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ABSTRACT: This review presents the advances in protein
structure prediction from the computational methods per-
spective. The approaches are classified into four major
categories: comparative modeling, fold recognition, first
principles methods that employ database information,
and first principles methods without database information.
Important advances along with current limitations and
challenges are presented.
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Introduction

Protein structure prediction from amino acid sequence is
a fundamental scientific problem and it is regarded as a
grand challenge in computational biology and chemistry.
Given an amino acid sequence (i.e., the primary structure)
which represents a monomeric globular protein in aqueous
solution and at physiological temperatures, the objectives
are to determine (i) all helical segments and all beta-strands,
(ii) all pairs of beta-strands which form beta-sheets (i.e., the
beta-sheet topology), (iii) all disulfide bridges if cysteines
are present, (iv) all loops that connect secondary structure
elements, and (v) the three-dimensional folded protein
structure.

The protein structure prediction problem has attracted
the interest of many researchers across several disciplines.
Several viewpoints provide competing explanations to the
protein folding question. The classical viewpoint regards
folding as a hierarchical process, implying that the process is
initiated by rapid formation of secondary structural
elements, followed by the slower arrangement of the actual
three dimensional structure of the tertiary fold (e.g., Baldwin
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and Rose, 1999). An opposing perspective is based on the
idea of a hydrophobic collapse, and suggests that the tertiary
and secondary features form concurrently. Another per-
spective has also emerged that combines components of the
aforementioned two viewpoints, that is (a) local interactions
are responsible for the formation of helices and beta strands,
(b) hydrophobic long range interactions are responsible
for the formation of beta-sheets and their topologies, and
(c) the combination of induced restraints from (a) and (b)
drive the protein into its folded structure (e.g., Floudas et al.,
2006; Klepeis and Floudas, 2003c).

According to Anfinsen’s (1973) thermodynamic hypoth-
esis, proteins are not assembled into their native structures
by a biological process, but folding is a purely physical
process that depends only on the specific amino acid
sequence of the protein and the surrounding solvent. Many
approaches to computational protein structure prediction
using first principles have been developed that are based on
Anfinsen’s thermodynamic hypothesis.

Progress for all variants of computational protein
structure prediction methods is assessed in the biannual,
community-wide Critical Assessment of Protein Structure
Prediction (CASP) experiments (Moult et al., 1997, 2001,
2003, 2005; Moult, 1999). In the CASP experiments,
research groups apply their prediction methods to amino
acid sequences for which the native structure is not known
but to be determined and to be published soon. Even
though the number of amino acid sequences provided by
the CASP experiments is small, these competitions
provide a good measure to benchmark methods and
progress in the field in an arguably unbiased manner
(Murzin, 2004). A review on the progress and challenges,
based on a decade of CASP 1–5 events, can be found in
Moult (2005).
Biotechnology and Bioengineering, Vol. 97, No. 2, June 1, 2007 207



Classification of Protein Structure Prediction
Methods

Computational methods for protein structure prediction
can be classified into four groups: (1) comparative
modeling, (2) fold recognition, (3) first principles methods
with database information, and (4) first principles methods
without database information (e.g., see recent review
(Floudas et al., 2006)). In the sequel, we will discuss key
contributions and advances in the aforementioned four
classes.
Comparative Modeling

Comparative modeling relies on the principle that sequences
which are related evolutionarily exhibit similar three
dimensional folded structures, that is sequence similarity
suggests structural similarity. With this as a guiding
principle, comparative modeling consists of five main
stages: (a) identification of related sequences of known
structure; (b) aligning of the target sequence to the template
structures; (c) modeling of structurally conserved regions
using the known templates; (d) modeling side chains and
loops which are different than the templates; (e) refining and
evaluating the quality of the model through conformational
sampling.

The accuracy of predictions by comparative modeling
depends on the degree of sequence similarity. If the target
and the template sequence have more than 50% of their
sequences, predictions are of very good to high quality and
have been shown to be as accurate as low-resolution X-ray
predictions (Kopp and Schwede, 2004).

