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Abstra
tSimultaneous approa
hes for dynami
 optimization problems are surveyed anda number of emerging topi
s are explored. Also known as dire
t trans
ription, thisapproa
h has a number of advantages over 
ompeting dynami
 optimization meth-ods. Moreover, a number of industrial appli
ations have re
ently been reported on
hallenging real-world appli
ations. This study provides ba
kground information,summarizes the underlying 
on
epts and properties of this approa
h, dis
usses re-
ent advan
es in the treatment of dis
rete de
isions and, �nally, illustrates theapproa
h with two pro
ess 
ase studies.1 Introdu
tionWith growing appre
iation of dynami
 simulation in 
omputer aided pro
essengineering, reliable and e�
ient optimization tools have also be
ome moreimportant for these systems. Dynami
 optimization studies have been usedfor a number of o�ine tasks, in
luding transitions between desired oper-ating 
onditions, operating pro�les for bat
h pro
ess operation, design and1



operating studies in response to disturban
es and upsets, parameter estima-tion, model development and dis
rimination for dynami
 systems, and thedesign of 
ontrol systems. Online tasks in
lude the solution of optimizationproblems for 
ontrol and identi�
ation, parti
ularly in model predi
tive 
on-trol (MPC). For parti
ularly nonlinear pro
esses, su
h as polymer pro
esses,nonlinear models are essential to 
apture the dynami
s of the pro
ess. As aresult, several appli
ations of Nonlinear MPC strategies have been reportedfor these pro
esses.For the purpose of this study, we 
onsider the optimization problem statedin the following form:
min

z(t),u(t),p
ϕ(z(tf )) (1a)

s.t. dz(t)
dt

= f(z(t), y(t), u(t), p), z(t0) = z0 (1b)
g(z(t), y(t), u(t), p) = 0 (1
)

gf(z(tf )) = 0 (1d)
uL 6 u(t) 6 uU

yL 6 y(t) 6 yU

zL 6 z(t) 6 zU (1e)The �unknowns� in this optimization problem are the di�erential state vari-ables z(t), algebrai
 variables y(t), 
ontrol variables u(t), all fun
tions of thes
alar �time� parameter t ∈ [t0, tf ], as well as time-independent parameters
p. As 
onstraints we have the di�erential and algebrai
 equations (DAEs)given by (1b)-(1d) and we assume without loss of generality that the DAEsystem (1b,1
) is index one.As shown in Figure 1, a number of approa
hes 
an be taken to solve (1a)-(1e). Currently, DAE optimization problems are solved using a variationalapproa
h or by various strategies that apply nonlinear programming (NLP)solvers to the DAE model. Until the 1970s, these problems were solvedusing an indire
t or variational approa
h, based on the �rst order ne
essary
onditions for optimality obtained from Pontryagin's Maximum Prin
iple[67, 25℄. For problems without inequality 
onstraints, these 
onditions 
anbe written as a set of DAEs. Obtaining a solution to these equations requires
areful attention to the boundary 
onditions. Often the state variables havespe
i�ed initial 
onditions and the adjoint variables have �nal 
onditions; the2



Figure 1: Solution strategies for dynami
 optimizationresulting two-point boundary value problem (TPBVP) 
an be addressed withdi�erent approa
hes, in
luding single shooting, invariant embedding, multipleshooting or some dis
retization method su
h as 
ollo
ation on �nite elementsor �nite di�eren
es. A review of these approa
hes 
an be found in [26℄. Onthe other hand, if the problem requires the handling of a
tive inequality
onstraints, �nding the 
orre
t swit
hing stru
ture as well as suitable initialguesses for state and adjoint variables is often very di�
ult. Early approa
hesto deal with these problems 
an be found in [25℄.Methods that apply NLP solvers 
an be separated into two groups, se-quential and the simultaneous strategies. In the sequential methods, alsoknown as 
ontrol ve
tor parameterization, only the 
ontrol variables are dis-
retized. In this formulation the 
ontrol variables are represented as pie
e-wise polynomials [86, 87, 5℄ and optimization is performed with respe
t to thepolynomial 
oe�
ients. Given initial 
onditions and a set of 
ontrol param-eters, the DAE model is solved within an inner loop 
ontrolled by an NLPsolver; parameters representing the 
ontrol variables are updated by the NLPsolver itself. Gradients of the obje
tive fun
tion with respe
t to the 
ontrol
oe�
ients and parameters are 
al
ulated either from dire
t sensitivity equa-tions of the DAE system or by integration of the adjoint equations. Several3



