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Abstract

This review provides an exposition to the important problems of (i) structure prediction in protein folding and (ii) de novo protein
design. The recent advances in protein folding are reviewed based on a classification of the approaches in comparative modeling, fold
recognition, and first principles methods with and without database information. The advances towards the challenging problem of loop
structure prediction and the first principles method, ASTRO-FOLD, along with the developments in the area of force-fields development
have been discussed. Finally, the recent progress in the area of de novo protein design is presented with focus on template flexibility, in
silico sequence selection, and successful peptide and protein designs.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Proteins are linear chains of amino acids that adopt a
unique three-dimensional structure in their native surround-
ings. It is this native structure that allows the protein to carry
out its biochemical function. Levinthal’s paradox (Levinthal,
1969; Zwanzig et al., 1992) raised the question why and how
a sequence of amino acids can fold into its functional na-
tive structure given the abundance of geometrically possible
structures.

The pioneering experiments of Anfinsen (1973) shed light
on this problem. According to Anfinsen’s thermodynamic
hypothesis, proteins are not assembled into their native struc-
tures by a biological process, but folding is a purely phys-
ical process that depends only on the specific amino acid
sequence of the protein and the surrounding solvent. Anfin-
sen’s hypothesis implies that in principle protein structure
can be predicted if a model of the free energy is available,
and if the global minimum of this function can be identified.
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This idea defines the protein structure prediction problem
well, as it allows to infer macroscopic structure of many pro-
teins from a few types of microscopic interactions between
the protein’s constituents. On the other hand, protein struc-
ture prediction remains utterly complex, since even short
amino acid sequences can form an abundant number of ge-
ometric structures among which the free energy minimum
has to be identified.

A protein is composed of several levels of structure. The
primary structure of a protein is described by the specific
amino acid sequence. Additionally, patterns of local bond-
ing can be identified as secondary structure. The two most
common types of secondary structure are �-helices and �-
sheets. Connecting these elements of secondary structure are
loop regions. The tertiary structure is then the final three-
dimensional structure of these elements after the protein
folds into its native state. Fig. 1 illustrates an example pro-
tein structure.

The protein structure prediction problem is a fundamental
problem treated across disciplines. From a chemical engi-
neering point of view, the structure prediction problem is of
great interest, because it is a prerequisite for successfully
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Fig. 1. The three-dimensional structure of a protein. �-helices are colored
pink and the �-strands are shown as yellow arrows. (PDB code:1Q4S) All
protein images are generated with the RASMOL molecular visualization
package (Sayle and Milner-White, 1995).

tackling de novo protein design. In de novo protein design
the ultimate objective is to identify amino acid sequences
that fold into proteins with desired functions. De novo pro-
tein design can be looked upon as a product design problem
on the molecular scale.

Many approached to computational protein structure pre-
diction using first principles have been developed over the
last decade that are based on Anfinsen’s thermodynamic
hypothesis. Section 2 attempts to give an overview of recent
developments. Computational structure prediction based on
first principles is, however, not the only way to determine
protein structure. The number of protein structures that
have been determined experimentally continues to grow
rapidly. At the end of 2004, the number of structures freely
available from the Protein Data Bank (Berman et al., 2000)
is approaching 28,000. The availability of experimental
data on protein structures has inspired the development
of methods for computational structure prediction that are
knowledge-based rather than physics based. In contrast to
methods that attempt to minimize the free energy and derive
the structure from first principles, these knowledge-based
approaches search databases of known structures to infer
information about an amino acid sequence of unknown
three-dimensional structure. While such database methods
have been criticized for not helping to obtain a fundamen-
tal understanding of the mechanisms that drive structure

formation, these knowledge-based methods can often suc-
cessfully predict unknown three dimensional structures.

Progress for all variants of computational protein structure
prediction methods is assessed in the biannual, community-
wide Critical Assessment of Protein Structure Prediction
(CASP) experiments (Moult et al., 2003, 2001, 1997; Moult,
1999). In the CASP experiments, research groups are invited
to apply their prediction methods to amino acid sequences
for which the native structure is not known but to be de-
termined and to be published soon. Even though the num-
ber of amino acid sequences provided by the CASP experi-
ments is small, these competitions provide a good measure to
benchmark methods and progress in the field in an arguably
unbiased manner (Murzin, 2004). The overview on compu-
tational protein structure prediction methods given in this
review will draw on results from recent CASP experiments.

Research on protein structure prediction methods as
witnessed in the biannual CASP experiments has been
motivated to a large extent by scientific curiosity. Protein
structure prediction is, however, not only interesting from
a scientific, but also from an engineering point of view.
It constitutes a major part of the de novo protein design
problem, which is also called the inverse protein folding
problem (Pabo, 1983; Drexler, 1981) that requires the de-
termination of an amino acid sequence compatible with a
given three-dimensional structure. De novo protein design
problem is the “inverse” of the protein folding problem
because it starts with the structure rather than the sequence
and looks for all sequences that will fold into such structure.
Experimentalists have tackled this problem with mutagene-
sis, rational design, and directed evolution. These methods
are, however, restricted with respect to the number of mu-
tant structures that can be screened experimentally which
is typically in the range of 103–106 sequences (Voigt et al.,
2001). Computational protein design methods, in contrast,
allow for the screening of overwhelmingly large parts of
sequence space. Toward this end, the paper summarizes
recent progress in the field of de novo protein design.

The review is organized as follows. Section 2 provides
an overview on methods for protein structure prediction and
summarizes recent developments in all categories of ap-
proaches to the problem. Section 3 is devoted to methods for
loop structure prediction. Section 4 outlines the first prin-
ciples protein structure prediction method, ASTRO-FOLD.
Section 5 discusses advances in force field development as
they pertain to fold recognition and de novo protein design.
Section 6 focuses on recent progress in de novo protein
design.

2. Protein structure prediction

Numerous different approaches to protein structure pre-
diction exist. Methods for structure prediction can be
divided into four groups: (1) comparative modeling; (2)
fold recognition; (3) first principles methods with database
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information; and (4) first principles methods without
database information. As prediction methods became more
sophisticated, the boundaries between these categories have
been blurred, and today methods exist that cannot clearly
be appointed to any of the four categories. Despite the
blurry transition between the categories a classification of
methods is helpful, and the above categories provide a rea-
sonable starting point. In this section we will give a brief
overview of methods in the four categories and point out
where the categories overlap. Different points of view on
first principles methods will be taken into account.

2.1. Comparative modeling

In comparative modeling the structure of a protein is pre-
dicted by comparing its amino acid sequence to sequences
for which the native three-dimensional structure is already
known. Comparative modeling is based on the observation
that sequence similarity implies structural similarity. The
accuracy of predictions by comparative modeling, however,
strongly depends on the degree of sequence similarity. If
the target and the template share more than 50% of their
sequences, predictions usually are of high quality and have
been shown to be as accurate as low-resolution X-ray pre-
dictions (Kopp and Schwede, 2004). For 30–50% sequence
identity more than 80% of the C�-atoms can be expected to
be within 3.5 Å of their true positions (Kopp and Schwede,
2004), while for less than 30% sequence identity, the pre-
diction is likely to contain significant errors (Kopp and
Schwede, 2004; Vitkup et al., 2001).

Assessors of homology methods in CASP5 point out that
the general approach to structure prediction by homology
has not changed over the last two decades (Tramontano and
Morea, 2003). In general, homology modeling consists of
the selection of one or more templates from a database, their
alignment to the target sequence, and refinement of side-
chain geometry and regions of low sequence identity. Well-
established algorithms and implementations for the first step,
template identification, exist. BLAST (Altschul et al., 1990)
and refinements such as PSI-BLAST (Altschul et al., 1997)
are established to a degree that they serve as benchmarks to
any new approach.

In a recent summary of the progress in homology model-
ing (Tramontano and Morea, 2003) it was pointed out that
for easy targets the difference between average and best pre-
dictions by homology methods is modest only. Since ap-
proaches to homology modeling hardly differ with respect
to template selection and alignment, this indicates that for
easy targets the refinement steps are less crucial. While for
hard targets the refinement step seems to be more important,
it has been noted that refined models are typically not bet-
ter than the template by more than 0.5 Å (Tramontano and
Morea, 2003).

While there seems to be little progress in refining
templates, continually improving sequence comparison

techniques have broadened the scope of homology model-
ing. While 30% sequence similarity was considered to be
the threshold for successful comparative modeling, predic-
tions for targets with as low as 17% sequence similarity
were made during the CASP4 experiment. During CASP5
sequence identity was as low as 6% (Tramontano and
Morea, 2003), though prediction quality generally deterio-
rates as the sequence similarity drops. Recent progress in
sequence comparison can be ascribed to the use of hidden
Markov models (Karplus et al., 1998, 1999) and multiple
sequence alignment (Notredame, 2002).

Advocates of comparative modeling claim that the impor-
tance of these methods will continue to grow as the number
of experimentally determined structures grows steadily and,
therefore, the number of sequences that can be related to a
known structure is growing. This idea gave rise to the field of
structural genomics. The central goal of structural genomics
is to focus experimental efforts on representative structures
for all anticipated folds (see Vitkup et al., 2001, and ref-
erences therein). Estimates of the number of representative
structures differ, however. Optimistic guesses anticipate that
within the next 5–10 years, comparative modeling will be
applicable to most sequences (Fiser et al., 2002). Structural
genomics efforts exist around the world today. For a recent
overview the reader is referred to Liu et al. (2004).

2.2. Fold recognition

While similar sequence implies similar structure, the con-
verse is in general not true. In contrast, similar structures
are often found for proteins for which no sequence similar-
ity to any known structure can be detected. Fold recognition
methods are one class of methods that aim at predicting the
three-dimensional folded structure for amino acid sequences
for which comparative modeling methods provide no reli-
able prediction.

