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Abstract

Simultaneous approaches for dynamic optimization problems are surveyed and
a number of emerging topics are explored. Also known as direct transcription, this
approach has a number of advantages over competing dynamic optimization meth-
ods. Moreover, a number of industrial applications have recently been reported on
challenging real-world applications. This study provides background information,
summarizes the underlying concepts and properties of this approach, discusses re-
cent advances in the treatment of discrete decisions and, finally, illustrates the
approach with two process case studies.

1 Introduction

With growing appreciation of dynamic simulation in computer aided process
engineering, reliable and efficient optimization tools have also become more
important for these systems. Dynamic optimization studies have been used
for a number of offline tasks, including transitions between desired oper-
ating conditions, operating profiles for batch process operation, design and



operating studies in response to disturbances and upsets, parameter estima-
tion, model development and discrimination for dynamic systems, and the
design of control systems. Online tasks include the solution of optimization
problems for control and identification, particularly in model predictive con-
trol (MPC). For particularly nonlinear processes, such as polymer processes,
nonlinear models are essential to capture the dynamics of the process. As a
result, several applications of Nonlinear MPC strategies have been reported
for these processes.

For the purpose of this study, we consider the optimization problem stated
in the following form:
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The “unknowns” in this optimization problem are the differential state vari-
ables z(t), algebraic variables y(t), control variables u(t), all functions of the
scalar “time” parameter ¢ € [to,ty], as well as time-independent parameters
p. As constraints we have the differential and algebraic equations (DAESs)
given by (1b)-(1d) and we assume without loss of generality that the DAE
system (1b,1c) is index one.

As shown in Figure 1, a number of approaches can be taken to solve (1a)-
(le). Currently, DAE optimization problems are solved using a variational
approach or by various strategies that apply nonlinear programming (NLP)
solvers to the DAE model. Until the 1970s, these problems were solved
using an indirect or variational approach, based on the first order necessary
conditions for optimality obtained from Pontryagin’s Maximum Principle
[67, 25]. For problems without inequality constraints, these conditions can
be written as a set of DAEs. Obtaining a solution to these equations requires
careful attention to the boundary conditions. Often the state variables have
specified initial conditions and the adjoint variables have final conditions; the
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Figure 1: Solution strategies for dynamic optimization

resulting two-point boundary value problem (TPBVP) can be addressed with
different approaches, including single shooting, invariant embedding, multiple
shooting or some discretization method such as collocation on finite elements
or finite differences. A review of these approaches can be found in [26]. On
the other hand, if the problem requires the handling of active inequality
constraints, finding the correct switching structure as well as suitable initial
guesses for state and adjoint variables is often very difficult. Early approaches
to deal with these problems can be found in [25].

Methods that apply NLP solvers can be separated into two groups, se-
quential and the simultaneous strategies. In the sequential methods, also
known as control vector parameterization, only the control variables are dis-
cretized. In this formulation the control variables are represented as piece-
wise polynomials [86, 87, 5] and optimization is performed with respect to the
polynomial coefficients. Given initial conditions and a set of control param-
eters, the DAE model is solved within an inner loop controlled by an NLP
solver; parameters representing the control variables are updated by the NLP
solver itself. Gradients of the objective function with respect to the control
coefficients and parameters are calculated either from direct sensitivity equa-
tions of the DAE system or by integration of the adjoint equations. Several



efficient codes have been developed for both sensitivity methods including
DDASAC, DASPK and CVODES.

Sequential strategies are relatively easy to construct and to apply as they
contains the components of reliable DAE solvers (e.g., DASSL, DASOLV,
DAEPACK) as well as NLP solvers (NPSOL, SNOPT). On the other hand,
repeated numerical integration of the DAE model is required, which may
become time consuming for large scale problems. Moreover, it is well known
that sequential approaches have properties of single shooting methods and
cannot handle open loop instability |2, 36]. Finally, path constraints can be
handled only approximately, within the limits of the control parameteriza-
tion. More information on these approaches can be found in [26].

