduct CSTR
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In this work, we propose a simultaneous scheduling and control formulation by explicitly incorporating into
the scheduling model process dynamics in the form of differential/algebraic constraints. The formulation
takes into account the interactions between scheduling and control and is able to handle nonlinearities embedded
into the processing system. The simultaneous scheduling and control problems is cast as a mixed-integer
dynamic optimization (MIDO) problem where the simultaneous approach, based on orthogonal collocation
on finite elements, is used to transform it into a mixed-integer nonlinear programming (MINLP) problem.
The proposed simultaneous scheduling and control formulation is tested using three multiproduct continuous
stirred tank reactors featuring difficult nonlinearities.

1. Introduction problem as a mixed-integer dynamic optimization (MIDO)
problem, although it is recognized that optimal grade transition
and scheduling problems should be approached along this line.

ey obtained grade schedules by defining easy and hard to
carry out transitions. Chatzidoukas et’groposed a MIDO

Yormulation for analyzing polymer grade transition and optimal
campaign scheduling. For solving the MIDO problem, they used

the algorithm proposed by Allgor and Bart§hSmania and

Traditionally, scheduling and control (SC) problems in
chemical processes have been addressed separately. From
scheduling point of view, the interest lies in determining optimal
assignments to equipment production sequences, productio
times for each product, and inventory levels that lead to
maximum profit or minimum completion timeCommonly,

) . oo : . for optimizing production campaigns.
transition trajectories (i.e., optimal values of the manipulated .
and controlled variables) between different set of products, one | n€ré have been more recents papers addressing the schedul-
of the major objectives lies in determining the transition INd @nd control problem. Mishra et &imade a comparison
trajectory featuring minimum transition tinféVhen addressing ~ P&tween what they denote as the standard recipe approach (SRA)
optimal control problems, it is normally assumed that the @nd the overall optimization approach (OOA) for solving SC
production sequence is fixéddence, scheduling decisions are Problems. In the SRA approach, process dynamics, through the
normally neglected in optimal control formulations. In pure diréct incorporation of a process mathematical model, is
scheduling problems, the transition times between the different "€glected, and in its place a set of correlations, obtained from
product combinations are assumed to be known as fixed valuesunning local optimizations, are developed to capture time
and hence, the dynamic profile of the chosen manipulated anddomain behavior. On the other hand, in the OOA approach, the

controlled variables is not taken into account in the optimization Process dynamic model is included into the formulation. The
formulation. set of ordinary differential equations modeling the related

It has been recognizéd? however, that scheduling and Process are discretized and transformed into a set of algebraic

control problems are closely related problems and that, ideally, €quations?~** In particular in ref 14, the authors added
they should be addressed simultaneously rather than sequentiallflynamics to state task networks (STN), creating a very large
or solved without taking into account both parts. In this work, and difficult to solve problem. In the present work, we are only
the interactions between scheduling and control problems are2dding dynamics to a single unit/single stage. We think that,
taken into account with the proposed formulation, therefore €ven when at first sight the approach used in ref 14 and our
leading to improvements in the objective function value and MIDO strategy might look similar, they are not. Our MIDO

avoiding suboptimal solutions. formulation is significantly smaller than that in ref 14, therefore
Some early attempts to address the scheduling and dynamidéading to a mixed-integer nonlinear programming (MINLP)

used the aggregate scheduling model by Birewar and Gross-esulting SC problem is cast as an MINLP problem. In ref 6,
manr$ to optimize the sizing, scheduling, and processing times the authors claim that, because in the OOA method the number
using a nonlinear programming (NLP) model. Mahadevan et Of available degrees of freedom is larger than in the SRA
al5 analyzed grade transition scheduling problems from a robust Méthod, the optimal solution obtained by using the OOA method

closed-loop point of view. These authors did not address the Will be superior to the one obtained using the SRA method, as
their two cases of study show. Although the superiority of the

* To whom correspondence should be addressed. E-mail: antonio. O©OA method for addressing SC problems is clear from their

flores@uia.mx. Phone/Fax452(55)59504074. http://200.13.98.241/ ~examples, they concluded that the use of the discretization
~antonio. approach to transform a MIDO problem into an MINLP problem
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is not feasible because of the large of number of constraints Transition period

generated when discretizing the process dynamic model. | | | L

Moreover, the authors solved the MINLP problems by a direct | T | . )——{
approach, meaning that they did not use any decomposition Slot 1 Slot 2 Slot Ns
solution strategy aimed to reduce the computational complexity Production period ®

faced when solving MIDO problems. They concluded that
additional work is needed to improve MIDO solution techniques.
There have been some other approaches using sequential
methods for MIDO problem solutiori&:16In this approach, only
the controlled variables are discretized; the values of the time-
dependent optimal manipulated variables are computed trough
numerical integration. There have been some recent research
efforts!” trying to guarantee global optimality when solving
MIDO problems by sequential methods. o Time

In another recent work’ scheduling and grade transition for Figure 1. (a) The cyclic time is divided into slots, and within each slot, a
polymerization systems has been addressed. The authorsteady-state production period is followed by a transition period. (b) Within
proposed a decomposition scheme specifically tailored for the €ach slot, the system stat@sand the manipulated variables remain
resulting MIDO problem. On the basis of previous work on gﬁgﬁga:;r':jo‘;"g‘é%r'tﬁ:rg;gttehrﬁ tsrf‘art‘:g'_on period, the manipulated variables
MIDO problem solution strategi€$,the authors proposed to
solve the MIDO problem as a sequence of primal and master 2. Problem Definition
problems. The primal problem contains the dynamic optimiza-
tion part, while the master problem deals with the scheduling
part. The authors report good convergence properties when
analyzing scheduling and grade transition for a polymerization
plant; however, no details of the specific polymerization system
are given. As the authors recognize, their MIDO solution

Transition period Production period

Dynamic system behaviour

Given are a number of products that are to be manufactured
in a single continuous multiproduct CSTR. Lower bounds for
the product demands expressed as constant rates are specified.
Steady-state operating conditions for manufacturing each product
are also specified, as well as the price of each product and the

irat is highl licati ii d theref i Id inventory and raw materials costs. The problem then consists
strategy 1S highly application Specilic, and theretore, it Would - o¢ he gimyltaneous determination of a cyclic schedule (i.e.,

be difficult to apply to other polymerization systems. Without production wheel) and the control profile for the selected