Fold recognition methods are motivated by the notion
that structure is evolutionary more conserved than sequence.
As a consequence, the repertoire of different folds is more
limited than suggested by sequence diversity. The number
of different folds has been estimated based on clustering the
structures deposited in the protein data bank (Berman et al.,
2000) into families. Estimates vary strongly (Chothia, 1992;
Orengo et al., 1994; Liu and Rost, 2002). According to a
recent assessment, the protein data bank already contains
enough structures to cover small protein structures up to a
length of about a hundred residues (Kihara and Skolnick,
2003). While this evaluation may be optimistic, the number
of existing folds can be expected to be orders of magnitudes
smaller than the number of different sequences, since the
number of different folds is only 800 according to the SCOP
database (http://scop.berkeley.edu, November 2004).

Since the number of sequences is much larger than the
number of folds, fold recognition methods attempt to iden-
tify a model fold for a given target sequence among the
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known folds even if no sequence similarity can be de-
tected. Techniques for fold recognition include advanced
sequence comparison methods. The boundary between fold
recognition and homology modeling methods is blurry
for this class of methods, and methods based on hidden
Markov models (Karplus et al., 1999) and position specific
iterated BLAST searches (Altschul et al., 1997) that have
been mentioned in the above paragraph on comparative
modeling are often considered fold recognition methods
(Kim et al., 2003).

Another approach to fold recognition is based on sec-
ondary structure prediction and comparison. This subclass of
methods is based on the observation that secondary structure
similarity can exceed 80% for sequences that exhibit less
than 10% sequence similarity (Klepeis and Floudas, 2003c).
Clearly any such approach can only be as good as the under-
lying secondary structure prediction method. Concomitant
to improvements in quality of secondary structure predic-
tion, the use of secondary structure information has become
more popular over the recent years. While secondary struc-
ture prediction seemed to stall at 60% of correctly assigned
helices, strands and loops in the 1990s (Rost, 2001), amino
acids subsequences can nowadays be reliably assigned to the
structural types helix, strand or loop in more than 75% of the
cases (Jones, 1999b; Rost, 2001; Przybylski and Rost, 2004).
Improvements can be accredited to replacing single repre-
sentative sequences by family profiles generated by PSI-
BLAST, and to being able to include evolutionary diverse
proteins in these families due to the availability of larger
databases. As in other areas of protein structure prediction,
secondary structure prediction has benefited from consen-
sus methods that combine several different approaches into
a single, generally more reliable, result (An and Friesner,
2002; Cuff et al., 1998).

Secondary structure information is often combined with
other one-dimensional descriptors in fold recognition meth-
ods (e.g., with simple scores for solvent accessibility of
each amino acid). Przybylski and Rost (2004) showed that
a method based on secondary structure and solvent acces-
sibility can outperform methods that take information on
three-dimensional structure into account. Przybylski and
Rost (2004) further showed that their approach performed
better if information on known folds (e.g., information on
secondary structure from experimental structure determi-
nation) was ignored deliberately. Their approach is based
on predicting one dimensional descriptors for a target, and
identifying a similar fold by comparing these descriptors
to the descriptors of known folds. Suprisingly, the authors
found the best results when comparing the target descrip-
tors to the predicted descriptors of known folds, as opposed
to using the experimentally-determined predictors of the
known folds. In this sense, the fold recognition approach
developed by Przybylski and Rost (2004) performed better
if information on known folds (e.g., information on sec-
ondary structure from experimental structure determination)
was ignored.

Finally, threading, that is, testing the compatibility of se-
quences with a known three-dimensional fold, is an impor-
tant representative of fold recognition methods. Threading
methods attempt to fit a target sequence to a known structure
in a library of folds. Threading-based methods are known to
be computationally expensive. In fact, globally optimal pro-
tein threading is known to be NP-hard (Garey and Johnson,
1979; Lathrop, 1994) if all residue–residue contacts are to be
taken into account. Several threading methods ignore pair-
wise interaction between residues (Shi et al., 2001; Kelley
et al., 2000; Jones, 1999a). In doing so, the threading prob-
lem is simplified considerably, and the simplified problem
can be solved with dynamic programming (Bertsekas, 1995;
Jones et al., 1992). In early methods of this kind, a one-
dimensional string of features was recorded for known folds
and compared to the target sequence (Bowie et al., 1991).
The recorded features comprise attributes like buried side-
chain area, side chain area covered by polar atoms includ-
ing water, and the local secondary structure. In this manner,
the three-dimensional structure of known proteins is con-
verted into a one-dimensional sequence of descriptors. Mod-
els for the target structure are identified by seeking the most
favorable alignment of the one-dimensional sequence of de-
scriptors to any of those descriptor strings by dynamic pro-
gramming (Bowie et al., 1991). Similar approaches use pair
interaction potentials that describe a mean force derived
from a database of known structures (Jones, 1999a; Xu and
Xu, 2000; Kim et al., 2003; Jones et al., 1992). (See also
Flöckner et al., 1997 and references therein.)

Skolnick and coworkers developed and successfully ap-
plied threading methods in the CASP experiments (Skolnick
et al., 2003). Their most recent advance (Skolnick et al.,
2004) is an iterative approach that first aligns target and
known structures ignoring pairwise residue interactions. In
subsequent alignments information from previous align-
ments is then used to evaluate pairwise interaction energies.
The method combines three different pair potentials to ac-
count for the fact that different scoring functions are capable
of assigning different target sequences to the same tem-
plate. By identifying structurally similar regions in multiple
templates, accurate regions of structure prediction can be
distinguished from less accurate ones. Skolnick et al. (2004)
found that accurate fragments can be identified even if no
template is convincing as a whole. This observation led to
the development of a fragment assembly method based on
their threading approach (Zhang and Skolnick, 2004a,b).
This fragment assembly approach is further discussed in
the subsection on first principles prediction methods with
database information.

Xu and Xu (2000) developed a threading algorithm that
considers pair contacts between �-helices and �-strands and
allows for alignment gaps in loop regions. They used a par-
titioning of template structures into helices and strands with
open links that represent possible contacts to other regions.
The approach finds a globally optimal recombination of re-
gions and contacts if an upper bound on the spatial distance
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between contacting residues can be assumed. The method
furthermore allows the incorporation of constraints about a
target protein (e.g., known disulfide bonds or distance re-
straints) (Xu and Xu, 2000). More recently, they suggested
to run a threading stage without pairwise potentials first.
From this first stage, residue–residue contacts are inferred,
and pairwise energy is taken into account in the second stage
(Kim et al., 2003). An alternate approach poses the fold
recognition problem as a global optimization of an energy
function (Xu et al., 2003). This method accounts for the
conservation of secondary structure through the definition of
secondary structure cores, while still allowing for insertions
or deletions. The energy function is defined as a weighted
sum of pairwise interactions, mutations, gap penalties and
secondary structure conservation. Although originally for-
mulated as an integer programming problem, it is claimed
that the linear programming relaxation frequently provides
integer solutions. This method performed well in large-scale
benchmarking tests (Xu and Li, 2003).

2.3. First principles prediction with database information

In the CASP experiments, the term ab initio has been
used in a broader sense. The term refers to methods for
structure prediction that do not use experimentally known
structures. This use of the term ab initio has become more
vague ever since the introduction of fragment based meth-
ods. These methods do not compare a target to a known
protein, but they compare fragments, that is, short amino
acid subsequences, of a target to fragments of known
structures obtained from the Protein Data Bank (Berman
et al., 2000). Once appropriate fragments have been iden-
tified, they are assembled to a structure, often with the aid
of scoring functions and optimization algorithms. Since
scoring functions resemble energy functions, and since
fragment assembly with optimization algorithms resembles
free energy optimization, this type of method bears some
analogy to physics-based first principle methods. Clearly,
however, fragment assembly methods cannot be considered
first principle structure prediction methods in the same
strict sense as first principle methods that are based on free
energy minimization.

Fragment assembly methods are based on the premise that
local interactions create a bias but do not uniquely define
local structure. Local degrees of freedom are assumed to be
fixed by non-local interactions, such as sheet formation or
side chain interactions between non-neighboring residues,
to result in a compact overall conformation. Fragment based
methods approximate this structural bias by averaging over
observed fragment geometries in known protein structures.
Once appropriate fragments have been identified, compact
structures can be assembled by randomly combining frag-
ments using simulated annealing (Simons et al., 1997; Rohl
et al., 2004). Subsequently, the fitness of a conformation
can be assessed with scoring functions derived from con-
formational statistics of known proteins. Incorporation of

information from independently conducted secondary struc-
ture predictions has resulted in improved scoring functions
(Simons et al., 1999). Much of the progress in fragment as-
sembly methods can be accredited to Baker and coworkers
(see Rohl et al., 2004 and references therein). These frag-
ment assembly methods performed consistently well across
target classes in the recent CASP experiments (Aloy et al.,
2003; Bradley et al., 2003).