For 30–50% sequence identity, more than 80% of the
Ca-atoms can be expected to be within 3.5 Å of their true
positions (Kopp and Schwede, 2004), while for less than
30% sequence identity, the prediction is likely to contain
significant errors (Kopp and Schwede, 2004; Vitkup et al.,
2001).

Recent methods for comparative modeling have departed
from the traditional domain of (i) sequence–sequence
comparison to (ii) profile–sequence comparison, to (iii)
sequence–profile comparison, as well as to (iv) profile–
profile comparison. In (ii) and (iii), profiles are generated
using position-specific substitution matrices and the main
hypothesis is that the alignment of conserved motifs is
prevalent. In (iv), profiles are compared via direct
alignment.

A number of recent reviews that focus primarily on
comparative modeling approaches include (Dunbrack,
2006; Ginalski et al., 2005; Ginalski, 2006; Petrey and
Honig, 2005), and are also discussed in Floudas et al. (2006).

Assessors of homology methods in CASP5 pointed out
that the general approach to structure prediction by
comparative modeling has not changed over the last two
decades (Tramontano and Morea, 2003). Tress et al. (2005),
in their assessment of comparative modeling in CASP6,
208 Biotechnology and Bioengineering, Vol. 97, No. 2, June 1, 2007
pointed out that even though there is little improvement
with respect to CASP5, there were a few groups which
approached the quality of the best templates for easy and
difficult targets.

This was also evidenced by the very good performance of a
few groups during CASP7. A recent advance for automated
comparative modeling is the TASSER-Lite tool, which is
based on an extension of the TASSER approach, discussed in
Section ‘‘First Principles Prediction With Database Informa-
tion,’’ for homologous sequences (Pandit et al., 2006). This
development takes advantage of the homologous sequences
and is based on custom-made parameter optimization, which
leads into significant reduction of the computational time
while it maintains high quality predictions.
Fold Recognition and Threading

Fold recognition methods are based on the principle that the
number of different folded protein structures is significantly
more limited than the vast number of different sequences
generated out of the genome projects. The number of
different folds has been estimated based on clustering the
structures deposited in the protein data bank (Berman et al.,
2000) into families. A recent study and assessment revealed
that the protein data bank already contains enough
structures to cover small protein structures up to a length
of about 100 residues (Kihara and Skolnick, 2003).
Approaches for fold recognition include (a) advanced
sequence similarity/comparison methods, and (b) second-
ary structure prediction and comparison of sequences.
Secondary structure information is frequently used in
combination with other one-dimensional descriptors in fold
recognition methods. Przybylski and Rost (2004) showed
that an approach, which uses secondary structure informa-
tion and solvent accessibility can outperform methods that
utilize three-dimensional structure data.

Threading methods aim at fitting a target sequence to a
known structure in a library of folds. Skolnick and co-
workers developed and successfully applied threading
methods in the CASP5–7 experiments (Skolnick et al.,
2003; Zhang et al., 2005). Their recent advance (Skolnick
et al., 2004) is an iterative approach that first aligns target
and known structures ignoring pairwise residue interac-
tions. In subsequent alignments, information from previous
alignments is then used to evaluate pairwise interaction
energies. The method combines three different pair
potentials to account for the fact that different scoring
functions are capable of assigning different target sequences
to the same template. By identifying structurally similar
regions in multiple templates, accurate regions of structure
prediction can be distinguished from less accurate ones.
Skolnick et al. (2004) found that accurate fragments can be
identified even if no template is convincing as a whole. This
observation led to the development of a fragment assembly
method based on their threading approach (Zhang and
Skolnick, 2004a,b). Xu and Xu (2000) developed a threading
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algorithm that considers pair contacts between a-helices
and b-strands and allows for alignment gaps in loop regions.
The method furthermore allows to incorporate constraints
about a target protein such as known disulfide bonds or
distance restraints (Xu and Xu, 2000). Another approach
poses the fold recognition problem as a global optimization
of an energy function (Xu et al., 2003), and it is formulated
as an integer programming problem, and solved approxi-
mately as a linear programming relaxation. The review by
Floudas et al. (2006) provides a more detailed account of the
fold recognition and threading contribution up to early
2005.