6“099h d.e.tails about the pollym.er.ization process dynamics andyanitions. The major decisions involve selecting the sequence
nonlinearities embedded, it is difficult to assess the robustness(i_e_ cyclic time and the sequence in which the products wil

of the solution strategy. be manufactured) as well as the transition times, production
In this work, we propose a simultaneous approach to addressrates, length of processing times, amounts manufactured of each
scheduling and control problems for a continuous stirred tank product, and manipulated variables for the transition such that
reactor (CSTR) that produces multiple products. We take the profit is maximized.
advantage of the rich knowledge of scheduling and optimal We should note that the reason the proposed scheduling
control formulations, and we merge them so the final result is problem involves a production wheel with a cyclic schedule is
a formulation able to solve simultaneous scheduling and control because the demand rates are assumed to be a constant.
problems. We cast the problem as an optimization problem. In Therefore, the key tradeoffs in determining the cycle time and
the proposed formulation, integer variables are used to determinethe sequence in this problem are between inventory and
the best production sequence and continuous variables take intdransition costs as discussed by Pinto and GrossrffaAtso
account production times, cycle time, and inventories. Becausenote that a cyclic schedule is equivalent to considering an infinite
dynamic profiles of both manipulated and controlled variables horizon in which the cyclic schedule is repeated an infinite
are also decision variables, the resulting problem is cast as anumber of times. Such a schedule is only valid and relevant
mixed-integer dynamic optimization (MIDO) problem. To solve When the demand rates are constant or nearly constant, as
the MIDO problem, we use a recently proposed methoddfogy assumed in this paper.
that consists of transforming the MIDO problem into an MINLP
that can be solved using standard methods such as the outer3. Scheduling and Control MIDO Formulation
approximation methotf:*?Roughly speaking, the strategy for In the following simultaneous scheduling and control (SSC)
solving the MIDO problem consists of using the so-called ¢qrmyjation, we assume that all products are manufactured in a
simultaneous approatiior solving optimal control problems  gjngle CSTR and that the products follow a production wheel,
as the way to transform the set of ordinary differential equations meaning that all the required products are manufactured, in an
modeling the dynamic system behavior into a set of algebraic gptimal cyclic sequence (see ref 21 for the scheduling formula-
equations. Because of the highly nonlinear behavior embeddedtion). As shown in Figure 1a, the cycle time is divided into a
in chemical process models, the resulting MIDO formulation  series of time slots. Within each slot, two operations are carried
will be an MINLP problem featuring difficult nonlinearities such  out: (a) the transition period, during which dynamic transitions
as multiple steady states, parametric sensitivity, bifurcation, and pbetween two products take place, and (b) the production period,
even chaotic dynamics. In summary, the contributions made in during which a given product is manufactured around steady-
this work are as follows: (a) a complete and more general state conditions. According to this description, Figure 1b depicts
scheduling formulation is used; (b) a robust and numerically a typical dynamic operating response curve within each slot.
stable simultaneous method is used for approaching the dynamicAt the beginning of each slot, the CSTR process conditions are
optimization phase; and (c) the relationship between nonlinear changed (by modifying the manipulated variablgsintil new
behavior and complexity for solving the MIDO problem has desired process operating conditions (as represented by the
been addressed. system stateg), leading to the manufacture of a new product,
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are reached. Afterward, material of the new given product is Similarly, a more general objective function could be added to
manufactured until the demand imposed on such product is met;minimize out-of-spec material or maximize productivity. One
during this period, both the system statemnd the manipulated  could then certainly apply the proposed simultaneous scheduling
variablesu remain constant. In this work, we assume that each and control strategy to an extended version of this problem.
product is produced only once within each production wheel.  3.1.1. Scheduling Part. 3.1.1.a. Product Assignment.
Also, we assume that, once a production wheel is completed,
new identical cycles are executed indefinitely. Notice that one Ns
slot equals one transition. Zyik =10 (6a)

To clarify the simultaneous SC MIDO problem formulation, k=
it has been divided into two parts. The first one deals with the N

scheduling part, and the second one deals with the dynamic ?
optimization part. Yae =1, Ok (6b)
3.1. Objective Function. =
maxX ¢, + ¢, — ¢a} (1) Yic = Yigw Oi k=1 (6¢)
where ¢; deals with the product profitsp, deals with the Yia= Ying Ui (6d)
inventory costs, angs deals with the transition costs; these
are defined as follows, Equation 6a states that, within each production wheel, any
product can only be manufactured once, while constraint 6b
No CPW implies that only one product is manufactured at each time slot.
¢, = T (2) Because of this constraint, the number of products and slots
1= c

turns out to be the same. Equation 6¢ defines a backward binary
variable §), meaning that such a variable for produat slot
No CY(G, — WI/TY) k takes the value assigned to the same binary variable but one
Pp=y ———— ) slot backward,k — 1. At the first slot, eq 6d defines the
i backward binary variable as the value of the same variable at
the last slot. This type of assignment reflects our assumption

Ns Nre Nep CrtfckQC’Ncp of cyclic production wheel. The variabig will be used later
by = Z Z hy Z —— (K — Xt to determine the sequence of product transitions.
[SE= = T, 3.1.1.b. Amounts Manufactured.
n _ g2 1 _ =152 m _ M2
(Xfck XD + (U fck u k) + ..t (ufck urkn) ) (4) VVI > DiTci Oi (7a)
As shown, the total process profit is given by the amount . .
and cost of the manufactured products minus the sum of the W =Ge, Ui (7b)
inventory costs and the product transition costs. As a measure . )
of the transition costs, we use a term that takes into account G =F(@1-X)Ui (7c)

the amount of off-specification material produced during product
transition. At each slot, such a term has the following form, Equation 7a states that the total amount manufactured of each
producti must be equal to or greater than the desired demand
1 .y noom2 M N2y rate times the duration of the production wheel, while eq 7b
T j(; [z O =x)"+ z "=u")]Cdt  (5) indicates that the amount manufactured of prodisstomputed
¢ " m as the product of the production ratg;) times the time used
() for manufacturing such product. The production rate is
computed from eq 7c as a simple relationship between the feed
stream flow rate k°) and the conversionX).
3.1.1.c. Processing Times.

wheret; is the transition time in sldt, C" is the cost of the raw
material,T¢ is the duration of the production wheel cycig,is
thenth system state, ard is its desired value. Similarly™is
the mth manipulated variable an@" is its desired value. The

above integral can be approximated by Radau quadrature as .
follows: O = A" Yy Oi, K (8a)

