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AbstratSimultaneous approahes for dynami optimization problems are surveyed anda number of emerging topis are explored. Also known as diret transription, thisapproah has a number of advantages over ompeting dynami optimization meth-ods. Moreover, a number of industrial appliations have reently been reported onhallenging real-world appliations. This study provides bakground information,summarizes the underlying onepts and properties of this approah, disusses re-ent advanes in the treatment of disrete deisions and, �nally, illustrates theapproah with two proess ase studies.1 IntrodutionWith growing appreiation of dynami simulation in omputer aided proessengineering, reliable and e�ient optimization tools have also beome moreimportant for these systems. Dynami optimization studies have been usedfor a number of o�ine tasks, inluding transitions between desired oper-ating onditions, operating pro�les for bath proess operation, design and1



operating studies in response to disturbanes and upsets, parameter estima-tion, model development and disrimination for dynami systems, and thedesign of ontrol systems. Online tasks inlude the solution of optimizationproblems for ontrol and identi�ation, partiularly in model preditive on-trol (MPC). For partiularly nonlinear proesses, suh as polymer proesses,nonlinear models are essential to apture the dynamis of the proess. As aresult, several appliations of Nonlinear MPC strategies have been reportedfor these proesses.For the purpose of this study, we onsider the optimization problem statedin the following form:
min

z(t),u(t),p
ϕ(z(tf )) (1a)

s.t. dz(t)
dt

= f(z(t), y(t), u(t), p), z(t0) = z0 (1b)
g(z(t), y(t), u(t), p) = 0 (1)

gf(z(tf )) = 0 (1d)
uL 6 u(t) 6 uU

yL 6 y(t) 6 yU

zL 6 z(t) 6 zU (1e)The �unknowns� in this optimization problem are the di�erential state vari-ables z(t), algebrai variables y(t), ontrol variables u(t), all funtions of thesalar �time� parameter t ∈ [t0, tf ], as well as time-independent parameters
p. As onstraints we have the di�erential and algebrai equations (DAEs)given by (1b)-(1d) and we assume without loss of generality that the DAEsystem (1b,1) is index one.As shown in Figure 1, a number of approahes an be taken to solve (1a)-(1e). Currently, DAE optimization problems are solved using a variationalapproah or by various strategies that apply nonlinear programming (NLP)solvers to the DAE model. Until the 1970s, these problems were solvedusing an indiret or variational approah, based on the �rst order neessaryonditions for optimality obtained from Pontryagin's Maximum Priniple[67, 25℄. For problems without inequality onstraints, these onditions anbe written as a set of DAEs. Obtaining a solution to these equations requiresareful attention to the boundary onditions. Often the state variables havespei�ed initial onditions and the adjoint variables have �nal onditions; the2



Figure 1: Solution strategies for dynami optimizationresulting two-point boundary value problem (TPBVP) an be addressed withdi�erent approahes, inluding single shooting, invariant embedding, multipleshooting or some disretization method suh as olloation on �nite elementsor �nite di�erenes. A review of these approahes an be found in [26℄. Onthe other hand, if the problem requires the handling of ative inequalityonstraints, �nding the orret swithing struture as well as suitable initialguesses for state and adjoint variables is often very di�ult. Early approahesto deal with these problems an be found in [25℄.Methods that apply NLP solvers an be separated into two groups, se-quential and the simultaneous strategies. In the sequential methods, alsoknown as ontrol vetor parameterization, only the ontrol variables are dis-retized. In this formulation the ontrol variables are represented as piee-wise polynomials [86, 87, 5℄ and optimization is performed with respet to thepolynomial oe�ients. Given initial onditions and a set of ontrol param-eters, the DAE model is solved within an inner loop ontrolled by an NLPsolver; parameters representing the ontrol variables are updated by the NLPsolver itself. Gradients of the objetive funtion with respet to the ontroloe�ients and parameters are alulated either from diret sensitivity equa-tions of the DAE system or by integration of the adjoint equations. Several3