Multiple shooting is a simultaneous approach that inherits many of the
advantages of sequential approaches. Here the time domain is partitioned
into smaller time elements and the DAE models are integrated separately
in each element [21, 22, 54]. Control variables are parametrized as in the
sequential approach and gradient information is obtained for both the con-
trol variables as well as the initial conditions of the states variables in each
element. Finally, equality constraints are added to the NLP to link the el-
ements and ensure that the states are continuous across each element. As
with the sequential approach, inequality constraints for states and controls
can be imposed directly at the grid points. For piecewise constant or linear
controls this approximation is accurate enough, but path constraints for the
states may not be satisfied between grid points.

In the simultaneous approach, also known as direct transcription, we dis-
cretize both the state and control profiles in time using collocation of finite
elements. This approach corresponds to a particular implicit Runge-Kutta
method with high order accuracy and excellent stability properties. Also
known as fully implicit Gauss forms, these methods are usually too expen-
sive (and rarely applied) as initial value solvers. However, for boundary
value problems and optimal control problems, which require implicit solu-
tions anyway, this discretization is a less expensive way to obtain accurate
solutions. On the other hand, the simultaneous approach leads to large-scale
NLP problems that require efficient optimization strategies [15, 18, 29|. As
a result, these methods directly couple the solution of the DAE system with
the optimization problem; the DAE system is solved only once, at the opti-
mal point, and therefore can avoid intermediate solutions that may not exist
or may require excessive computational effort.

In the next section we formulate the simultaneous approach and summa-



rize its main advantages and characteristics. Section 3 then reviews nonlinear
programming strategies that solve the resulting problem. Section 4 provides
a survey of process applications with the simultaneous approach along with
a case study dynamic optimization of a crystallizer. Section 5 then extends
this approach with a discussion of discrete decisions along with a batch dis-
tillation case study that highlights the salient features within the previous
sections. Conclusions and directions for future work are given in Section 6.

2 Formulation and Characteristics of the Si-
multaneous Approach

The DAE optimization problem can be converted into an NLP by approxi-
mating state and control profiles by a family of polynomials on finite elements
(to < t; < ... <ty = 0). These polynomials can be represented as power
series, sums of orthogonal polynomials or in Lagrange form. Here, we use the
following monomial basis representation for the differential profiles, which is
popular for Runge-Kutta discretizations:

K t—ti 1 dz
2 =z +hi Yy Q ( “) — (2)
po hi ) dtig

Here z;_ is the value of the differential variable at the beginning of element
i, h; is the length of element 4, dz/dt;, is the value of its first derivative
in element 7 at the collocation point ¢, and €}, is a polynomial of order K,
satisfying

Q,0) =0 forg=1,...,K
Q,(pr) = Ogr forgr=1,...,K

where p, is the location of the r®* collocation point within each element.
Continuity of the differential profiles is enforced by

dz
dt i,q.

K
q=1

Based on our experience in a number of studies, we prefer Radau collocation
points because they allow constraints to be set at the end of each element and
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Figure 2: Collocation on finite elements. The diamonds represent u and y at
collocation points. The triangles represent dz/dt at collocation points and
the circles represent z at element boundaries, where discontinuity is allowed
in u and y, although continuity of z is retained.

to stabilize the system more efficiently if high index DAEs are present. In ad-
dition, the control and algebraic profiles are approximated using a Lagrange
basis representation which takes the form:

o) = i@wq(t‘h’fl)yi,q ()
) = fw(t‘,f)u 5)

Here y; , and u; 4 represent the values of the algebraic and control variables,
respectively, in element ¢ at collocation point q. ), is the Lagrange polyno-
mial of degree K satisfying

Ya(pr) = 0 for q,r=1,..., K.

From (2), the differential variables are required to be continuous throughout
the time horizon, while the control and algebraic variables are allowed to
have discontinuities at the boundaries of the elements. As seen from Figure
2, (2) allows bounds on the differential variables to be enforced directly at
element boundaries, using z;. These can also be enforced at all collocation
points by writing additional point constraints.