Ne Mo Moo Gl Qe o .
Z Z hyy Z— (= X)*+ o+ 0,= kZ‘Hik, Oi (8b)
k=11= c= Tc

N,

(Xfo = %)° + Uy — T+ o 4 (Uit — T)°) b
. . . P= ) b UK (8c)
It should be noted that this form of the transition costs will =
force the system to carry out product transitions as soon as
possible, while at the end of a product transition, the states will The constraint given by eq 8a sets an upper bound on the time
take the steady-state values for manufacturing a new product.used for manufacturing productat slotk. Equation 8b is the
Sometimes products’ quality are specified by lower and upper time used for manufacturing productwhile eq 8c defines the
limits around a central nominal value. Imposing upper and lower duration time at slok.
limits in the specification of products would simply require the ~ 3.1.1.d. Transitions between Products.
replacement of endpoint equations by endpoint inequality )
constraints in the dynamic optimization problem discussed later. Zok = Yo T Vi — 1, 0i, p K )
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Collocation Finite Element model representing the system behavior is discretized using the
Points method of orthogonal collocation on finite eleme#ft33Accord-
l l l | ing to this procedure, a given slkis divided into a number of
}"—° ® | o '—{ """"""""" }"_‘—'{ finite elements. Within each finite element, an adequate number
Slot k of internal collocation points is selected, as depicted in Figure
2. Using several finite elements is useful to represent dynamic
Figure 2. Simultaneous discretization approach for dealing with dynamic  profiles with nonsmooth variations. Thereby, the set of ordinary

optimization problems. Each slkis divided intoNg finite elements. Within differential equations comprising the system model is approx-
each finite element, a set ofN, collocation pointsc is selected. . . . . )
imated at each collocation point, leading to a set of nonlinear

The constraint given in eq 9 is used for defining the binary €quations that must be satisfied. o
production transition variablgg. If such variable is equal to 3.1.2.a. Dynamic Mathematical Model Discretization.
1, then a dynamic transition will occur from produi¢d product

o . . Ne
p within slot k; zpk will be zero otherwise. ? )
3.1.1.e. Timing Relations. Yo = Yo T O Z Qi X O, T, €, K (11)
No Np . .
ot = tt_zi Ok (10a) The constraints given by eq 11 are used to compute the value
k ,Z ,)Z\ pi Sipke of the system states at each one of the discretized pods (
by using the monomial basis representa‘titxi]fk is the nth
ti:o (10b) system state at the beginning of each eleméyg, is the
collocation matrix, ands, is the first-order derivative of the
Np Np nth state. Notice that, when working with the first element,
=ty +p + Z Z tLi Zpo LK (10c) X 11 Fepresents the specified initial value of thé state. Also
i=1 p= notice that, in the present formulation, the length of all finite
elements is the same and computed as
=t ,, Ok=1 (10d)
1
= 12)
=T, Ok (10e) M= N
9}( L 3.1.2.b. Continuity Constraint between Finite Elements.
to=(F— 1) N, + N ve Of, ¢, Kk (10f) "

. , N Yot = Xor-1k T Ok 14 Z QX1 Onf=2,k  (13)
Equation 10a defines the transition time from produotprod- = P

uct p at slotk. It should be remarked that the tem:]ﬂ stands _ ) o

only for an estimate of the expected transition times. Because !N the simultaneous approach for dynamic optimization prob-
such transition times depend on process dynamic behavior, theyl€ms, only the states must be continuous when crossing from
will be computed iteratively as part of the scheduling and control One given finite element to the next one; algebraic and
formulation. Good initial estimates of the transition times can Manipulated variables are allowed to exhibit discontinuity
be obtained from open-loop dynamic optimization runs between behavior between adjacent finite elements. That is the reason
all pairs of products. If the transition times happen to be difficult continuity constraints are not formulated for algebraic and
to evaluate, or if the number of combinations of product Manipulated variables. We use eq 13 to force continuous state
schedules turns out to be largf, values could be set as profiles on all the elements at the beginning of each element
the reactor open-loop residence time. First, one needs to guesé%,): and they are computed in terms of the same monomial
transition time values t&)' solve the MIDO problem, and basis used before for defining the value of the system states.

check if the computed transition time value&)(are long 3.1.2.c. Model Behavior at Each Collocation Point.
enough to allow safe and smooth grade transition dynamic )

behavior. Frequently, large dynamic variations in the states and Ko = F" et -+ XGgto Ut -++» Ui, O, F, ¢, k
manipulated variables behavior are an indication that, by
increasing the guesse:g values, better and smoother dynamic
grade transition behavior could be obtained. Normally, in few
iterations, one can easily obtain acceptable grade transition
dynamic behavior. Equation 10b sets to zero the time at the
beginning of the production wheel cycle corresponding to the
first slot. Equation 10c is used for computing the time at the
end of each slot as the sum of the slot start time plus the
processing time and the transition time. Equation 10d states thaR/
the start time at all the slots, different than the first one, is just
the end time of the previous slot. Equation 10e is used to force Np

(14)

Equation 14 is used for computing the value of the first-order
derivatives of the systems at finite eleménf collocation point
cin slotk. Those equations simply represet the right-hand sides
of the dynamic model. Because our scheduling and control
formulation is system independent, we have used the notation
" to represent the right-hand side of thte ordinary differential
equation describing any desired dynamic system.
3.1.2.d. Initial and Final Controlled and Manipulated
ariable Values at Each Slot.

that the end time at each slot be less than the production wheel =S X i, On (15)
cyclic time. Finally, eq 10f is used to obtain the time value n.l & LNg?
inside each finite element and for each internal collocation point.
3.1.2. Dynamic Optimization Part. To address the optimal Np
control part, the simultaneous approaétr solving dynamic X{‘n,k= xgsi Yik-1 0N, k=1 (16)

optimization problems was used. In this approach, the dynamic i=
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NP
Initial Guess of:
N n
%= ) Xsi Vi On K 17) s, Nye
i |
& Sol
m __ m olve
Uing = Zussi Ying Om (18) MINLP
&
Np
m __ m
Unk = ) Usgi Vix—1, UM k=1 (19) N
& Update Feasible
tt; and/or Ny, Solution?
NP
=M __ m
Ue = ) Usg Vi M, K (20)
&
m — . Mm
U1y = Upnjo M, K (21) N Smooth
Trangitiq]n
m - Profiles?
Uni Nek = Yin o Om, k (22)
n N
Xo1k = Xinjo LN, K (23)