e�
ient 
odes have been developed for both sensitivity methods in
ludingDDASAC, DASPK and CVODES.Sequential strategies are relatively easy to 
onstru
t and to apply as they
ontains the 
omponents of reliable DAE solvers (e.g., DASSL, DASOLV,DAEPACK) as well as NLP solvers (NPSOL, SNOPT). On the other hand,repeated numeri
al integration of the DAE model is required, whi
h maybe
ome time 
onsuming for large s
ale problems. Moreover, it is well knownthat sequential approa
hes have properties of single shooting methods and
annot handle open loop instability [2, 36℄. Finally, path 
onstraints 
an behandled only approximately, within the limits of the 
ontrol parameteriza-tion. More information on these approa
hes 
an be found in [26℄.Multiple shooting is a simultaneous approa
h that inherits many of theadvantages of sequential approa
hes. Here the time domain is partitionedinto smaller time elements and the DAE models are integrated separatelyin ea
h element [21, 22, 54℄. Control variables are parametrized as in thesequential approa
h and gradient information is obtained for both the 
on-trol variables as well as the initial 
onditions of the states variables in ea
helement. Finally, equality 
onstraints are added to the NLP to link the el-ements and ensure that the states are 
ontinuous a
ross ea
h element. Aswith the sequential approa
h, inequality 
onstraints for states and 
ontrols
an be imposed dire
tly at the grid points. For pie
ewise 
onstant or linear
ontrols this approximation is a

urate enough, but path 
onstraints for thestates may not be satis�ed between grid points.In the simultaneous approa
h, also known as dire
t trans
ription, we dis-
retize both the state and 
ontrol pro�les in time using 
ollo
ation of �niteelements. This approa
h 
orresponds to a parti
ular impli
it Runge-Kuttamethod with high order a

ura
y and ex
ellent stability properties. Alsoknown as fully impli
it Gauss forms, these methods are usually too expen-sive (and rarely applied) as initial value solvers. However, for boundaryvalue problems and optimal 
ontrol problems, whi
h require impli
it solu-tions anyway, this dis
retization is a less expensive way to obtain a

uratesolutions. On the other hand, the simultaneous approa
h leads to large-s
aleNLP problems that require e�
ient optimization strategies [15, 18, 29℄. Asa result, these methods dire
tly 
ouple the solution of the DAE system withthe optimization problem; the DAE system is solved only on
e, at the opti-mal point, and therefore 
an avoid intermediate solutions that may not existor may require ex
essive 
omputational e�ort.In the next se
tion we formulate the simultaneous approa
h and summa-4



rize its main advantages and 
hara
teristi
s. Se
tion 3 then reviews nonlinearprogramming strategies that solve the resulting problem. Se
tion 4 providesa survey of pro
ess appli
ations with the simultaneous approa
h along witha 
ase study dynami
 optimization of a 
rystallizer. Se
tion 5 then extendsthis approa
h with a dis
ussion of dis
rete de
isions along with a bat
h dis-tillation 
ase study that highlights the salient features within the previousse
tions. Con
lusions and dire
tions for future work are given in Se
tion 6.2 Formulation and Chara
teristi
s of the Si-multaneous Approa
hThe DAE optimization problem 
an be 
onverted into an NLP by approxi-mating state and 
ontrol pro�les by a family of polynomials on �nite elements(t0 < t1 < . . . < tN = θ). These polynomials 
an be represented as powerseries, sums of orthogonal polynomials or in Lagrange form. Here, we use thefollowing monomial basis representation for the di�erential pro�les, whi
h ispopular for Runge-Kutta dis
retizations:
z(t) = zi−1 + hi

K∑

q=1

Ωq

(
t− ti−1

hi

)
dz

dt i,q
. (2)Here zi−1 is the value of the di�erential variable at the beginning of element

i, hi is the length of element i, dz/dti,q is the value of its �rst derivativein element i at the 
ollo
ation point q, and Ωq is a polynomial of order K,satisfying
Ωq(0) = 0 for q = 1, . . . , K

Ω′

q(ρr) = δq,r for q, r = 1, . . . , Kwhere ρr is the lo
ation of the rth 
ollo
ation point within ea
h element.Continuity of the di�erential pro�les is enfor
ed by
zi = zi−1 + hi

K∑

q=1

Ωq (1)
dz

dt i,q
. (3)Based on our experien
e in a number of studies, we prefer Radau 
ollo
ationpoints be
ause they allow 
onstraints to be set at the end of ea
h element and5



Figure 2: Collo
ation on �nite elements. The diamonds represent u and y at
ollo
ation points. The triangles represent dz/dt at 
ollo
ation points andthe 
ir
les represent z at element boundaries, where dis
ontinuity is allowedin u and y, although 
ontinuity of z is retained.to stabilize the system more e�
iently if high index DAEs are present. In ad-dition, the 
ontrol and algebrai
 pro�les are approximated using a Lagrangebasis representation whi
h takes the form:
y(t) =

K∑

q=1

ψq

(
t− ti−1

hi

)
yi,q (4)

u(t) =

K∑

q=1

ψq

(
t− ti−1

hi

)
ui,q. (5)Here yi,q and ui,q represent the values of the algebrai
 and 
ontrol variables,respe
tively, in element i at 
ollo
ation point q. ψq is the Lagrange polyno-mial of degree K satisfying

ψq(ρr) = δq,r for q, r = 1, . . . , K.From (2), the di�erential variables are required to be 
ontinuous throughoutthe time horizon, while the 
ontrol and algebrai
 variables are allowed tohave dis
ontinuities at the boundaries of the elements. As seen from Figure2, (2) allows bounds on the di�erential variables to be enfor
ed dire
tly atelement boundaries, using zi. These 
an also be enfor
ed at all 
ollo
ationpoints by writing additional point 
onstraints.6