Substitution of equations (2)-(5) into (1a)-(1e) leads to the following NLP.

min  p(en)
d
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s.t. %Lq = f(Zi,qa yi,qyui,qap)7

K
Zig = zie1 + i 20 Qg (pg)
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and fori=1,...N,q=1,... K:

ur < Uig < Uy
Yo < Yig S YU
2 € Zig < 2u
This NLP can be rewritten as:
min T
min - f(z)
st.  c(x)=0

T
where x = <@ ,zi,yi,q,ui7q,t,p> , f:R"— R and c¢:R" — R™.

dt i,q

K

(6a)
(6b)

(6¢)

The simultaneous approach has a number of advantages over other ap-

proaches to dynamic optimization:

1. Control variables are discretized at the same level as the state vari-
ables the Karush Kuhn Tucker (KKT) conditions of the simultaneous
NLP are consistent with the optimality conditions of the discretized
variational problem, and, under mild conditions, convergence rates can
be shown (see |75, 33, 40]) . More recently, we have extended these
properties to Radau collocation. In [46, 47|, convergence rates were
derived that relate NLP solutions to the true solutions of the infinite

dimensional optimal control problem.



2. As with multiple shooting approaches, simultaneous approaches can
deal with instabilities that occur for a range of inputs. Because they
can be seen as extensions of robust boundary value solvers, they are
able to "pin down" unstable modes (or increasing modes in the forward
direction). This characteristic has benefits on problems that include
transitions to unstable points, optimization of chaotic systems [22] and
systems with limit cycles and bifurcations, as illustrated in [36].

3. Simultaneous methods also allow the direct enforcement of state and
control variable constraints, at the same level of discretization as the
state variables of the DAE system. As was discussed in [47], these can
present some interesting advantages on large-scale problems.

4. Finally, recent work has shown [13, 48, 47| that simultaneous approaches
have distinct advantages for singular control problems and problems
with high index path constraints.

Nevertheless, simultaneous strategies require the solution of large nonlin-
ear programs, and specialized methods are required to solve them efficiently.
These NLPs are usually solved using variations of Successive Quadratic Pro-
gramming (SQP). Both full space and reduced space options exist for these
methods. Full space methods take advantage of the sparsity of the DAE
optimization problem. They are best suited for problems where the number
of discretized control variables is large [15]. Here, second derivatives of the
objective function and constraints are usually required, as are measures to
deal with directions of negative curvature in the Hessian matrix [88]. Betts
[12] provides a detailed description of the simultaneous approach with full
space methods, along with mesh refinement strategies and case studies in me-
chanics and aerospace. On the other hand, reduced-space approaches exploit
the structure of the DAE model and decompose the linearized KKT system:;
second derivative information is often approximated here with quasi-Newton
formulae. This approach has been very efficient on many problems in pro-
cess engineering that have few discretized control variables (say < 1000)
[10, 16, 27]. We will sketch our current NLP algorithm, IPOPT, in the next
section and discuss both full- and reduced-space options.



3 Solving large-scale NLPs

We now consider methods for the solution of the NLP resulting from the
simultaneous formulation. Because of the large problem size, large number
of inequalities and a potentially large number of degrees of freedom, we find
that NLP (7)-(9), can be solved quite efficiently using the IPOPT algorithm
[88] for large-scale nonlinear programming. This algorithm follows a barrier
approach, where the bound constraints (9) are replaced by logarithmic barrier
terms which are added to the objective function to give:

min ¢(z) = f(z) — g Y0, In(z® — x(L’))

—a Y In(z) — ) (10)
s.t. c(x)=0 (11)

with a barrier parameter i > 0. Here, 29 denotes the i** component of
the vector z. Since the objective function of this barrier problem becomes
arbitrarily large as 29 approaches either of its bounds, a local solution z, (i)
of this problem lies in the interior of this set, i.e., xyy > x.(ft) > xr. The
degree of influence of the barrier is determined by the size of /i, and under
mild conditions z, (/1) converges to a local solution x, of the original problem
(7)-(9) as o — 0. Consequently, a strategy for solving the original NLP
is to solve a sequence of barrier problems (10)-(11) for decreasing barrier
parameters fi;, where [ is the counter for the sequence of subproblems.