Wang et al. (2005), in their assessment of fold recognition
methods in CASP6, pointed out that there has been notable
improvement in the fold recognition methods. The top-
ranked methods for the FR/Homologous targets used
servers and consensus-based metrics, while the top-ranked
methods for FR/Analogous targets used fragment-building
methods in addition to fold recognition meta servers.
First Principles Prediction With Database Information

First principles methods that utilize database information
can be further classified as: (a) fragment-based recombina-
tion methods; (b) hybrid methods that combine multiple
sequence comparison, threading, MC optimization with
scoring functions, and clustering; and (c) methods that
combine information from secondary structure and selected
tertiary restraints with MC optimization or deterministic
global optimization.

In (a), fragment-based recombination methods, the
fundamental principle is that sequence-dependent local
interactions direct the chain to sample specific sets of local
conformers, while non-local interactions prefer low free
energy conformers which are compatible with the biased
local conformers.

Baker and co-workers studied the distributions of local
structures based on short sequence segments of up to 10
residues based on the protein database, and developed
effective approaches that compare fragments of a target to
fragments of known structures. Once appropriate fragments
have been identified, they are assembled to a structure, often
with the aid of scoring functions and optimization
algorithms. Compact structures can be assembled by
randomly combining fragments using simulated annealing
(Rohl et al., 2004; Simons et al., 1997). Subsequently, the
fitness of a conformation can be assessed with scoring
functions derived from conformational statistics of known
proteins. Incorporation of information from independently
conducted secondary structure predictions has resulted in
improved scoring functions (Simons et al., 1999). Recent
reviews that focus on the fragment-based recombination
methods include Baker (2006) and Bujnicki (2006), and are
also discussed in Floudas et al. (2006).

In (b), hybrid methods, Skolnick, Kolinski, and cow-
orkers (Skolnick et al., 2001, 2003; Zhang and Skolnick,
2004a,b) developed approaches that combine multiple
sequence comparison, threading, optimization with scoring
functions, and clustering. The method uses a united atom
lattice model with three or fewer atoms per residue (Zhang
et al., 2003). Threading is used to provide information on
long-range interactions by identifying contacts between
distant side-chains. Clustering and selecting centroids of
most populated clusters results in conformers closer to
native than the lowest energy conformers (Zhang and
Skolnick, 2004c). The hierarchical approach TASSER
(Zhang et al., 2005) that combines template identification
through threading, parallel hyperbolic MC sampling
structure assembly via rearranging continuous template
fragments, clustering using SPICKER (Zhang and Skolnick,
2004c), and post-analysis using the TM scores, was
introduced and applied in CASP6 and CASP7. Kolinski,
Bujnicki, and coworkers (Kosinski et al., 2003, 2005;
Kolinski and Bujnicki, 2005) also developed an alternative
hybrid method which generates initial models using the
reduced lattice approach CABS (Kolinski, 2004), scores
them using Verify3D to identify good quality folded
fragments and uses them to derive tertiary restraints that
enhance the MC sampling of decoys which are subsequently
clustered for the final structure selection.

In (c), Friesner and co-workers developed a method that
introduces information on secondary structure and selected
tertiary restraints and uses the principles of the deterministic
aBB global optimization method (Adjiman et al., 1996,
1997, 1998a,b; Androulakis et al., 1995; Floudas, 2000, 2005;
Floudas et al., 2005) in combination with a reduced force
field model (Eyrich et al., 1999a,b).
First Principles Prediction Without Database
Information

First principles protein structure predictionmethods that do
not utilize database information attempt to identify the
lowest free energy structure of the protein in its environment
using only physics laws and the amino acid sequence. This
class of methods can be applied to any given target sequence
using only physically meaningful potentials and atomic level
representations.

With such a broad range of targets and the inability to
directly or indirectly apply database information, these
methods are the most difficult of the protein structure
prediction methods.