Several other fragment-based methods performed well in
the CASP experiments. Karplus and coworkers used a ge-
netic algorithm to assemble fragments of nine residues with
a cost function that maximizes residue burial (Karplus et al.,
2003). Unlike fragment-based methods that evolved from
threading, this method does not fix a single alignment or
core residues, but the genetic algorithm even permits breaks
in the backbone. Jones and coworkers (Jones and Guffin,
2003; Jones, 1997, 2001) predicted secondary structure for
a target sequence with standard methods (Jones, 1999b) and
selected fragments from a library of known folds that have
the same two or three secondary structure elements as any
corresponding sequence of secondary structural elements
in the target. Fragments were reassembled using a scoring
function with terms for long range interactions, short range
interactions, solvation, steric clashes and hydrogen bonds
by simulated annealing. Shao and Bystroff (2003) combined
hidden Markov models for the detection of local sequence
structure correlations and the derivation of contact potentials
from contact maps for templates that aligned with a given
target. A contact map is a symmetrical two-dimensional
projection of the intraprotein distances that allows for easy
identification of secondary structure elements. Skolnick,
Kolinski and coworkers (Skolnick et al., 2001,2003, Zhang
and Skolnick, 2004a,b) developed approaches that combine
multiple sequence comparison, threading, optimization with
scoring functions, and clustering. The method uses a united
atom lattice model, which represents each residue by three
or fewer atoms on a lattice (Zhang et al., 2003). Threading
is used to provide information on long range interactions
by identifying contacts between distant side-chains. They
pointed out that the number of correctly predicted folds in-
creases when threading information is incorporated, and that
proteins of more than 120 residues in length can practically
never be predicted correctly by their ab initio method without
the use of information on long-range interactions obtained
from threading. Furthermore, they denoted that clustering
and selecting centroids of most populated clusters results
in conformers closer to native than the lowest energy con-
formers (Zhang and Skolnick, 2004c). Lee and coworkers
(Lee et al., 2004) compared the predicted secondary struc-
ture for fragments of 15 residues centered at each residue of
the target structure with a fragment library. For each of the
overlapping subsequences of length 15, the 20 most similar
fragments from the library are recorded. Random confor-
mations for the target structure are built up by looping over
the residue sequence from the N- to the C-terminal, choos-
ing fragments for each residue from the recorded ones, and
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identifying fragments with similar dihedral angles in their
overlapping regions. Conformations are optimized by a
stochastic genetic algorithm, conformational space anneal-
ing (Lee et al., 1997), using a scoring function that accounts
for steric clashes and hydrogen bonds. They pointed out that
the scoring function is crude (Lee et al., 2004). Nevertheless
the performance of this method is considered promising in
the most recent CASP meeting (Lee et al., 2004).

Several methods have focused on the assembly of
knowledge-based secondary structure prediction into a
native-like tertiary structure. A hierarchical approach to
structure prediction has been proposed that iterates using a
lattice model that becomes increasingly detailed with each
step (Xia et al., 2000). Another class of methods introduces
information on secondary structure and selected tertiary
restraints and uses the principles of the deterministic �BB
global optimization method (Adjiman et al., 1996, 1997,
1998a,b; Androulakis et al., 1995; Floudas, 2000) in com-
bination with a reduced force field model (Eyrich et al.,
1999a,b).

2.4. First principles without database information

Methods of this type make direct use of Anfinsen’s ther-
modynamic hypothesis in that they attempt to identify the
minimum of the free energy of the protein in its environment.
Even though these methods are computationally demand-
ing, first principle structure prediction is an indispensable
complementary approach to any knowledge-based approach
for several reasons. First, in some cases, even a remotely
related structural homologue may not be available. In these
cases, first principle methods are the only alternative. Sec-
ond, new structures continue to be discovered which could
not have been identified by methods which rely on compar-
ison to known structures. Third, knowledge-based methods
have been criticized for predicting protein structures without
having to obtain a fundamental understanding of the mecha-
nisms and driving forces of structure formation. First princi-
ple structure prediction methods, in contrast, base their pre-
dictions on physical models for these mechanisms. As such,
they can therefore help to discriminate correct from incor-
rect modeling assumptions, and to deepen the understanding
of the mechanisms of protein folding.

This class of methods can be applied to any given target
sequence using only physically meaningful potentials and
atom representations. With such a broad range of targets and
the inability to directly or indirectly apply database infor-
mation, these methods are the most difficult of the protein
structure prediction methods. One hierarchical approach to
structure prediction (LINUS) emphasizes the important role
of local steric effects and conformational entropy (Srinivasan
and Rose, 1995, 2002). Using a Metropolis Monte Carlo al-
gorithm, the approach identifies protein conformational bi-
ases through a discrete set of moves and a simplified physics-
based force field.

Scheraga and co-workers introduced a pioneering hierar-
chical approach to this problem that uses a simplified united-
residue force field for initial calculations and then subse-
quent refinement of the coarse model using an all-atom po-
tential (Pillardy et al., 2001; Lee et al., 2001; Liow et al.,
2002, 1997a,b, 2001). This united-residue force field, which
reduces the representation of each amino acid residue to
just two interaction sites, allows the stochastic conforma-
tional space annealing algorithm to more efficiently iden-
tify low energy structures (Lee et al., 1998, 1997, 2000;
Lee and Scheraga, 1999; Ripoll et al., 1998). Recent work
has focused on improved algorithms to handle �-strands
(Czaplewski et al., 2004a) and detailed analysis of the role
of disulfide bonds in protein structure (Czaplewski et al.,
2004b).

Floudas and co-workers introduced a first princi-
ples physics-based method, ASTRO-FOLD (Klepeis and
Floudas, 2003c), which combines the classical and new
views of protein folding. This approach begins by identify-
ing helical regions through detailed free energy calculations
and the application of global optimization methodologies
(Klepeis and Floudas, 2002). The �-strands and �-sheet
topologies can then be solved using a mixed-integer lin-
ear optimization formulation to maximize hydrophobic
interactions (Klepeis and Floudas, 2003a). After using the
secondary structure predictions to develop restraints, the
tertiary structure is identified using a novel class of hybrid
global optimization algorithms (Klepeis et al., 2003a,b).
The details of the ASTRO-FOLD framework will be de-
scribed further in Section 4. A recent validation of the
ASTRO-FOLD approach on a double blind study of a 102
amino-acid protein is discussed in Klepeis et al. (2005).

3. Loop structure prediction

Ab initio methods have recently received increased atten-
tion in the prediction of loops, that is, those structures that
join �-strands and helices in proteins. Loops exhibit greater
structural variability than strands and helices, since they are
often exposed at the surface of a protein and have relatively
few contacts with the remainder of the structure. Loop struc-
ture therefore is considerably more difficult to predict than
the structure of the geometrically highly regular strands and
helices. From the observation that loops typically are no
longer than 12 residues (Fiser et al., 2000) one may infer that
loops are of lesser importance than the remaining parts of a
protein. However, without loops and their structural flexibil-
ity, a protein cannot fold into a compact structure, and loops
are often exposed to the surface of proteins and contribute
to active and binding sites (Fiser et al., 2000). Consequently,
loop structure and its contribution to protein function is of
major importance.

In fold recognition methods, loops are often one of the
limiting factors toward higher resolution of predicted struc-
tures (Jacobson et al., 2004; Li et al., 2004). The need for
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higher precision predictions of loops in comparative mod-
eling has motivated recent research on first principles-based
methods for loop structure prediction (Jacobson et al., 2004;
Li et al., 2004; DePristo et al., 2003; Rohl et al., 2004).

In this section, we highlight recent developments and
progress in first principles-based methods for loops. A brief
but comprehensive summary of the methods that have been
developed for loops prior to 2000 can be found in Fiser
et al. (2000).

Baker and coworkers (Rohl et al., 2004) successfully used
their fragment buildup method for loop prediction in CASP4.
By building conformations from smaller fragments derived
from databases, the problem of inadequate sampling encoun-
tered in other database methods is claimed to be overcome.
Candidate loop structures are minimized by simulated an-
nealing with respect to a heuristic scoring function that com-
bines sequence similarity, secondary structure similarity for
the residues adjacent to the loop, and geometric fit into the
overall protein structure which is assumed to be known. The
authors found that their approach yields similar but slightly
worse results than a method that is based on physical en-
ergy function minimization and a consensus hybrid approach
(Rohl et al., 2004). Deane and Blundell (2001) developed a
consensus method that combines two sources of polypeptide
fragments. Both a database of loops from known structures
and a database of representative computer-generated frag-
ments up to 12 residues long are used to identify loop struc-
tures that fit into a given protein structure. The quality of
a candidate loop structure is evaluated based on geometric
fit of the loop into the anchor regions in the protein. Zhang
et al. (2003) developed a statistical potential function that
compares favorably to recent approaches (de Bakker et al.,
2003; DePristo et al., 2003) that use physical energy func-
tions. Specifically, the authors find slightly worse predic-
tions for loops of lengths up to 8 residues, but their predic-
tions of loops of 9–12 residues is slightly better than recent
predictions based on physical energy functions. Fiser et al.
(2000) used a combination of a physical energy function and
a scoring function that takes statistical preferences for di-
hedral angles and non-bonded atomic contacts into account.
The resulting energy function is minimized with a combi-
nation of local optimization, molecular dynamics and sim-
ulated annealing. These authors improved the precision of
loop predictions significantly compared to previous works,
and they anticipated that further improvements would hinge
upon the quality of energy and scoring functions rather than
the ability to sample the conformational space of loops.

Recent progress in loop structure prediction has been
achieved with approaches that combine dihedral angle sam-
pling, steric clash detection, clustering, and scoring or en-
ergy function evaluation to build up ensembles of loop con-
formations, and to select representative structures from those
ensembles. de Bakker and coworkers (de Bakker et al., 2003;
DePristo et al., 2003) generated on the order of 103 can-
didate loop geometries by sampling protein backbone an-
gle distributions that have been constructed from loops in

known structures. During the sampling, loop conformations
that result in steric clashes are filtered out. Similarly, can-
didate loops that do not fit into the overall protein geome-
try are discarded. Clustering approaches such as K-means
(Hartigan and Wong, 1979) are used to classify candidate
loops into groups of structures with similar geometry. By
selecting representatives for groups, the number of loop can-
didates can be decreased, and redundancy in the ensembles
can be reduced. The authors investigated different scoring
and energy functions in detail (de Bakker et al., 2003) and
found that a molecular mechanics force field outperformed
a statistical potential in identifying low root mean square
deviation (rmsd) structures from the ensemble.

Jacobson et al. (2004) developed a dihedral angle sam-
pling approach similar to that of de Bakker and coworkers.
Sampled loop structures are discarded if they contain steric
clashes, if insufficient space exists for side chains, if loops
travel too far away from the remainder of the protein, or
if loops ends do not fit into the remainder of the protein.
Before side chain optimization is applied, a K-means clus-
tering approach (Hartigan and Wong, 1979) is used to pick
representants from ensembles that comprise up to 106 con-
formers. The rmsds reported by this group of about 0.5, 1.0,
and 2.5 Å for 5, 8, and 11 residue loops, respectively, are
the lowest ones to date.