IPOPT follows a primal-dual approach and applies a Newton method
to the resulting KK'T conditions, leading to solution of the following linear
system at iteration k:

Hk + Zk AZ Ax _ Vgo(xk) (12)
Ak 0 AT N C(xk)
where we use the convention, X = diag(x), etc., Hy is the Hessian of

the Lagrangian function V. f(zx) + c(zx)T M\, Ar = Ve(zy) and ¥, =
(VY"1 (X — X1) + (VF)"1(Xy — Xj) is the barrier term. Exact first and
second derivatives for this method can be evaluated in a number of ways, in-
cluding automatically through the AMPL interface [38]. Global convergence
of the Newton method is promoted by a novel filter line search strategy;
detailed analysis shows both global convergence and fast local convergence
properties. More information on IPOPT can be found in Wéchter and Biegler
[88]. In the next section, we note that this Newton-based approach provides

9



a number of opportunities for decomposition and tailoring to the structure
of the dynamic optimization problem.

The simultaneous approach also offers opportunities to exercise flexibility
and exploit structure, particularly in the Newton step (12) and solution of
this linear system. Here we are presented with three options:

e Apply a range and null space decomposition to (12); this leads to the
reduced space approach.

e Apply a direct, sparse symmetric linear solver to (12), leading to a full
space approach. This approach takes advantage of widely used sparse
matrix software.

e Apply an iterative linear solver to the indefinite system (12). This takes
advantage of problem specific preconditioners to exploit the structure
of the A matrix in (12) [20]. More information on this approach can
be found in [19]

The reduced space approach has been developed and demonstrated in
a number of studies [18, 27, 29]. Here the variables are partitioned into
m dependent (Y space) and n — m independent (Z space) variables. The
independent variable space occupies the null space of A7. The combined set
of these variables spans the full space. Note that the control variables and
parameters are not necessarily the independent variables. With this partition
AT = [Cy. | Ni], where the m x m basis matrix Cy is nonsingular, we define
the matrices ZF = [-NI'C." | I] and Y;I' = [I | 0] and that Note that Zj
satisfies AL Z; = 0 and is therefore a null space basis matrix for A7. The
search direction can now be written as d, = Yidy + Zidz. The range space
direction dy is determined by solving:

dy = —C, ey, (13)

and the null space direction dy is obtained from (12) after substituting for d
and invoking A} Z;, = 0:

dz = —Z¢ (Hy + 1) 2]~ (Zi Vep(r) + wy,) - (14)

with wy = Z['(Hy, + i) Yidy. Calculation of both the range space step and
the null space basis is aided by exploiting the structure of AT = [C' | N],

10



given by:

-7 | ;
Tl Cl |N1
I C' —I | N1
T2 (2 | N2
I C? -1 | N2
T3 03 ’ N3
|

Here linear solutions that require matrix C proceed by factoring C* for
each element i sequentially. This follows in the same manner as in the forward
solution of DAEs and the associated sensitivity equations, with the exception
that AT can first be stabilized to enforce dichotomy (see [28] for a detailed
analysis of this approach).

The reduced space approach is especially advantageous for dynamic opti-
mization problems with few degrees of freedom. It has been implemented in
the DynoPC package [53] and has been used to solve a wide variety of large
problems [53, 18, 52| quite efficiently. Moreover, Li, Wozny and coworkers
[43, 55| have proposed feasible path extensions of this approach (instead of
(13) the nonlinear collocation equations are solved at each time step) with
excellent performance on large scale problems. Finally, this approach has
been developed further further [68, 61| by modifying the implicit Runge-
Kutta discretization and adjusting element lengths to ensure accurate state
profiles.