Rose and co-workers introduced a hierarchical approach
to structure prediction (LINUS) that emphasizes the
important role of local steric effects and conformational
entropy (Srinivasan and Rose, 1995, 2002). Using a Monte
Carlo algorithm, the approach identifies protein conforma-
tional biases through a discrete set of moves and a simplified
physics-based force field.

Scheraga and co-workers introduced a hierarchical
approach to this problem that uses a simplified united-
residue force field for initial calculations and then
Floudas: Protein Structure Prediction 209
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subsequent refinement of the coarse model using an all-
atom potential (Lee et al., 2001; Liwo et al., 1997a,b, 2002,
2001; Pillardy et al., 2001). This united-residue force field,
which reduces the representation of each amino acid residue
to just two interaction sites, allows the stochastic con-
formational space annealing algorithm to more efficiently
identify low energy structures (Lee et al., 1997, 1998, 2000;
Lee and Scheraga, 1999; Ripoll et al., 1998). Recent
work has focused on improved algorithms to handle
b-strands (Czaplewski et al., 2004a), detailed analysis of
the role of disulfide bonds in protein structure (Czaplewski
et al., 2004b), and the introduction of replica-exchange MC
with minimization for the united residue force field (Nanias
et al., 2005).

Floudas and co-workers introduced a first principles
physics-based method, ASTRO-FOLD (Klepeis and
Floudas, 2003c), which combines the classical and new
views of protein folding. This approach identifies first helical
regions through detailed free energy calculations (Klepeis
and Floudas, 1999), and the application of global
optimization methodologies (Klepeis and Floudas, 2002).
The prediction of b-strands and b-sheet topologies are
addressed via a novel mixed-integer linear optimization
formulation to maximize hydrophobic interactions (Klepeis
and Floudas, 2003a). To predict the ensemble of loop
conformers, free energy calculations are used (Klepeis and
Figure 1. The enhanced ASTRO-FOLD protein structure prediction framework.
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Floudas, 2005). The structure prediction of loops with
flexible stems has been recently enhanced via extensive
sampling and clustering (Monnigmann and Floudas, 2005).

Using the secondary structure predictions and the loop
structure predictions to develop restraints, the tertiary
structure is identified using a novel class of hybrid global
optimization algorithms (Klepeis et al., 2003a,b) in the spirit
of an NMR structure refinement protocol using predicted
restraints (Klepeis et al., 1999). The article by Klepeis et al.
(2002), and the recent review by Floudas et al. (2006)
provides a more detailed account of the first principles-
based approaches including the ASTRO-FOLD framework.
A challenging double blind structure prediction for a four-
helical bundle protein of 102 amino acids, denoted as S824,
with rmsd of 5.18 angstroms for the lowest energy
conformer compared to the NMR structure was reported
in Klepeis et al. (2005).

Recent enhancements of the ASTRO-FOLD framework
include the development of a predictive approach for the
interhelical distances in a helical proteins (McAllister et al.,
2006), and the development of a distance dependent Ca–Ca
force field that can discriminate effectively the folded
structure form high-resolution decoys (Rajgaria et al., 2006).
The enhanced ASTRO-FOLD approach, which includes the
recent advances on the prediction of interhelical restraints
and the distance dependent force fields, is shown in Figure 1.
A recent successful blind prediction of a designed protein
sequence of 102 amino acids, denoted as S836, provided by
the Hecht group is shown in Figure 2. This four-helical
Figure 2. The predicted structures of the 4-helical bundle S836. The 102 amino

acid sequence is as follows: MYGKLNDLLEDLQEVLKHVNQHWQGGQKNMNKVDHH-

LQNVIEDIHDFMQGGGSGGKLQEMMKEFQQVLDEIKQQLQGGDNSLHNVHENIKEIFHH-

LEELVHR. (a) The lowest energy predicted structure of S836 (color) versus the native

S836 structure (gray). This structure has an energy of �1,740.11 kcal/mol and a Ca

rmsd to the native model of 2.84 Å. (b) The predicted structure of S836 with the lowest

Ca rmsd (color) compared to the predicted structure the native S836 structure (gray).