Substitution of equations (2)-(5) into (1a)-(1e) leads to the following NLP.
min

dz
dt i,q

,ui,q,yi,q,p

ϕ(zN) (6a)
s.t. dz

dt i,q
= f(zi,q, yi,q, ui,q, p), (6b)

zi,q = zi−1 + hi

K∑
q′=1

Ωq′ (ρq) (6
)
g(zi,q, yi,q, ui,q, p) = 0 i = 1, . . . N, q = 1, . . .K (6d)

zi = zi−1 + hi

K∑
q=1

Ωq (1) i = 1, . . .N (6e)
gf(zN ) = 0 (6f)and for i = 1, . . .N, q = 1, . . .K:

uL 6 ui,q 6 uU

yL 6 yi,q 6 yU

zL 6 zi,q 6 zU (6g)This NLP 
an be rewritten as:
min
x∈Rn

f(x) (7)
s.t. c(x) = 0 (8)

xL 6 x 6 xU (9)where x =
(

dz
dt i,q

, zi, yi,q, ui,q, t, p
)T , f : Rn −→ R and c : Rn −→ Rm.The simultaneous approa
h has a number of advantages over other ap-proa
hes to dynami
 optimization:1. Control variables are dis
retized at the same level as the state vari-ables the Karush Kuhn Tu
ker (KKT) 
onditions of the simultaneousNLP are 
onsistent with the optimality 
onditions of the dis
retizedvariational problem, and, under mild 
onditions, 
onvergen
e rates 
anbe shown (see [75, 33, 40℄) . More re
ently, we have extended theseproperties to Radau 
ollo
ation. In [46, 47℄, 
onvergen
e rates werederived that relate NLP solutions to the true solutions of the in�nitedimensional optimal 
ontrol problem.7



2. As with multiple shooting approa
hes, simultaneous approa
hes 
andeal with instabilities that o

ur for a range of inputs. Be
ause they
an be seen as extensions of robust boundary value solvers, they areable to "pin down" unstable modes (or in
reasing modes in the forwarddire
tion). This 
hara
teristi
 has bene�ts on problems that in
ludetransitions to unstable points, optimization of 
haoti
 systems [22℄ andsystems with limit 
y
les and bifur
ations, as illustrated in [36℄.3. Simultaneous methods also allow the dire
t enfor
ement of state and
ontrol variable 
onstraints, at the same level of dis
retization as thestate variables of the DAE system. As was dis
ussed in [47℄, these 
anpresent some interesting advantages on large-s
ale problems.4. Finally, re
ent work has shown [13, 48, 47℄ that simultaneous approa
heshave distin
t advantages for singular 
ontrol problems and problemswith high index path 
onstraints.Nevertheless, simultaneous strategies require the solution of large nonlin-ear programs, and spe
ialized methods are required to solve them e�
iently.These NLPs are usually solved using variations of Su

essive Quadrati
 Pro-gramming (SQP). Both full spa
e and redu
ed spa
e options exist for thesemethods. Full spa
e methods take advantage of the sparsity of the DAEoptimization problem. They are best suited for problems where the numberof dis
retized 
ontrol variables is large [15℄. Here, se
ond derivatives of theobje
tive fun
tion and 
onstraints are usually required, as are measures todeal with dire
tions of negative 
urvature in the Hessian matrix [88℄. Betts[12℄ provides a detailed des
ription of the simultaneous approa
h with fullspa
e methods, along with mesh re�nement strategies and 
ase studies in me-
hani
s and aerospa
e. On the other hand, redu
ed-spa
e approa
hes exploitthe stru
ture of the DAE model and de
ompose the linearized KKT system;se
ond derivative information is often approximated here with quasi-Newtonformulae. This approa
h has been very e�
ient on many problems in pro-
ess engineering that have few dis
retized 
ontrol variables (say 6 1000)[10, 16, 27℄. We will sket
h our 
urrent NLP algorithm, IPOPT, in the nextse
tion and dis
uss both full- and redu
ed-spa
e options.
8



3 Solving large-s
ale NLPsWe now 
onsider methods for the solution of the NLP resulting from thesimultaneous formulation. Be
ause of the large problem size, large numberof inequalities and a potentially large number of degrees of freedom, we �ndthat NLP (7)-(9), 
an be solved quite e�
iently using the IPOPT algorithm[88℄ for large-s
ale nonlinear programming. This algorithm follows a barrierapproa
h, where the bound 
onstraints (9) are repla
ed by logarithmi
 barrierterms whi
h are added to the obje
tive fun
tion to give:
minϕ(x) = f(x) − µ̂

∑n

i=1 ln(x(i) − x
(i)
L )