e�ient odes have been developed for both sensitivity methods inludingDDASAC, DASPK and CVODES.Sequential strategies are relatively easy to onstrut and to apply as theyontains the omponents of reliable DAE solvers (e.g., DASSL, DASOLV,DAEPACK) as well as NLP solvers (NPSOL, SNOPT). On the other hand,repeated numerial integration of the DAE model is required, whih maybeome time onsuming for large sale problems. Moreover, it is well knownthat sequential approahes have properties of single shooting methods andannot handle open loop instability [2, 36℄. Finally, path onstraints an behandled only approximately, within the limits of the ontrol parameteriza-tion. More information on these approahes an be found in [26℄.Multiple shooting is a simultaneous approah that inherits many of theadvantages of sequential approahes. Here the time domain is partitionedinto smaller time elements and the DAE models are integrated separatelyin eah element [21, 22, 54℄. Control variables are parametrized as in thesequential approah and gradient information is obtained for both the on-trol variables as well as the initial onditions of the states variables in eahelement. Finally, equality onstraints are added to the NLP to link the el-ements and ensure that the states are ontinuous aross eah element. Aswith the sequential approah, inequality onstraints for states and ontrolsan be imposed diretly at the grid points. For pieewise onstant or linearontrols this approximation is aurate enough, but path onstraints for thestates may not be satis�ed between grid points.In the simultaneous approah, also known as diret transription, we dis-retize both the state and ontrol pro�les in time using olloation of �niteelements. This approah orresponds to a partiular impliit Runge-Kuttamethod with high order auray and exellent stability properties. Alsoknown as fully impliit Gauss forms, these methods are usually too expen-sive (and rarely applied) as initial value solvers. However, for boundaryvalue problems and optimal ontrol problems, whih require impliit solu-tions anyway, this disretization is a less expensive way to obtain auratesolutions. On the other hand, the simultaneous approah leads to large-saleNLP problems that require e�ient optimization strategies [15, 18, 29℄. Asa result, these methods diretly ouple the solution of the DAE system withthe optimization problem; the DAE system is solved only one, at the opti-mal point, and therefore an avoid intermediate solutions that may not existor may require exessive omputational e�ort.In the next setion we formulate the simultaneous approah and summa-4



rize its main advantages and harateristis. Setion 3 then reviews nonlinearprogramming strategies that solve the resulting problem. Setion 4 providesa survey of proess appliations with the simultaneous approah along witha ase study dynami optimization of a rystallizer. Setion 5 then extendsthis approah with a disussion of disrete deisions along with a bath dis-tillation ase study that highlights the salient features within the previoussetions. Conlusions and diretions for future work are given in Setion 6.2 Formulation and Charateristis of the Si-multaneous ApproahThe DAE optimization problem an be onverted into an NLP by approxi-mating state and ontrol pro�les by a family of polynomials on �nite elements(t0 < t1 < . . . < tN = θ). These polynomials an be represented as powerseries, sums of orthogonal polynomials or in Lagrange form. Here, we use thefollowing monomial basis representation for the di�erential pro�les, whih ispopular for Runge-Kutta disretizations:
z(t) = zi−1 + hi

K∑

q=1

Ωq

(
t− ti−1

hi

)
dz

dt i,q
. (2)Here zi−1 is the value of the di�erential variable at the beginning of element

i, hi is the length of element i, dz/dti,q is the value of its �rst derivativein element i at the olloation point q, and Ωq is a polynomial of order K,satisfying
Ωq(0) = 0 for q = 1, . . . , K

Ω′

q(ρr) = δq,r for q, r = 1, . . . , Kwhere ρr is the loation of the rth olloation point within eah element.Continuity of the di�erential pro�les is enfored by
zi = zi−1 + hi

K∑

q=1

Ωq (1)
dz

dt i,q
. (3)Based on our experiene in a number of studies, we prefer Radau olloationpoints beause they allow onstraints to be set at the end of eah element and5



Figure 2: Colloation on �nite elements. The diamonds represent u and y atolloation points. The triangles represent dz/dt at olloation points andthe irles represent z at element boundaries, where disontinuity is allowedin u and y, although ontinuity of z is retained.to stabilize the system more e�iently if high index DAEs are present. In ad-dition, the ontrol and algebrai pro�les are approximated using a Lagrangebasis representation whih takes the form:
y(t) =

K∑

q=1

ψq

(
t− ti−1

hi

)
yi,q (4)

u(t) =

K∑

q=1

ψq

(
t− ti−1

hi

)
ui,q. (5)Here yi,q and ui,q represent the values of the algebrai and ontrol variables,respetively, in element i at olloation point q. ψq is the Lagrange polyno-mial of degree K satisfying

ψq(ρr) = δq,r for q, r = 1, . . . , K.From (2), the di�erential variables are required to be ontinuous throughoutthe time horizon, while the ontrol and algebrai variables are allowed tohave disontinuities at the boundaries of the elements. As seen from Figure2, (2) allows bounds on the di�erential variables to be enfored diretly atelement boundaries, using zi. These an also be enfored at all olloationpoints by writing additional point onstraints.6