This structure has an energy of �1,697.88 kcal/mol and a Ca rmsd to the native model

of 2.39 Å.

DOI 10.1002/bit



bundle protein structure prediction was based on the
enhanced ASTRO-FOLD framework and resulted in rmsd of
2.84 angstroms for the lowest energy conformer and lowest
rmsd of 2.39 angstroms for the ensemble of generated
conformers compared to the NMR structure (McAllister
and Floudas, 2007).

For both aforementioned categories of first principles
methods applied to new folds (NF) targets and fold
recognition with analogous proteins (FR/A) targets, the
evaluators of the progress during a decade of CASP
experiments pointed out that the quantitative metric of
GDT-TS revealed only marginal progress even though visual
inspection for five targets revealed that more progress was
achieved (Kryshtafovych et al., 2005; Vincent et al., 2005).
Final Comments and Personal Views

Based on recent CASP events (CASP 5, 6, and 7), it becomes
evident that the first principles methods that utilize database
information, more specifically, the fragment-based methods
(Baker and co-workers) and the hybrid methods (Skolnick
and co-workers; Zhang and co-workers; Kolinski and co-
workers)(see Section ‘‘First Principles Methods With
Database Information’’) are at present leading in consis-
tency for successful predictions primarily for medium
resolution structures and for a few high resolution
structures. The success of the fragment-based approaches
can be attributed to the creation of libraries of fragments
which when they contain correctly biased conformers, they
restrict the sampling search within the correct and easily
identifiable domain from the computational perspective.
The success of the hybrid methods primarily stems from an
effective comparative modeling tool, the correct template
identification, the use of database information for the
generation of spatial restraints that guide the MC sampling
search, and an iterative approach, which is enhanced from
clustering and metrics for the assessment and selection of
predicted structures. Both aforementioned classes of
methods benefit from the recent findings that the existing
PDB is close to being complete for low to medium
resolution single domain protein structures (Zhang and
Skolnick, 2005). The selective reduction and focus of the
search space for conformational sampling based on database
information extracted from protein fragments and/or
lattice-based simulations, results in improved computa-
tional performance especially compared to the first
principles methods which do not utilize database informa-
tion and hence do not guide the search based on
evolutionary sequence and known structural information.
From this perspective, the first principles methods without
database information will benefit from technological
advances in large-scale distributed computing environments
which allow for extensive unbiased sampling of protein
conformational space.

Despite several successful medium resolution blind
predictions, it is also apparent that significant advances
are needed for consistent medium resolution predictions
particularly in the difficult domain of free modeling (i.e.,
when no structurally similar templates can be successfully
identified) as recently classified in CASP7. In a way, the free
modeling domain defines the boundary of success for
comparative modeling, fold recognition, fragment-based,
and hybrid methods. The challenging free modeling domain
is also more aligned with the goals of first principles
methods, which do not use database information. As a
consequence, it is expected that novel approaches using first
principles only may play an important role in advancing the
quality of protein structure predictions in this domain.
Furthermore, the development and validation of protein
structure predictionmethods for high resolution is currently
at an early stage and represents a formidable challenge.

Major challenges in comparative modeling and fold
recognition include the optimal template selection, the
quality of sequence to structure alignment especially for low
sequence similarity, modeling of the core such as b-bulges,
the development of improved force fields and refinement
methods, improved modeling of side chains and structurally
divergent regions, and high resolution refinement of
comparative models.

Significant challenges for both categories of the first
principles methods include: (a) the protein structure
prediction for new folds (NF) targets or targets in the free
modeling domain, and the assessment of prediction
methods that do not use templates (Vincent et al., 2005;
Moult et al., 2005); (b) the improvement of loop structure
prediction (Kryshtafovych et al., 2005); (c) the derivation of
scoring functions that will reliably select the most accurate
models from a set of candidate structures (Moult et al., 2005;
Kryshtafovych et al., 2005); (d) the correct identification of
domains for large targets, and (e) the high resolution protein
structure prediction for which the recent work of Bradley
et al. (2005) for small proteins represents a promising and
exciting direction.
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