−µ̂
∑n

i=1 ln(x
(i)
U − x(i)) (10)

s.t. c(x) = 0 (11)with a barrier parameter µ̂ > 0. Here, x(i) denotes the ith 
omponent ofthe ve
tor x. Sin
e the obje
tive fun
tion of this barrier problem be
omesarbitrarily large as x(i) approa
hes either of its bounds, a lo
al solution x∗(µ̂)of this problem lies in the interior of this set, i.e., xU > x∗(µ̂) > xL. Thedegree of in�uen
e of the barrier is determined by the size of µ̂, and undermild 
onditions x∗(µ̂) 
onverges to a lo
al solution x∗ of the original problem(7)-(9) as µ̂ → 0. Consequently, a strategy for solving the original NLPis to solve a sequen
e of barrier problems (10)-(11) for de
reasing barrierparameters µ̂l, where l is the 
ounter for the sequen
e of subproblems.IPOPT follows a primal-dual approa
h and applies a Newton methodto the resulting KKT 
onditions, leading to solution of the following linearsystem at iteration k:
[
Hk + Σk AT

k

Ak 0

] [
∆x
λ+

]
= −

[
∇ϕ(xk)
c(xk)

] (12)where we use the 
onvention, X = diag(x), et
., Hk is the Hessian ofthe Lagrangian fun
tion ∇xxf(xk) + c(xk)
Tλk, Ak = ∇c(xk) and Σk =

(V k
a )−1(Xk − XL) + (V k

b )−1(XU − Xk) is the barrier term. Exa
t �rst andse
ond derivatives for this method 
an be evaluated in a number of ways, in-
luding automati
ally through the AMPL interfa
e [38℄. Global 
onvergen
eof the Newton method is promoted by a novel �lter line sear
h strategy;detailed analysis shows both global 
onvergen
e and fast lo
al 
onvergen
eproperties. More information on IPOPT 
an be found in Wä
hter and Biegler[88℄. In the next se
tion, we note that this Newton-based approa
h provides9



a number of opportunities for de
omposition and tailoring to the stru
tureof the dynami
 optimization problem.The simultaneous approa
h also o�ers opportunities to exer
ise �exibilityand exploit stru
ture, parti
ularly in the Newton step (12) and solution ofthis linear system. Here we are presented with three options:
• Apply a range and null spa
e de
omposition to (12); this leads to theredu
ed spa
e approa
h.
• Apply a dire
t, sparse symmetri
 linear solver to (12), leading to a fullspa
e approa
h. This approa
h takes advantage of widely used sparsematrix software.
• Apply an iterative linear solver to the inde�nite system (12). This takesadvantage of problem spe
i�
 pre
onditioners to exploit the stru
tureof the A matrix in (12) [20℄. More information on this approa
h 
anbe found in [19℄The redu
ed spa
e approa
h has been developed and demonstrated ina number of studies [18, 27, 29℄. Here the variables are partitioned into

m dependent (Y spa
e) and n − m independent (Z spa
e) variables. Theindependent variable spa
e o

upies the null spa
e of AT
k . The 
ombined setof these variables spans the full spa
e. Note that the 
ontrol variables andparameters are not ne
essarily the independent variables. With this partition

AT
k = [Ck | Nk], where the m ×m basis matrix Ck is nonsingular, we de�nethe matri
es ZT

k = [−NT
k C

−T
k | I] and Y T

k = [I | 0] and that Note that Zksatis�es AT
kZk = 0 and is therefore a null spa
e basis matrix for AT

k . Thesear
h dire
tion 
an now be written as dk = YkdY + ZkdZ . The range spa
edire
tion dY is determined by solving:
dY = −C−1

k ck, (13)and the null spa
e dire
tion dZ is obtained from (12) after substituting for dand invoking AT
kZk = 0:
dZ = −[ZT

k (Hk + Σk)Zk]
−1
(
ZT

k ∇ϕ(xk) + wk

)
. (14)with wk = ZT

k (Hk + Σk)YkdY . Cal
ulation of both the range spa
e step andthe null spa
e basis is aided by exploiting the stru
ture of AT = [C | N ],10



given by:




I |
T 1 C1 | N1

I Ĉ1 −I | N̂1

T 2 C2 | N2

I Ĉ2 −I | N̂2

T 3 C3 | N3. . . |
. . .



Here linear solutions that require matrix C pro
eed by fa
toring C i forea
h element i sequentially. This follows in the same manner as in the forwardsolution of DAEs and the asso
iated sensitivity equations, with the ex
eptionthat AT 
an �rst be stabilized to enfor
e di
hotomy (see [28℄ for a detailedanalysis of this approa
h).The redu
ed spa
e approa
h is espe
ially advantageous for dynami
 opti-mization problems with few degrees of freedom. It has been implemented inthe DynoPC pa
kage [53℄ and has been used to solve a wide variety of largeproblems [53, 18, 52℄ quite e�
iently. Moreover, Li, Wozny and 
oworkers[43, 55℄ have proposed feasible path extensions of this approa
h (instead of(13) the nonlinear 
ollo
ation equations are solved at ea
h time step) withex
ellent performan
e on large s
ale problems. Finally, this approa
h hasbeen developed further further [68, 61℄ by modifying the impli
it Runge-Kutta dis
retization and adjusting element lengths to ensure a