However, as the degrees of freedom increase, determination of 7, calcula-
tion of dz and especially computation of Z'¥; 7. in (14) become expensive.
This property was demonstrated in [47] on results for the dynamic optimiza-
tion of a distillation column with up to 1,215,970 variables (see also, [89]). A
number of options were considered for the calculation of dz in (14), but, for
computation on single processor computers, all of these grow polynomially
with the degrees of freedom.

Nevertheless, the reduced space approach has the advantage that the
information in (12) can be constructed and stored element-by-element and
parallel processors can be used to great advantage in the computation of (14)
and (13). Future work will therefore concentrate on reduced-space decompo-
sition procedures that exploit parallelism for large problems.
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4 Applications of the Simultaneous Approach

Along with the advances described above, there have been a large number
of applications of the simultaneous approach. These were prompted by early
studies in the 70s and early 80s [84, 64, 62, 21, 17| and a realization that
these methods were especially suitable for unstable systems and systems with
path constraints. In particular, the simultaneous approach has been applied
widely in aeronautical and astronautical applications. A cursory literature
search reveals about 200 publications that apply simultaneous approaches
in this area. Specific applications include the collision avoidance for multi-
ple aircraft [14, 70] and underwater vehicles [80], trajectories for satellites
and earth orbiters |78, 32] and the design of multiple paths and orbits for
multibody dynamics [24], including interplanetary travel [11]. An overview
of these applications is given in [12]. Moreover, the SOCS (Sparse Optimal
Control Software) [12] package, commercial software developed marketed by
Boeing Corporation, has been widely used for these and other engineering
applications.

In process engineering, applications of the simultaneous approach include
the design and optimal operation of batch processes. These include opti-
mization of operating policies for fermentors [33] and bioreactors [77], flux
balance models for metabolic systems [51, 60, 73|, batch distillation columns
[58, 65|, membrane separators [34], polymerization reactors [36, 44|, crys-
tallization [52], freeze-drying processes [23| and integrated multi-unit batch
processes [16]. Other off-line applications include parameter estimation of
reactive systems [83, 35], design of periodic separation processes including
pressure swing adsorption [63] and simulated moving beds [50, 49|, optimal
grade transitions in polymer processes [30, 36|, reactor network synthesis
[7, 66] and economic performance analysis of batch systems [57].

On-line applications include dynamic data reconciliation algorithms for
batch processes [1, 56], state estimation and process identification [82], op-
timal startup policies for distillation columns [71], optimal feed policies for
direct methanol fuel cells [91] and a number of algorithms and case studies
for nonlinear model predictive control (NMPC)[79, 39]. Moreover, commer-
cial applications of NMPC include several applications at ExxonMobil and
ChevronPhillips, which use the NLC package and NOVA solver by PAS,
Inc. |76, 92|. Other software implementations of the simultaneous approach
include DynoPC 53], a Windows-based platform, as well as the OptimalCon-
trolCentre [39] and dynopt [31] packages, both developed in MATLAB.
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4.1 Crystallization Case Study

To illustrate the simultaneous approach on a process application, we consider
the dynamic optimization of a crystallizer described with a simple population
balance model. Conventional crystallization kinetics are characterized in
terms of two dominant phenomena: nucleation and crystal growth. These
are competing phenomena that both consume desired solute material during
the crystallization process. To obtain larger (and fewer) crystals, nucleation
needs to be minimized, and the goal of the optimization is to find operating
strategies that will allow us to minimize this phenomenon. To do this, we
determine a profile for the cooling jacket temperature.

The dynamic optimization problem for the crystallizer consists of a DAE
model, a lower bound of the jacket temperature as a function of the solute
concentration and an objective to maximize the crystal length. This objective
also corresponds to minimizing the surface area in order to obtain higher
purity of the crystals. The dynamic optimization problem can be stated as:

Jnax  Ly(ty) (15)
dj;s = K,LY5AT™ (16)
dd—];[ = B,AT>"™ (17)
‘fi—f = NdstWLoC;—]j (18)
% = 2aNdstS+L3‘2—JZ (19)
dd‘f = 3@14‘2[;5@3% (20)
= BV L2+ v 1)
o= L (22)
= KU (K wC)(T - T) (23)
o(C) < Tj e [10°C, 100°C] (24)

where L, is the mean crystal size, N is the number of nuclei per liter of
solvent, L is the total length of the crystals per liter of solvent, A is the total