Substitution of equations (2)-(5) into (1a)-(1e) leads to the following NLP.
min

dz
dt i,q

,ui,q,yi,q,p

ϕ(zN) (6a)
s.t. dz

dt i,q
= f(zi,q, yi,q, ui,q, p), (6b)

zi,q = zi−1 + hi

K∑
q′=1

Ωq′ (ρq) (6)
g(zi,q, yi,q, ui,q, p) = 0 i = 1, . . . N, q = 1, . . .K (6d)

zi = zi−1 + hi

K∑
q=1

Ωq (1) i = 1, . . .N (6e)
gf(zN ) = 0 (6f)and for i = 1, . . .N, q = 1, . . .K:

uL 6 ui,q 6 uU

yL 6 yi,q 6 yU

zL 6 zi,q 6 zU (6g)This NLP an be rewritten as:
min
x∈Rn

f(x) (7)
s.t. c(x) = 0 (8)

xL 6 x 6 xU (9)where x =
(

dz
dt i,q

, zi, yi,q, ui,q, t, p
)T , f : Rn −→ R and c : Rn −→ Rm.The simultaneous approah has a number of advantages over other ap-proahes to dynami optimization:1. Control variables are disretized at the same level as the state vari-ables the Karush Kuhn Tuker (KKT) onditions of the simultaneousNLP are onsistent with the optimality onditions of the disretizedvariational problem, and, under mild onditions, onvergene rates anbe shown (see [75, 33, 40℄) . More reently, we have extended theseproperties to Radau olloation. In [46, 47℄, onvergene rates werederived that relate NLP solutions to the true solutions of the in�nitedimensional optimal ontrol problem.7



2. As with multiple shooting approahes, simultaneous approahes andeal with instabilities that our for a range of inputs. Beause theyan be seen as extensions of robust boundary value solvers, they areable to "pin down" unstable modes (or inreasing modes in the forwarddiretion). This harateristi has bene�ts on problems that inludetransitions to unstable points, optimization of haoti systems [22℄ andsystems with limit yles and bifurations, as illustrated in [36℄.3. Simultaneous methods also allow the diret enforement of state andontrol variable onstraints, at the same level of disretization as thestate variables of the DAE system. As was disussed in [47℄, these anpresent some interesting advantages on large-sale problems.4. Finally, reent work has shown [13, 48, 47℄ that simultaneous approaheshave distint advantages for singular ontrol problems and problemswith high index path onstraints.Nevertheless, simultaneous strategies require the solution of large nonlin-ear programs, and speialized methods are required to solve them e�iently.These NLPs are usually solved using variations of Suessive Quadrati Pro-gramming (SQP). Both full spae and redued spae options exist for thesemethods. Full spae methods take advantage of the sparsity of the DAEoptimization problem. They are best suited for problems where the numberof disretized ontrol variables is large [15℄. Here, seond derivatives of theobjetive funtion and onstraints are usually required, as are measures todeal with diretions of negative urvature in the Hessian matrix [88℄. Betts[12℄ provides a detailed desription of the simultaneous approah with fullspae methods, along with mesh re�nement strategies and ase studies in me-hanis and aerospae. On the other hand, redued-spae approahes exploitthe struture of the DAE model and deompose the linearized KKT system;seond derivative information is often approximated here with quasi-Newtonformulae. This approah has been very e�ient on many problems in pro-ess engineering that have few disretized ontrol variables (say 6 1000)[10, 16, 27℄. We will sketh our urrent NLP algorithm, IPOPT, in the nextsetion and disuss both full- and redued-spae options.
8



3 Solving large-sale NLPsWe now onsider methods for the solution of the NLP resulting from thesimultaneous formulation. Beause of the large problem size, large numberof inequalities and a potentially large number of degrees of freedom, we �ndthat NLP (7)-(9), an be solved quite e�iently using the IPOPT algorithm[88℄ for large-sale nonlinear programming. This algorithm follows a barrierapproah, where the bound onstraints (9) are replaed by logarithmi barrierterms whih are added to the objetive funtion to give:
minϕ(x) = f(x) − µ̂

∑n

i=1 ln(x(i) − x
(i)
L )

−µ̂
∑n

i=1 ln(x
(i)
U − x(i)) (10)

s.t. c(x) = 0 (11)with a barrier parameter µ̂ > 0. Here, x(i) denotes the ith omponent ofthe vetor x. Sine the objetive funtion of this barrier problem beomesarbitrarily large as x(i) approahes either of its bounds, a loal solution x∗(µ̂)of this problem lies in the interior of this set, i.e., xU > x∗(µ̂) > xL. Thedegree of in�uene of the barrier is determined by the size of µ̂, and undermild onditions x∗(µ̂) onverges to a loal solution x∗ of the original problem(7)-(9) as µ̂ → 0. Consequently, a strategy for solving the original NLPis to solve a sequene of barrier problems (10)-(11) for dereasing barrierparameters µ̂l, where l is the ounter for the sequene of subproblems.IPOPT follows a primal-dual approah and applies a Newton methodto the resulting KKT onditions, leading to solution of the following linearsystem at iteration k:
[
Hk + Σk AT

k

Ak 0

] [
∆x
λ+

]
= −

[
∇ϕ(xk)
c(xk)