urate statepro�les.However, as the degrees of freedom in
rease, determination of Z, 
al
ula-tion of dZ and espe
ially 
omputation of ZT
k ΣkZk in (14) be
ome expensive.This property was demonstrated in [47℄ on results for the dynami
 optimiza-tion of a distillation 
olumn with up to 1,215,970 variables (see also, [89℄). Anumber of options were 
onsidered for the 
al
ulation of dZ in (14), but, for
omputation on single pro
essor 
omputers, all of these grow polynomiallywith the degrees of freedom.Nevertheless, the redu
ed spa
e approa
h has the advantage that theinformation in (12) 
an be 
onstru
ted and stored element-by-element andparallel pro
essors 
an be used to great advantage in the 
omputation of (14)and (13). Future work will therefore 
on
entrate on redu
ed-spa
e de
ompo-sition pro
edures that exploit parallelism for large problems.11



4 Appli
ations of the Simultaneous Approa
hAlong with the advan
es des
ribed above, there have been a large numberof appli
ations of the simultaneous approa
h. These were prompted by earlystudies in the 70s and early 80s [84, 64, 62, 21, 17℄ and a realization thatthese methods were espe
ially suitable for unstable systems and systems withpath 
onstraints. In parti
ular, the simultaneous approa
h has been appliedwidely in aeronauti
al and astronauti
al appli
ations. A 
ursory literaturesear
h reveals about 200 publi
ations that apply simultaneous approa
hesin this area. Spe
i�
 appli
ations in
lude the 
ollision avoidan
e for multi-ple air
raft [14, 70℄ and underwater vehi
les [80℄, traje
tories for satellitesand earth orbiters [78, 32℄ and the design of multiple paths and orbits formultibody dynami
s [24℄, in
luding interplanetary travel [11℄. An overviewof these appli
ations is given in [12℄. Moreover, the SOCS (Sparse OptimalControl Software) [12℄ pa
kage, 
ommer
ial software developed marketed byBoeing Corporation, has been widely used for these and other engineeringappli
ations.In pro
ess engineering, appli
ations of the simultaneous approa
h in
ludethe design and optimal operation of bat
h pro
esses. These in
lude opti-mization of operating poli
ies for fermentors [33℄ and biorea
tors [77℄, �uxbalan
e models for metaboli
 systems [51, 60, 73℄, bat
h distillation 
olumns[58, 65℄, membrane separators [34℄, polymerization rea
tors [36, 44℄, 
rys-tallization [52℄, freeze-drying pro
esses [23℄ and integrated multi-unit bat
hpro
esses [16℄. Other o�-line appli
ations in
lude parameter estimation ofrea
tive systems [83, 35℄, design of periodi
 separation pro
esses in
ludingpressure swing adsorption [63℄ and simulated moving beds [50, 49℄, optimalgrade transitions in polymer pro
esses [30, 36℄, rea
tor network synthesis[7, 66℄ and e
onomi
 performan
e analysis of bat
h systems [57℄.On-line appli
ations in
lude dynami
 data re
on
iliation algorithms forbat
h pro
esses [1, 56℄, state estimation and pro
ess identi�
ation [82℄, op-timal startup poli
ies for distillation 
olumns [71℄, optimal feed poli
ies fordire
t methanol fuel 
ells [91℄ and a number of algorithms and 
ase studiesfor nonlinear model predi
tive 
ontrol (NMPC)[79, 39℄. Moreover, 
ommer-
ial appli
ations of NMPC in
lude several appli
ations at ExxonMobil andChevronPhillips, whi
h use the NLC pa
kage and NOVA solver by PAS,In
. [76, 92℄. Other software implementations of the simultaneous approa
hin
lude DynoPC [53℄, a Windows-based platform, as well as the OptimalCon-trolCentre [39℄ and dynopt [31℄ pa
kages, both developed in MATLAB.12



4.1 Crystallization Case StudyTo illustrate the simultaneous approa
h on a pro
ess appli
ation, we 
onsiderthe dynami
 optimization of a 
rystallizer des
ribed with a simple populationbalan
e model. Conventional 
rystallization kineti
s are 
hara
terized interms of two dominant phenomena: nu
leation and 
rystal growth. Theseare 
ompeting phenomena that both 
onsume desired solute material duringthe 
rystallization pro
ess. To obtain larger (and fewer) 
rystals, nu
leationneeds to be minimized, and the goal of the optimization is to �nd operatingstrategies that will allow us to minimize this phenomenon. To do this, wedetermine a pro�le for the 
ooling ja
ket temperature.The dynami
 optimization problem for the 
rystallizer 
onsists of a DAEmodel, a lower bound of the ja
ket temperature as a fun
tion of the solute
on
entration and an obje
tive to maximize the 
rystal length. This obje
tivealso 
orresponds to minimizing the surfa
e area in order to obtain higherpurity of the 
rystals. The dynami
 optimization problem 
an be stated as:
max

z(t),u(t),p
Ls(tf ) (15)
dLs

dt
= KgL

0.5
s ∆T 1.1 (16)

dN

dt
= Bn∆T 5.72 (17)

dL

dt
= N

dLs

dt
+ L0

dN

dt
(18)

dA

dt
= 2αN

dLs

dt
+ L2

0

dN

dt
(19)

dVc

dt
= 3βA

dLs

dt
+ L3

0

dN

dt
(20)

dM

dt
= 3(Ws0/L

3
s0)L

2
s

dz1
dt

+ ρV
dVc

dt
(21)

dC

dt
= −

dM

dt
/V (22)

dT

dt
= Kc

dM

dt
− (Ke/(wCp))(T − Tj) (23)