13
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Figure 3: Optimal cooling and crystal size profiles for crystallizer

surface area of the crystals per liter of solvent, V. is the total volume of the
crystals per liter of solvent, C' is the solute concentration, M is the total
mass of the crystals, V' is the volume of the solvent, L is the initial crystal
size, Wy, is the mass of seeds added, L, is the mean size of the seeds, p is
the true specific gravity of the crystals, and «, § are shape factors for area
and volume of the crystals, respectively. These and the remaining parameter
values, K, B,,, w, Cy, K. and K, are reported in [52].

The most important aspect of this problem is how the control profile im-
pacts the process. The control variable is the jacket temperature, T}, which
has a lower bound, ¢(C), that changes dynamically with the concentration
of the solute. The function ¢(C) is calculated based on a polynomial rela-
tionship between concentration and equilibrium temperature.

Applying the simultaneous approach to this model with 3 point Radau
collocation and fifty finite elements leads to an NLP with 1900 variables
and 1750 equality constraints. Using DynoPC [53], the optimal solution was
obtained in 12.5 CPUs (1.6 MHz IBM laptop) with 105 iterations of the
reduced space version of IPOPT. The optimal profiles of the mean crystal
size and the jacket temperature are given in Figure 3. Note that the mean
crystal size increased by over eight times in 25 h. Also, in order to maximize
the crystal size, the jacket cooling profile must first increase to reduce the
number of nucleating particles. Further information on this optimization
study can be found in [52, 89].
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5 Discrete Decisions

Discrete events occur in many dynamic simulation and optimization prob-
lems. In chemical processes, examples of this phenomena include phase
changes in equilibrium systems, changes in modes in the operation of safety
and relief valves, vessels running dry or overflowing, discrete decisions made
by control systems and explosions due to accidents. These actions can be
reversible or irreversible and should be modeled with appropriate logical con-
straints. Modeling discrete events is discussed in [5]; these events are often
triggered by an appropriate discontinuity function which monitors a change
in the condition and leads to a change in the state equations. These changes
can be reformulated either as binary decision variables [6] or by using com-
plementarity conditions (with nonnegative continuous variables () and z¥)
alternately set to zero). These additional variables can then be embedded
within optimization problems.

The incorporation of binary variables leads to mixed integer optimization
problems. Here, several studies have considered the solution of Mixed Integer
Dynamic Optimization (MIDO) problems. In particular, Avraam et al. [4]
developed a complete discretization of the state and control variables to form
a mixed integer nonlinear program. More recently, a number of MIDO al-
gorithms were developed and compared with the simultaneous approach [37]
in order to select optimal control strategies. Alternately Allgor and Barton
[3] and Bansal et al. [8] apply sequential strategies and discretize only the
control profile. For this approach, careful attention must paid to calculation
of sensitivity information for discrete decisions triggered in time.

On the other hand, many discrete decisions for hybrid systems can be
modeled through complementarity relations [42, 85]. Furthermore, comple-
mentarity conditions can be considered in a straightforward way through
barrier methods [72] to yield an NLP. This class of problems can be gener-
alized to Mathematical Programs with Equilibrium Constraints (MPECs) of
the following form:

min - f(z) (25a)
st.  c(x)=0 (25b)
v, <o <oy (25¢)

0<2 L3320 (25d)

(25e)
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with 27 = [2T 27 zT]. Applications of MPECs have long been recognized
in game theory, transportation planning, economics and engineering design;
a broad survey of these applications can be found in [41, 59]. In process
engineering, these problems stem from bilevel and multilevel optimization
problems as well as optimization of hybrid (discrete and continuous) systems
[81]. Included in this class are optimization problems with phase equilibrium
constraints, as in equilibrium stage processes [69], and cellular models based
on metabolic pathways [73].

