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Introduction

Traditionally Scheduling and Control problems are solved independently.

e Scheduling:

From a scheduling point of view, the interest lies in determining optimal assignments to
equipment, production sequences, production times for each product, and inventory levels
that lead to maximum profit or minimum completion time. Commonly, during this task, the
dynamic behavior of the underlying process is not taken into account.

e Control:

Similarly, when computing optimal transition trajectories between different set of products,
one of the major objectives lies in determining the transition trajectory featuring minimum

transition time. When addressing optimal control problems, it is normally assumed that the
production sequence is fixed. Hence, scheduling decisions are normally neglected in optimal
control formulations.

In scheduling problems, the transition times between the different product combinations are
assumed to be known as fixed values, and hence, the dynamic profile of the chosen manipulated and
controlled variables is not taken into account in the optimization formulation. It has been
recognized, however, that scheduling and control problems are closely related problems and that,
ideally, they should be addressed simultaneously rather than sequentially or solved without taking
into account both parts.



Aim of this talk

In this work, we propose a simultaneous approach to address scheduling and control problems for a
set of continuous plants. We take advantage of the rich knowledge of scheduling and optimal
control formulations, and we merge them so the final result is a formulation able to solve
simultaneous scheduling and control problems.

We cast the problem as an optimization problem. In the proposed formulation:
e Integer variables are used to determine the best production sequence
e Continuous variables take into account production times, cycle time, and inventories

Because dynamic profiles of both manipulated and controlled variables are also decision variables,
the resulting problem is cast as a mixed-integer dynamic optimization (MIDO) problem.

To solve the MIDO problem, we use a methodology that consists of transforming the MIDO
problem into an MINLP that can be solved using standard methods. The strategy for solving the
MIDO problem consists of using the so-called simultaneous approach for solving optimal control
problems as the way to transform the set of ordinary differential equations modeling the dynamic
system behavior into a set of algebraic equations. Because of the highly nonlinear behavior
embedded in chemical process models, the resulting MIDO formulation will be an MINLP problem
featuring difficult nonlinearities such as multiple steady states and parametric sensitivity.



Problem Definition

Given are:
e A number of products to be manufactured in a single CSTR
e Lower bounds for the product demands
e Steady-state operating conditions for each desired product
e Cost of each product
e Inventory and raw materials costs

The problem consists in:

Simultaneous determination of a cyclic schedule (i.e. production wheel) and the
control profile such that a given cost function is minimized

Major decisions involve:
e Selecting the cyclic time and Sequence in which the products will be manufactured
e The transition times, Production rates, Length of processing times
e Amounts manufactured of each product

e Manipulated variables profiles for the transition



Problem assumptions:

e All products are manufactured in a
single CSTR

e Products sequence follows a
production wheel

e Cyclic time is divided into a series of
slots

Two operations occur inside each slot:

e [Transition period: dynamic transitions
between two products take place

e Production period: a given product is
manufactured around steady-state
conditions
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Mixed-Inter Dynamic Optimization Formulation

Single Stage Cyclic Scheduling Formulation for Continuous Plants

In this section we will describe a scheduling formulation for continuous plants as proposed by Pinto
and Grossmann. The formulation assumes a cyclic production sequence. Let us assume that a given
plant manufactures the products A,B,C in the sequence A — B — C:

ABC ABC ABC

e Objective function

Np CPW Np Np Ns %, Z 1 Np L (G — Wi /Te) t;
¢=2 7 —ZZZ - —Zlcz- o (1)
1= 1=

/
where C? is the product cost, C’t _is the transition cost from product ¢ to product ¢ , C7
is the inventory cost, T is the total cycle time, N, is the number of products, N is the

/
number of slots. The subscripts z and « stand for products, whereas k denotes slot number.



Product assignment

Ns
Yik = 1, Vi (2a)
k=1
Np
D> vik = 1, Vk (2b)
i=1
/
Yk = Yik—1, Vi, k#1 (20)
/
Yia — Yi,Ng > V1 (2d)

Equation 2a states that, within each production wheel, any product can only be
manufactured once, while constraint 2b implies that only one product is manufactured at
each time slot. Due to this constraint, the number of products and slots turns out to be
the same. Equation 2c defines backward binary variable (y;k) meaning that such variable
for product 7 in slot k£ takes the value assighed to the same binary variable but one slot
backwards k — 1. At the first slot, Equation 2d defines the backward binary variable as the
value of the same variable at the last slot. This type of assignment reflects our assumption
of cyclic production wheel. The variable y;k will be used later to determine the sequence of
product transitions.

Amounts manufactured

W, > D;T., Vi (3a)
wW; = G;0;, Vi (3b)
G, = F°(1—X;), Vi (3¢)



Equation 3a states that the total amount manufactured of each product ¢ (W;) must be
equal or greater than the desired demand rate (D;) times the duration of the production
wheel, while Equation 3b indicates that the amount manufactured of product ¢ is computed
as the product of the production rate (G;) times the time used (©;) for manufacturing
such product. The production rate is computed from Equation 3c as a simple relationship
between the feed stream flowrate (F'°?) and the conversion (X;).

Processing times

Oir,. < 07" Tyip, Vi k (4a)
Ns

©, = ) 0, Vi (4b)
k=1
Np

P = Y 0k, Vk (4¢)
i=1

The constraint given by Equation 4a sets an upper bound on the time used for
manufacturing product 7 at slot k (6;,). Equation 4b is the time used for manufacturing
product i, while Equation 4c defines the duration time at slot k (p1.).

Transitions between products

/
Zipk = Ypk +vyik — 1, Vi,p, k (5)

The constraint given in Equation 5 is used for defining the binary production transition



variable z;,; . If such variable is equal to 1 then a dynamic transition will occur from
product ¢ to product p within slot k, z;,, will be zero otherwise.

e Timing relations

Np Np
0, = D> > trizipk, Vk (6a)
i=1p=1
t; = 0 (6b)
Np Np .
ty = tp+pe+ ), D triZipk, Yk (6¢)
1=1p=1
ty, = tr_q, VE#1 (6d)
ty < Te, VE (6e)
0, | Oy
tfck — (f_ 1) + Yeo \V/f,C,kZ (61:)
Nfe Nfe

Equation 6a defines the transition time from product 2 to product p at slot k. It should be
remarked that the term tfn- stands only for an estimate of the expected transition times.
Equation 6b sets to zero the time at the beginning of the production wheel cycle
corresponding to the first slot. Equation 6c is used for computing the time at the end of
each slot as the sum of the slot start time plus the processing time and the transition time.
Equation 6d states that the start time at all the slots, different than the first one, is just
the end time of the previous slot. Equation 6e is used to force that the end time at each
slot be less than the production wheel cyclic time. Finally, Equation 6f is used to obtain the

time value inside each finite element and for each internal collocation point.



Example

Let us assume that a given plant facility manufactures three products: A,B,C. We would like to
compute the optimal cyclic production sequence that maximizes the process profit while meeting
the demand rate of each product.

A A A
B B B
C C C
} 1 } 9 } 3 } Process data
Product Demand Price Process Inventory
Transition times
(Transition cost) rate Products rates cost
A B C A 2.1 320 8 1.5
10 20 B 3 430 o 1
A (4000) (8000) C 4 450 1 5
15 30
(3500) (6000)
10 25
C (7000) (5500)

Optimal Cyclic Scheduling Results: Profit=329

Slot Product Process Amount Start End
time Manufactured time time

1 B 235.3 2117.7 0 265.3
2 A 185.3 1482.4 265.3 460.6
3 C 235.3 2823.5 460.6 705.9




$title Single Stage Scheduling Problem
set i Tasks / A, B, C /

k Slots / 1x3 /
kk /2%3/

)

alias(i,ip) ;

table tt(ip,i) "transition times "

A B C
A 0 10 20
B 15 0 30
C 10 25 0 ;

table ct(ip,i) "cost of transition"

A B
A 0 4000
B 3500 0
C 7000 5500

parameter d(i) demand rate
/A 2.1, B 3, C 4/

pr(i) price products
/A 320, B 430, c 450 /

g(i) process rates

8000
6000



/A 8, B9, C 12/

ca(i) cost of inventory
/A 1.5, B1, C2 /;

parameter u / 6000 / ;

variables profit profit ;
positive variables Tc cycle time
t (1) processing of prod i
w(i) amount produced prod i in Tc

ts (k) Start of slot 1

te (k) end of slot 1

p(k) process time in slot 1
th(i,k) prod i in slot k ;

binary variables y(i,k) prod i in time slot k
yp(ip,k) additional y;

positive variables z(i,ip,k) transition var ;

equations obj profit function
oneSlot (i) only one slot per task
oneTask (k) only one prod per slot

endstartSlot(k) balance end and start times
procTime (k) process time is

supportEq(i,k) support equation to determine the prod time of i in slot k



switch(i,ip,k) switching transition at slot k

Productreq(i) amount of i required in Tc

Production(i) production of i

Processtime(i)  processing time of prod i

endStartPN (k) balance End and Start of successive slots
Cyctime (k) total cycle time

startA first ts

assignyp(i,k)

assignyp1(i) ;

obj .. Profit =e= sum (i, pr(i)*W(i))/Tc- sum((i,ip,k), ct(ip,i)*z(i,ip,k)/ Tc)
- sum(i, ca(i) * ((g(i) - w(i)/Tc) * t(i) / 2));

assignyp(i,k)$kk(k) .. yp(i,k) =e= y(i,k-1);
assignypl(i) .. yp(i,’1%) =e= y(i,’3?);

switch(i,ip,k) .. z(i,ip,k) =g= yp(ip,k) + y(i,k) - 1 ;

oneSlot(i) .. sum(k,y(i,k)) =e= 1 ;

oneTask(k) .. sum(i,y(i,k)) =e= 1 ;

endstartSlot(k) .. te(k) =e= ts(k) + p(k) + sum((i,ip), tt(i,ip) * z(i,ip,k)) ;
procTime(k) .. p(k) =e= sum(i,th(i,k)) ;

supportEq(i,k) .. th(i,k) =1= y(i,k) * u ;



Productreq(i) .. w(i) =g= d(i) * Tc ;
Production(i) .. w(i) =e= g(i) * t(i) ;
Processtime(i) .. t(i) =e= sum(k, th(i,k)) ;
endStartPN (k) $kk(k) .. ts(k) =e= te(k-1) ;
Cyctime(k) .. te(k) =1= Tc ;

startA .. ts(’1’) =e= 0 ;

Tc.1l = .2;

Tc.lo=1;
Tc.UP=6000;

options limrow = O;
options limcol = O;

model mySched / all / ;

solve mySched maximizing profit using minlp ;



Dynamic Optimization Approaches

Pontryagin

DAE Optimization

NLP problem

Discretize Controls

> Variational Approach

Inefficient for constrained problems

Efficient for constrained problems

Discretize some
state variables Y

Multiple Shooting

Handles instabilities
Large NLP

> Sequential Approach

Can not handle instabilities properly
Small NLP

Discretize all
state variables

Simultaneous Approach

Handles instabilities
Large NLP



MIDO Simultaneous Approach

MIDO Problem

|

Discretize DAE system
using Orthogonal Collocation
on Finite Elements

|

MINLP




Discretizing ODEs using Orthogonal Collocation

Given an ODE system:

dx £ ) 0)
— =T1(X,u,p), X = Xini
dt init

where x(t) are the system states, u(t) is the manipulated variable and p are the system parameters.