Both the de Bakker et al. (2003) and the Friesner group
(Jacobson et al., 2004) note that the sampling process gen-
erates structures of considerably lower rmsd to the native
structure than the lowest energy structures. Similarly, struc-
tures with lower energies than the native structure are found
in the sampling process (Jacobson et al., 2004). While the
use of physical energy functions is superior to statistical po-
tential functions, these findings indicate that the accuracy of
physical energy functions can be improved further (Jacobson
et al., 2004).

Forrest and Woolf (2003) applied loop structure prediction
to membrane protein loops. They combined Monte Carlo
sampling and multi-temperature molecular dynamics to gen-
erate sets of conformations that are close to, but different
from the native conformation. By applying several different
energy functions to these test sets, they evaluated which en-
ergy contributions dominate the folding of membrane loops
and which contributions can be neglected. They concluded
that a complex description of the membrane itself is not
necessary to predict membrane protein loop structure, and
that it is crucial to account for solvation energy (Forrest and
Woolf, 2003).

Zhang et al. (2003) developed a new statistical potential
that compares favorably to physics-based potentials. They
claimed that their statistics-based potential does not suffer
from common limitations of scoring functions. In particular,
their potential does not need to distinguish between buried
and exposed residues a priori, but it can quantitatively pre-
dict the likelihood of a residue to be buried (Zhang et al.,
2003). They tested their potential on the ensembles used pre-
viously by Forrest and Woolf (2003), DePristo et al. (2003)
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and Jacobson et al. (2004). The results suggest that the sta-
tistical energy function can provide predictions comparable
in accuracy to physical energy functions for two to eight
residues, and better predictions for nine to twelve residues.

Mönnigmann and Floudas (2005) investigated the loop
structure prediction problem with flexible stems. This prob-
lem is considerably more difficult than the loop reconstruc-
tion problem treated before (Jacobson et al., 2004; de Bakker
et al., 2003; Xiang et al., 2002) in that neither the loop anchor
geometry nor the overall protein geometry are assumed to
be known. Mönnigmann and Floudas (2005) used a dihedral
angle sampling approach similar to those used by Jacobson
et al. (2004) and de Bakker et al. (2003) to build up ensem-
bles of 2000 conformers. Loops structures were optimized
with a first principles energy function, and a new iterative
clustering approach was applied to filter out conformers that
are far from the native structure. As opposed to previous
approaches, clustering was not used to group conformers
and identify representative conformers that are close to na-
tive, but to identify conformers that are far from native. By
discarding these conformers, the quality of the ensembles
could be improved. Mönnigmann and Floudas (2005) com-
pared different methods of selecting conformers from the
ensembles. They found that cluster size after iterative clus-
tering outperforms energy and colony energy (Xiang et al.,
2002). They applied their methodology to more than 3300
loops ranging from 10 residues (4 loop residues and 3 stem
residues at both ends) to 20 residues (14 loop residues and 3
stem residues at both ends). Rmsds ranged from 2.65 Å for
10 residues to 5.04 Å for 20 residues with an approximately
linear dependence of rmsd on loop length.

4. ASTRO-FOLD protein structure prediction
approach

One successful prediction method is the first princi-
ples ASTRO-FOLD protein folding approach developed
by Floudas and coworkers (Klepeis and Floudas, 2003c).
The main thrusts of this approach are (1) �-helical predic-
tion through detailed free energy calculations (Klepeis and
Floudas, 2002), (2) a mixed-integer linear optimization for-
mulation for the �-sheet prediction (Klepeis and Floudas,
2003a; Floudas, 1995), (3) derivation of secondary structure
restraints and loop modeling, and (4) the application of the
�BB global optimization algorithm (Adjiman et al., 1996,
1997, 1998a,b; Androulakis et al., 1995; Floudas, 2000) to
tertiary structure prediction.

4.1. �-helix prediction

The first stage of the ASTRO-FOLD method applies
the principles of hierarchical folding to the prediction of
�-helical regions in proteins (Klepeis and Floudas, 2002).
The application of hierarchical folding to �-helix predic-
tion is justified by observations of the rapid formation of

native-like helical segments. One proposed mechanism of
the helix–coil transition suggests helical nucleation and
propagation is based on local interactions (Honig and Yang,
1995).

This first principles prediction of �-helical segments of
proteins begins by dividing the amino acid sequence into a
series of overlapping oligopeptides. These oligopeptides can
be pentapeptides, heptapeptides, or longer. In general, larger
oligopeptides are expected to provide additional insight, but
if they are too large the �-helix prediction can become com-
putationally unreasonable. If a protein has N residues, then
N -4 pentapeptides must be analyzed to cover the entire pro-
tein sequence. The separation of the protein into at least
pentapeptides allows the problem to be broken down into
a summation of local interactions while still maintaining a
central core of three residues to predict the formation of a
helical turn.

The rigorous probability values for the helical propensity
of each oligopeptide can then be evaluated through detailed
atomistic-level modeling using the ECEPP/3 semi-empirical
force field (Némethy et al., 1992). The covalent bonds and
bond lengths of the oligopeptides are assumed to be fixed
at their equilibrium values so each conformation is only a
function of its torsional angles. Electrostatic, non-bonded,
hydrogen bonded and torsional contributions are combined
to yield the total system energy.

After choosing an energy model, in the search for the
native peptide conformation it is desirable to identify the
oligopeptide conformer with the global minimum energy.
Although many approaches have been proposed to solve this
problem, few possess deterministic guarantees of the global
minimum energy structure. In this approach, each oligopep-
tide is then analyzed by the use of either modified �BB de-
terministic branch and bound global optimization techniques
(Adjiman et al., 1996, 1997, 1998a,b; Androulakis et al.,
1995; Floudas, 2000) or an efficient stochastic genetic al-
gorithm, conformational space annealing (Lee et al., 1998,
1997, 2000; Lee and Scheraga, 1999; Ripoll et al., 1998).

Despite the identification of the minimum energy struc-
ture, the selection of the native state cannot be achieved
from potential energy calculations alone. The true measure
of equilibrium stability of a conformation is the free energy,
which must also include the entropic contributions. System
information regarding metastable states with the harmonic
approximation can determine the accessibility of a given
metastable state. This approach requires the generation of a
significant ensemble of low potential energy conformations
as well as the global minimum potential energy structure. As
an added benefit, the method results in occupational proba-
bilities for representative conformations instead of a single
conformer.

After generating the low energy ensemble, the entropic
contributions to the free energy are calculated at 298 K using
the harmonic approximation. This evaluation produces occu-
pational probabilities for each metastable state. By cluster-
ing these states according to the backbone torsion angles, an
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ordered list of conformational propensities is identified for
each oligopeptide. An initial helical classification is given to
a residue that is a member of the �-helical cluster for more
than three consecutive sets of core residues.

However, protein structures in a vacuum environment
can be rather different from those in water. Therefore, for
oligopeptides containing ionizable residues and exhibiting
a high in vacuum probability of helix formation, the ef-
fects of solvation and ionization energy must be included
to refine the prediction of helical segments. In the current
implementation, this entails solving a linearization of the
Poisson–Boltzmann equation. Final �-helix propensities
are then evaluated by including these additional energy
effects to the ensemble classification and again identifying
members of the �-helical cluster.

4.2. �-sheet prediction

After the helical segments have been predicted by the de-
scribed protocol, the remaining residues can be analyzed
to predict the location of �-sheets (Klepeis and Floudas,
2003a). The main driving force for this prediction method-
ology is the role of the hydrophobic collapse in forming �-
sheets. The hydrophobic collapse is the process by which
the hydrophobic side chains of a protein interact and ag-
gregate, excluding water from the interior of a protein and
forming the hydrophobic core. Not all approaches approach
the problem this way. The idea of hierarchical folding postu-
lates that a �-sheet nucleates at a hairpin turn and stabilizes
itself through a zippering model of hydrogen bond forma-
tion (Munoz et al., 1997). Although there has been some
debate over the validity of hierarchical folding, recent simu-
lations have supported the alternate view of �-sheet forma-
tion through hydrophobic collapse, independent of hydro-
gen bonding (Bryant et al., 2000; Pande and Rokhsar, 1999;
Dinner et al., 1999).

Before modeling the hydrophobic collapse, potential �-
strands must be selected. The identification protocol is ex-
plicitly designed as an overprediction of the true number
of �-strands to produce a superstructure of the possible �-
strands of the protein. Then, only those strands selected to
participate in the topology by the optimization model are
offered as the beta-strand prediction.

By properly formulating an Integer Linear Programming
(ILP) problem (Floudas, 1995), an objective function repre-
senting hydrophobic interaction energy can be maximized
over all possible contacts. Three different optimization mod-
els have been developed to predict �-sheet topologies in
this fashion. Both residue–residue contacts and strand-strand
contacts can be used either individually or in a combined
model to develop a rank-ordered list of the optimal �-sheet
topologies using integer cut constraints.

The first formulation is based on hydrophobic interactions
between single residue–residue contacts. For each residue in
the hydrophobic set, a hydrophobicity parameter is assigned

based on the experimentally derived free energy of amino
acid transfer from organic solvents to water (Karplus, 1997;
Lesser, 1990; Radzicka and Wolfenden, 1988). The existence
of a residue–residue interaction is represented by a binary
variable and the hydrophobic contact energies are additive.
The objective function for this model maximizes the sum of
the hydrophobicities for the �-strands that exist. However,
this solution is subject to a number of constraints to allow
for realistic topologies. One constraint requires at least one
residue–residue contact that is separated by more than 7
amino acids to disallow trivial solutions. A second constraint
limits the number of possible hydrophobic contacts for a
given residue. Other constraints on the model include the
enforcement of symmetric, non-intersecting loops when an
antiparallel �-sheet is formed.