To solve the MPEC, we could apply a primal-dual interior point approach,
but the KKT matrix corresponding to (12) is singular at all points that satisfy
(25d). To deal with this characteristic, we rewrite (25d) as XZ < jie, where
jt is the barrier parameter whose sequence goes to zero. We have incorpo-
rated this MPEC reformulation into the IPOPT code along with algorithmic
modifications to treat the complementarity constraints more efficiently. The
implementation compares well against competing barrier algorithms [69, 72|
and performs well on distillation optimization problems with disappearing
vapor and liquid phases on equilibrium stages, as well as on a number of
other applications |73, 45].

5.1 Example Problem: Batch Distillation

To illustrate the application of MPECs to dynamic optimization, we present
an example developed in [71], that deals with the cold startup of a batch
distillation unit. These models have also been considered in [90]. Consider
a batch distillation column with a charge of 8 kmol of a 58/42 mixture of
benzene and toluene in the bottom of the column. The column operates at 1
bar and consists of 12 trays, including the reboiler and condenser. The max-
imum reboiler heat duty is set to 600 kJ /hr and the minimum holdup for the
trays and condenser are 0.3 and 0.5 kmol, respectively. The control variables
in the column operation are the distillate flowrate, D and the reboiler heat
duty, @,. At initial time, the tray holdups are set to zero and startup of
the column is posed as a free end-time problem which maximizes the average
rate of product withdrawn over the time of operation t; as follows:

ty

max (f D(t)dt + Mf2<tf>) e Q) —Qrpa (20)
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st. B — [,V - I,

dil\fi = Via+Lin—Vi—L; i=2,...11 (27)
d]‘;tm = Viu—D— Ly

MEE = Ly(ws; — 21j) — iy — 21y)

dx; ; '
Mémdtd_ = VieiWic1y — 2iy) + Liga(ig1,j — wi5) — Vilyiy — ij) 1=2,...
M= = Vi(yi; — T125)
(28)
l
MP = Ly(hh — hb) — Vi(hy — b)) +Q,

M = Vi (b — b+ Lo (b, — B = Vi(he — b)) i=2,...11
1
Ml?dhu = Vu(hj, — hlu) — Qe

dt
(29)
vij = BiKi;(Ti, Py, v)r;; j€ COMP
= C%:MP i c%:MP g
J€ je
B = 1—a+a? (30)
o<M 1L al>0
O<M? L a?>0
tf
12,05 Hg Mis(ty)+ [ w12,04H D(t)dt
ff > 0.95 (31)
Miy(ty)+ | D(t)dt
0

where M;, L;,V; are the holdup, liquid flowrate and vapor flowrate on the
it" tray, respectively, x; ;, y; ; represent the liquid and vapor compositions on
the ' tray, respectively, h?, h! represent the specific enthalpies of the vapor
and liquid streams from tray 7, ), and (). are the reboiler and condenser
heat loads and € > 0 is a small parameter serving to regularize the problem.
In the above formulation, the total product at final time is defined as the
sum of the condenser holdup at final time and the total distillate withdrawal
over time. The total product that is withdrawn from the column is required
to have a certain purity of benzene as indicated by the last constraint of
the optimization problem (31). Finally, additional algebraic equations are
added to define the specific enthalpies in terms of temperature and to relate
conditions between the tray holdups M; and liquid flowrate L;. Note that we
modeled the tray holdup by ignoring the vapor component. As described in
[71], this leads to a DAE model of index 2. In particular, the vapor flowrate,
Vi(t), an algebraic variable, appears nowhere in the algebraic equations. As
a result, this system had to be reformulated to index 1 in [71].

17

11



From (30), we note that the complementarity constraints allow the liquid
phase to disappear [71], so that:

M! MY >0  then 3 =1
M!=0< M} then 3 <1 (32)
M!>0= M} then 3 > 1.