Solution of MIDO problem

The desired value of each state at the beginning oﬂe(xﬁ,’k)
is computed in egs 15 and 16. Equation 17 define the values ofrigyre 3. terative algorithm for the solution of the simultaneous scheduling
the state variables at the end of each &I@xy). It should be and control problem.

stressed that the state values at the beginning and end of each

slotk are given by the corresponding steady-state valdgs ( of 4x the reactor open-loop residence time, while settig
calculated a priorixg; simply stands for the steady-state value = 20 tends to produce good dynamic transition profiles. Of
of the manufacturing produdt They can be easily obtained —course, both variables need to be updated depending upon the
from open-loop steady-state simulation of the processing systemduality of the results and/or if the MINLP turns out to be
Similarly, eqs 18 and 19 define the values of the manipulated infeasible for a set Ottpi and Nre guessed values. Figure 3
variables at the beginning of each Wuﬁ,k) and at the end of dgpicts the iterative procedure that was used Fo solve the
the slotk (G). Equation 20 enforces the system states to take Simultaneous scheduling and control problem. Since we rely
the desired state values at each klak similar situation occurs O local NLP solvers, and no special provisions are taken to
with the values of the manipulated variables. Equation 21 fixes figorously estimate the bounds with the MILP master problem,
the values at the first finite element and first collocation point the global optimum solution cannot be guaranteed. As will be
of each slok (u]'; ) as the value that such variable takes at the seen in the examples, useful solutions can still be obtained with
beginning of the same slét Equation 22 determines the values e proposed approach.

of the manipulated variables at the last finite element and last It should be stressed that, although the transition tithes
collocation point of slok (Ul ,, ) as the desired steady-state aré not considered as decision variables, the transition times
value of the same variable at slét @M. Finally, eq 23 obtained from the algorithm depicted in Figure 3 will be very
determines the values of the system states at the beginning of0Se to those obtained by considertjas decision variables.

each slot ! Q- The only reason to prefer the optimization formulation as
312%e. E(l)wer and Upper Bounds on the Decision Vari- presented in this work, compared to the case in which the
ables. transition time becomes a decision variable, is because the

present optimization formulation is simpler to deal with.

<Xl <X Onf,c k (24a) Insisting in using the transition time as a decision variable will

only increase the nonconvexity of the underlying optimization
formulation. Therefore, according to our experience, solving
scheduling and control MIDO problems, as proposed in the

) ) ) present paper, will make it easier to solve the resulting
Equations 24a and 24b simply constrain the values of both the optimization problem

system states and manipulated variables to lie within acceptable
lower and upper bounds.

3.2. Solution Algorithm. To solve the simultaneous schedul-
ing and control problem, the simultaneous approach for solving  To test the proposed simultaneous scheduling and control
dynamic optimization problems was used to transform the formulation, three case studies, with different numbers of
MIDO problem into an MINLP whose solution was attempted products and different degrees of nonlinear behavior embedded
by the well-known outer approximation approdths imple- in the model, were addressed. In all the cases, CSTRs were
mented in the DICOPT software. Although the solution of the ysed to manufacture the desired products. The case studies range
resulting MINLP is direct, the determination of some variables from CSTRs featuring quasi-linear behavior (first case study)
related to the dynamic optimization part requires an iterative to CSTRs with input multiplicities (second case study) and
procedure. The transition timet§ and the number of finite  output multiplicities (third case study). In all the cases with
elements\; are the two main variables that must be determined embedded nonlinear behavior, the operating conditions were
in an iterative manner. Initially}pi can be set to an upper value chosen around nonlinear behavior regions. We did so because

Unin < Ury < U, Om, £, ¢, k (24b)

4., Case Studies



Table 1. Process Data for the First Case Study

demand product  inventory
product Q(L/h) Cgr(mol/L) rate (kg/h) cost ($/kg) cost($)
A 10 0.0967 3 200 1
B 100 0.2 8 150 1.5
C 400 0.3032 10 130 1.8
D 1000 0.393 10 125 2
E 2500 0.5 10 120 1.7

aA, B, C, D, and E stand for the five products to be manufactured. The
cost of the Raw Material@) Is $10.

Table 2. Simultaneous Scheduling and Control Results for the First
Case Study
production T T
process rate w transition start end
slot product time (h)  (kg/h) (kg) time (h) (h) (h)
1 A 41.5 9.033 374.31 5 0 46.4
2 E 23.3 1250 29162.3 5 46.4 74.7
3 D 2.06 607 1247.7 5 747 818
4 C 4.48 278.72 1247.7 5 818 912
5 B 12.48 80 998.2 21 91.2 1247

aThe objective function value is $7889 and 124.8 h of total cycle time.

Table 3. Simultaneous Scheduling and Control Results for the First
Case Study, Second Best Solutién

production T T
process rate w transition start end
slot product time (h)  (kg/h) (kg) time(h) (h) (h)
1 A 415 9.033 374.31 5 0 46.4
2 D 2.06 607 1249.4 5 46.4 53.6
3 E 23.4 1250 29270.4 5 53.6 82
4 C 4.48 278.72 12494 5 82 915
5 B 12.48 80 999.5 21 915 125

aThe objective function value is $7791 and 125 h of total cycle time.

most chemical processes featuring optimality conditions tend
to exhibit regions of highly nonlinear behavibrand to have
an exact idea about the complexities of solving MIDO problems
with embedded nonlinearities. Hopefully, this will allow us to
identify research areas where MIDO formulations/algorithms
require improvements.

4.1. CSTR with a Simple Irreversible Reaction. The
following reaction,

3R~ P, — 75 = kG2

takes place in an isothermal CSTR for manufacturing five
products, A, B, C, D, and E. The dynamic composition model
is given by

dCR_Q

dt Vv (Co - CR) + Ar

(25)
whereC, stands for feed stream composition & the control
variable for the dynamic transition in the production of one
product to another. Using the following values of the design
and kinetic parameter€, = 1 mol/L,V = 5000 L,k =2 L%
(mol?-h), and the five values of the volumetric flowra@eshown
in Table 1, the five concentration steady stafs shown in
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Figure 4. Optimal dynamic profiles for the volumetric flow rate and reactor
concentration during product transition for the first case study.

