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Both rigid and flexible backbone design templates have been used in the numerous computational de novo
peptide and protein design efforts reported so far. In this review paper, we use the type of templates (i.e.,
rigid or flexible) as a criterion to classify and review examples of successes in de novo protein design. For
both cases of rigid and flexible templates, we briefly outline the different search methods for exploring the
sequence space and quote some notable success examples for each search method. In particular, we divide
the case of flexible templates into three subcategories, according to their approaches for incorporating backbone
flexibility: (i) discrete rotamers on multiple backbones with fixed backbone assumption for each, (ii) discrete
rotamers on a continuum backbone through algebraic parametrization, and (iii) continuum backbone template
with continuous ranges of backbone angles.

1. Introduction

De novo protein design is initiated with a postulated or known
flexible three-dimensional protein backbone structure and is
intended for use to identify amino acid sequences compatible
with such a structure. The problem was first denoted as the
“inverse folding problem”,1,2 because protein design has intimate
links to the well-known protein folding problem.3 Although the
objective of the protein folding problem is to determine the
folded structure with the lowest free energy for a given amino
acid sequence, the de novo protein design problem exhibits a
high level of degeneracy; that is, a large number of sequences
are always observed to share a common fold, although the
sequences will vary, with respect to properties such as activity
and stability.

Traditionally, protein design was performed using experi-
mental techniques such as rational design, mutagenesis, and
directed evolution.4 Although capable of producing good results,
they all entail the major drawback of being able to screen only
a highly restricted number of mutants. It was estimated that the
maximum size of amino acid sequence search space that these
experimental approaches can handle is∼103-106.5 On the other
hand, the number of sequences through which computational
de novo design methods can search is significantly larger. For
instance, Gordon et al.6 reported their redesign of the 74 core
residues of the catalytic antibody (Protein Databank (PDB)
code: 1HKL), which corresponded to a rotamer search space

of 4.7× 10128: this is an unimaginable size for experimentalists.
This feature has caused in silico de novo protein design
approaches to gain popularity.

There have been a large number of reported successes in
computational de novo protein design. A few representative
examples include achievements in modulating protein-protein
interactions,7 promoting stability and specificity of the target
protein,8-14 and conferring novel binding sites or properties onto
the template,15,16as well as locking proteins into certain useful
conformations.17,18To a large extent, in silico methods elucidate
protein folding kinetics9 and protein-ligand interactions,19,20

assist in protein-protein docking,21 and most importantly,
enhance our peptide and protein drug discovery process.22

Nevertheless, despite the large search spaces that computa-
tional methods can handle, and the fact that network flow
structure may be embedded in computational protein design
formulations,23 full-sequence de novo design of a 100-residue
protein is still considered challenging today. Taking an average
of ∼100 rotamers for all 20 amino acids to be considered at
each position,24 the complexity of the problem amounts to an
overwhelming level of 100100 ) 10200. This high level of
complexity couples with the NP-hard nature of the problem25,26

to impose stringent demand on any sequence selection algorithm.
Besides improving computational efficiency, as noted by
Floudas et al.,27 incorporating true protein backbone flexibility
represents a key challenge in de novo protein design.

This paper reviews the research performed in the field of
computational de novo peptide and protein design. It classifies
the work according to the design templates that are used, which
can be either rigid or flexible. In the latter case, backbone
flexibility is incorporated through (i) the consideration of discrete
rotamers on multiple discrete backbones with the fixed template
assumption imposed on each backbone for de novo design, and
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the combination of all the results at the end; or (ii) the
consideration of discrete rotamers on a continuum template,
which is made possible by the algebraic parametrization of the
backbone; or (iii) the use of a continuum template where all
possible continuous values of CR-CR distances and dihedral
angles bounded between upper and lower limits are taken into
account for the design. The sequence search methods and
successful applications using each method will be presented.