The aim is to approximate the behaviour of x and u by Lagrange interpolation polynomials (of
orders IC + 1 and IC, respectively) at collocation or discretization points ty:

A
1 (t) = f: ACEEACE ﬁ L
k41 = kO SR SRS = g F(X) |\ Collocation
= = \\ pOIntS
o )
K . ] A
u(t) = D ule(t), g =1]] ot
k=1 j=1 K 1
Jj#kK
XNt1(tk) = Xk, un(tk) = ug

Therefore replacing into the original ODE system, we get the system residual R (ty):

K
dé;(t
R(tk) — § :XJ% _f(xkauk7p) =0, k=1,.,K
j=0



Transformation of a Dynamic Optimization problem into a NLP

Original dynamic optimization problem Discretized NLP

: min ¢(Xg, U
i d(X, u) Koy (Xk, Uk)
dx(t K :
s.t. d(t> = F (x(t), u(t), t, p) s.t. Z X0 (tk) — F (X, ug) =0, k=1, ...
j=0
0

X(O) =X Xo = X(O)
g(x(t),u(t),p) <0 g(Xk, U, P) <0, k=1,....K
h(x(t),u(t),p) =0 h(Xk,Uk,P) =0, k=1,..., K

|
x < x < x" K < x < x

|
u <u<u” d < ug



Approximation of a Dynamic Optimization Problem using Orthogonal Collocation of Finite Elements

Sometimes it is convenient to use Orthogonal Collocation on Finite Elements to approximate the
behavior of systems exhibiting fast dynamics.

State

Internal
Collocation

Points

System behavior !

Jin ¢ (X, u)

First element Second Element Third Element

S.t.

i . i=1,...,NE
ZXUEJ'(TK)—hiF(XiK,Uik):O, K:].,...,NC
j=0

where NE is the number of finite elements,
length of each element.

X10 = X(0)

g(xik, Uik , D) =0,i=1,....,NE;k=1,..,NC
o -0 X <xj<xj,i=1..,NEk=1,.,NC

ujy <up <uf, i=1,..,NEsk=1,.,NC

NC is the number of internal collocation points, h; is the



Dynamic optimal transition between two steady-states: Hicks CSTR

Let us consider the dimensionless mathematical model of a non-isothermal CSTR as proposed by
Hicks and Ray modified for displaying nonlinearities:

Desired Transition B — A

dC 1 - C .
— — Kloe_N/TC N
dt 0 12 O y1=0.0944, y2=0.7766, u=340 (s)
3 A
dT yf — T N/T ' * y1:0:2632:y2:0:6519: u=455 (u)
— + kip€ C—aU(T —vy S ot
dt 0 ( c) 2 o
g o
% 0.8
% 0.7- S
Parameter values £ oo —
0 20 Residence time osf T
Ts 300 Feed temperature 041
J 100 (—AH)/(pCp) 0.350 160 150 260 Coi?::]gflo?;\izte 3‘50 460 4‘50 500
K10 =00 U oS el el Desired dynamic transition
Cr 7.6 Feed concentration C T U
Te =0 ) Coolant temperature Initial (B)  0.1367  0.7293 390
o 1.95x10 Heat transfer area Final (A) 0.0944 0.7766 340
N 5 E]_ /(RJCf)

C = Concentration (c/cf), T = temperature (T,/Jcf), yc = Coolant temperature ( T¢/Jcf), yf =
feed temperature (T¢/Jcf), U = Cooling flowrate. ¢ and T, are nondimensionless concentration
and reactor temperature.



For solving this example we will use three finite elements and two internal collocation points.

Objective function
As objective function the requirement of minimum transition time between the initial and
final steady-states will be imposed:

Min /Otf {a1(C(1) = Caes)? + 2(T (1) — Taes)? + a3(U(1) — Uges)?} at

the subscript "des” stands for the final desired values. «j, | = 1,2,3 are weighting factors.
The above integral is approximated using a Radau quadrature procedure:

Ne Nc
. 2 2 2
Min & = E h; E WJ' {al(CU — Cdes) + Q42(—|_ij - Tdes) + a3(UU o Ud@S)
i=1 j=1

Ne is the number of finite elements (Ne=3), N¢ is the number of collocation points
including the right boundary in each element (so in this case N = 3), Cjj and Ty; are the
dimensionless concentration and temperature values at each discretized ij point, h; is the
finite element length of the i—th element, W, are the Radau quadrature weights.

Constraints

1. Mass balance
The value of the dimensionless concentration at each one of the discretized points
(Cj;) is approximated using the following monomial basis representation:

Ne dgcy,
Cj=Cl+h6> Ag——, i=1,...,Ne; j=1,...,Nc
k=1 dt



CiO is the concentration at the beginning of each element, Ay; is the collocation

matrix. Note that C‘f stands for the initial concentration. The length of each finite
element (hj)can be computed as:

1
hy = —
Ne
Energy balance
Nc
dT;
Ty=T7+h6 ) AKJTIK, i=1,...,Ne; j=1,...,Nc
k=1

similarly, T? is the temperature at the beginning of each element. Again, note that
T¢ stands for the initial reactor temperature.

Mass balance continuity constrains between finite elements

Only the system states must be continuous when crossing from one finite element to
the next one. Algebraic and manipulated variables are allowed to exhibit
discontinuous behaviour between finite elements. To force continuous concentration
profiles all the elements at the beginning of each element (C;, i = 2, ..., Ng) are
computed in terms of the same monomial basis used before:

o) 0 Ne dCi—l,k .
CO=Cl i +n 10> Axne——=, i=2,..,Ne
Kk—1 dt

Energy balance continuity constrains between finite elements

Nc dT,
—1,k .
T =T, +h10) Agne——, i=2,..,Ne
= dt



Approximation of the dynamic behaviour of the mass balance at each collocation
point

The first order derivatives of the concentration at each collocation point (ij) are
obtained from the corresponding continuous mathematical model:

—N/Tj;

== ke Cij, T=1,...;,Ne; J=1,...,Nc

Approximation of the dynamic behaviour of the energy balance at each collocation
point

o= B ke VTG — aU(Ty —ve), i=1,...,Ne; j=1,...,Nc
dt 0
Initial values constraints
C{ = Cinit
T, = Tt

the subscript "init"” stands for the initial steady-state values from which the optimal
dynamic transition will be computed.



The collocation matrix for 2 internal points is given as follows

0.19681547722366 0.39442431473909 0.37640306270047
A = —0.06553542585020 0.29207341166523 0.51248582618842
0.02377097434822 —0.04154875212600 O.11111111111111

while the Radau cuadrature weights are

0.37640306270047
W = 0.51248582618842
0.11111111111111

the roots (R) of the interpolating polynomial are needed for descaling the time variable.

0.1550625
R = 0.6449948
1
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AMPL listing

#

# Dynamic optimization of the Hicks CSTR problem

#

# Written by Antonio Flores T./CMU, 31 Jan, 2004

#

param NFE >= 1 integer ; # Number of finite elements
param NCP >= 1, <= 5 integer ; # Number of collocation points
#

# Define initial values and final desired omes

#

param Cinit >= 0 5
param Tinit >= 0 5
param Uinit >= 0 3
param Cdes >= 0 5
param Tdes >= 0 ;
param Udes >= 0 -
param TransTime >= 0O 5

#
# Define specific parameters for Hicks multiplicity CSTR
#

param alpha >=
param alphal >=
param alpha2 >=
param alpha3
param k10 >=

\V4
I
O O O O O O

param N >=
param Cf >0 ;



param J >0 3

param Tf >0 3
param Tc >0 ;
param yf >= 0
param yc >= 0
param theta > O ;
param rl >= 0
param r2 >= 0
param r3 >= 0
#

# Parameters for defining decision variables initial guesses
#

param POINT ;

param SLOPEc ;

param SLOPEt ;

param SLOPEu ;

#

# Define dimensions for all indexed variables
#

set FE := 1..NFE ;

set CP := 1..NCP ;

param A {CP,CP} ; # Collocation matrix
param H{FE};

#

# Define derivatives of the states evaluated at each collocation point
#*

var Cdot {FE,CP} ;

var Tdot {FE,CP} ;



var TIME >= 0 ;

#

# Define the states value at the beginning of each finite element

#

var CO {FE} >= 0.01, <=1 :

var TO {FE} >= 0.01, <=5 ;

var U0 {FE} >= 0, <= 2500 ;

#

# Define decision variables

#

var C {FE,CP} >= 0, <=1 ; # Dimensionless concentration profile
var T {FE,CP} >= 0, <=5 ; # Dimensionless temperature profile var U {FE,CP} >= 0, <= 2I
# Objective function