— C — B production wheel as the one which maximizes the
profit. The objective function value turned out to be $7889,
while the total cycle time was 124.8 h. Additional information
concerning processing times at each slot, production rates, total
amounts of each product, transition times, and initial and ending
times at each slot are shown in Table 2. Regarding the dynamic
behavior of the reactor during product transitions, Figure 4
displays the dynamic profiles of both the manipulated variable
(Q) and the controlled variableCg). It is interesting to note
that, if the transition times were to be reduced by 1 h, the optimal
sequence changes toED — C — B — A and the objective
function increases to $9685, which shows the impact of
optimizing the transition times in this problem.

It is interesting to compare the optimal MIDO solution against
the second- and third-best cyclic solutions. Moreover, to
compare the performance of DICOPT when solving MIDO
problems, the second- and third-best optimal solutions of all
the examples were always computed using SBB (other MINLP
solver available in GAMS). In the present example, the second
best solution, which was obtained by adding an integer cut, is
in fact a slight variation of the previous one. In this case, the
optimizer selects the cyclic A~ D — E — C — B processing
sequence with profit $7791 and a cycle time of 125 h. To learn
the reasons why the first production sequence turns out to be
better than the second one, we need to analyze the numerical
values of each one of the terms of the objective funcign
¢2, and¢s. Those values turn out to be [32397, 23262, 1247]
and [32463, 23330, 1234] for the first and second solutions,
respectively (see Table 3 for information regarding optimal
values of the additional decision variables). From this informa-

the same table, are obtained. All the examples featured in thistion, we see that both solutions have simifarand ¢, values.

work require the steady-states values of the manipulatgd (
and controlled variablex) for manufacturing each one of the

However, the difference between those solutions is the transition
cost: the second solution features a larger transition cost, and

products. In addition, Table 1 also features values of the demandthis makes it suboptimal compared to the first one. Dynamic

rate O;), product cost), and inventory cost().
Solving the MIDO scheduling and control problem using
GAMS/DICOPT, the optimizer selects the cyclicAE — D

product transitions for this production sequence are depicted in
Figure 5. As can be seen, the dynamic product transitions feature
a shape that resembles the results of the best MIDO solution.
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_04 2000 Table 4. Simultaneous Scheduling and Control Results for the First
% T Case Study, Third Best Solutiort
§ 02 2 1000 production T T
¢] — AD o process rate w transition start end
0 0 X §
) 1 5 3 4 5 b 1 2 3 s 5 slot product time (h)  (kg/h) (kg) time (h) (h) (h)
=08 3000 1 B 12.7 80 10125 21 0 337
5 T 2 A 42.04 9.033 379.7 5 33.7 807
£ 04 2 2000 3 E 233 1250 291254 5 80.7 109
5 — ] 4 C 4.6 278.72 12656 5 109 118.6
03 1000 5 D 2.09 607 1265.6 6 118.6 127
1 2 3 4 5 12 3 4 5 o ) ) )
1 = 4000 aThe objective function value is $6821.6 and 127 h of total cycle time.
§ L 5 2000 associated to product manufacture is smaller) and an increase in
) Y ¢3 (larger transition cost). This cost combination makes this
00 T 2 3 4 s 0o T 2 3 4 3 production sequence worse than the first and second ones, even
04 400 though the shape of the dynamic transitions looks similar to the

— 08 first and second cases, as depicted in Figure 6. The CPU times
(IBM laptop, 1.6 Ghz, Windows XP) needed for MIDO problem
solution were 13.8, 67, and 27.8 s for the best, second, and
1 2 3 4 5 o 1 2 3 4 5 third solutions, respectively.

C [kmol/it]
o o :
N e

o /

Q [Ithr]
nN
(=3
(= o

-4 —Y 100 4.2. CSTR with Simultaneous Reactions and Input Mul-
3 z tiplicities. The following set of reactions
£ 0.2\\ 2 50
0 ° K
0 0 . 2R, —A
0 5 10 15 20 0 5 10 15 2 2%
Time [hr] Time [hr]
Figure 5. Optimal dynamic profiles for the volumetric flow rate and reactor Rl + R2 —k2> B
concentration during product transition for the first case study, second best
solution.
R, +R 5 C
04 100 1 3
g —BA =)
g 02 § 5 is carried out in a continuous and isothermal stirred tank reactor
5 T o displayed in Figure 7. Products A, B, and C are manufactured
oO T 5w 0 T 5 w5 using different values of the feed stream volumetric flow rates
05 4000 of the reactants RR,, and R.
% T The dynamic mathematical model of the above system is as
E 2 2000 follows.
(¢} o — AE o 0 i
10 12 3 4 5 40000 1 2 3 4 5 dCR1 _ (QRICRl - QCRI) s 26
g — EC - dat Vv Iy (26)
° £
Eos— 2 2000 ,
0 © dCR2 (QR2 R, QCRZ) s o7
0 0 = .
0 1 2 3 4 5 0 1 2 3 4 5 dt \% i 27)
_ 04 2000
S i~ i
£ 0% S 1000 dCq, (QrCr,— Q&)
= ¢ = + X, (28)
0 03 —CD 5 dt vV f3
0’40 12 3 4 5 10000 1 2 3 4 5
: i
g T dC, _ Q(Cy — Cp) + (29)
[¢] PR — )
€03 2 50 dt \Y A
o o
02 0 i
0 2 4 6 0 2 4 6 dC; Q(C; — Cyp)
Time [hr] Time [hr] F = T + .C/I’B (30)
Figure 6. Optimal dynamic profiles for the volumetric flow rate and reactor
concentration during product transition for the first case study, third best i
solution. dCc _ Q(Cc — Co) p
& v T (31)

Regarding the third-best MIDO optimal solution, the optimiz-
er selected the cyclic B> A — E — C — D production se-  here the kinetic expressions follow simple mass action
quence with profit $6821.6 and a cycle time of 127 h. Information |a\ kinetics,
about the decision variables of this solution can be found in
Table 4. As we can see, the third optimal solution has a larger S =k.Cy 2 (32)
objective function value decrease compared to the second one. A TRy
Analyzing the p1, ¢2, ¢3] = [31967, 23352, 1794] values, we

notice that the third solution features a decreasg ifthe profit Ry = k2CR1CR2 (33)
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i = ksCr Cr, (34) —F
~ 2
, § . _ R
G = —( — P — R  a—
G =~ S~ R — A (35) 3
o = — f
R, =—Rg (36)
R = — R
ﬁr3 ﬁc (37)
[ .3
and B
(o)
Q= QRl + QRZ + QR3 (38) Figure 7. CSTR flowsheet for the second case study. Products (A, B, and
C) are manufactured using different combinations of the reactant&R¢R