] (12)where we use the onvention, X = diag(x), et., Hk is the Hessian ofthe Lagrangian funtion ∇xxf(xk) + c(xk)
Tλk, Ak = ∇c(xk) and Σk =

(V k
a )−1(Xk − XL) + (V k

b )−1(XU − Xk) is the barrier term. Exat �rst andseond derivatives for this method an be evaluated in a number of ways, in-luding automatially through the AMPL interfae [38℄. Global onvergeneof the Newton method is promoted by a novel �lter line searh strategy;detailed analysis shows both global onvergene and fast loal onvergeneproperties. More information on IPOPT an be found in Wähter and Biegler[88℄. In the next setion, we note that this Newton-based approah provides9



a number of opportunities for deomposition and tailoring to the strutureof the dynami optimization problem.The simultaneous approah also o�ers opportunities to exerise �exibilityand exploit struture, partiularly in the Newton step (12) and solution ofthis linear system. Here we are presented with three options:
• Apply a range and null spae deomposition to (12); this leads to theredued spae approah.
• Apply a diret, sparse symmetri linear solver to (12), leading to a fullspae approah. This approah takes advantage of widely used sparsematrix software.
• Apply an iterative linear solver to the inde�nite system (12). This takesadvantage of problem spei� preonditioners to exploit the strutureof the A matrix in (12) [20℄. More information on this approah anbe found in [19℄The redued spae approah has been developed and demonstrated ina number of studies [18, 27, 29℄. Here the variables are partitioned into

m dependent (Y spae) and n − m independent (Z spae) variables. Theindependent variable spae oupies the null spae of AT
k . The ombined setof these variables spans the full spae. Note that the ontrol variables andparameters are not neessarily the independent variables. With this partition

AT
k = [Ck | Nk], where the m ×m basis matrix Ck is nonsingular, we de�nethe matries ZT

k = [−NT
k C

−T
k | I] and Y T

k = [I | 0] and that Note that Zksatis�es AT
kZk = 0 and is therefore a null spae basis matrix for AT

k . Thesearh diretion an now be written as dk = YkdY + ZkdZ . The range spaediretion dY is determined by solving:
dY = −C−1

k ck, (13)and the null spae diretion dZ is obtained from (12) after substituting for dand invoking AT
kZk = 0:
dZ = −[ZT

k (Hk + Σk)Zk]
−1
(
ZT

k ∇ϕ(xk) + wk

)
. (14)with wk = ZT

k (Hk + Σk)YkdY . Calulation of both the range spae step andthe null spae basis is aided by exploiting the struture of AT = [C | N ],10



given by:




I |
T 1 C1 | N1

I Ĉ1 −I | N̂1

T 2 C2 | N2

I Ĉ2 −I | N̂2

T 3 C3 | N3. . . |
. . .



Here linear solutions that require matrix C proeed by fatoring C i foreah element i sequentially. This follows in the same manner as in the forwardsolution of DAEs and the assoiated sensitivity equations, with the exeptionthat AT an �rst be stabilized to enfore dihotomy (see [28℄ for a detailedanalysis of this approah).The redued spae approah is espeially advantageous for dynami opti-mization problems with few degrees of freedom. It has been implemented inthe DynoPC pakage [53℄ and has been used to solve a wide variety of largeproblems [53, 18, 52℄ quite e�iently. Moreover, Li, Wozny and oworkers[43, 55℄ have proposed feasible path extensions of this approah (instead of(13) the nonlinear olloation equations are solved at eah time step) withexellent performane on large sale problems. Finally, this approah hasbeen developed further further [68, 61℄ by modifying the impliit Runge-Kutta disretization and adjusting element lengths to ensure aurate statepro�les.However, as the degrees of freedom inrease, determination of Z, alula-tion of dZ and espeially omputation of ZT
k ΣkZk in (14) beome expensive.This property was demonstrated in [47℄ on results for the dynami optimiza-tion of a distillation olumn with up to 1,215,970 variables (see also, [89℄). Anumber of options were onsidered for the alulation of dZ in (14), but, foromputation on single proessor omputers, all of these grow polynomiallywith the degrees of freedom.Nevertheless, the redued spae approah has the advantage that theinformation in (12) an be onstruted and stored element-by-element andparallel proessors an be used to great advantage in the omputation of (14)and (13). Future work will therefore onentrate on redued-spae deompo-sition proedures that exploit parallelism for large problems.11