The optimal control problem is discretized over 30 elements with 2 collo-
cation points leading to a problem with 22226 variables and 20125 constraints
including 2040 complementarity constraints. The problem solved to a tol-
erance of 107 in the optimality conditions using a 2.2 GHz Intel Pentium
IV processor running Linuz as the operating system. Intuitively, one would
expect the optimal startup solution to exhibit total reflux and a heat duty
profile at its upper bound. However, this is not possible for this example, as
the trays are deliberately undersized. Setting @), to the upper bound would
lead to complete depletion of the charge before holdups would be established
and the purity could be satisfied. As a result, an intermediate reboil profile
needs to be determined.

Solution of the optimization problem yields an optimal operating time
of 28.8 hours. The profiles of liquid holdup and reflux flow for the optimal
solution are shown in Figures 4 and 5. The trays have no holdup initially so
no liquid flows from the trays until the liquid holdup is at least equal to the
minimum threshold. The vapor from the bottom is completely condensed
on tray 12 and refluxed to the column at initial time. This increases the
holdup on the trays in decreasing order of tray number. Also, fluctuations
in the liquid holdup correspond to the times at which the vapor flowrate is
lowered and this decreases with reboiler heat duty, ()., shown in Figure 6.
The control profiles lie strictly between bounds over a significant portion of
the time of operation, and the solution exactly matches the purity constraint
on benzene at final time.

6 Conclusions and Future Directions

With increasing demands for the analysis and exploitation of dynamic be-
havior in processes systems, dynamic optimization has become increasingly
important, both for off-line and on-line applications. This paper presents a
general overview of simultaneous approaches to dynamic optimization prob-
lems. Over the past two decades, simultaneous approaches have been applied
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in hundreds of literature studies. By discretizing both the state and control
variables with a stable, high order implicit Runge-Kutta scheme and forming
large-scale nonlinear programs, these approaches allow the rapid determina-
tion of accurate solution profiles with fewer time steps (finite elements) than
with sequential methods that apply standard ODE solvers. Moreover, the
simultaneous strategy has clear advantages in the treatment of path con-
straints and unstable dynamic systems.

Recent work in numerical analysis and mathematical programming has
led to highly efficient large-scale NLP solvers to handle the discretized dy-
namic optimization problem, thus leading to to fast solutions. Moreover, the
approach also offers flexibility with respect to the formulation, decomposi-
tion and solution of large-scale NLP problems. Finally, accurate first and
second derivatives can be obtained cheaply from the NLP, thus providing an
essential element for superior performance of the NLP solution strategy.

Future work with simultaneous dynamic optimization lies in the solution
of large-scale NLPs with efficient decomposition strategies that take advan-
tage of structure and lend themselves to parallel computing. Additional
work is also required for ill-conditioned optimal control problems, in partic-
ular, singular problems and high index path constrained problems. These
problem types present difficulties for all optimal control strategies. For si-
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multaneous methods, they lead to ill-conditioning of the linear system (12).
To overcome this drawback, unbiased regularization strategies are proposed
and demonstrated in [47] for singular control problems. On the other hand,
ill-conditioning due to path constrained problems seems to be benign as dis-
cussed and demonstrated in [48, 13].

The treatment of discrete decisions has only recently been considered
with simultaneous approaches. In particular, we have found that comple-
mentarity constraints and the resulting MPEC formulations can deal with
large sets of discrete decisions that result from temporal discretizations. Nev-
ertheless, careful formulation of MPEC problems still needs to be explored.
A promising approach develops complementarity constraints from switching
conditions that arise from convex inner-level NLPs. However, the proper-
ties of these formulations still need to be analyzed. Moreover, reformulation
techniques that convert the MPEC to a well-posed NLP have been described
and analyzed in [74]. These need to be evaluated in the context of dynamic
optimization.

Finally, the above dynamic optimization problems lead to solution profiles
with function and derivative discontinuitues (jumps and kinks over time).
Within the simultaneous approach, accurate solutions with these features
require the incorporation of moving finite elements based on error criteria
both in state variable representation and in optimality conditions. Interest-
ing preliminary results in this area are described in [47, 18]. Ongoing work
with moving elements extends this approach to a broader range of problems.
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