#*

minimize COST:

sum{i in FE} (H[i]l*sum{j in CP} ((

alphal*(C[i, jl-Cdes) "2+alpha2*(T[i, j]-Tdes) "2+alpha3*(U[i,j]-Udes) ~2)*A[j,NCP]));
#

# Mass and Energy balance discretization

#

subject to FECOLc{i in FE,j in CP}:

C[i,j] = CO[i]+TIME*H[i]*sum{k in CP} A[k,jl*Cdot[i,k];

subject to FECOLt{i in FE,j in CP}:
T[i,j] = TO[i]+TIME*H[i]*sum{k in CP} A[k, jl*Tdot[i,k];
#

# Mass and Energy continuity constraints between finite elements
#*



subject to CONc{i in FE diff{1}}
CO[i] = CO[i-1]+TIME*H[i-1]*sum{k in CP} A[k,NCP]*Cdot[i-1,k] ;

subject to CONt{i in FE diff{1}}

TO[i] = TO[i-1]+TIME*H[i-1]*sum{k in CP} A[k,NCP]*Tdot[i-1,k] ;

#

# Approximation of the Mass and Energy derivatives at each collocation point
#

subject to ODEc{i in FE, j in CP} :

Cdot[i,j]l = (1-C[i,j])/theta-k10*exp(-N/T[i,jl)*C[i,j] ;

subject to ODEt{i in FE, j in CP} :

Tdot[i,j] = (yf-T[i,jl)/theta+klO*exp(-N/T[i,j]l)*C[i,jl-alpha*U[i,jl*(T[i,jl-yc) ;
2

# Initial conditions constraints

it

subject to IVc: CO[1] = Cinit ;

subject to IVt: TO[1] = Tinit ;

subject to IVu: UO[1] = Uinit ;

#

# Constraint on the total transition time
#

subject to TTT: TIME = TransTime ;

# —— End of the hicks.mod file --



i

AMPL listing

# This file contains all the information to run one

# of the cases of the Hicks dynamic optimization problem

s
i

# First order derivatives collocation matrix

#
param A:
1

let NFE
let NCP

let TransTime :

let r1
let r2 :
let r3 :=
i

# Initial
#

let Cinit
let Tinit
let Uinit
let Cdes
let Tdes

0.15505102572168 ;
0.64494897427832 ;

1

1

= 3

13 ;

10 ;

b
.
b

1

0.19681547722366
2 -0.06553542585020
3 0.02377097434822

2 3 :=
0.39442431473909 0.37640306270047
0.29207341166523 0.51248582618842

-0.04154875212600 0.11111111111111;

b
b

)

value fixed conditions and final (desired) conditions

0.1367 ;
0.7293 ;

390

0.0944 ;
0.7766 ;

H

I

H

b



let Udes := 340 ;

#

# CSTR parameters (modified for multiplicity behaviour)
#

let alpha 1.95e-04

let alphal := 1e+06 ;

let alpha2 := 2e+03 ;

let alpha3 := 1e-03 5

let k10 := 300 ;
let N := b ;
let Cf = 7.6 ;
let J := 100 ;
let Tf := 300 ;
let Tc := 290 ;
let theta := 20 ;
let yf := T£/(J*Cf) ;
let yc := Tc/(J*Cf) ;
#

# In this section initial guesses of the decision variables are
# computed. They consists on simple linear interpolations between

# the initial fixed values and the desired omnes.

#
let POINT :=0 ;
let SLOPEc := (Cdes-Cinit)/(NFE*NCP) ;
let SLOPEt := (Tdes-Tinit)/(NFE*NCP) ;
let SLOPEu := (Udes-Uinit)/(NFE*NCP) ;

for {i in FE}
{



for {j in CP}
{
let POINT := POINT+1;
let C[i,j] := SLOPEc*POINT+Cinit ;
let T[i,j] := SLOPEt*POINT+Tinit ;
let U[i,j] := SLOPEu*POINT+Uinit ;
} let H[i] := 1/NFE ;

#-- End of the hicks.dat file —--



Simultaneous Dynamic Optimization Example: PDE Optimization

Let us consider the dynamic optimization of a distributed parameter system. Specifically we will
deal with the mathematical model a of dynamic, one dimensional isothermal tubular reactor with
diffusive and convective mass transfer:

Reactant Product
- -
X
Mathematical model

¢ 02¢ - R
— — — — Pepy— — Pe C
ot Ox2 M M

R(c) = aKc?

subject to the following initial,
c(x,0) =1

and boundary conditions,

ocC
— = Pey(c—1), @x=0
OX
ocC
— = 0 , @x =1
OX

where c is the dimensionless concentration, x is the dimensionless axial coordinate, Pe)y, is the mass
Peclet number, K is the cinetic rate constant, « is a constant, and t is the time.



In this example we will use only three internal collocation points as depicted below.

1 2 3 L4 L5

approximating the first and second order spatial derivatives at each i internal collocation point,

N—+2 2 N—+2
8c> 9°c
— = E AijCj7 == = E BUCJ
2

Therefore, if we discretize the mathematical model,

5 N2 N4-2
C .
— Y Biyc — Pem Y Ayg — PemR(g), i=2,.,N+1
X/ i=1 i—1



and the boundary conditions,

oc N2
8_ = Z Alej—PeM(C]_—l), @x=0
X =1
N4-2
oc
— = 2. Mg =0, @x=1
OX i=1

If we now expand the above equations using three internal collocation points,

0 = A11C1 +A12C + A13C3 + A14C4 + A1sCs — Pep(cp — 1)
8C2
i —— B21C1 + B22Co + Bo3C3 + BosaCy + BosCs — Pep[Az1C1 + AxaCo
+A23C3 + A24Cq + AsCs| — Pey och%
0C3
el B31C1 + B32Co + B33C3 + B3aCs + B3sCs — Pepy[Az1C1 + AzaCo
+A33C3 + A34Cq + AszsCs] — PeyaKcs
8C4
P B41C1 + BaoCo + Bg3C3 + BagCq + BasCs — Pepm[Ag1C1 + AgoCo
+A43C3 + Ag4aCs + AgsCs| — Pey aKCAQI.
0 = Asi1C1 + As2Co + As3C3 + As4Cs + AssCs

In this note we will use Collocation matrices based on Lagrange polynomials to approximate the



first and second

A

84.
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24.
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0000
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16.
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order spatial derivatives:

. 7883
.8730
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0632
3333
6667
3333

58.
26.

-21

26.
58.

.6667 1.
.0656 -1.
.0000 3.
.0656 -3.
.6667 -14.
6667 -44.
6667 -13.
.3333 16.
6667 -73.
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7883

6035
3333
6667
3333
0632

24.
. 7621
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53.
84.

.0000
.6762
.5000
.3238
.0000

0000

2379
0000



The time derivative will be approximated using an implicit Runge-Kutta method. For time
approximation two internal collocation points will be used. As objective function we will pose the
following function featuring minimum transition time between two arbitrary operating points:

Min & = /Otf {<C5(t) - 6‘25)2 i (PeM(t) - I5eM>2} dt

The above equation states that we would like to move from an initial point to a final desired exit
product concentration (denoted by Cs) using the mass Peclet number (Pep,) as the manipulated
variable. The final transition value of the Peclet number is denoted by I5eM. In this example we will
compute an optimal dynamic transition between the operating conditions shown in the next Table.

Desired dynamic transition

C5 PeM
Initial 1 2
Final 0.13 96




Dynamic optimization results for a tubular reactor with diffusive and convective mass transfer
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Lagrange Collocation Matrices

clear all; clc;
h
% Program to compute the A,B (first and second order derivarives of
% Lagrange Polynomials) at the locations given by ’roots’.
t
% Written by Antonio Flores T./ 4 March, 2008
h
N=4;
roots=[ 0
1.127016653792584e-001
4.999999999999999e-001
8.872983346207419e-001
1.000000000000000e+000] ;

syms x x0 x1 x2 x3 x4
syms num den

xvect = [x0 x1 x2 x3 x4];

for i = 1:N+1,

num = 1;

den = 1;

for j = 1:N+1,
if j 7= 1

num = num*(x-xvect(j));
den = den*(xvect(i)-xvect(j));
end

end



L (i) = num/den;
Lp (i) = diff(L(i),’x’);

Lpp
end

(1) = diff(Lp(i),’x’);

x0 = roots(1);
x1 = roots(2);
x2 = roots(3);
x3 = roots(4);
x4 = roots(5);

for i

i
I

for

end

end

/%—— End

1:N+1,

roots(i);

j o= 1:N+1,

A(i,j) = subs(Lp(i));
B(i,j) = subs(Lpp(j));

of file —-



AMPL files for Dynamic Optimization

#

# Dynamic optimization of a tubular reactor with

# Diffusive and Convective Mass Transfer

#

# Written by Antonio Flores T., 5 March, 2008

#
param

param

NFE >= 1 integer ; # Number of finite elements

NCP >= 1,

<= b integer ; # Number of collocation points

param NPOC >=1, <= 10 integer; # Number of collocation points for discretizing spatial derivatives

#

# Define initial values and final desired ones

#

param
param
param
param
param
param
param
param
param
param
#

c2init
c3init
c4init
cbdes
peminit
pemdes
TransTime
rl

r2

r3

\Y4
I
O O O O O O O o oo o

# Define specific parameters

#

param alpha >= 0

.
)

param alphacb >= 0 ;



param alphapem >= 0 ;

param gamma >= 0 3

param krate >= 0 5

#

# Define dimensions for all indexed variables

#

set FE = 1..NFE ;

set CP = 1..NCP ;

set POC = 1..NPOC ;

param A {CP,CP} ; # IRK matrix

param AL {POC,POC} ; # Lagrange collocation matrix (first order spatial derivatives)
param BL {POC,POC} ; # Lagrange collocation matrix (second order spatial derivatives)
param H {FE} ;

#

# Define derivatives of the states evaluated at each collocation point
#

var c2dot {FE,CP} ;

var c3dot {FE,CP} ;

var c4dot {FE,CP} ;

var TIME >= 0 ;