φ(C) 6 Tj ∈ [10oC, 100oC] (24)where Ls is the mean 
rystal size, N is the number of nu
lei per liter ofsolvent, L is the total length of the 
rystals per liter of solvent, A is the total13



Figure 3: Optimal 
ooling and 
rystal size pro�les for 
rystallizersurfa
e area of the 
rystals per liter of solvent, Vc is the total volume of the
rystals per liter of solvent, C is the solute 
on
entration, M is the totalmass of the 
rystals, V is the volume of the solvent, L0 is the initial 
rystalsize, Wso is the mass of seeds added, Lso is the mean size of the seeds, ρ isthe true spe
i�
 gravity of the 
rystals, and α, β are shape fa
tors for areaand volume of the 
rystals, respe
tively. These and the remaining parametervalues, Kg, Bn, w, Cp, Kc and Ke are reported in [52℄.The most important aspe
t of this problem is how the 
ontrol pro�le im-pa
ts the pro
ess. The 
ontrol variable is the ja
ket temperature, Tj, whi
hhas a lower bound, φ(C), that 
hanges dynami
ally with the 
on
entrationof the solute. The fun
tion φ(C) is 
al
ulated based on a polynomial rela-tionship between 
on
entration and equilibrium temperature.Applying the simultaneous approa
h to this model with 3 point Radau
ollo
ation and �fty �nite elements leads to an NLP with 1900 variablesand 1750 equality 
onstraints. Using DynoPC [53℄, the optimal solution wasobtained in 12.5 CPUs (1.6 MHz IBM laptop) with 105 iterations of theredu
ed spa
e version of IPOPT. The optimal pro�les of the mean 
rystalsize and the ja
ket temperature are given in Figure 3. Note that the mean
rystal size in
reased by over eight times in 25 h. Also, in order to maximizethe 
rystal size, the ja
ket 
ooling pro�le must �rst in
rease to redu
e thenumber of nu
leating parti
les. Further information on this optimizationstudy 
an be found in [52, 89℄.
14



5 Dis
rete De
isionsDis
rete events o

ur in many dynami
 simulation and optimization prob-lems. In 
hemi
al pro
esses, examples of this phenomena in
lude phase
hanges in equilibrium systems, 
hanges in modes in the operation of safetyand relief valves, vessels running dry or over�owing, dis
rete de
isions madeby 
ontrol systems and explosions due to a

idents. These a
tions 
an bereversible or irreversible and should be modeled with appropriate logi
al 
on-straints. Modeling dis
rete events is dis
ussed in [5℄; these events are oftentriggered by an appropriate dis
ontinuity fun
tion whi
h monitors a 
hangein the 
ondition and leads to a 
hange in the state equations. These 
hanges
an be reformulated either as binary de
ision variables [6℄ or by using 
om-plementarity 
onditions (with nonnegative 
ontinuous variables x(i) and x(j)alternately set to zero). These additional variables 
an then be embeddedwithin optimization problems.The in
orporation of binary variables leads to mixed integer optimizationproblems. Here, several studies have 
onsidered the solution of Mixed IntegerDynami
 Optimization (MIDO) problems. In parti
ular, Avraam et al. [4℄developed a 
omplete dis
retization of the state and 
ontrol variables to forma mixed integer nonlinear program. More re
ently, a number of MIDO al-gorithms were developed and 
ompared with the simultaneous approa
h [37℄in order to sele
t optimal 
ontrol strategies. Alternately Allgor and Barton[3℄ and Bansal et al. [8℄ apply sequential strategies and dis
retize only the
ontrol pro�le. For this approa
h, 
areful attention must paid to 
al
ulationof sensitivity information for dis
rete de
isions triggered in time.On the other hand, many dis
rete de
isions for hybrid systems 
an bemodeled through 
omplementarity relations [42, 85℄. Furthermore, 
omple-mentarity 
onditions 
an be 
onsidered in a straightforward way throughbarrier methods [72℄ to yield an NLP. This 
lass of problems 
an be gener-alized to Mathemati
al Programs with Equilibrium Constraints (MPECs) ofthe following form:
min
x∈Rn

f(x) (25a)
s.t. c(x) = 0 (25b)