. and R).
whereQg,, Qr,, andQg, are the feed stream volumetric flow hl

rates of reactants;RR,, and R, respectivelyC is the reactant Table 5. Steady-State Design and Kinetic Information for the
concentrationC is the product concentratioW, is the reactor Second Case Study

volume, andki, kp, andks are the kinetic rate constan®.is parameter value  units parameter  value units
the total feed stream volumetric flow rate. The design and kinetic cl 1 mol/L cl 0 moll
parameters are shown in Table 5. R 08  moll vV 6000 |

The operating conditions leading to the manufacture of each ~ Cr, ' .
one of the A, B, and C products are shown in Table 6; also Céa ! mol/L ke 0-1 L/(m!"mob
shown is the steady-state information concerning each product. ~ Ca 0 mol/L ke 0.9 L/(mirrmol)

From the information contained in this table, we see that the c{ 0 mol/L ks 1.5 L/(mirmol)
residence time of product A is larger than the corresponding

ones of products B and C. In fact, product A features a residenceTable 6. Processing Conditions Leading to the Manufacture of the
time value that is exactly double products B and C residence A B, and C Products of the Second Case Study.

times. This indicates that transition from any product to product prod Qg, Qr, Qr;, Cr, Cr, Cr, Ca Cs Cc

A will be sI_ower than that frorr_1 prqduct Atoany otherproduct. "o 100 0 0 0333 0 0 0.666 O 0
In reaction systems featuring intermediate products, as the B 100 100 0 0.1335 0.0869 0 0.0534 0.3131 0
problem at hand, there is the risk of input multiplicities. This € 100 0 100 0.0837 0 0.1048 0.021 © 0.3951

kind of nonlinear behavior creates a situation where the same  aThe cost of the raw materiaCy) Is $5.

state value is obtained for two different values of the manipu-

lated variable. From a closed-loop control point, this behavior solution were 291 and 685 s for the best and second solutions,
is undesirable since, under certain conditions, it has been relatedespectively.

to the presence of right-hand plane zetosyhich limit the 4.3. CSTR with Output Multiplicities. To compute dynamic
response speed of the closed-loop system. The emergence ofptimal transition trajectories around highly nonlinear regions,
right-hand plane zeros makes the use of proportieimagral- the CSTR model as proposed by Hicks and Rayas used.
derivative (PID) controllers impractical because of slope sign Because the original parameters set used by these authors did
changeg® Until now, the only way of dealing with input  not lead to multiple steady states, some of the values were
multiplicities has been to use a controller able to deal with those modified in order to end up with a multiplicity map. In
systems or by system redesign. In our case, for the operatingdimensionless form, the model is given by

and processing conditions shown in Tables 5 and 6, the reaction

system displays input multiplicities as shown in Figure 8. Input d_yl . l1-y _ — Ny, 39
multiplicities were only found for the B and C products; da = 0 10€ Y1 (39)
monotonic behavior was always observed for the A product. 4

Information regarding the demand rate and inventory and Y2 Y™ Y2 Ny
product costs is shown in Table 7, while simultaneous optimal a0 + ke Ty~ auly, — Vo) (40)

scheduling and control results are shown in Table 8. As shown
there, the optimizer selected the cyclic-€B — A production wherey; stands for dimensionless concentratiofes, y» is the
sequence. Figure 9 depicts the optimal state transitions for thisdimensionless temperaturd/Jc), y. is the dimensionless
production sequence. coolant temperatureT¢Jc), yi is the dimensionless feed
Similarly to the first case of study, we found the second best temperature T/Jg), and u is the cooling flowrate. Table 9
optimal production sequence. The optimizer selected the cyclic contains the numerical values of the parameters used in this
A — C — B production sequence (see Figure 10). The first work; this set of parameter values leads one to operate around
and second solutions feature the same objective function value the multiplicity region shown in Figure 11.
production times, process rates, etc. as shown in Table 8 for Our goal is to manufacture four products denoted as A, B,
the second production sequence; the sequence in which product€, and D. Operating conditions are also displayed in Figure
are manufactured is the only difference between both production11. Note that the A and B products are manufactured around
sequences. The reason both production sequences feature thepen-loop stable steady states. The C operating point is located
same values of the decision variables is due to the fact that theat the point where a stability interchange, together with a Hopf
production sequence is cyclic and the time horizon is infinite. bifurcation point, takes place. Finally, the D product is
Hence, the sequences € B — A and B— C — A are manufactured around a completely unstable open-loop operating
equivalent. Analogously to the steady-state optimal results, theregion. In all the cases, the manipulated variable is the cooling
dynamic optimal transition trajectories of the second and first flow rateu. One of the aims of this case study is to demonstrate
solutions are the same. The CPU times for the MIDO problem that, even in the face of highly nonlinear operating regions and
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Figure 8. Input multiplicities in the second case study. (a) and (b) refer to product B @ingndQg_as continuation parameters, respectively. Similarly,

(c) and (d) refer to product C usir(Q;1 and Q§3 as continuation parameters, respectivelil, wiilieand C.. stand for composition of products B and C,
respectively.

Table 7. Demand Rate and Product and Inventory Costs for the Table 9. Parameters Values for the Third Case Study Featuring
Second Case Study Reaction System Output Nonlinearities
product demand (kg/m) product cost ($/kg) inventory cost($) 6 20 residence time T 300 feedtemperature
A 1 J 100 EAH)/(pCp) kio 300 preexponential factor
5 500 G 7.6 feed concentration T 290 coolant temperature
B 10 400 15 o 1.95x 10* dimensionless heatN 5 Ei/(RJg)
N 15 S 18 transfer area
Table 8. Simultaneous Scheduling and Control Results for the Table 10. Process Data for the Third Case Study
Second Case Study : _
production T T product  demand (kg/h)  product cost ($/kg)  inventory cost ($)
process rate w transition start end A 100 100 1
slot product time (m)  (kg/m) (kg) time(m) (m) (m) B 200 50 13
1 C 204.2 89.52 18273.3 15 0 2192 g ggg gg i’i
2 B 44.5 71.31 3174.4 15 219.2 278.7 '
3 A 23.8 66.7 1587.2 15 278.7 3175 aA, B, C, and D stand for the four products to be manufactured.
aThe objective function value is $32 388 and 317.5 m of total cycle Isr;:g\svnr:aitr;o'r:li ;l:)r%utlihgrﬁ;eiggt-s;? ttﬁ edfjﬁ%zgfggzsogiom the products is
time. ' '