A second formulation is based on the idea of a strand-
to-strand interaction model. In this model, a hydrophobic-
ity value is assigned to each strand based on the type and
count of the hydrophobic amino acids in each strand. The
objective function of this model is the maximization of the
sum of the strand hydrophobicity values for the strand-to-
strand contacts that exist. In addition to the constraints in
the residue–residue model, the number of contacts for each
strand are limited and specific strand-to-strand contacts can
be disallowed.

A final formulation uses both residue–residue contacts as
well as strand-to-strand interactions. By combining the ob-
jective functions from these two models, both types of con-
tact energies can influence the �-sheet topology prediction.
This model contains a representative set of constraints from
the first two formulations to again provide feasible �-sheet
arrangements. This final formulation is the basis for the cur-
rent second stage of the ASTRO-FOLD framework.

A globally optimum solution to these ILP problems should
be identified to ensure the prediction of the contacts with
the maximum hydrophobic interaction energy. These prob-
lems are typically solved by a branch-and-bound approach
to select the optimal integer solution through a series of Lin-
ear Programming relaxations. By including integer cut con-
straints and iteratively solving the ILP formulation, the best
set of competitive �-sheet arrangements can be analyzed as
a rank-order list of solutions (Floudas, 1995).

4.3. Restraint derivation and loop modeling

The third step in the ASTRO-FOLD protocol is the devel-
opment of restraints and the modeling of loop regions. In its
unconstrained form, the global optimization of an atomistic-
level energy function is an overwhelming challenge. There-
fore, attempts to restrict the allowed conformational space
of the protein can allow these difficult problems to be solved
in manageable amounts of time.

The main feature of protein secondary structure is the re-
sulting patterned formations of local bonding. This knowl-
edge can be used to derive bounds on the dihedral angles
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and constraints on C�–C� distances. The predicted helical
esidues are constrained with an i, (i + 4) distance of 5.5 to
6.5 Å where i is a given helical residue and (i + 4) is the
residue four places away in the primary sequence. This re-
straint represents the hydrogen bond that results from helix
formation. For the residues that are predicted to be helical,
the dihedral angles are restricted to [−90, −40] for � and
[−60, −10] for �.

Similar restraints can be applied to the C�–C� distances
in �-sheets. The hydrophobic contacts predicted in the �-
sheet optimization models provide tertiary residue–residue
contacts to further restrain the system. These contacts are
imposed as C�–C� distances between 4.5 and 6.5 Å. The �-
sheet dihedral angles are limited to [−180, −80] for � and
[80,180] for �. The restricted dihedral angle space associated
with the secondary structure assignments, along with the
imposed contact distances, improve the ability of the tertiary
structure prediction algorithm to find the native structure.

Finally, it is desired to model the loop regions between
secondary structure elements to develop additional restraints
for use in the tertiary structure prediction (Klepeis and
Floudas, 2005). Two main methods can be applied to this
problem to develop restraints on the dihedral angles and
distances. The first method involves an analysis similar to
the helical prediction method, where the local interactions
are considered through a set of overlapping peptides. The
reduced bounds from this analysis are carried forward into
subsequent trials with larger loop fragments to finally lead to
a simulation of the entire loop. The second method follows
a similar approach, but includes longer range interactions
by dissecting the distance space over larger fragments of
the loop. Simulations of all the domains are conducted and
then subsequently combined and used to define appropriate
restraints. It is important to note that the simulations of both
methods are entirely physics-based, not relying on the fixed
position of flanking residues of secondary structure.

4.4. Tertiary structure prediction

After the distance constraints and dihedral angle bounds
are included, the goal is to minimize the potential energy
of the tertiary structure while satisfying all the constraints.
The ASTRO-FOLD approach is a combination of the de-
terministic �BB global optimization algorithm, a stochastic
global optimization algorithm, and a molecular dynam-
ics approach in torsion angle space (Klepeis and Floudas,
2003b,c). The basic formulation is the minimization of
the force field energy over torsion angle space, subject to
upper and lowering bounding constraints on these angles.
Although representing the model in torsion angles increases
the model complexity, it significantly reduces the size of
the independent variable set.

The use of the �BB global optimization algorithm
(Adjiman et al., 1996, 1997, 1998a,b; Androulakis et al.,
1995; Floudas, 2000) guarantees convergence to the global

Fig. 2. Overall schematic of ASTRO-FOLD approach for prediction of
three-dimensional structure prediction of proteins.

minimum solution by a convergence of upper and lower
bounds on the potential energy minimum. Upper bounds to
this model can be obtained through local minimizations of
the original non-convex problem. The addition of separable
quadratic terms to the objective and constraint functions
produces a convex lower bounding function. With these
bounding functions, the problem can be iteratively branched
over the variable space, fathoming portions when a region’s
lower bound rises above the best upper bound.

However, as a result of the highly nonlinear force field,
this deterministic approach alone is exceptionally difficult.
By applying torsion-angle dynamics methods, feasible low
energy conformers can be quickly identified, which signif-
icantly improve the performance of the �BB method. In
addition, the upper bounding approach of the formulation
can be augmented by the inclusion of stochastic optimiza-
tion methods. One such hybrid global optimization method,
described as Alternating Hybrids, has been recently intro-
duced (Klepies et al., 2003a,b). It combines the determin-
istic �BB approach with the stochastic approach of confor-
mational space annealing (Lee et al. 1998, 1997, 2000; Lee
and Scheraga, 1999; Ripoll et al., 1998). Conformational
space annealing balances genetic algorithm approaches
of mutations and crossovers with simulated annealing to
identify low energy conformers. In this Alternating Hybrid
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approach, the search for the native state becomes much more
efficient, while still retaining the deterministic guarantees
of convergence (Klepeis et al., 2003b).

Although the ASTRO-FOLD framework can be applied
to proteins of any size, the detailed energetics and determin-
istic guarantees of the approach are best-suited for small
to medium-sized proteins (up to approximately 200 amino
acids in length). The methodology has been successfully
applied to a varied set of proteins throughout this range
(Klepeis and Floudas, 2003c). A diagram of the current
ASTRO-FOLD protocol is presented in Fig. 2 and a recent
double blind prediction study is reported in Klepeis et al.
(2005).

5. Force fields

Protein structure prediction is one of the most important
and difficult problems in computational structural biology.
As discussed earlier, different approaches have been devel-
oped to address this problem. Various components of the
protein folding problem (e.g., fold recognition, ab initio pre-
diction, comparative modelling and de novo design) make
use of a force field. In the process of structure prediction,
sometimes it is required to select the native structure of a
protein from a pool of non-native structures. Force fields are
used to select the native structure. It uses various interactions
occurring at the atomic level to calculate the energy of the
conformer. If the energy function includes every type of
interaction present in a detailed atomic model of a pro-
tein then it is called a true effective energy function.
These true effective energy functions can be obtained
by applying basic laws of physics at the atomic level
of a protein. However, increased computational effort is
needed because atomistic level formulation requires con-
sideration of energetics between all pairs of atoms and
the number of pairs increases rapidly as the chain length
increases.

Some of the semi-empirical force fields commonly
used are CHARMM (MacKerell Jr. et al., 1998), AM-
BER (Cornell et al., 1995), ECEPP (Momany et al., 1975),
ECEPP/3 (Némethy et al., 1992), and GROMOS (Scott
et al., 1997). It has been pointed out that even these types
of potentials are not very effective in discriminating native
and non-native structures (Novotny et al., 1984; Wang et al.,
1995). Hence, a lot of effort has been invested in finding
a simplified protein potential which is capable of differ-
entiating native and non-native proteins without heavily
increasing the computational load. These simplified force
fields do not demand huge computational resources and use
a coarse-grained description of the protein structure. This
section discusses recent developments in this field. Publica-
tions by Shakhnovich (1998), Levitt et al. (1997) and Hao
and Scheraga (1999) can be referred for review of work
done in this field. In this presentation, specific contributions
by each group have been given.

Maiorov and Crippen (1992) introduced a linear program-
ming concept in determining the force field. They calculated
the potential by accommodating a large number of parame-
ters corresponding to interaction energy between two amino
acids, and forcing the native structure to have the lowest
energy among other alternatives. This model used a “con-
tinuous contact function” instead of “square-well function”
because they suspected that small changes in interatomic
distances between two homologous structures might lead to
unwanted changes in contact energy. This model was tested
on 10,000 decoys of 37 proteins and was found to perform
better than the work by Hendlich et al. (1990). Ohkubo and
Crippen (2000) developed a pairwise potential, trained it
for one protein and showed that this kind of potential can
be used to allocate the lowest energy to the native confor-
mation. This result was in contradiction with work done
by Vendruscolo and Domany (1998). In one of their recent
works (Crippen, 2001) they described various requirements
for a good force field in terms of stability and sensitivity
of native structure over its conformers and developed a new
force field based on non-hydrogen atoms that can satisfy
most of these requirements.

Vendruscolo and Domany (1998) used a contact map rep-
resentation and developed a C� distance dependent force
field. They proved that it is not possible to calculate a set of
interaction energy parameters that can be used to assign a
higher energy to all non-native structures than to the native
structure of any protein. In this formulation they used a con-
tact definition based on C� carbon atoms and the cutoff dis-
tance was taken as 8.4 Å. This problem can be overcome by
using a more accurate definition of contact [for example dis-
tance dependent definition] as shown by Loose et al. (2004)
and Tobi and Elber (2000). Clementi et al. (1999) also sup-
ported the work by Vendruscolo and Domany (1998). They
designed protein-like heteropolymer sequences and tried to
approximate the Lennard–Jones potential by a pairwise con-
tact potential. They also showed that there is no pairwise
contact potential that can satisfy the requirements of a force
field. In all these works, Domany and coworkers used a spe-
cific definition of “contact” and based their results on the ba-
sis of this definition. In another published work Vendruscolo
et al. (2000) studied the effect of various parameters [for
example, definition of contact, cut-off length and number of
proteins used]. After studying the effect of these parameters
they reached the same conclusion.