4 Appliations of the Simultaneous ApproahAlong with the advanes desribed above, there have been a large numberof appliations of the simultaneous approah. These were prompted by earlystudies in the 70s and early 80s [84, 64, 62, 21, 17℄ and a realization thatthese methods were espeially suitable for unstable systems and systems withpath onstraints. In partiular, the simultaneous approah has been appliedwidely in aeronautial and astronautial appliations. A ursory literaturesearh reveals about 200 publiations that apply simultaneous approahesin this area. Spei� appliations inlude the ollision avoidane for multi-ple airraft [14, 70℄ and underwater vehiles [80℄, trajetories for satellitesand earth orbiters [78, 32℄ and the design of multiple paths and orbits formultibody dynamis [24℄, inluding interplanetary travel [11℄. An overviewof these appliations is given in [12℄. Moreover, the SOCS (Sparse OptimalControl Software) [12℄ pakage, ommerial software developed marketed byBoeing Corporation, has been widely used for these and other engineeringappliations.In proess engineering, appliations of the simultaneous approah inludethe design and optimal operation of bath proesses. These inlude opti-mization of operating poliies for fermentors [33℄ and bioreators [77℄, �uxbalane models for metaboli systems [51, 60, 73℄, bath distillation olumns[58, 65℄, membrane separators [34℄, polymerization reators [36, 44℄, rys-tallization [52℄, freeze-drying proesses [23℄ and integrated multi-unit bathproesses [16℄. Other o�-line appliations inlude parameter estimation ofreative systems [83, 35℄, design of periodi separation proesses inludingpressure swing adsorption [63℄ and simulated moving beds [50, 49℄, optimalgrade transitions in polymer proesses [30, 36℄, reator network synthesis[7, 66℄ and eonomi performane analysis of bath systems [57℄.On-line appliations inlude dynami data reoniliation algorithms forbath proesses [1, 56℄, state estimation and proess identi�ation [82℄, op-timal startup poliies for distillation olumns [71℄, optimal feed poliies fordiret methanol fuel ells [91℄ and a number of algorithms and ase studiesfor nonlinear model preditive ontrol (NMPC)[79, 39℄. Moreover, ommer-ial appliations of NMPC inlude several appliations at ExxonMobil andChevronPhillips, whih use the NLC pakage and NOVA solver by PAS,In. [76, 92℄. Other software implementations of the simultaneous approahinlude DynoPC [53℄, a Windows-based platform, as well as the OptimalCon-trolCentre [39℄ and dynopt [31℄ pakages, both developed in MATLAB.12



4.1 Crystallization Case StudyTo illustrate the simultaneous approah on a proess appliation, we onsiderthe dynami optimization of a rystallizer desribed with a simple populationbalane model. Conventional rystallization kinetis are haraterized interms of two dominant phenomena: nuleation and rystal growth. Theseare ompeting phenomena that both onsume desired solute material duringthe rystallization proess. To obtain larger (and fewer) rystals, nuleationneeds to be minimized, and the goal of the optimization is to �nd operatingstrategies that will allow us to minimize this phenomenon. To do this, wedetermine a pro�le for the ooling jaket temperature.The dynami optimization problem for the rystallizer onsists of a DAEmodel, a lower bound of the jaket temperature as a funtion of the soluteonentration and an objetive to maximize the rystal length. This objetivealso orresponds to minimizing the surfae area in order to obtain higherpurity of the rystals. The dynami optimization problem an be stated as:
max

z(t),u(t),p
Ls(tf ) (15)
dLs

dt
= KgL

0.5
s ∆T 1.1 (16)

dN

dt
= Bn∆T 5.72 (17)

dL

dt
= N

dLs

dt
+ L0

dN

dt
(18)

dA

dt
= 2αN

dLs

dt
+ L2

0

dN

dt
(19)

dVc

dt
= 3βA

dLs

dt
+ L3

0

dN

dt
(20)

dM

dt
= 3(Ws0/L

3
s0)L

2
s

dz1
dt

+ ρV
dVc

dt
(21)

dC

dt
= −

dM

dt
/V (22)

dT

dt
= Kc

dM

dt
− (Ke/(wCp))(T − Tj) (23)