2. De Novo Peptide and Protein Design with Fixed
Template

Computational protein design efforts were first initiated with
the premise that the three-dimensional coordinates of the design
template or backbone were fixed. This simplification was first
proposed by Ponder and Richards,28 and it was appealing
because it greatly reduced the combinatorial complexity of the
search. Together with consideration of only a limited set of the
most frequently observed side-chain conformations (called
rotamers),24,29 the assumption enhanced the efficiency of the
initial de novo design efforts, most of which focused on protein
cores,30-34 in exploring search spaces. The reason why protein
cores were selected instead of the boundary or surface regions
is based on the thesis that protein folding is primarily driven
by hydrophobic collapse; thus, a good core has a tendency to
provide a well-folded and stable structure for the de novo
designed protein.35 The scope of the de novo design encom-
passed intermediate and surface residues in subsequent years,
and obviously the problem became more challenging. In this
section, we outline the different deterministic and stochastic
methods that search for sequences specific to the fixed rigid
design template. Note that they all discretize the side-chain
conformational space into rotamers for tractability of the search
problem. After each method is introduced, we also review
examples of successes.

2.1. Sequence Search Methods.De novo design algorithms
can be classified into two main categories: deterministic and
stochastic.36 The two main methods that fall into the determin-
istic category are dead-end elimination (DEE) and self-consistent
mean field (SCMF), whereas the two major stochastic-type
frameworks are Monte Carlo and genetic algorithms (GAs).
Some methods search for low-energy sequences, whereas others
assign probability to each of the 20 amino acids for each design
position in a sequence to maximize the conformational entropy.

2.1.1. Deterministic Methods. 2.1.1.1. The Dead-End
Elimination (DEE) Criteria. DEE, which is arguably the most
popular rotamer search algorithm now, operates on the system-
atic elimination of rotamers that cannot be parts of the sequence
with the lowest energy. The energy function in DEE is written
in the form of a sum of individual term (rotamer-template)
and pairwise term (rotamer-rotamer):

whereE(ia) is the rotamer-template energy for rotameria of
amino acidi; E(ia,jb) is the rotamer-rotamer energy of rotamers
ia andjb of amino acidsi andj, respectively; andN is the total
number of positions. The original DEE pruning criterion is based
on the concept that, if the pairwise energy between rotamersia
andjb is higher than that between rotamersic andjb for all jb in
a certain rotamer set{B}, thenia cannot be in the global energy
minimum conformation and, thus, can be eliminated. This was
proposed by Desmet et al.37 and can be expressed in the
following mathematical form:

Rotameria can be pruned if the previous expression holds true.
Bounds implied by expression 2 can be utilized to generate the
following computationally more tractable inequality:37

The aforementioned equations for eliminating rotamers at a
single position (or singles) can be extended to eliminating
rotamer pairs at two distinct positions (doubles), rotamer triplets
at three distinct positions (triples), or above.37,38 In the case of
doubles, the equation becomes

whereε is the total energies of the rotamer pairs:

This parameter determines a rotamer pairia and jb that always
contributes higher energies than rotamer pairia′ and jb′ for all
possible rotamer combinations.

Goldstein39 improved the original DEE criterion by stating
that rotameria can be pruned if the energy contribution is always
reduced by an alternative rotameric:

This can be generalized to the use of a weighted average ofC
rotamersic to eliminateia:39

Lasters et al.40 proposed that the most suitable weightswc can
be determined by solving a linear programming problem.

In addition to these criteria that were proposed by Goldstein,39

Pierce et al.38 introduced the Split DEE, which splits the
conformational space into partitions and thus eliminates the
dead-ending rotamers more efficiently:

Generally,n splitting positions can be assigned for more efficient
but more computationally expensive rotamer elimination:
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Looger and Hellinga41 also introduced the generalized DEE
by ranking the energy of rotamer clusters, instead of individual
rotamers, and they increased the ability of the algorithm to deal
with higher levels of combinatorial complexity. Further revisions
and improvements on DEE had been performed by Wernisch
et al.,42 Gordon et al.,6 and Georgiev et al.130

Being deterministic in nature, the different forms of DEE
reviewed previously all yield the same globally optimal solution
upon convergence.