#

# Define the states value at the beginning of each finite element

#

var c02 {FE} >=0, <
var c03 {FE} >=0, <
var c04 {FE} >=0, <
#

# Define decision variables
#

I
N NN



var c1 {FE,CP} >=0, <=
var c2 A{FE,CP} >=0, <=
var ¢c3 A{FE,CP} >=0, <=
var c4 A{FE,CP} >=0, <=
var c5 A{FE,CP} >=0, <=
var pem {FE,CP} >=0, <= 150 ;

#

# Objective function

#

minimize COST:

sum{i in FE} (H[i]*sum{j in CP} ((

alphacb*(c5[i, j]-cbdes) "2+alphapem* (pem[i, jl-pemdes) "2)*A[j,NCP]));
#

# Mass balance discretization

#

subject to FECOLc2{i in FE,j in CP}:

c2[i,j] = cO2[i]+TIME*H[i]*sum{k in CP} A[k, jl*c2dotl[i,k];

N N N NN

subject to FECOLc3{i in FE,j in CP}:
c3[i,j] = cO3[i]+TIME*H[i]*sum{k in CP} A[k,jl*c3dot[i,k];

subject to FECOLc4{i in FE,j in CP}:

c4[i,j] = cO4[i]+TIME*H[i]*sum{k in CP} A[k, jl*c4dotl[i,k];

#

# Mass continuity constraints between finite elements

#

subject to CONc2{i in FE diff{1}} :

c02[i] = c02[i-1]+TIME*H[i-1]*sum{k in CP} A[k,NCP]*c2dot[i-1,k] ;



subject to CONc3{i in FE diff{1}} :
c03[i] = c03[i-1]+TIME*H[i-1]*sum{k in CP} A[k,NCP]*c3dot[i-1,k] ;

subject to CONc4{i in FE diff{1}} :

c04[i] = cO4[i-1]+TIME*H[i-1]*sum{k in CP} A[k,NCP]*c4dot[i-1,k] ;

#

# Approximation of the Mass and Energy derivatives at each collocation point

#

subject to ODEc2{i in FE, j in CP} :

c2dot[i,j] = BL[2,1]*c1[i,jl+BL[2,2]*c2[i,j]+BL[2,3]*c3[i,j]+BL[2,4]*c4[i,j]+BL[2,5]*cb[i,j]
-pem[i,jl*(AL[2,1]*c1[i,jIl+AL[2,2]*c2[i,jl+AL[2,3]*c3[i,j]1+AL[2,4]*c4[i,j]l+AL[2,5]%*c5
-pem[i, jl*alphaxkratexc2[i,j]"2 ;

subject to ODEc3{i in FE, j in CP} :

c3dot[i,j] = BL[3,1]1*c1[i,jl1+BL[3,2]*c2[i,jl+BL[3,3]1*c3[i,jl+BL[3,4]1*c4[i,jl+BL[3,5]*c5[i,j]
-pem[i,jl*(AL[3,1]*c1[i,jl+AL[3,2]*c2[i,j]+AL[3,3]*c3[i,j]l+AL[3,4]*c4[i,j]l+AL[3,5]*ch
-pem[i, jl*alphaxkratexc3[i,j]"2 ;

subject to ODEc4{i in FE, j in CP} :

c4dot[i,j] = BL[4,1]*c1[i,jl+BL[4,2]*c2[i,j]+BL[4,3]*c3[i,j]+BL[4,4]*c4[i,j]+BL[4,5]*c5[i,j]
-pem[i, jl*(AL[4,1]*c1[i,j]1+AL[4,2]*c2[i,j]+AL[4,3]*c3[i,j]l+AL[4,4]*c4[i,j]l+AL[4,5]*c5
-pem[i, jl*alphaxkratexc4[i,j]l"2 ;

#

# Additional algebraic equations resulting from discretizing the boundary conditions

#

subject to AEc1{i in FE, j in CP} :

AL[1,1]*c1[i,jIl+AL[1,2]*c2[i,jl+AL[1,3]*c3[i,jIl+AL[1,4]*c4[i,jIl+AL[1,5]*cb[i,j] - peml[i,jl*(c1l[i,j.



subject to AEc5{i in FE, j in CP} :
AL[5,1]*c1[i,jl+AL[5,2]*c2[i,jl+AL[5,3]1*c3[i,jl+AL[5,4]1*c4[i,jl+AL[5,5]*c5[i,j] = 0 ;
#

# Initial conditions constraints

#

subject to IVc2: c02[1] = c2init ;
subject to IVc3: c03[1] = c3init ;
subject to IVc4: c04[1] = c4init ;

#

# Constraint on the total transition time
#

subject to TTT: TIME = TransTime ;

+*

-- End of the pde.mod file --

This file contains all the information to run one
of the cases of a tubular reactor with diffusive and

convective mass transfer dynamic optimization problem

First order derivatives collocation matrix

H H OH O H O H HF H OH

param A: 1 2 3 :=
1 0.19681547722366  0.39442431473909  0.37640306270047
2 -0.06553542585020  0.29207341166523  0.51248582618842
3 0.02377097434822 -0.04154875212600 0.11111111111111;

param AL: 1 2 3



a s W NN -

(o2

let
let
let
let

let
let
let
#

# Initial

#

NF
NC
NP
Tr

ri

r2 :

r3

N2SS99 9899599 el
.323790007724444e+000
.499999999999999e+000
.762099922755483e-001
.999999999999968e-001

BL: 1

.399999999999994e+001
.323790007724445e+001
.999999999999990e+000
.762099922755510e+000
NS 9999999999999 6 et 0 Ol

E
P
ocC

ansTime :

o o1 W

0.15505102572168
0.64494897427832
= 1

let c2init := 1 ;
let c3init := 1 ;

let c4init

I
o
-

.
b
.
3

)

value fixed conditions and final

.478830557701236e+001
.872983346207410e+000
.227486121839514e+000
.290994448735803e+000
.878361089654300e+000

2

.220631667954075e+002
.333333333333327e+001
.666666666666666e+001
.333333333333336e+001
.460349987125911e+001

.666666666666668e+000
.065591117977290e+000
.127927463864883e-015
.065591117977285e+000
.666666666666660e+000

3

.866666666666666e+001
.666666666666665e+001
.133333333333333e+001
.666666666666669e+001
.866666666666662e+001

(desired) conditions

.878361089654309e+000
.290994448735808e+000
.227486121839517e+000
.872983346207437e+000
.478830557701238e+001

4

.460349987125922e+001
.333333333333333e+001
.666666666666668e+001
.333333333333350e+001
.220631667954076e+002



let peminit:

let cbdes

let pemdes

#

0.
96

13 ;

.
’

’

# Tubular reactor parameters

#
let
let
let
let
#

alpha

krate

alphachb

alphapem :

# Initial

#

let
let
let
let
let
let
let
let
let
let
let
let
let

H#-—-

{i
{i
{i
{i
{i
{i
{i
{i
{i
{i
{i
{i
{i

in
in
in
in
in
in
in
in
in
in
in
in

in

3.36 ;

guesses of the decision variables

FE,
FE,
FE,
FE,
FE,
FE,
FE}
FE}
FE}
FE,
FE,
FE,
FE}

in
in

in

j in

j in

j in

End of the pde

CP}
CP}
CP}
CP}
CP}
CP}

CP}
CP}
CP}

.dat

cl [i,j]

c2 [i,j]

c3 [i,j]

c4 [i,j]

c5 [i,j]
peml[i, j]
c02[1i]
c03[1i]
c04[i]
c2dot [i,j]
c3dot [i,j]
c4dot [i,j]
H[i]

file --

[ N = SN SN ST

-

0

N = = e = =

1/NFE ;



Extension to Handle Grade Transitions in
Polymerization Reactors

e Objective Function

Np ~p Np s Ns Nre Ncp
CPw; C (G — W, /T C'trek2e,N
max {Z —Z /1) Z Z hsz L ((Xfok — %)
i=1 i I Tc
_1.2 _m\2
+ o O — %02+ (U — TO)® + -+ (U — T )} (7)

t
Transition Cost: %/ f {Z(x” — M2+ > o wm - Um)2] C'dt

0 n m
discretized by Radau Quadrature as:

Ns Nre Npc .. O
fck=¢4c,N 1.2 1.2 — 2

> Z Nfi Z = ((Xfck — %)%t KR — RO+ (U — Ti)® 4+ (U — T )

k=1 C



Product Assignment

Amounts Manufactured

Scheduling Optimization Formulation
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Scheduling Optimization Formulation

Processing Times
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Transition between Products
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Timing Relations

Scheduling Optimization Formulation
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Optimal Control Formulation

Dynamic Mathematical Model Discretization

Ncp
X?CK - Xg,fk + Qﬁhﬂ( Z S2|C>.<]I‘?||(7 \V/n, f) C, K (25)
=1

Continuity Constraint between Finite Elements

Ncp

t -N
Xotk = Xof_1k T Ohr—1k D QNepXf_1.1k YN T =2,k (26)
=1

Model Behavior at each Collocation Point

- N n 1 n 1 m
XfCK == f (Xka7 e 7xka’ quK’ e quK>’ VI’], f, C, k (27)



Optimal Control Formulation

Initial/Final Controlled/Manipulated Variables at Each Slot

Np
n o n _
Xin,1 - Z Xss,iYi,Ng» VN
i—=1
Np
n n
Xink = Z Xss,iVi,k—1, VN, kZ 1
i=1
Np
—-N n
Xk pu— Z XSS,iyi7k7 \V/ﬂ, k
i=1
Np
m o m
Uin,1 — Z Uss iYi,Ng vm
i=1
Np
m m
Unk = D Uss Yik—1, VM, K#1
i—=1
Np
—-m m
Uk pu— Z uSS’iyi’k, \V/m, k

i=1

(28)

(29)

(30)

(31)

(32)

(33)