φ(C) 6 Tj ∈ [10oC, 100oC] (24)where Ls is the mean rystal size, N is the number of nulei per liter ofsolvent, L is the total length of the rystals per liter of solvent, A is the total13



Figure 3: Optimal ooling and rystal size pro�les for rystallizersurfae area of the rystals per liter of solvent, Vc is the total volume of therystals per liter of solvent, C is the solute onentration, M is the totalmass of the rystals, V is the volume of the solvent, L0 is the initial rystalsize, Wso is the mass of seeds added, Lso is the mean size of the seeds, ρ isthe true spei� gravity of the rystals, and α, β are shape fators for areaand volume of the rystals, respetively. These and the remaining parametervalues, Kg, Bn, w, Cp, Kc and Ke are reported in [52℄.The most important aspet of this problem is how the ontrol pro�le im-pats the proess. The ontrol variable is the jaket temperature, Tj, whihhas a lower bound, φ(C), that hanges dynamially with the onentrationof the solute. The funtion φ(C) is alulated based on a polynomial rela-tionship between onentration and equilibrium temperature.Applying the simultaneous approah to this model with 3 point Radauolloation and �fty �nite elements leads to an NLP with 1900 variablesand 1750 equality onstraints. Using DynoPC [53℄, the optimal solution wasobtained in 12.5 CPUs (1.6 MHz IBM laptop) with 105 iterations of theredued spae version of IPOPT. The optimal pro�les of the mean rystalsize and the jaket temperature are given in Figure 3. Note that the meanrystal size inreased by over eight times in 25 h. Also, in order to maximizethe rystal size, the jaket ooling pro�le must �rst inrease to redue thenumber of nuleating partiles. Further information on this optimizationstudy an be found in [52, 89℄.
14



5 Disrete DeisionsDisrete events our in many dynami simulation and optimization prob-lems. In hemial proesses, examples of this phenomena inlude phasehanges in equilibrium systems, hanges in modes in the operation of safetyand relief valves, vessels running dry or over�owing, disrete deisions madeby ontrol systems and explosions due to aidents. These ations an bereversible or irreversible and should be modeled with appropriate logial on-straints. Modeling disrete events is disussed in [5℄; these events are oftentriggered by an appropriate disontinuity funtion whih monitors a hangein the ondition and leads to a hange in the state equations. These hangesan be reformulated either as binary deision variables [6℄ or by using om-plementarity onditions (with nonnegative ontinuous variables x(i) and x(j)alternately set to zero). These additional variables an then be embeddedwithin optimization problems.The inorporation of binary variables leads to mixed integer optimizationproblems. Here, several studies have onsidered the solution of Mixed IntegerDynami Optimization (MIDO) problems. In partiular, Avraam et al. [4℄developed a omplete disretization of the state and ontrol variables to forma mixed integer nonlinear program. More reently, a number of MIDO al-gorithms were developed and ompared with the simultaneous approah [37℄in order to selet optimal ontrol strategies. Alternately Allgor and Barton[3℄ and Bansal et al. [8℄ apply sequential strategies and disretize only theontrol pro�le. For this approah, areful attention must paid to alulationof sensitivity information for disrete deisions triggered in time.On the other hand, many disrete deisions for hybrid systems an bemodeled through omplementarity relations [42, 85℄. Furthermore, omple-mentarity onditions an be onsidered in a straightforward way throughbarrier methods [72℄ to yield an NLP. This lass of problems an be gener-alized to Mathematial Programs with Equilibrium Constraints (MPECs) ofthe following form:
min
x∈Rn

f(x) (25a)
s.t. c(x) = 0 (25b)