. Table 11. Simultaneous Scheduling and Control Results for the
open-loop unstable systems, our proposed simultaneous schedulrhird Case Study

ing and control formulation is able to perform satisfactorily and

. . . ;i process production T T

to determine an optimal scheduling and control solution. time rate W transition start end

Information regarding the production rate, demand rate, and slot product (h) (kg/h) (kg) time (h) (h) (h)

inventory costs is shown in Table 10. . 1 A 28.3 5599 158317 10 0 383
In this case, the A~ B — C — D scheduling turned out to 2 B 13.1 613.6 8044.9 10 383 61.4

be the optimal cyclic production sequence. The profit is $7657 3 c 13.4 656.1 8748.9 10 614 8438

with a total cycle time of 100.6 h. The rest of the optimal values 4 D 58 6883 40225 10 848 1006

of the decision variables are shown in Table 11. It should be  2The objective function value is $7657 and 100.6 h of total cycle time.
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Figure 9. Optimal schedule and dynamic profiles for reactor concentrations and volumetric feed flow rates for the second example.

remarked that, in this case study, we have two products (C anddynamic optimal trajectories for open-loop unstable systems is
D) whose manufacture demands to operate around open-loopdifficult to carry out using dynamic optimization strategies based
unstable operating points. The computation of open-loop upon the so-called sequential approd€kon the other hand,
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Figure 10. Optimal schedule and dynamic profiles for reactor concentrations and volumetric feed flow rates for the second example, second solution.

the simultaneous approa@lefficiently and naturally deals with  the dynamic optimization problem. In a previous wétkye
this type of problem without using tricks such as closed-loop have provided some theoretical explanations why the simulta-
stabilization of the originally unstable system and then running neous approach copes with open-loop unstable systems. Not
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Table 12. Open-Loop Poles for Products A, B, C, and D of the Third Case Study

product
pole A B C D
1 —0.1352+ 0.1566 —0.0430+ 0.1548 0.0164+ 0.1147 0.0524+ 0.0440
2 —0.1352— 0.1566 —0.0430— 0.1548 0.0164— 0.1147 0.0524— 0.0440

Table 13. Simultaneous Scheduling and Control Results for the . L. . . .
Third Case Study, Second Solutiod surprisingly, the minimum transition time, independently of the

type of transition, is 10 h. This result is in agreement with

process production T T . . . -
time rate W  transition start end previous calculations related to the open-loop dynamic optimi-
slot product  (h) (kg/h) (kg)  time (h) (h) (h) zation of the same reaction systéfrAnother point to stress is
1 D 6.07 5599 41767 10 0 16.07  thatour SSCformulation is able to cope with product transitions
2 A 28.9 613.6  16177.2 10 16.07 55 between highly nonlinear regions. As a matter of fact, the B
3 C 13.9 656.1 9084.3 12 55 80.8  Ctransitions involves transition from an open-loop stable to an
4

B 13.7 6883 83534 10 808 1044  ynstable system through a Hopf bifurcation point where
aThe objective function value is $6070.6 and 104.4 h of total cycle time. 0scillatory behavior emerges.

From the open-loop poles shown in Table 12, we should

expect to have an oscillatory response for product transitions

13 ' ' ' ' ' ' ' ' because most of the poles have a nonzero imaginary part.
1.2 O y1=0.0944, y2=0.7766, u=340 (s) | 1 Product transitions ending at product D should feature the
il g z]:g-}ggg- 55:8‘232?’ 33?8 Ei)) | weakest oscillatory behavior because its imaginary part is rather
' % y1=0.2632, y2=0.6519. u=455 (1) small. These observations are supported by looking at the
fs_’ 1t - dynamic profiles of both the manipulated and controlled
g variables as depicted in Figure 12. Moreover, we would like to
£ o9 I highlight the fact that the nonlinear nature of the product
» 08l - transitions addressed in this case study can also be appreciated
% in the dynamic behavior of the manipulated variablén the
g 071 ) previous two case studies, the manipulated variable(s) always
£ o6l ] featured a simple steplike form mainly due to the presence of
e L mild nonlinearities embedded into the system. However, in the
05r e 1 present case study, the dynamic optimal shape of the manipu-
04l = | lated variable is not obvious. This is particularly true for the B
— C and the C— D product transitions that are placed deeper
%% 100 150 200 250 300 350 400 450 500 into the unstable region.

For comparison purposes of the present solution, we found a
second suboptimal solution featuring the cycliebA — C —
B production sequence. In this case, the objective function value
was $6070.6 and 104.4 of total cyclic time. The rest of the

Cooling flowrate
Figure 11. Multiplicity map (— stable solution,— — unstable solution).

02 — % 400 optimal values of the decision variables are shown in Table 13.
/\/\_, 380 This solution is suboptimal because the optimizer decided first
S04 L (.75 3 to manufacture product D and from there to carry out the product
b\_ﬁ 360 transition for starting the manufacture of product A. This product
0 07 " transition turns out to be more_expensi\_/e_beqause it is hard to
0 5 0 0 5 0 0 5 10 perform, since it involves the widest variation in the open-loop
025 Time e 074 Timmg fhel 440 Time fhe pole location. From there, the optimizer keeps making product
transitions that are not the best ones in terms of the transition
5 02/\/‘;. 072 3420 costs. From product A, the optimizer selects to carry out a
015 07 40 transition toward product C and from here to product B. Those
product transitions are definitely not the best ones in terms of
015 5 s ; 0 25 ; 0 transition costs. To support the past statements, we computed
03 Time [hrl 07 Time [hel 480 Time [hrl the ¢y, @2, andgs terms, as defined in eqs-2, of the objective
function of the present case study. For the first optimal solution,
o]l 068 460 these values turn out to beés ¢», ¢3] = [25553.2, 17633.8,
> 02 >~ 086 \ 3 0 263], while for the second suboptimal solution those values are
' “ [25303, 18252, 981], in the same order. From this comparison,
0.1 064 420 we can see that the profit associated with product manufacture
0 Timf"m 00 Timf b 0 0 Timf " 10 and inventory costs are similar for both production sequences.
04 f 50 The main difference lies in the transition costs. This explains
why the cyclic D— A — C — B production sequence is a
> 02 S 08 3 400 suboptimal solution. The dynamic profiles of both system states
and the manipulated variable are depicted in Figure 13. Again,
0 05 20 the nonlinear behavior embedded into the present system can
0 5 0 0 5 0 0 5 10 be seen in the shape of the manipulated variable between product
Time [hr Time [r Time [or transitions.The CPU times for MIDO problem solution were

Figure 12. Optimal schedule and dynamic profiles for the third case study. 254 and 47 s for the best and second solutions, respectively.
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Figure 13. Optimal schedule and dynamic profiles for the third case study,
second best solution.