Optimal Control Formulation

m
Uy 1.k
m
u
NfeslNephi
n
X0,1,k
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X
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vm, K
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Solution Algorithm
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Solve
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3R
dCr
dt

Example: CSTR with a Simple Irreversible Reaction

R
k 3 l
Q L[| B
= —(Co—Cr)+Rr
v L[ 1 C
| | D
E
>
Process data
Product Q Cr Demand Product Inventory
[It/hr] [mol/It] rate [Kg/h] cost [$/kd] cost [$]
A 10 0.0967 3 200 1
B 100 0.2 8 150 1.5
C 400 0.3032 10 130 1.8
D 1000 0.393 10 125 2
E 2500 0.5 10 120 1.7




Results

Best Solution: A — EF — D — C — B, Profit= % 7889, Cyclic time=124.8 h

Slot Product Process Production w Transition T start T end
time [h] rate [Kg/h] [Kd] Time [h] [h] [h]

1 A 41.5 9.033 374.31 5 0 46.4
2 E 23.3 1250 29162.3 5 46.4 74.7
3 D 2.06 607 1247.7 5 4.7 81.8
4 C 4.48 278.72 1247.7 5 81.8 91.2

5 B 12.48 80 998.2 21 91.2 124.7

Second Best Solution: A — D — F — C — B, Profit=$ 7791, Cycle time= 125 h

Slot Product Process Production w Transition T start T end
time [h] rate [Kg/h] [Kdg] Time [h] [h] [h]

1 A 41.5 9.033 374.31 5 0 46.4
2 D 2.06 607 1249.4 5 46.4 53.6
3 E 23.4 1250 29270.4 5 53.6 82
4 C 4.48 278.72 1249.4 5 82 91.5
5 B 12.48 80 999.5 21 91.5 125




Results

Third Best Solution: B — A — FE — C — D, Profit= % 6821.6, Cycle time= 127 h
Slot Product Process Production w Transition T start T end

time [h] rate [Kg/h] [Kd] Time [h] [h] [h]

1 B 12.7 80 1012.5 21 0 33.7
2 A 42.04 9.033 379.7 5 33.7 80.7
3 E 23.3 1250 29125.4 5 80.7 109
4 C 4.6 278.72 1265.6 5 109 118.6
5 D 2.09 607 1265.6 6 118.6 127




Optimal transition profiles first solution
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Optimal transition profiles second solution

T Ln Ln
4 4 L 4 4 L /.
1t 1t
4 2 .- 4 2 L
4 - 4 -}
o o o O o o O o o O o o O (@) o
(@) (@) o (@) o O (@) o (@) (@) o
(@] o (@] (@] o O o <t N -l
R, M [ypl O [yp]l O
Lunl O ke Lyl O unl
o [p]
@) w O 2 <
< () L @) m
< | 7 )< | 7 < |
1ot 1o+t
4 2 [ 4 2 .
4 el i
: o : : o
< N o <t ™M [Ke} o < (9] N < N o
s o o o o o S o o o o
[W/jowy] O [W/iowx] O [W/jowx] O [W/jowy] O [W/jowy] O

20

25

20

15

10

25

15

10

Time [hr]

Time [hr]
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Optimal transition profiles third solution
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Example: CSTR with simultaneous reactions and input multiplicities

2R, k1
R
R F2
1 +Ry, —2 B l D
k3
R1 + Rs3 —
A
i T 1 B
oy | (OniCh,~OCh) |
dt - V 1
dCr, (Qr,Ck, — QCR,) [ ] D
= = RI’Q E
dt V .
i
dCRrs _ (Qr3 Ry — QCRs) + Ry
dt V 3
dCa _ Q(Ch — Ca) s
dt v A .
dCg  Q(Cg —Cg) R
dt v =
dCc  _  QCc-Co) -

dt V



Example: CSTR with simultaneous reactions and input multiplicities

Process data

Prod | Qr, QRr, QR4 CRr, CRr, CRr, Ca Cp Cc
A 100 0 0 0.333 0 o) 0.666 0 o)
B 100 100 o) 0.1335 0.0869 o) 0.0534 0.3131 o)
C 100 0 100 0.0837 0 0.1048 0.021 0 0.3951

Demand rate and cost information
Product Demand Product Inventory
[Kg/m] cost [$/kg] cost [$]
A 5 500 1
B 10 400 1.5
C 15 600 1.8
Profit= $ 32388, Cyclic time= 317.5 m
Slot Product Process Production w Transition T start T end
time [m] rate [Kg/m] Time [Kd] [m] [m] [m]
1 C 204.2 89.52 18273.3 15 0 219.2
2 B 44.5 71.31 3174.4 15 219.2 278.7
3 A 23.8 66.7 1587.2 15 278.7 317.5




C [moll]

C [mollL]

Clmoll]

Example: CSTR with simultaneous reactions and input multiplicities

A—>C Transition in Slot 1

A—>C Transition in Slot 1
T

0.4 T T 300 T T 0.7 T 300 . T T
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Time [m] Time [m]
Cc—>B Transition in Slot 2 C—>B Transition in Slot 2
0.7 . T 100 T T 0.4, . T 300 T T
CRl l CRl
RS Cr2 90 | — = Cra
0.6 - — Cra (| 0.35 - Cra [
) e - Ca - Ca 250 g
- Cg 80 - 1 Cg
T * Cc 0.3} * Cc H
0.5 - b 70 g
< 200 -
- 60 | 4
0.4 R B
E E
: = 50| R = 150 B
o o
0.3 4
40 B
100 |-
ozl i 30 B
20 - B
50 -
0.1 R
- 10 g |
n
\ I
o o R . o . L
o 100 200 300 o 100 200 300 o 100 200 300
Time [M]
B—>A Transition in Slot 3 B—>A Transition in Slot 3
0.7 T T 300 . T T 0.7 T T 100 T T
CRZL ch [+
— = Crz ‘\ RS Cra 90|
0.6 — Cra (] I o6l LT — - Cra ||
- Ca 250 b - © Ca
- Cg | - Cg 80 - B
* Sc o - * Cc
0.5 g ¥ 0.5 - B 7ok i
200 - B <
| .
| s 60 |- 4
| _, 0.4 . =
£ L = =
=. 150} 1 g : =. 50 E
o o o
4 0.3} 4
40 - B
100 - - - = —
E 0.2 B 30" 7]
20| R
- === 50 ] 0.1
- 10 4
. n
e e ememimmemaman \
R o " " o o R .
300 o 100 200 300 o 100 200 300 o 100 200 300

Time [m]



Example: CSTR with output multiplicities
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Example: CSTR with output multiplicities

Process data

Product Demand Product Inventory
[Kg/h] cost [$/kd] cost [$]
A 100 100 1
B 200 50 1.3
C 400 30 1.4
D 500 80 1.1

Best Solution: Profit= $7657, Cyclic time= 100.6 h

Slot Product Process Production w Transition T start T end
time [h] rate [Kg/h] Time [Kd] [h] [h] [h]

1 A 28.3 559.9 15831.7 10 0 38.3
2 B 13.1 613.6 8044.9 10 38.3 61.4
3 C 13.4 656.1 8748.9 10 6l.4 84.8

4 D 5.8 688.3 4022.5 10 84.8 100.6




Example: CSTR with output multiplicities

Second Best Solution: Profit= $6070.6, Cyclic time= 104.4 h

Slot Product Process Production w Transition T start T end
time [h] rate [Kg/h] [Kdg] Time [h] [h] [h]

1 D 6.07 559.9 4176.7 10 0 16.07
2 A 28.9 613.6 16177.2 10 16.07 55
3 C 13.9 656.1 9084.3 12 55 80.8

4 B 13.7 688.3 8353.4 10 80.8 104.4




Example: CSTR with output multiplicities
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Example: High Impact Polystyrene (HIPS)
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Example: High Impact Polystyrene (HIPS)
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Example: High Impact Polystyrene (HIPS)

HIPS Grade Design Information

Grade Q Conv. Demand Inv. Monomer Initiator Price
[I/s] [kg/h] Cost Cost Cost
A 1.14 15 50 0.15 1 10 3.2
B 0.75 25 60 0.20 1 10 4.3
C 0.56 35 65 0.15 1 10 4.5
D 0.60 40 70 0.10 1 10 5.0
E 0.53 45 60 0.25 1 10 5.5
F —- A— B — C — D, Profit=$ 1456, Cyclic time=32.2 h
Product Process T production Trans T T start T end
[h] [ka] [h] [h] [h]

E 2.48 1937 1.34 0 3.83

A 2.87 1614 1.15 3.83 7.85

B 3.17 1937 1.11 7.85 12.14

C 3.10 2099 0.58 12.14 15.82

D 15.81 11370 0.67 15.82 32.29




Example: High Impact Polystyrene (HIPS)

Performance indicators for HIPS CSTR optimal and other suboptimal feasible solutions

Solution sequence Profit | Tc [h] Tg;?gijﬁée ,;UGD” wcﬁ’f&i’dE —dezgnd

Optimal EABCD 1456 32.3 0.15 0.60 1.0 5.0
Sol.B DABCE 1352 33.0 0.16 0.59 1.0 4.9
Sol.C EBACD 1221 36.2 0.17 0.59 1.0 4.8
Sol.D ABCDE 1155 37.2 0.18 0.59 1.0 4.7
Sol.E EACBD 1101 38.1 0.19 0.58 1.0 4.7
Sol.F BAECD 1045 39.0 0.20 0.58 1.0 4.6

Dominant eigenvalues for the base case (V=6000 L) and modified (V=2500 L)

Dominant Eigenvalue Dominant Eigenvalue
Grade (Base case) (Modified case)
A -1.59x10~ 4 -3.92x10 4
B -1.02x10~ % -2.55x10~4
C -7.97x107° -2.10x10~4
D -7.30x107° -1.88x10~4
E -6.96x10° -1.78x10~ 4




Example: High Impact Polystyrene (HIPS)