xL 6 x 6 xU (25)
0 6 x̂ ⊥ x̄ > 0 (25d)(25e)15



with xT = [x̃T x̂T x̄T ]. Appliations of MPECs have long been reognizedin game theory, transportation planning, eonomis and engineering design;a broad survey of these appliations an be found in [41, 59℄. In proessengineering, these problems stem from bilevel and multilevel optimizationproblems as well as optimization of hybrid (disrete and ontinuous) systems[81℄. Inluded in this lass are optimization problems with phase equilibriumonstraints, as in equilibrium stage proesses [69℄, and ellular models basedon metaboli pathways [73℄.To solve the MPEC, we ould apply a primal-dual interior point approah,but the KKTmatrix orresponding to (12) is singular at all points that satisfy(25d). To deal with this harateristi, we rewrite (25d) as X̂x̄ 6 µ̂e, where
µ̂ is the barrier parameter whose sequene goes to zero. We have inorpo-rated this MPEC reformulation into the IPOPT ode along with algorithmimodi�ations to treat the omplementarity onstraints more e�iently. Theimplementation ompares well against ompeting barrier algorithms [69, 72℄and performs well on distillation optimization problems with disappearingvapor and liquid phases on equilibrium stages, as well as on a number ofother appliations [73, 45℄.5.1 Example Problem: Bath DistillationTo illustrate the appliation of MPECs to dynami optimization, we presentan example developed in [71℄, that deals with the old startup of a bathdistillation unit. These models have also been onsidered in [90℄. Considera bath distillation olumn with a harge of 8 kmol of a 58/42 mixture ofbenzene and toluene in the bottom of the olumn. The olumn operates at 1bar and onsists of 12 trays, inluding the reboiler and ondenser. The max-imum reboiler heat duty is set to 600 kJ/hr and the minimum holdup for thetrays and ondenser are 0.3 and 0.5 kmol, respetively. The ontrol variablesin the olumn operation are the distillate �owrate, D and the reboiler heatduty, Qr. At initial time, the tray holdups are set to zero and startup ofthe olumn is posed as a free end-time problem whih maximizes the averagerate of produt withdrawn over the time of operation tf as follows:

max 1
tf

(
tf∫

0

D(t)dt+M l
12(tf )

)
− ǫ 1

tf

tf∫

0

(Qr(t) −Qmax
r )2dt (26)
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s.t. dM1

dt
= L2 − V1 − L1

dMi

dt
= Vi−1 + Li+1 − Vi − Li i = 2, . . . 11

dM12

dt
= V11 −D − L12

(27)
M1

dx1,j

dt
= L2(x2,j − x1,j) − V1(y1,j − x1,j)

Mi
dxi,j

dt
= Vi−1(yi−1,j − xi,j) + Li+1(xi+1,j − xi,j) − Vi(yi,j − xi,j) i = 2, . . . 11

M12
dx12,j

dt
= V11(y11,j − x12,j) (28)

M1
dhl

1

dt
= L2(h

l
2 − hl

1) − V1(h
v
1 − hl

1) +Qr

Mi
dhl

i

dt
= Vi−1(h

v
i−1 − hl

i) + Li+1(h
l
i+1 − hl

i) − Vi(h
v
i − hl

i,j) i = 2, . . . 11

M12
dhl

12

dt
= V11(h

v
11 − hl

12) −Qc (29)
yi,j = βiKi,j(Ti, Pi, xi)xi,j j ∈ COMP

0 =
∑

j∈COMP

yi,j −
∑

j∈COMP

xi,j

βi = 1 − αl
i + αv

i

0 6 M l
i ⊥ αl

i > 0
0 6 Mv

i ⊥ αv
i > 0

(30)
x12,C6H6

M l
12

(tf )+

tf∫

0

x12,C6H6
D(t)dt

M l
12

(tf )+

tf∫

0

D(t)dt

> 0.95 (31)where Mi, Li, Vi are the holdup, liquid �owrate and vapor �owrate on the
ith tray, respetively, xi,j , yi,j represent the liquid and vapor ompositions onthe ith tray, respetively, hv

i , h
l
i represent the spei� enthalpies of the vaporand liquid streams from tray i, Qr and Qc are the reboiler and ondenserheat loads and ǫ > 0 is a small parameter serving to regularize the problem.In the above formulation, the total produt at �nal time is de�ned as thesum of the ondenser holdup at �nal time and the total distillate withdrawalover time. The total produt that is withdrawn from the olumn is requiredto have a ertain purity of benzene as indiated by the last onstraint ofthe optimization problem (31). Finally, additional algebrai equations areadded to de�ne the spei� enthalpies in terms of temperature and to relateonditions between the tray holdupsMi and liquid �owrate Li. Note that wemodeled the tray holdup by ignoring the vapor omponent. As desribed in[71℄, this leads to a DAE model of index 2. In partiular, the vapor �owrate,

Vi(t), an algebrai variable, appears nowhere in the algebrai equations. Asa result, this system had to be reformulated to index 1 in [71℄.17



From (30), we note that the omplementarity onstraints allow the liquidphase to disappear [71℄, so that:
M l

i ,M
v
i > 0 then βi = 1

M l
i = 0 < Mv

i then βi 6 1
M l

i > 0 = Mv
i then βi > 1.