5. Conclusions

In this work, we have addressed the simultaneous cyclic
scheduling and control problem for several multiproduct CSTRs.
Rather than assuming constant transition times and neglectin

dynamic process behavior during product transition, was
embedded into the optimization formulation. Solving the

scheduling and control problem taking into account process
dynamics is the rigorous way to address scheduling problems.

Because highly optimized chemical processes tend to operates
around nonlinear operating regions, we selected as case studie

three problems involving reaction systems, two of which display
highly nonlinear behavior in the form of input and output multi-
plicities, Hopf bifurcation points, and open-loop unstable oper-

ating regions. Even in the face of nonlinear behavior, the proposed

simultaneous cyclic scheduling and control formulation was able
to find optimal production sequences. However, convergence
toward the optimal solution turned out to be harder to achieve
as the nonlinearity of the system increased. Moreover, the pre-
sence of nonlinearities creates nonconvexities in the optim
ization formulation, probably leading to suboptimal solutions.
From the results of the third example, we notice that the perfor-
mance of SBB for finding MIDO optimal solutions was superior
to the one displayed by DICOPT. It is well-known that the
strength of DICOPT lies in solving problems with large number
of binary variables and mild nonlinearities. On the other hand,
SBB should produce better results for systems with a relatively
small number of binary variables but harder nonlinearities. This

was indeed the behavior observed from both solvers in example

3, which is the one that mainly features these characteristics.
It should be noticed that the scheduling and control problem

is addressed in an open-loop manner (e.g., no control system is

g
process dynamics, a mathematical model, able to describe.

of the major advantages of the simultaneous dynamic optimiza-
tion approach over other dynamic optimization approaches (e.g.,
sequential approaches). Our approach is able to deal with state
transitions, even if the initial or final (or both) steady states are
open-loop unstabl®. If the sequential approach for optimal
transition involving open-loop unstable steady states is used,
such a procedure will not succeed in computing such trajectories,
simply because, since sequential approaches use numerical
integration for optimal trajectories computation, it is well-known
that unstable steady states cannot be reached by numerical
integration. Therefore, before computing optimal transition
trajectories, the sequential approach requires that all the unstable
modes be removed. Most of the time, this is done by incorporat-
ing a feedback controller. However, in this case, the optimal
transition will depend on the sort of controller and the way in
which it was tuned.

In this work, only local solutions to the resulting discretized
MINLPs were sought. Presently, the computation of global
solutions to NLP problems does not seem to be an easy task.
The available software (e.g., BARGH tends to work ef-
ficiently mostly for small- and medium-size problems with mild
nonlinearities. The complexity problem grows when dealing with
MINLPs. Because of these reasons and to keep computational
complexity on a reasonable level, in this work we only used
local MINLPs solution techniques such as that embedded in
the DICOPT solver. Of course, the computation of global MIDO
solutions is a problem that deserves to be seriously considered,
and we hope to address this problem in the future.

It must be stressed that, for solving the resulting MIDO
problems, no special initialization method was used. Only initial
estimates for the states and manipulated variables were provided.
To obtain such initial estimates, linear interpolations between
the initial and final states and manipulated variables were used.
Using the DICOPT and SBB programs, no initialization of the
integer variables is needed, since the programs obtained them
by initially solving a relaxed NLP problem. Of course, valid
lower and upper bounds on all the continuous decision variables
have to be imposed, but most of the time they are easy to
ropose. The GAMS files used for solving the examples
iscussed in this paper are available to interested readers to make
Sure they can indeed reproduce our results.

From the results obtained in this work, dealing with larger-
dimension systems featuring stronger nonlinear behavior, MIDO
formulations, like the one presented, need to be improved to
cope with complex dynamic systems. The direct solution of
MIDO problems for systems with the above-mentioned char-
acteristics does not look feasible, and it might require excessive
CPU time. Therefore, a decomposition strategy that exploits the
natural structure of scheduling and control MIDO problems
needs to be developed. Other interesting extensions of the
present work consist of the case when several reactors operate
in parallef® and of the simultaneous optimization of planning,
scheduling, and contréf:3®
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Nomenclature

Indices

present). In this approach, once the sequence order and optimaproducts=i, p =1, ...,Np

control policies are determined, one should then decide how to
closed-loop track such optimal trajectori@sn fact, this is one

slots= k=1, ...,Ns
finite elements=f =1, ..., N¢e



collocation points=c, | = 1, ..., Nep
system statess n = 1, ..., Ny
manipulated variables m=1, ...,Ny

Decision Variables

yik = binary variable to denote if produtts assigned to sldt

Yic = binary auxiliary variable

Zpk = binary variable to denote if productis followed by
productp in slot k

px = processing time at sldt

t; = final time at slotk

ty = start time at slok

tiek = time value inside each finite elemektand for each
internal collocation point

Gi = production rate

T, = total production wheel time (h)

Xy = Nth system state in finite elemehand collocation point
c of slotk

Uy = mth manipulated variable in finite elemerit and
collocation pointc of slot k

W = amount produced of each product (kg)

Ok = processing time of produgtin slot k

0 = transition time at slok

©; = total processing time of product

X1 = Nth state value at the beginning of the finite elemieott
slot k

%, = desired value of theth state at the end of slét

0Oy = desired value of theith manipulated variable at the end
of slot k

Xn = Nth state value at the beginning of slot

Up, = mth manipulated variable value at the beginning of
slotk

Xi = conversion

Parameters

Np, = number of products

Ns = number of slots

Nre = number of finite elements

Ncp = number of collocation points

Ny = number of system states

Nu = number of manipulated variables
D; = demand rate (kg/h)

CP = price of products ($/kg)

C; = cost of inventory [$/(kg/h)]
C' = cost of raw material ($)
hg = length of finite element in slot k

Qng, N, = Matrix of Radau quadrature weights

oM = upper bound on processing time

ti‘p = estimated value of the transition time between product
andp

Xesi = Nth state steady value of produict

ug;i = mth manipulated variable value of product

F° = feed stream volumetric flow rate

Xi = conversion degree

Xhine Xmay = Minimum and maximum value of the state
ur, U = minimum and maximum value of the manipulated
variableu™

YN, = roots of the Lagrange orthogonal polynomial
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