Profit= $ 1416, Cyclic timew=33 h

Product Process T [h] production [kg] Trans T [h] T start[h] T end [h]
C 3.16 2141 0.58 0 3.75
D 16.03 11530 0.67 3.75 20.44
E 2.54 1977 1.54 20.44 24.52
A 2.93 1647 1.14 24.52 28.60
B 3.23 1977 1.11 28.60 32.95

Comparison between simultaneous and sequential solutions

Method Sales [$/hr] inv. costs [$/hr] trans. costs [$/hr] Profit [$/hr]
Simultaneous 2801.24 941.00 404.68 1455.55
Sequential 2790.51 959.99 414.19 1416.33




Example: High Impact Polystyrene (HIPS)

Comparison between simultaneous and modified sequential solutions

Method Sales [$/hr] inv. costs [$/hr] trans. costs [$/hr] Profit [$/hr]
Simultaneous 2801.24 941.00 404.68 1455.55
Sequential 2800.82 940.79 405.17 1454 .86

Solution using iterative approach, Profit = $ 906, Cyclic time= 40 h

Product Process T [h] production [kd] Trans T [h] T start[h] T end [h]
A 3.57 2008 3 0 6.57
D 10.67 7686 3 6.57 20.26
C 3.86 2610 3 20.26 27.11
E 3.10 2409 3 27.11 33.21
B 3.92 2409 3 33.21 40.15
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Example: High Impact Polystyrene (HIPS)
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Example: High Impact Polystyrene (HIPS)
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Example: High Impact Polystyrene (HIPS)
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Decomposition Optimization Approach to Solve
Larger Size MINLP Problems

e Most MINLP solution strategies tend to work well for small to medium size problems

e Some of the best well known MINLP solution strategies solve problems with either : (a)
large number of binary variables (but mild nonlinearities) or (b) small number of binary
variables (but stronger nonlinearities)

e Hence, normally MINLP codes tend to be unable to solve problems with large number of
variables and strong nonlinear behaviour

e Decomposition Optimization techniques can be an efficient way, and sometimes the only
way, to solve large scale, highly nonlinear MINLPs

The objective of this section is to solve the Simultaneous Scheduling and Control problem based on
our previous formulation by exploiting its decomposable nature through a Lagrangean
Decomposition technique. The reformulated model is solved using a decomposition technique and a
heuristic iterative procedure known to be useful for MINLP problems. In this procedure a set of
upper bounds for the maximization problem is obtained through the rigorous solution of the
decomposed model, while lower bounds are obtained by solving an NLP in which the binary variables
are fixed using heuristics. It has been found that this technique can greatly reduce the time spent
solving large MINLPs.



Short Tutorial

The main idea behind decomposition methods consists in realizing that in optimization problems
the constraints can be divided into “easy” and “hard” constraints.

e Easy constraints are those that are relatively easy to converge (.e.g. linear or quasi-linear
constraints)

e Hard constraints are difficult to converge (i.e. non-convex constraints related to
nonlinearities)

If the primal optimization problem is decomposed into a series of problems (each one easier to solve
than the primal one), then the overall solution of such problem could be easier to achieve. Indeed,
due to the embedded nonlinearities and problem size, sometimes decomposition methods can be the
only way to solve a given MINLP problem.

Lagrangean Decomposition

Let us assume that we want to solve the following general MINLP:

max 2T =cTx — dT(y1 + y2) P (39)
s.t. Atz + Bly1 < bl (40)
A2z + Bng2 < b2 (41)

b () < (42)

ha (x) < (43)

z>0; y',y° €{0,1} (44)

Reformulating the problem P



The first thing to do is to “duplicate” the continuous variables (xz). We introduce a new variables
vector (z) and divide the constraints set into two sets:

e One containing only the variables x
e The other one comprising the variables z

Of course, there will be integer variables in both the x and z constraints set. However, the partition
of the constrains set should be done in such a way that the integer variables appearing in the x
constraints set should not be contained in the z constraints set. Hence, the reformulated problem
reads as,

max 2P =Tz + dT(y1 + y2) RP (45)
s.t. Alz + Bly? < bl (46)
A%z 4 32y2 < b2 (47)

hi(z) < (48)

ha(z) < (49)

T = z (50)

z,z > 0; y ,y° € {0,1} (51)

The following points about the RP formulation should be remarked.
e The integer variables set y' appears only in the x constraints set (Eqn 46).
e Similarly, the integer variables set y2 appears only in the z constraints set (Eqn 47).

e By introducing the constraint z = 2z (Eqn 50), the P and RP formulations are totally
equivalent.



e Accordingly, the z “duplicated” decision variables also hold the constraint z > 0 (Egn 51).
Splitting the RP formulation

Now if the constraint x = z is dualized, the RP formulation can be written as

max 2ZPRP = Tg 4 dT(y1 — y2) + )xT(z —x) DRP (52)
s.t. Alz + Blyl < bl (53)
A%z 4 B?y? < b2 (54)

hi(z) < 0 (55)

ha(z) < 0 (56)

z,z > 0; y,y° € {0,1} (57)

as it can be easily noted, the above DRP formulation can be written (decomposed) into the
following two independent formulations.

max z2zPRP1 — Ty + dTyl A Te DRP4 (58)
s.t. Atz 4+ Bly1 < bl (59)
hi(z) < 0 (60)

z >0, y' €{0,1} (61)

max zZPBEP2 — gT,2 1 \T, DRP> (62)



s.t. A%z 4+ B%y? < b (63)
ha(z) < 0 (64)
>0, y° €{0,1} (65)

e T he decision variables related to the DR P4 formulation are x and yl.

e T he decision variables related to the DRPo formulation are z and y2.

e Accordingly, the DRP1 and DRP5 formulations can be solved independently as MINLPs.
Computing Upper Bounds

When the constraints are convex, the sum of the objective function values of the DRP; and
DRP, formulations are an upper bound on the optimal value of the primal problem P. Thereby, if
we denote

2 _ zDRP1 | zDRPy (66)

the above statement means that
zP < 2 (67)

however, if the problem to be solved features non-convexities, then the above inequality will not be
necessarily true. In strict terms, computing the smaller upper bound on zZP amounts to solve the
following Lagrangean dual problem:

ZD = min ZDRP

i D (68)

nevertheless, the above D formulation tends to be difficult to solve. This is the reason why, even
when the MINLP problem to be solved might be a non-convex one, the Lagrangean decomposition



approach stills is used for solving MINLPs. Of course, in this case the inequality given by Eqn 67 is
only used as an heuristic. Moreover, because of non-convexities, no optimality proof can be offered.
Following the computation of a valid lower bound on the =zP optimal value is discussed.

Computing Lower Bounds

The lower bound Z is computed by fixing in problem P the binary variables and then solving the
resulting NLP problem.

Updating Lagrange Multipliers

To generate upper bounds on problem P, the Lagrange multipliers A are computed from the Fisher
formula:

ML g kR Ry (69)
ar (LD(\F) — p*
e K ( k( )k . ) (70)
[|y® — x=||

where k stands for iteration number, t* is a scalar step size and «p, IS a scalar variable which is
normally constrained between [0,2], but it can be decreased to improve convergence.



Example

The application of the Lagrangean decomposition approach for solving MINLPs is shown using the

following example:

max 2T = —(by1 + 6ys + 8ysz + 10x1 — Txg — 18 1In(1 + xz2)
—19.2In(1 + 1 — x2) + 10)

s.t. 0.8In(1 4+ x2) +0.961In(1 + 1 — xz2) — 0.8x¢
r2 — 1

r — 2y1

1 — T2 — 2Y2

In(l14+xz2)+1.2In(1 + 21 — x2) — xg — 2y3
Y1 + y2

L1,xL2,T¢q 2 O; Y1,Y2,Y3 € {071}

The solution of this problem is reported as:

Z*¥ = 5.5796
aci = 1.76
CU; 0

r; = 1.218
Y1 0

Y5 1

NNV NN NN

c O O O

(71)
(72)
(73)
(74)
(75)
(76)
(77)



The first step aims to write the primal problem as a reformulated one by the introduction of cloned
variables z1, zo and zg. Following we have to divide the primal problem into two constraint sets:

e One of them should contain the x variables vector and some binary variables
e The other one should comprise the z variables vector and the remaining binary variables

Recall that the two sets of constraints should be comprised of different binary variables (e.g. binary
variables associated to the x variables constraint set cannot be a member of the z variables vector
and viceversa). If we have a close look at the above formulation, we can notice that constraint 77
dictates that the y; and yo binary variables should appear together since they are related trough
the inequality

y1 +y2 < 1

therefore all the constraints featuring either y; and/or y5 should be part of one of the constraint
sets into which the primal problem will be divided. Therefore, the first set of constraints will feature
the y1 and yo binary variables and is given as follows.

r2 < 2y1
r1 —x2 K 2y2
y1 +y2 <1
0.8In(1 +22)+0.96In(1l +x1 —xz2) —0.8z¢g = O

The second set of constraints will feature the remaining y3 binary variables and additional
constraints not included in the above set. Hence,

z9 — 21 < 0
In(14+29)4+1.2In(1 4+ 27 —29) — 26 —2yz = —2



You should notice that in partitioning the constraints set, we have decided to include the constraint
involving logarithmic (and no binary variables) terms in the first set of constraints and the other
constraint involving logarithmic terms and the y3 binary variable into the second constraints set.