The idea of using Boltzmann distribution to find
knowledge-based force field was first introduced by Tanaka
and Scheraga (1976). This assumption has been justified by
various authors: Bryant and Lawrence (1991), Finkelstein
et al. (1995), even though the definition of reference state
in Boltzmann distribution is critical. Jernigan and Bahar
(1996) reviewed the choice of this reference state. They
represented a residue by two interaction sites, one on the
backbone and another on the amino acid side group (Bahar
and Jernigan, 1997). One of the important findings of this
work was that hydrophillic interactions are important up
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to a distance range of 4 Å and with an increase in inter-
residue distance [less than 6.4 Å], the effect of hydrophobic
interaction also increases. These experimental results are
very useful and can be used as constraints when using an
optimization approach to develop a force field (Loose et al.,
2004). Miyazawa and Jernigan (1999) further improved
their model by adding terms corresponding to secondary
structure potential, tertiary structure potential and repulsive
packing potential while calculating total conformational
energy. It was shown by a gapless threading experiment
that this potential can be used in both fold and sequence
recognition.

Significant contributions in this field were introduced by
Scheraga and coworkers. They developed a united residue
representation (UNRES) of polypeptide chain (Liwo et al.,
1997a,b, 1998). In this model the polypeptide chain is mod-
elled as a sequence of C� carbon atoms each connected by
a hypothetical bond. The center of this hypothetical bond
along with the center of the side chain is taken as interaction
centers. Energetic calculations are done by considering pos-
sible interactions between these centers. While using this
kind of representation, details of other atoms are lost. Liwo
et al. (1997c) used a cooperative term (as used by Godzik
et al., 1993) to include the multi-body effect. Multi-body
effect considers the interaction between more than two
atoms. This is more accurate than two body effect as details
of other atoms are also used while calculating interaction
energies. Liwo et al. (1997b) parameterized various func-
tional forms of interactions. They also calculated appropri-
ate weight terms by minimizing the z-scores. Liwo et al.
(2001) further improved the UNRES model by introducing
some additional terms (e.g., corresponding to hydrogen
bonding) which enabled the model to predict the beta sheets
more efficiently. Pillardy et al. (2001) developed three dif-
ferent force fields using the UNRES model. These force
fields were developed by calculating weight factors by con-
sidering only �-helical, �-sheet, �–� proteins, respectively.
If the model is trained specifically for either �-helical or
�-sheet protein, then it might be possible to predict na-
tive structures of proteins with only �-helical and �-sheets
more effectively. In one of their most recent work, Liwo
et al. (2004) re-parameterized the backbone-electrostatic
and multi-body contributions terms of the UNRES model
to make it more efficient.

Tobi et al. (2000) developed a pairwise distance de-
pendent model using linear programming. In this work,
inter-residue distance was divided in 7 bins and an en-
ergy parameter corresponding to each bin and amino-acid
interaction was calculated using optimization techniques.
MONSSTER (Skolnick et al., 1997b) was used to generate
4,299,167 decoys for 75 proteins. MONSSTER (MOdeling
of New Structures from Secondary and TErtiary Restraints)
is a method for folding globular proteins using small num-
ber of distance restraints. Using this large number of decoys
they concluded that there does not exist any pairwise func-
tion with 1 Åresolution that can fold a protein to its native

structure. Tobi and Elber (2000) divided the inter-residue
distance in 13 bins. They also proposed that further refine-
ment of the distance bin will not serve any purpose because
the size of the amino acid is already a few angstroms (Tobi
and Elber, 2000). The results of this formulation were in
agreement with the results of Bahar and Jernigan (1997).
When using a linear programming approach, it is possible to
get an infeasible solution. For the cases of infeasible solu-
tion, Meller et al. (2002) developed a maximum feasibility
guideline that can be used to find the best possible potential
using a subset of data. This heuristic finds application in
cases involving large data space (Meller et al., 2002). This
guideline was used by Loose et al. (2004) to formulate an
iterative constraint-dropping scheme to identify the largest
feasible subset of constraints.

While using the Boltzmann distribution to derive the po-
tential function, a quasichemical approximation is implic-
itly assumed. This approximation assumes that amino acid
residues are disconnected units. Jernigan and Bahar (1996)
questioned this assumption and outlined the possible error
introduced by using this assumption. Skolnick et al. (1997a)
assessed the validity of this approximation by including the
effect of chain connectivity, and the presence of secondary
structure. This force field used a contact based potential with
a cutoff distance of 4.5 Å. After solving this model they con-
cluded that these considerations do not have any effect on
the derived potential (Zhang and Skolnick, 1998). In another
work they developed a heavy atom distance dependent force
field (Lu and Skolnick, 2001). Using heavy atoms instead of
C� atoms increased the number of residue centers from 20
to 167. Furthermore, the distance between these interaction
centers was divided into 14 bins. A Boltzmann distribution
with three different scales of reference state was used to cal-
culate the contact frequency in reference state. After solv-
ing this model, an improvement of 4 units of z-score was
observed when tested on a gapless threading set.

In an attempt to determine an accurate force field
Samudrala and Moult (1998) employed an all-atom ap-
proach. Instead of using some representative interaction
centers, they used conditional probability based, all-atom
description to determine the force field. This force field was
tested on various decoy sets and it performed quite well on
a variety of decoys. Similar to the work of Samudrala and
Moult (1998), Zhou and Zhou (2002) also developed an all-
atom, distance dependent force field. In particular, they pro-
posed a new reference state called DFIRE (distance-scaled,
finite ideal-gas reference). They used this reference state in
their calculation of all-atom based potential and showed that
this force field is much better than previously developed,
residue-specific force field both in terms of discrimination
capacity and z-scores (Zhou and Zhou, 2002). Zhang et al.
(2004) presented a simplified version of this all-atom based
force field (Zhou and Zhou, 2002) by using the center of
mass of side chains. Upon testing they found that despite this
simplification the performance of the force field does not
change by much.
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A distance dependent C�–C� based force field has been
recently developed by Loose et al. (2004). They introduced
a linear programming approach which combines informa-
tion from experimental observation as explicit constraints.
A high quality decoy set was used to train this model. De-
coys generated by DYANA (Güntert et al., 1997) were min-
imized by TINKER (Ponder and Richards, 1987a). DYANA
uses sequence and secondary structure information of a pro-
tein to minimize the energy of the structure. After mini-
mization, a molecular dynamics simulation in torsion angle
space is used to change the shape of the protein and Van der
Waal contact energy is minimized further to generate low-
energy decoys. These high quality decoys were generated
for 758 proteins and approximately 108,900 decoys were
used to train this model. A number of additional constraints
were added to incorporate the results obtained from differ-
ent experiments (Jernigan and Bahar, 1996). The resulting
force field’s performance was tested on a set of 151 new
proteins and this force field outperformed the TE-13 force
field (Tobi and Elber, 2000). These decoys can be found in
http://titan.princeton.edu/Decoys.

Evaluation and testing of force field is also an important
step in development of force fields. High quality decoys are
needed to test the effectiveness of a force field. Tsai et al.
(2003) developed an improved decoy set of 1400 structures
of 78 dissimilar proteins. Another set of decoys that can
be used to test force fields can be found on the PROSTAR
website [http://prostar.carb.nist.gov/].

Important applications of force fields are also in the area
of de novo protein design. Very often the objective function
to minimize in the de novo protein design problem is energy,
and in order to calculate energy an energy function or force
field is required. Researchers working in the area of de novo
protein design have developed simpler force fields using the
molecular mechanics force fields as a foundation and applied
them for sequence selection (Gordon et al., 1999).

These mean force fields for protein design still contain
elements accounting for van der Waals force, electrostatics,
solvation, and hydrogen bonding. Van der Waals force is
usually described by the equation for Lennard–Jones 6–12
potential. Unlike van der Waals interactions, electrostatics,
solvation, and hydrogen bonding for proteins existing in an
aqueous environment are not well explained by molecular
mechanics force fields (Edinger et al., 1997) and hence more
parametric fitting with empirical data is usually necessary.
Electrostatic interactions for protein design are difficult to
model because they are highly dependent on the local en-
vironment of the residues and thus cannot be treated gener-
ally (Pokala and Handel, 2001). Solvation and electrostat-
ics are closely knitted because solvent molecules can either
interact directly with the charged or polar residues on the
protein surface, or affect electrostatics indirectly by shield-
ing local charges. Currently there are two main classes of
electrostatics/solvation models. One class applies reduced or
distance-dependent dielectric constants and a surface area-
dependent term that promotes the exposure of polar groups

to the solvent. The other class employs finite-difference ap-
proximations to the Poisson–Boltzmann continuum dielec-
tric model (Honig et al., 1993), which assumes that a protein
can be treated as a low-dielectric charged object placed in
a high-dielectric solvent medium. The latter class is in gen-
eral too computationally expensive for de novo protein de-
sign, particularly for full sequence optimization. The former
class is simpler and thus more implementable but it gives
coarser results. However, parametrization can improve the
results. Wisz and Hellinga (2003) introduced into the dielec-
tric constant dependence on protein geometry, local environ-
ment, and the particular types of amino acids under inter-
actions. They obtained results comparable to those from the
Poisson–Boltzmann continuum dielectric model. As for hy-
drogen bonding, it demands accurate simulation as it plays a
key role in protein structure stabilization and protein speci-
ficity. Like electrostatics and solvation, parametrization ef-
forts on hydrogen bonding modelling are commonly found.
For example, Kortemme et al. (2003) had parameterized hy-
drogen bonds with three different angles and one distance to
make it orientation-dependent, and proved that their model
was superior to van der Waals like models for hydrogen
bonding.