(32)The optimal ontrol problem is disretized over 30 elements with 2 ollo-ation points leading to a problem with 22226 variables and 20125 onstraintsinluding 2040 omplementarity onstraints. The problem solved to a tol-erane of 10−5 in the optimality onditions using a 2.2 GHz Intel PentiumIV proessor running Linux as the operating system. Intuitively, one wouldexpet the optimal startup solution to exhibit total re�ux and a heat dutypro�le at its upper bound. However, this is not possible for this example, asthe trays are deliberately undersized. Setting Qr to the upper bound wouldlead to omplete depletion of the harge before holdups would be establishedand the purity ould be satis�ed. As a result, an intermediate reboil pro�leneeds to be determined.Solution of the optimization problem yields an optimal operating timeof 28.8 hours. The pro�les of liquid holdup and re�ux �ow for the optimalsolution are shown in Figures 4 and 5. The trays have no holdup initially sono liquid �ows from the trays until the liquid holdup is at least equal to theminimum threshold. The vapor from the bottom is ompletely ondensedon tray 12 and re�uxed to the olumn at initial time. This inreases theholdup on the trays in dereasing order of tray number. Also, �utuationsin the liquid holdup orrespond to the times at whih the vapor �owrate islowered and this dereases with reboiler heat duty, Qr, shown in Figure 6.The ontrol pro�les lie stritly between bounds over a signi�ant portion ofthe time of operation, and the solution exatly mathes the purity onstrainton benzene at �nal time.6 Conlusions and Future DiretionsWith inreasing demands for the analysis and exploitation of dynami be-havior in proesses systems, dynami optimization has beome inreasinglyimportant, both for o�-line and on-line appliations. This paper presents ageneral overview of simultaneous approahes to dynami optimization prob-lems. Over the past two deades, simultaneous approahes have been applied18
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Time (hrs)Figure 6: Optimal reboiler duty in bath olumnin hundreds of literature studies. By disretizing both the state and ontrolvariables with a stable, high order impliit Runge-Kutta sheme and forminglarge-sale nonlinear programs, these approahes allow the rapid determina-tion of aurate solution pro�les with fewer time steps (�nite elements) thanwith sequential methods that apply standard ODE solvers. Moreover, thesimultaneous strategy has lear advantages in the treatment of path on-straints and unstable dynami systems.Reent work in numerial analysis and mathematial programming hasled to highly e�ient large-sale NLP solvers to handle the disretized dy-nami optimization problem, thus leading to to fast solutions. Moreover, theapproah also o�ers �exibility with respet to the formulation, deomposi-tion and solution of large-sale NLP problems. Finally, aurate �rst andseond derivatives an be obtained heaply from the NLP, thus providing anessential element for superior performane of the NLP solution strategy.Future work with simultaneous dynami optimization lies in the solutionof large-sale NLPs with e�ient deomposition strategies that take advan-tage of struture and lend themselves to parallel omputing. Additionalwork is also required for ill-onditioned optimal ontrol problems, in parti-ular, singular problems and high index path onstrained problems. Theseproblem types present di�ulties for all optimal ontrol strategies. For si-20



multaneous methods, they lead to ill-onditioning of the linear system (12).To overome this drawbak, unbiased regularization strategies are proposedand demonstrated in [47℄ for singular ontrol problems. On the other hand,ill-onditioning due to path onstrained problems seems to be benign as dis-ussed and demonstrated in [48, 13℄.The treatment of disrete deisions has only reently been onsideredwith simultaneous approahes. In partiular, we have found that omple-mentarity onstraints and the resulting MPEC formulations an deal withlarge sets of disrete deisions that result from temporal disretizations. Nev-ertheless, areful formulation of MPEC problems still needs to be explored.A promising approah develops omplementarity onstraints from swithingonditions that arise from onvex inner-level NLPs. However, the proper-ties of these formulations still need to be analyzed. Moreover, reformulationtehniques that onvert the MPEC to a well-posed NLP have been desribedand analyzed in [74℄. These need to be evaluated in the ontext of dynamioptimization.Finally, the above dynami optimization problems lead to solution pro�leswith funtion and derivative disontinuitues (jumps and kinks over time).Within the simultaneous approah, aurate solutions with these featuresrequire the inorporation of moving �nite elements based on error riteriaboth in state variable representation and in optimality onditions. Interest-ing preliminary results in this area are desribed in [47, 18℄. Ongoing workwith moving elements extends this approah to a broader range of problems.AknowledgementsFunding from the National Siene Foundation under Grant CTS-0314647is gratefully aknowledged.Referenes[1℄ Albuquerque, J. and L.T. Biegler, "Deomposition Algorithms for On-line Estimation with Nonlinear DAE Models," Computers and Chem-ial Engineering, 21, 3, p. 283 (1997)[2℄ U.M. Asher and L.R. Petzold, Computer Methods for Ordinary Di�er-ential Equations and Di�erential-Algebrai Equations, SIAM, Philadel-phia, PA, 1998. 21
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