Thereby, the reformulated problem reads,

max Z8F = —(5y; + 6yg + 8y3 + 1021 — Tz — 181n(1 + x2)
—19.2In(1 4+ =1 — xz3) + 10)

s.t. To < 291

r1 —xr2 K 2y2

y1 +yz2 < 1

0.8In(1 4+ z9) +0.961In(1 + 1 — x2) — 0.8x¢ > 0

z9 — 21 < 0

In(1 4+ 29)4+1.2In(1 4+ 271 — 29) — 2 — 2yg > —2

x1 = z1

ro = z9

rg == z6

x1,x2, T, 21, 22,26 = 0; y1,y2,ys3 € {0,1}



Now if the above formulation is dualized:

max zPRE _ —(5y1 + 6yo + 8ysz + 10x1 — Txg — 181In(1 + =)

—19.2In(1 4+ 21 — x2) + 10 + A1 (21 — 21) + A% (29 — z2) + A% (26 — 24))

s.t. T2 < 291
r1 —x2 K 2y2
y1 +y2 < 1
0.8In(1 4+ x2) +0.961In(1 + 1 — x2) — 0.8z =
z9 — 21 < 0
In(1 4+ 29)+1.2In(1 4+ 27 — 22) — 26 —2y3z = —2

L1,L2,TG, =21, <22, 26 2 07 Y1,Y2,Y3 € {07 1}

Finally the above formulation can be cast in terms of the following two independent formulations:

max ZPRP1 — _(5y; + 6yg + 8y3 + 1021 — Tz — 18 In(1 + x2)
—19.2In(1 4+ 21 — x9) + 10 — M2y — A225 — A%2¢)
s.t. To < 291
ry — T2 K 2y2
y1 +y2 < 1
0.8In(1 4+ x2) +0.961In(1 +x1 —x2) — 0.8z = 0

x1,x2,x6 = 0; y1,y2 € {0,1}

and,



max

s.t.

ZPEP2 — _(8yz + Atz + A%25 + A%2)

zg — 21
In(1 + 22) 4+ 1.2In(1 + 21 — 2z2) — z6 — 2y3
21,725 %6 > 0; y3z € {071}

WV /A



Gams Code

$title Simple MINLP Problem (Problem No.1l from Marco Duran PhD Thesis)

*

A Lagrangean Decomposition Approach for Solving MINLPs

Written by Antonio Flores T.

9 March, 2006

Variables profit,x1,x2,x6,z1,z2,z6,lambdal_dummy,lambda2_dummy,lambda6_dummy ;

Variables profit_zl, profit_z2,zlow;

Binary variables y1,y2,y3 ;

Equations obj,rl,r2,r3,r4,r5,r6 ;

Equations objzl,o0bjz2;

Equations objlower,r7,r8,r9,r10,r11,r12;

Scalar alpha /1/;

parameter zupper,zlower,niters,maxniters;
parameters lambdal,lambda2,lambda6;

parameters diffl1,diff2,diff6,errnorm;

parameters ylfixed, y2fixed,y3fixed;

parameters tk,lambdal_old,lambda2_old,lambda6_old;
zupper = inf;

zlower -inf;



niters = 0;

maxniters = b;

obj .. profit =e= -(5*xyl+6*xy2+8*y3+10*x1-7*x6-18*%1log(1+x2)-19.2*log(1+x1-x2)+10
+lambdal_dummy*(z1-x1)+lambda2_dummy* (z2-x2)+lambda6_dummy* (z6-x6)) ;

rl.. 0.8%log(1+x2)+0.96*1log(1+x1-x2)-0.8*%x6 =g= 0 ;
r2.. z2-z1 =1= 0 ;

r3.. x2-2xyl =1= 0 ;

rd.. x1-x2-2xy2 =1= 0 ;

r5.. log(1+z2)+1.2*%x1log(1+z1-22)-z6-2%y3 =g= -2 ;
r6.. yl+y2 =1= 1;

xl.lo =
x2.1lo =
x6.1lo =
zl.lo =

z2.1lo =
z6.lo =

SO O O O O O



lambdal_dummy.lo =
lambdal_dummy.up =

e

lambda2_dummy.lo =
lambda2_dummy.up =

“e

lambda6_dummy.lo =

e

o O o0 O 01 O

lambda6_dummy.up =

model RP /obj,r1,r2,r3,rd,r5,r6 / ;

objzl.. profit_zl =e= -(5*xyl+6*xy2+10*x1-7*x6-18*%1log(1+x2)-19.2*%log(1+x1-x2)+10
-lambdal*x1-lambda2*x2-lambda6*x6) ;

model LRP_1 /objzl,r1,r3,r4,r6/ ;

objz2.. profit_z2 =e= -(8*y3+lambdal*zl+lambda2*z2+lambda6*z6) ;

model LRP_2 /objz2,r2,r5/ ;

* By fixing the binary variables into the RP problem, compute a lower bound

* on the optimal value of the original objective function solving a NLP

objlower .. zlow e= - (bxylfixed+6*y2fixed+8*y3fixed+10*x1-7*x6-18*1log(1+x2)



-19.2x1log(1+x1-x2)+10) ;
r7.. x2 - 2xylfixed =1= 0 ;
r8.. x1-x2-2*xy2fixed =1= 0 ;
r9.. log(1l+z2)+1.2xlog(1+z1-z2)-z6-2xy3fixed =g= -2 ;
r10.. x1-z1 =e= 0 ;

ril.. x2-z2

I
®

I
o

r12.. x6-z6

Il
(0]

i
o

model LRP_LB /objlower,rl,r2,r7,r8,r9,r10,r11,r12/ ;

solve RP maximizing profit using rminlp ;

lambdal = lambdal_dummy.L;
lambda2 = lambda2_dummy.L ;
lambda6 = lambda6_dummy.L ;

while ( (zlower 1t zupper),

niters = niters+1;



* Compute an optimal value upper bound

k
solve LRP_1 maximizing profit_zl using minlp ;
solve LRP_2 maximizing profit_z2 using minlp ;
errnorm = sqr(zl.L-x1.L)+sqr(z2.L-x2.L)+sqr(z6.L-x6.L) ;
diff1i = z1.L-x1.L ;
diff2 = z2.L-x2.L ;
diff6 = 26.L-x6.L ;
%
* Fixing binary variable to get an optimal value lower bound
*
ylfixed = y1.L ;
y2fixed = y2.L ;
y3fixed = y3.L ;
solve LRP_LB maximizing zlow using nlp ;
K
* Update Lagrange multipliers by a simple rule
K

lambdal_old = lambdal;
lambda2_old = lambda?2;
lambda6_old = lambda6;

zupper = profit_zl.L+profit_z2.L ;
zlower = zlow.L ;

tk = alpha*(zupper-zlower)/errnorm ;
lambdal = lambdal_old+tk*diffl;

lambda?2 = lambda2_old+tk*xdiff2;

lambda6 = lambda6_old+tk*xdiff6;



display lambdal,lambda2,lambda6,tk,zlower,zupper;
) §

*-—— End of the ejemplo-l-relaxation.gms file --
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e Objective Function
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A Lagrangean Heuristic for the Scheduling and Control of Polymerization Reactors

Smooth transition constraints

Ufek —Ufc—1k S Ugont, VM, K, C# 1 (89)
Ufek —Ufc—1k = —Ucontr VMK, f,c#1 (90)
u?jl,k o up—l,Nfe,k < uzont’ vm, Kk, f #1 (91)
u?jl,k o upq—l,Nfe,k > _u];ontv vm,k, T # 1 (92)
ur1ﬂ,1,k o um,k < u];ont’ VK (93)
urln,l,k o um,k > _u]cc:ontv VK (94)
XNfe.Nep.k = —Xtol,ks VN, K (95)
XNfe.Nep kS Xtol,ks VN, K (96)



Lagrangean Decomposition

In a Lagrangean Decomposition technique certain variables are duplicated and set equal by new
constraints. These new constraints are then relaxed through Lagrangean Relaxation, yielding a
decomposable model over two or more subsets of constraints

Consider the following mathematical programming problem:
(P) max {fx]Ax < b,Cx < d,x € X}

which is equivalent to:

/
(P ) max{fX|Ay < b, Cx < d,xEX,y:x,er}

/
A Lagrangean relaxation is obtained for P by dualizing the constraint y = . This procedure yields
a decomposable problem, thus the name “Lagrangean Decomposition’ :

(LDu)
max {fx + u(y — x)|Cx < d,x € X,Ay < b,y € Y} (97)
= max { (f — u) X|Cx < d,x € X} + max {uy|Ay < b,y € Y} (98)

If the feasible regions are convex, then L Dw is an upper bound for P for any given w. Then if all of



feasible regions are convex and all of the variables are continuous, the tightest upper bound of L Dwu
is equal to the optimal solution of P:

P = min LDu

u

In the presence of integer variables and other nonconvexities a duality gap may exist. Since this is
the case of the current formulation, the search for an optimum will be performed using an heuristic
approach that generates upper bounds by solving a problem of the type L Dwu and lower bounds by
using a heuristic technique to produce feasible solutions to the original problem P.

The multipliers used to solve the subproblems are updated iteratively using the Fisher formula that
has proven to work well in practice:

KT _ oy (LD(uX) — P*)

k+1 k K,k k
u =u +t(y —x),
| vk —xk |2

(99)

where t* is a scalar step size and « is a scalar usually set between 0 and 2 and then decreased
when LDu fails to improve in a fixed number of iterations. P* is the best known solution, and it
can be initialized by using the relaxed solution to the subproblems. This method for updating the
multipliers is known as the subgradient method.



Scheduling and Control MIDO Reformulation

The problem reformulation consists of four steps.

1.

Duplicate key variables.

Zik = Vik, Vi, K,y € B,z € CO(B) (100a)
o = O, VK (100b)
Dc = Tc (100¢)

where B is the set of binary values {0,1} and CO(B) is the Convex Hull of set B.

Equations 100a to 100c create copies of the sequencing variable, the transition duration
variable and the cycle duration variable. It is important to notice that while y is binary
variable (y € B), z can take any value between 0 and 1 (z € CO(B)).

Assign one copy of each variable to the scheduling constraints and the other to the dynamic
optimization constraints; add necessary extra constraints.

e L substitutes 6} in equations 24, 24 and 26.

e T he following two equations are duplicates of 2a and 2b:



Y oz = 1,V (101a)
k=1
Np
d z = 1, Vk (101b)

e Dc substitutes Tc in the transition terms of the objective function.
Equations 100a,100b, and 100c are eliminated and added to the objective function by
means of a Lagrangian Relaxation.