6. De novo protein design

There have been considerable successes in the develop-
ment of computational algorithms for protein design during
the past decade. At the turn of the 1990s, some de novo
protein design efforts turned out to be futile as either the
target fold was not achieved (Betz et al., 1993) or the engi-
neered protein had a different quaternary structure than ex-
pected (Lovejoy et al., 1993). These failures were thought to
be caused by the relatively qualitative hierarchic approach
adopted on protein design at that time (Street and Mayo,
1999). Then there came several successful computational
protein design attempts, most of which having focused on
the protein cores. The reason why protein core was picked
instead of the surface or boundary is that protein folding is
primarily driven by hydrophobic collapse, and thus a good
core will enable a well-folded and stable structure for the de
novo designed protein (Dill, 1990). Several research groups
in the field have applied in silico methods to design the hy-
drophobic cores, with the novel sequences being validated
with experimental data (Richards and Hellinga, 1994; Des-
jarlais and Handel, 1995; Dahiyat and Mayo, 1996). As
time went on, the focus of study has been broadened to
include surface residues. This obviously required more ac-
curate energy functions or force fields. Recently, in silico
protein design has encompassed rendering novel functions
on templates originally lacking those properties, modify-
ing existing functions, and increasing protein stability or
specificity. Beyond any doubt, intense research activities
are ongoing in the field, the potential of which is simply
enormous.

http://titan.princeton.edu/Decoys
http://prostar.carb.nist.gov/
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Fig. 3. Template flexibility as illustrated by the overlapping of the 20
available NMR structures of Apo Intestinal Fatty Acid-Binding Protein
(PDB code:1AEL).

6.1. Template flexibility

Many computational protein design efforts were based on
the premise that the template or backbone was rigid and thus
the three-dimensional coordinates of all the atoms on the
template were fixed. This assumption was first proposed by
Ponder and Richards (1987b), and was appealing because it
greatly reduced the search space and thus the time required
to converge to a solution for the minimum energy sequence,
regardless of the kind of search method employed. However,
the assumption was also highly questionable, as the template
was commonly known to exhibit flexibility in real situations
as shown in Fig. 3. Protein backbones had been observed to
allow residues that would not have been permissable had the
backbone been fixed (Lim et al., 1994). In the Protein Data
Bank, there exist numerous examples of proteins which ex-
hibit multiple NMR structures. Though commonly assumed
as rigid bodies as a first approximation, the secondary struc-
tures of �-helices and �-sheets actually display some twist-
ing and bending in the protein fold, and Emberly et al. (2003,
2004) had applied principal component analysis of database
protein structures to quantify the degree and modes of their
flexibility.

The Mayo group (Su and Mayo, 1997; Ross et al.,
2001) had claimed that their ORBIT (Optimization of
Rotamers By Iterative Techniques) computational protein
design process was robust against 15 per cent change
in the backbone. Nevertheless, they found out on a later
case study on T4 lysozyme that core repacking to stabi-
lize the fold was difficult to achieve without considering
a flexible template (Mooers et al., 2003). Therefore, to
ensure that good sequence solutions are not rejected, it is
more desirable to assume backbone flexibility in de novo
protein design.

Researchers have formulated several methods to incorpo-
rate template variability. First, backbone flexibility can sim-
ply be modeled by using a smaller atomic radii in the van
der Waals potential. One common practice has been to scale
down the radii by five to ten per cent (Desjarlais and Han-
del, 1995; Kuhlman and Baker, 2000) and thus permitting
slight overlaps between atoms due to backbone movements.
Key disadvantages of this simple approach include overes-
timation of the attractive forces and also the possibility of
hydrophobic core overpacking.

Another way to allow for backbone flexibility is through
considering a discrete set of templates by using genetic
algorithms and Monte Carlo sampling. This is the ap-
proach adopted by both Desjarlais and Handel (1999) and
Kraemer-Pecore et al. (2003). Under this approach an en-
semble of related backbone conformations close to the
template are generated at random. Then a sequence will be
designed for each of them under the rigid backbone assump-
tion, and finally the backbone-sequence combination with
the lowest energy will be selected. For symmetric proteins
backbone structure can actually be modeled by parametric
fitting and this will enhance computational efficiency. Back-
bone parametrization is performed by deriving quantitative
relations between structural parameters and overall protein
secondary structures. For instance, the number of strands
and a measure of stagger in a �-sheet can be related to the
general shape and the twisting and coiling of the �-sheet
(Murzin et al., 1994a,b). However, the vast majority of pro-
tein structures are non-symmetric which make this paramet-
ric approach infeasible. Su and Mayo (1997) overcame this
difficulty by treating �-helices and �-sheets as rigid bodies
and designing sequences for several template variations of
the protein G�1. Farinas and Regan (1998) considered a dis-
crete set of templates when they designed the metal binding
sites in G�1, and they identified varied residue positions that
would have been missed if average three-dimensional coor-
dinates had been used for calculations. Harbury et al. (1998)
incorporated template flexibility through an algebraic pa-
rameterization of the backbone when they designed a family
of �-helical bundle proteins with right-handed superhelical
twist. They were able to achieve a root mean square coordi-
nate deviation between the predicted structure and the actual
structure of the de novo designed protein of around 0.2 Å.
Larson et al. (2002) considered backbone flexibility by de-
signing protein to structural ensembles, the optimal number
of which being determined by the sequence entropy. They
generated hundreds of thousands of sequences for 253 nat-
urally occurring proteins, and with homology search they
claimed the diverse sequence space obtained was of high
quality.

One natural approach to incorporate backbone flexibil-
ity is to allow for variability in each position in the tem-
plate. The deterministic in silico sequence selection method
recently proposed by Klepeis et al. (2003c, 2004) using
integer linear optimization technique takes into account tem-
plate flexibility via the introduction of a distance dependent
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force field in the sequence selection stage. Pairwise amino
acid interaction potential, which depends on both the types
of the two amino acids and the distance between them, were
used to calculate the total energy of a sequence. Instead of
being a continuous function, the dependence of the interac-
tion potential on distance is discretized into bins. With typi-
cal bin sizes of 0.5 to 1 Å, the overall protein design model
Klepeis et al. (2004) developed implicitly incorporated back-
bone movements of roughly the same order of magnitude.

6.2. Amino acid sequence search methods

A common target for de novo protein design is the abil-
ity to perform full sequence search for a 100-residue pro-
tein (Street and Mayo, 1999; Saven, 2002; Pokala and Han-
del, 2001). Considering that there are 20 naturally occurring
amino acids for each position, the combinatorial complexity
of the problem amounts to 20100 or 10130. This often proves
to be an insurmountable task even with the computational
power of modern computers.

One simple and popular approach to reduce the search
space immediately is to classify the protein residues into cat-
egories according to their environment, namely core amino
acids, surface amino acids, and boundary amino acids. Since
surface residues are those exposed to the aqueous environ-
ment, they will most likely be hydrophilic amino acids. In
contrast, the protein core is concealed from water and thus is
composed of mainly hydrophobic amino acids. The bound-
ary residues have to be selected from the full range of 20
amino acids as these positions can be either hydrophilic or
hydrophobic. Hecht et al. (2004) applied the binary pattern
of polar and non-polar amino acids to design and synthe-
size their protein combinatorial libraries in an attempt to
search for protein-like properties. They used the binary code
to characterize secondary structures: for �-helices, the se-
quence periodicity of polar and non-polar amino acids must
roughly match the structural repear of 3.6 residue per turn;
for �-sheets, polar and non-polar amino acids have to alter-
nate in every other position (Hecht et al., 2004).

Focusing on a subset of residues for each position, if pos-
sible, allows for the use of deterministic methods in search
for the sequence with the lowest energy objective. The self-
consistent mean field (SCMF) (Lee, 1994) and dead-end-
elimination (DEE) (Desmet et al., 1992) are both good ex-
amples of deterministic methods. SCMF tests an ensemble
of amino acid/rotamer combinations at each position of a
fixed template, with each rotamer in the ensemble given the
same Boltzmann probability. The rotamer Boltzmann prob-
abilities for all other positions are then computed to ob-
tain a weighted average energy, which is used to recalculate
the Boltzmann probability for each rotamer for each posi-
tion. Thus, the process is iterative and will terminate when
the Boltzmann probability converges to a certain value. The
main disadvantage of SCMF is that though deterministic
in nature, it does not guarantee to yield a global minimum

in energy (Lee, 1994). In contrast, DEE assures the con-
vergence to a globally optimal solution consistently. DEE
operates on the systematic elimination of rotamers that are
not allowed to be parts of the sequence with the lowest en-
ergy. The energy function in DEE is written in the form of
a sum of individual term (rotamer–template) and pairwise
term (rotamer–rotamer). The Mayo group has pioneered the
development of DEE and has applied the method to design
a variety of proteins (Malakauskas and Mayo, 1998; Strop
and Mayo, 1999; Shimaoka et al., 2000; Bolon and Mayo,
2001; Mooers et al., 2003). Goldstein (1994) relaxed the ro-
tamer elimination criterion in DEE to address problems of
bigger size. Pierce et al. (2000) introduced Split DEE which
split the conformational space into partitions and thus elim-
inated the dead-ending rotamers more efficiently. On the
other hand, Looger and Hellinga (2001) introduced general-
ized DEE by ranking the energy of rotamer clusters instead
of individual rotamers and increased the ability of the algo-
rithm to deal with higher levels of combinatorial complexity.
Further revisions and improvements on DEE had been per-
formed by Wernisch et al. (2000) and Gordon et al. (2003).
The key limitations imposed on the SCMF and DEE are (i)
the backbone/template is fixed, and (ii) sequence search is
restricted to discrete set of rotamers.

Klepeis et al. (2003c, 2004) introduced a novel two-stage
protein design approach which first solved for the lowest
energy sequences in the form of a rank ordered list using
an ILP formulation, and then validated fold specificity by
calculating the ensemble probabilities of those sequences
obtained in the previous stage. This approach allows natu-
rally for template flexibility and rigorously enumerates the
sequence space. They have tested their predictions against
experimental data on the inhibitory activity of compstatin,
a 13-residue peptide, and have obtained 16-fold improve-
ments over the parent peptide (Klepeis et al. 2003c, 2004).