xL 6 x 6 xU (25
)
0 6 x̂ ⊥ x̄ > 0 (25d)(25e)15



with xT = [x̃T x̂T x̄T ]. Appli
ations of MPECs have long been re
ognizedin game theory, transportation planning, e
onomi
s and engineering design;a broad survey of these appli
ations 
an be found in [41, 59℄. In pro
essengineering, these problems stem from bilevel and multilevel optimizationproblems as well as optimization of hybrid (dis
rete and 
ontinuous) systems[81℄. In
luded in this 
lass are optimization problems with phase equilibrium
onstraints, as in equilibrium stage pro
esses [69℄, and 
ellular models basedon metaboli
 pathways [73℄.To solve the MPEC, we 
ould apply a primal-dual interior point approa
h,but the KKTmatrix 
orresponding to (12) is singular at all points that satisfy(25d). To deal with this 
hara
teristi
, we rewrite (25d) as X̂x̄ 6 µ̂e, where
µ̂ is the barrier parameter whose sequen
e goes to zero. We have in
orpo-rated this MPEC reformulation into the IPOPT 
ode along with algorithmi
modi�
ations to treat the 
omplementarity 
onstraints more e�
iently. Theimplementation 
ompares well against 
ompeting barrier algorithms [69, 72℄and performs well on distillation optimization problems with disappearingvapor and liquid phases on equilibrium stages, as well as on a number ofother appli
ations [73, 45℄.5.1 Example Problem: Bat
h DistillationTo illustrate the appli
ation of MPECs to dynami
 optimization, we presentan example developed in [71℄, that deals with the 
old startup of a bat
hdistillation unit. These models have also been 
onsidered in [90℄. Considera bat
h distillation 
olumn with a 
harge of 8 kmol of a 58/42 mixture ofbenzene and toluene in the bottom of the 
olumn. The 
olumn operates at 1bar and 
onsists of 12 trays, in
luding the reboiler and 
ondenser. The max-imum reboiler heat duty is set to 600 kJ/hr and the minimum holdup for thetrays and 
ondenser are 0.3 and 0.5 kmol, respe
tively. The 
ontrol variablesin the 
olumn operation are the distillate �owrate, D and the reboiler heatduty, Qr. At initial time, the tray holdups are set to zero and startup ofthe 
olumn is posed as a free end-time problem whi
h maximizes the averagerate of produ
t withdrawn over the time of operation tf as follows:

max 1
tf

(
tf∫

0

D(t)dt+M l
12(tf )

)
− ǫ 1

tf

tf∫

0

(Qr(t) −Qmax
r )2dt (26)
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s.t. dM1

dt
= L2 − V1 − L1

dMi

dt
= Vi−1 + Li+1 − Vi − Li i = 2, . . . 11

dM12

dt
= V11 −D − L12

(27)
M1

dx1,j

dt
= L2(x2,j − x1,j) − V1(y1,j − x1,j)

Mi
dxi,j

dt
= Vi−1(yi−1,j − xi,j) + Li+1(xi+1,j − xi,j) − Vi(yi,j − xi,j) i = 2, . . . 11

M12
dx12,j

dt
= V11(y11,j − x12,j) (28)

M1
dhl

1

dt
= L2(h

l
2 − hl

1) − V1(h
v
1 − hl

1) +Qr

Mi
dhl

i

dt
= Vi−1(h

v
i−1 − hl

i) + Li+1(h
l
i+1 − hl

i) − Vi(h
v
i − hl

i,j) i = 2, . . . 11

M12
dhl

12

dt
= V11(h

v
11 − hl

12) −Qc (29)
yi,j = βiKi,j(Ti, Pi, xi)xi,j j ∈ COMP

0 =
∑

j∈COMP

yi,j −
∑

j∈COMP

xi,j

βi = 1 − αl
i + αv

i

0 6 M l
i ⊥ αl

i > 0
0 6 Mv

i ⊥ αv
i > 0

(30)
x12,C6H6

M l
12

(tf )+

tf∫

0

x12,C6H6
D(t)dt

M l
12

(tf )+

tf∫

0

D(t)dt

> 0.95 (31)where Mi, Li, Vi are the holdup, liquid �owrate and vapor �owrate on the
ith tray, respe
tively, xi,j , yi,j represent the liquid and vapor 
ompositions onthe ith tray, respe
tively, hv

i , h
l
i represent the spe
i�
 enthalpies of the vaporand liquid streams from tray i, Qr and Qc are the reboiler and 
ondenserheat loads and ǫ > 0 is a small parameter serving to regularize the problem.In the above formulation, the total produ
t at �nal time is de�ned as thesum of the 
ondenser holdup at �nal time and the total distillate withdrawalover time. The total produ
t that is withdrawn from the 
olumn is requiredto have a 
ertain purity of benzene as indi
ated by the last 
onstraint ofthe optimization problem (31). Finally, additional algebrai
 equations areadded to de�ne the spe
i�
 enthalpies in terms of temperature and to relate
onditions between the tray holdupsMi and liquid �owrate Li. Note that wemodeled the tray holdup by ignoring the vapor 
omponent. As des
ribed in[71℄, this leads to a DAE model of index 2. In parti
ular, the vapor �owrate,

Vi(t), an algebrai
 variable, appears nowhere in the algebrai
 equations. Asa result, this system had to be reformulated to index 1 in [71℄.17



From (30), we note that the 
omplementarity 
onstraints allow the liquidphase to disappear [71℄, so that:
M l

i ,M
v
i > 0 then βi = 1

M l
i = 0 < Mv

i then βi 6 1
M l

i > 0 = Mv
i then βi > 1.