The objective function takes the following form:

P cPw, R C(G — Wi/TO)h,
- 3 > :

i=1

Ns Nre Nep cr

Z Z thQ Qmax Z Ufck'YC D_

k=1f=1 C



Z Z hfk@ﬁQinax Z u%ck'YC

[ NS Nfe Ncp —‘ CI

{k:l f=1 c=1 C
Ns Np Ns

+ 33 [y — vi)] + Z ok — 05)| +uTc(De — To)
k=1i=1

Ly, e, LTc are the lagrangean multipliers. These quantities are updated after every
iteration of the heuristic Lagrangean decomposition algorithm.

4. The formulation is decomposed into a scheduling subproblem and a control subproblem.

e Scheduling Subproblem.

WocPwW R C3(G — W/ TO)h,
max > -y :

i=1

Ns Np

+ 3> [y (=vin))] +Z 16 (—00)| +uTc(~TC) (102)
k=1i=1 k=1
s.t.

Equations. 2a to 6e



e Control Subproblem

[NS Nfe -‘ CI
max 2. D ek Ok Qmax Z Utk Ve | —
Lk 1f=1 C
Ns Nfe Necp cm
B Z Z hfkeﬁQmax Z U;EK’YC =
k=1f=1 c=1 c
Ns Np
ISP NTICRIESS |16 (#7)] +#7c(DO) (103)
k=1i=1 k=1

Equations. 6f, 79 to 96, 101a and 101b
with variable yjx substituted for z;,
and variable 6f substituted for ¢



Outline of the Solution Strategy

Solve relaxed scheduling subproblem (equation 102) and optimal control subproblem
(equation 103) with multipliers set to zero.

Initialize the Lagrange multipliers using subgradient method (see step 7).

Solve scheduling subproblem (equation 102) and optimal control subproblem (equation
103).

Obtain an upper bound as scheduling subproblem (equation 102) solution, plus optimal
control subproblem (equation 103) solution.

Fix the values of the binary variables using the solution to the scheduling subproblem
(equation 102). Solve the original problem (with fixed binaries) to obtain lower bound.

If | upper bound — lower bound |< tolerance; or maximum number of iterations has been
reached, then algorithm stops, else go to next step.

The Lagrange multipliers are updated through the subgradient method:

kT _ ok (LD(u*) — P*)

k41 k kK, k k
u =u +1t (y — X )a
| vk —xk |2

(104)

Proceed to next iteration (k = k + 1), and go to step 3.



Case Study: Single HIPS CSTR

Steady States and grade information of the HIPS polymerization reaction train

Grade N Grade A Grade B Grade C
Cyn [mol/L] 3.1344 2.3018 1.4534 0.7519
TReactor K] 395 440 476 517
X% 64 73 83 91
Q. [L/S] 1.14 1.48 1.64 2.10
Demand [kg/hr] 350 325 300 250
Price [$/kg] 3.2 4.3 4.5 5.0
Inv. Cost [$/hr-kg)] 0.16 0.21 0.22 0.25
Mono. Cost [$/Itfceq] 1 1 1 1
Init. Cost [$/Itfceql 100 100 100 100
Direct and Lagrangan solutions for HIPS example
Algorithm Obj. Opt. Sequence Cycle Trans. CPU
[$/hr] [h] [h] [s]
Direct 10500.1 Nm — A] — Ay — Az — Ay 88.4 12.6 1876
Decomposed 10568.2 Ag — Ay — Az — N,y — Aq 87.1 12.2 1154




Problem Size for Direct and Decomposed Solution

Subproblem Cont. variables Discrete Variables % CPU Time
HIPS Direct 13452 25
HIPS Scheduling Subproblem 62 25 0.07
HIPS Control Subproblem 13422 none 35.62
HIPS Heuristic Subproblem 13452 none 64.31
Full space solution. Profit= $ 10500, Cycle time= 88.4 h
Product Process T [h] production [kg] Trans T [h] T start[h] T end [h]
Nm 2.00 4421.3 0.98 o) 2.18
Aq 1.44 5305.6 1.80 2.18 5.42
Ao 1.56 5747.8 1.65 5.42 8.63
Aj 70.18 2.5915e5 0.50 8.63 79.30
Ay 1.44 5305.6 7.69 79.30 88.43

Decomposition heuristic solution. Profit= $ 10568, Cycle time= 87.1 h

Product Process T [h] production [kg] Trans T [h] T start[h] T end [h]
Ao 1.53 5659.87 2.02 0 3.55
Ay 1.42 5659.87 1.39 3.55 6.35
As ©69.34 2.5607e5 6.01 6.35 81.70
Nm 1.18 4353.75 0.98 81.70 83.86
Aq 1.42 5224 .59 1.80 83.86 87.08




Cooling water flowrate (It/min)

Upper and Lower bounds during Lagrangean Heuristics
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Case Study: HIPS Reaction Train
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Approximation of HIPS plant by a set of 7 CSTRs




Design parameters for the seven reactors of the HIPS reaction train

Reactor Volume [L] Jacket Volume [L] Qcw [L/s] Heat-Transfer Area [m?]
1 6000 1200 0.1311 11.718
2 900 180 1.0 1.7578
3 1000 200 1.0 1.9531
4 650 130 1.0 1.2695
5 1000 200 1.0 1.9531
6 1000 200 1.0 1.9531
7 5000 1000 1.0 9.5676




Steady States and grade information of the HIPS reaction train
Grade N Grade A Grade B Grade C
Cy, [mol/L] 3.1344 2.3018 1.4534 0.7519
TReactor K] 395 440 476 517
X% 64 73 83 91
Qm [L/S] 1.14 1.48 1.64 2.10
Demand [kg/hr] 350 325 300 250
Price [$/kg] 3.2 4.3 4.5 5.0
Inv. Cost [$/hr-kg)] 0.16 0.21 0.22 0.25
Mono. Cost [$/Itfceq] 1 1 1 1
Init. Cost [$/Itfceql 100 100 100 100
Lagrangean solution for HIPS train example
Algorithm Obj. [$/hr] Opt. Sequence Cycle [hr] Trans. [hr] CPU [s]
Decomposed 6244.5 ANCB 39.2 12.2 10600

decomposition heuristic results. Profit= $6245, Cycle time=39.2 h

Product Process T [h] production [kg] Trans T [h] T start[h] T end [h]
A 3.72 12742.20 5.96 0 8.62
N 2.66 13722.37 3.37 8.62 15.72
C 18.40 1.2501eb 1.43 15.72 35.54
B 2.22 11762.03 1.45 35.54 39.21




Problem Size for Direct and Decomposed Solution

Subproblem Cont. variables Discrete Variables % CPU Time
HIPS Scheduling Subproblem 46 16 0.03
HIPS Control Subproblem 22678 none 67.76
HIPS Heuristic Subproblem 22702 none 32.21




Value of the duplicated variables in the last Lagrangean iteration

Variable Scheduling Subproblem Control Subproblem
YB1 1 -
YA2 1L -
YN3 1 -
Yyc4 1 -
251 - 0.994
Z A9 - 0.994
ZN3 - 1.000
204 - 1.000
Z A1 - 0.006
ZBo - 0.006

ot 0.50 -
0L 0.50 -
ok 0.50 -
0% 0.50 -
oY - 1.43
A - 6.60
b : 3.31
oy - 1.43
Tc 16.634 -
Dc 443.486 -




Upper and Lower bounds during Lagrangean Heuristics
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Monomer feed stream, conversion and temperature profiles of reactors 1,6 and 7 in slot 1
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Monomer feed stream, conversion and temperature profiles of reactors 1,6 and 7 in slot 2

560 .
2r e = -7 B
0.9 e Iy 540 S
= -
19 0.8 Lm e e 520 S
18} g

— =

e B 1 ® / —

o 17f g g asof T 1

<] c 0.6 g 5 / L

2 2 2 / .

8 160 2 £ 460 -, i 1

- g o5l 2 //

£ z 05 7 - / - —+— reactorl

S 15 8 S 440+ 1

c 151 — — — reactoré

2 0.4F 4 <

= 146 - & 420 reactor7 | |
1.3F 0.3 ] 400 | 4
1.2 0.2 W i asok i
1.1 i i i i i i 01 i i i i i i 360 i i i i i

0.5 1 15 2 25 3 3.5 0 0.5 1 15 2 25 3 3.5 0 1 2 3 4 5 6
time(hr) time (hr)

time (hr)



Monomer feed stream, conversion and temperature profiles of reactors 1,6 and 7 in slot 3

Monomerflowrate (It/s)

Monomer feed stream, conversion and temperature profiles of reactors 1,6 and 7 in slot 4
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Conclusions

In this work we have addressed the simultaneous cyclic scheduling and control problem for
several multiproduct CSTRs. Rather than assuming constant transition times and
neglecting process dynamics, a mathematical model, able to describe dynamic process
behavior during product transition, was embedded into the optimization formulation.
Solving the scheduling and control problem taking into account process dynamics is the
rigorous way to address scheduling problems.

Even in face of nonlinear behavior, the proposed simultaneous cyclic scheduling and control
formulation was able to find optimal production sequences. However, convergence towards
the optimal solution turned out to be harder to achieve as the nonlinearity of the system
increased. Moreover, the presence of nonlinearities creates nonconvexities in the
optimization formulation probably leading to obtain suboptimal solutions.

The Lagrangean Decomposition methodology as presented by Guignard and Kim was used
to reformulate the simultaneous scheduling and control problem. The decomposed
formulation is used to generate an upper bound and a heuristic procedure is used to
generate a lower bound. The decomposition approach was successful for solving the
scheduling and control problem in the HIPS polymerization system. The computational
effort required by the decomposition heuristic is lower than the computational effort
required by the direct solution (solution in full space). The Complete HIPS problem was
only solvable using the decomposition heuristic.

The present work does not prove that the solution to the scheduling and control problem in
the HIPS reactor train example cannot be obtained without the decomposition. However, it
does show is that if such a direct solution is available, the effort required to obtain it
becomes unpractical.



Future Work

e Scheduling and Control in Parallel Plants
e Scheduling and Control of Distributed Parameter Systems
e Scheduling and Control of Batch and Semibatch Plants

e Simultaneous Planning, Scheduling and Control