The protein design problem has been proved to be NP-
hard (Pierce and Winfree, 2002), which means the time
required to solve the problem varies exponentially ac-
cording to nm, where n is the average number of amino
acids to be considered per position and m is the number
of residues. Hence as the protein becomes big enough,
deterministic methods may reach a plateau, and this is
when stochastic methods come into play. Monte Carlo
methods and genetic algorithms are the most commonly
used stochastic methods for de novo protein design. In
Monte Carlo methods, a mutation is performed at a certain
position in the sequence and the Boltzmann probability
calculated from the energies before and after the mutation,
as well as temperature is compared to a random number.
The mutation is allowed if the Boltzmann probability is
higher than the random number, and rejected otherwise.
The Baker group (Kuhlman et al., 2002; Dantas et al., 2003;
Kuhlman et al., 2003)’s protein design computer program,
RosettaDesign, applied Monte Carlo optimization algo-
rithms. In completely redesigning nine globular proteins,
RosettaDesign yielded sequences of 70–80% identity as
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the final results of energy optimization when multiple
runs were started with different random sequences (Dantas
et al., 2003). Originated in genetics and evolution, genetic
algorithms generate a multitude of random amino acid
sequences and exchange for a fixed template. Sequences
with low energies form hybrids with other sequences while
those with high energies are eliminated in an iterative
process which only terminates when a converged solution
is attained. Desjarlais and Handel (1999) have applied a
two-stage combination of Monte Carlo and genetic algo-
rithms to design the hydrophobic core of protein 434cro.
Both Monte Carlo methods and genetic algorithms can
search larger combinatorial space compared to determin-
istic methods, but they share the common disadvantage
of lacking consistency in finding the global minimum
in energy.

Lastly, it should be noted that instead of searching for
the whole sequences with the lowest energies, de novo pro-
tein design has been performed by assigning probability to
an amino acid for each position in a sequence that will
fold into the three-dimensional target structure. The set of
site-specific amino acid probabilities obtained at the end ac-
tually represents the sequence with the maximum entropy
subject to all of the constraints imposed (Zou and Saven,
2000; Kono and Saven, 2001; Park et al., 2004). This sta-
tistical computationally assisted design strategy (scads) has
been employed to characterize the structure and functions
of membrane protein KcsA and to enhance the catalytic ac-
tivity of a protein with dinuclear metal center (Park et al.,
2004). It has also been used to calculate the identity proba-
bilities of the varied positions in the immunoglobulin light
chain-binding domain of protein L (Kono and Saven, 2001).
Scads serves as a useful framework for interpreting and de-
signing protein combinatorial libraries, as it provides clues
about the regions of the sequence space that are most likely
to produce well-folded structures (Hecht et al., 2004).

6.3. Successes and prospects

So far there have been numerous examples of full se-
quences designed “from scratch” that were confirmed to
fold into the target three-dimensional structures by experi-
mental data (Walsh et al., 1999; Bryson et al., 1998). The
zinc-finger protein designed by (Dahiyat and Mayo, 1997)
was the first one to appear. Recently, Kraemer-Pecore et al.
(2001) also performed a full-sequence design on the WW
motif, a �-sheet protein and verified with spectroscopic data
that it had a structure similar to that of the natural protein.
The successes on achieving target folds should be attributed
to the quantitative tools researchers use for confirming fold
specificity. Emberly et al. (2002a), Emberly et al. (2002b),
Li et al. (2002), and Miller et al. (2002) used what they
called designability, which is essentially the number of se-
quences that have the desired structure as their lowest energy
state, to ensure the target fold. Saven (2001, 2003) applied

the energy landscape theory of protein folding to develop
the foldability criterion for confirming sequence-structure
compatibility. Koehl and Levitt (1999a) explored both the
sequence space and the conformation space to generate se-
quences compatible with the template (the so-called “design
in” procedure) and incompatible with the competing non-
native folds (the so-called “design out” procedure) and re-
designed the B1 domain of protein G, the lambda repressor,
and the sperm whale myoglobin with their respective native
structures. Their novel approach for protein design guaran-
teed the specificity of the designed sequence for the tem-
plate by fixing the amino acid composition, and they proved
this new procedure converged in sequence space (Koehl and
Levitt, 1999b).

The ultimate goal of computational protein design is of
course not just to achieve the desired structure but also to
render specific functions or properties to the novel pro-
tein. In the latter respect, research efforts were found to
be multi-faceted computational protein design had been
applied to design protein–protein interaction specificity,
enhance protein stability, confer brand-new metal binding
centers onto proteins originally lacking those moieties, cre-
ate proteins that fold faster than the mother sequences, and
predict sequence mutations that restrict proteins in certain
conformations.

Using computational methods, Wilson et al. (1991)
screened amino acids for the active site on �-lytic protease
to improve specificity toward the substrate. The engineered
enzyme had an over 200-fold preference for substrates with
Leu at the P1 position over those with Ile at the same po-
sition and met the peptide design objective. Klepeis et al.
(2003c, 2004) optimized six residue positions out of a to-
tal of thirteen positions on compstatin, both a peptide that
inhibits complement activation and a strong candidate for
being a pharmaceutical. Sequences from computational re-
sults were synthesized in the laboratory and the one with the
strongest inhibitory activity was found to be 16-fold more
potent than the parent peptide compstatin. Reports from
Ghirlanda et al. (1998) on their design of a two-helix recep-
tor that binds to the calmodulin binding domain (CBD) of
calcineurin pointed out the importance of negative design
for achieving high protein–protein interaction specificity
(Pokala and Handel, 2001). Negative design refers to in-
cluding and employing the thermodynamics information
about all unfolded states of the target protein during the
de novo design process. The concept originated in the free
energy landscape theory of protein folding which states that
proteins traverse a smooth funnel-shaped energy landscape
during folding and the minimum energy corresponds to the
folded conformation. For a de novo designed protein to
have a stable structure, there must be a significant energy
difference between the folded and unfolded states, normally
taken to be greater than the energy fluctuations among the
unfolded states. This is the reason why thermodynamics
of non-native competing structures have to be taken into
account if high specificity is to be attained.
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Another major application for de novo protein design lies
in promoting stability of the target protein. One easy way to
achieve this can be to increase the hydrophobic area buried
(Malakauskas and Mayo, 1998). It was found that designed
proteins with more hydrophobic amino acids than the parent
proteins from which they were derived would usually have
higher stability (Kuhlman and Baker, 2004). This can be a
simple rule of thumb that researchers performing protein de-
sign should keep in mind. Increasing hydrophobic residues
can be performed by either switching partially buried hy-
drophilic or charged residues to non-polar residues, or pack-
ing more hydrophobic moieties in the core.

As for conferring novel metal bind sites onto a template,
Richards and Hellinga (1991) had proposed the DEZYMER
program, a strategy which first identified the catalytic func-
tional groups that will catalyze the desired reaction and then
relocated those groups from the mother protein to the best
positions in the de novo designed protein. DEZYMER pro-
gram had been applied to create zinc, iron sulphide, and
copper binding sites in thioredoxin, a protein that normally
does not bind to metal ions at all (Richards et al., 1991).
Benson et al. (2000) had also designed metalloenzymes in
silico to imitate the catalytic site in superoxide dismutase
(SOD). They correlated catalytic activity with parameters
like location and three-dimensional structure of the environ-
ment of the binding site. This implies de novo protein de-
sign can play a vital role in understanding redox reactions in
protein. Other successes on de novo protein design from the
Hellinga group were reported by Dwyer et al. (2003, 2004),
Looger et al. (2003) and Allert et al. (2004).

Proteins de novo designed to be consistent with the three-
dimensional target with minimum energy interactions were
often found to fold very fast, with folding times of 1 to
50 �s (Gillespie et al., 2003; Zhu et al., 2003). This agrees
with the observation of Watters and Baker (2004) about the
src SH3 domain and that of Kuhlman and Baker (2004)
about seven computer-generated proteins most of the times
the engineered proteins folded faster than the wild type pro-
teins. The reason why de novo designed proteins have faster
folding kinetics compared to the natural ones is not exactly
clear, but the common consensus is that evolution has not
operated on protein folding rates but rather on stability of
the folds. However, this interesting phenomenon indicates
that in silico protein design can have broad applications on
investigating protein folding kinetics. Kuhlman and Baker
(2004) utilized computational protein design techniques and
managed to alter the folding pathways of the IgG-binding
domains of protein G and protein L.

Finally, proteins are macromolecules and their high de-
gree of freedom in motions allow them to have multiple
conformations. In addition, very often some conformations
are preferred over the others from the protein engineering
point of view. De novo protein design had been used by
researchers to lock proteins into certain useful conforma-
tions. For instance, Shimaoka et al. (2000) had computed
variants of the integrin I, a cell-surface adhesion receptor

that interacts with the complement component iC3b, to en-
force the protein to adopt either the open or closed confor-
mation. This conclusion was drawn based on the observa-
tion that variants designed to mimic the open conformation
show higher binding affinities with the ligand than the vari-
ants designed to mimic the closed conformation. In addi-
tion, Kraemer-Pecore et al. (2001) also claimed success in
restricting the amino-terminal domain of calmodulin to its
calcium saturated closed form.

It is expected that de novo designed proteins with few
hundred residues will soon be in place (Pokala and Han-
del, 2001). They will certainly be able to fold into the target
structure, carrying all the desired properties and functions
prescribed at the design stage. However, before that actually
happens, further efforts definitely have to be put into the de-
velopment of better force fields or scoring functions, more
powerful and accurate search methods, and faster and more
systematic ways of screening against experimental data. Re-
cently, active research is underway to incorporate unnatural
amino acids into computational protein design (Sia and Kim,
2001; Tang et al., 2001; Mallik et al., 2005). This brings the
de novo protein problem to a higher level of complexity but
makes it more fascinating, and will certainly trigger a new
wave of computational algorithms for solving the problem.
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