(32)The optimal 
ontrol problem is dis
retized over 30 elements with 2 
ollo-
ation points leading to a problem with 22226 variables and 20125 
onstraintsin
luding 2040 
omplementarity 
onstraints. The problem solved to a tol-eran
e of 10−5 in the optimality 
onditions using a 2.2 GHz Intel PentiumIV pro
essor running Linux as the operating system. Intuitively, one wouldexpe
t the optimal startup solution to exhibit total re�ux and a heat dutypro�le at its upper bound. However, this is not possible for this example, asthe trays are deliberately undersized. Setting Qr to the upper bound wouldlead to 
omplete depletion of the 
harge before holdups would be establishedand the purity 
ould be satis�ed. As a result, an intermediate reboil pro�leneeds to be determined.Solution of the optimization problem yields an optimal operating timeof 28.8 hours. The pro�les of liquid holdup and re�ux �ow for the optimalsolution are shown in Figures 4 and 5. The trays have no holdup initially sono liquid �ows from the trays until the liquid holdup is at least equal to theminimum threshold. The vapor from the bottom is 
ompletely 
ondensedon tray 12 and re�uxed to the 
olumn at initial time. This in
reases theholdup on the trays in de
reasing order of tray number. Also, �u
tuationsin the liquid holdup 
orrespond to the times at whi
h the vapor �owrate islowered and this de
reases with reboiler heat duty, Qr, shown in Figure 6.The 
ontrol pro�les lie stri
tly between bounds over a signi�
ant portion ofthe time of operation, and the solution exa
tly mat
hes the purity 
onstrainton benzene at �nal time.6 Con
lusions and Future Dire
tionsWith in
reasing demands for the analysis and exploitation of dynami
 be-havior in pro
esses systems, dynami
 optimization has be
ome in
reasinglyimportant, both for o�-line and on-line appli
ations. This paper presents ageneral overview of simultaneous approa
hes to dynami
 optimization prob-lems. Over the past two de
ades, simultaneous approa
hes have been applied18
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h 
olumnin hundreds of literature studies. By dis
retizing both the state and 
ontrolvariables with a stable, high order impli
it Runge-Kutta s
heme and forminglarge-s
ale nonlinear programs, these approa
hes allow the rapid determina-tion of a

urate solution pro�les with fewer time steps (�nite elements) thanwith sequential methods that apply standard ODE solvers. Moreover, thesimultaneous strategy has 
lear advantages in the treatment of path 
on-straints and unstable dynami
 systems.Re
ent work in numeri
al analysis and mathemati
al programming hasled to highly e�
ient large-s
ale NLP solvers to handle the dis
retized dy-nami
 optimization problem, thus leading to to fast solutions. Moreover, theapproa
h also o�ers �exibility with respe
t to the formulation, de
omposi-tion and solution of large-s
ale NLP problems. Finally, a

urate �rst andse
ond derivatives 
an be obtained 
heaply from the NLP, thus providing anessential element for superior performan
e of the NLP solution strategy.Future work with simultaneous dynami
 optimization lies in the solutionof large-s
ale NLPs with e�
ient de
omposition strategies that take advan-tage of stru
ture and lend themselves to parallel 
omputing. Additionalwork is also required for ill-
onditioned optimal 
ontrol problems, in parti
-ular, singular problems and high index path 
onstrained problems. Theseproblem types present di�
ulties for all optimal 
ontrol strategies. For si-20



multaneous methods, they lead to ill-
onditioning of the linear system (12).To over
ome this drawba
k, unbiased regularization strategies are proposedand demonstrated in [47℄ for singular 
ontrol problems. On the other hand,ill-
onditioning due to path 
onstrained problems seems to be benign as dis-
ussed and demonstrated in [48, 13℄.The treatment of dis
rete de
isions has only re
ently been 
onsideredwith simultaneous approa
hes. In parti
ular, we have found that 
omple-mentarity 
onstraints and the resulting MPEC formulations 
an deal withlarge sets of dis
rete de
isions that result from temporal dis
retizations. Nev-ertheless, 
areful formulation of MPEC problems still needs to be explored.A promising approa
h develops 
omplementarity 
onstraints from swit
hing
onditions that arise from 
onvex inner-level NLPs. However, the proper-ties of these formulations still need to be analyzed. Moreover, reformulationte
hniques that 
onvert the MPEC to a well-posed NLP have been des
ribedand analyzed in [74℄. These need to be evaluated in the 
ontext of dynami
optimization.Finally, the above dynami
 optimization problems lead to solution pro�leswith fun
tion and derivative dis
ontinuitues (jumps and kinks over time).Within the simultaneous approa
h, a

urate solutions with these featuresrequire the in
orporation of moving �nite elements based on error 
riteriaboth in state variable representation and in optimality 
onditions. Interest-ing preliminary results in this area are des
ribed in [47, 18℄. Ongoing workwith moving elements extends this approa
h to a broader range of problems.A
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