Successes Using Dead-End Elimination:Based on operating
the DEE algorithm on a fixed template, the Mayo group devised
their optimization of rotamers by iterative techniques (ORBIT)
program and applied it to numerous de novo protein designs.
Examples are the full-sequence design of theââR fold of a zinc
finger domain,43 improvement of calmodulin binding affinity,44

full core design of the variable domains of the light and heavy
chains of catalytic antibody 48G7 FAB, full core/boundary
design, full surface design, and full-sequence design of theâ1
domain of protein G6, as well as the redesign of the core of T4
Lysozyme.33 They also adjusted secondary structure parameters
to build the “idealized backbone” and used it as a fixed template
to design anR/â-barrel protein.45 The Hellinga group applied
DEE with fixed backbone structure to introduce iron and oxygen
binding sites in thioredoxin,46,47 design receptor and sensor
proteins with novel ligand-binding functions,48 and confer novel
enzymatic properties onto ribose-binding protein.49

2.1.1.2. The Self-Consistent Mean Field (SCMF) Method.
The SCMF optimization method is an iterative procedure that
predicts the values of the elements of a conformational matrix
P(i,a) for the probability of a design positioni adopting the
conformation of rotamera. Note thatP(i,a) sums to unity over
all rotamersa for each positioni. Koehl and Delarue50 were
among the groups who introduced such a method for protein
design. They started the iteration with an initial guess for the
conformational matrix, which assigns equal probability to all
rotamers:

Most importantly, they applied the mean field potential,E(i,a),
which is dependent on the conformational matrixP(i,a):

wherexo corresponds to the coordinates of atoms in the fixed
template, andxia and xjb correspond to the coordinates of the
atoms of positioni, assuming the conformation of rotamera
and those of positionj assuming the conformation of rotamer
b, respectively. The classical Lennard-Jones (12-6) potential
can be used to describe potential energy (U).50 The conforma-
tional matrix can be subsequently updated using the mean field
potential and the Boltzmann law:

The updatedP(i,a), namelyP1(i,a), can then be used to repeat
the calculation of mean field potential and another update can
be obtained until convergence is attained. Koehl and Delarue50

set the convergence criterion to be 10-4 to define self-

consistency. They also proposed the introduction of memory
of the previous step to minimize oscillations during convergence:

with an optimal step size ofλ ) 0.9.50

The Saven group extended the SCMF theory and formulated
de novo design as an optimization problem, maximizing the
sequence entropy, subject to composition constraints and mean-
field energy constraints.51-54 In addition to the site probabilities,
their method also predicts the number of sequences for a
combinatorial library of arbitrary size for the fixed template as
a function of energy.

It should be highlighted that, although deterministic in nature,
the SCMF method does not guarantee convergence to the global
optimal solution.55

Successes Using the Self-Consistent Mean Field Method:
Koehl and Delarue56 applied the SCMF approach to design
protein loops. In their optimization procedure, they first selected
the loop fragment from a database with the highest site
probabilities. They then placed side chains on the fixed-loop
backbone from a rotamer library. Kono and Doi57 also used an
energy minimization with automata network, which bears some
resemblance to the SCMF method, to design the cores of the
globular proteins of cytochrome b562, triosephosphate isomerase,
and barnase. SCMF is related to the design of combinatorial
libraries of new sequences with good folding properties, which
was reviewed by several papers.58-61

2.1.2. Stochastic Methods.The fact that de novo design is
NP-hard25,26means that, in the worst case, the time required to
solve the problem scales nonpolynomially with the number of
design positions. As the problem complexity exceeds a certain
level, deterministic methods may reach their limits and, in such
instances, we may be forced to resort to stochastic methods,
which perform searches for only locally optimal solutions.
Monte Carlo methods and genetic algorithms are the two most
commonly used types of stochastic methods for de novo protein
design.

2.1.2.1. Monte Carlo Methods.Different variants of the
Monte Carlo methods have been applied for sequence design.
In the classic Monte Carlo method, mutation is performed at a
certain position in the sequence and energies of the sequence
in the fixed template are calculated before and after the mutation.
This usually involves the use of discrete rotamer libraries to
simplify the consideration of possible side-chain conformations.
The new sequence after mutation is accepted if the energy
becomes lower. If the energy is higher, the Metropolis ac-
ceptance criterion62 is used:

The sequence is updated ifpaccept is larger than a random
number uniformly distributed between 0 and 1.

In the configurational bias Monte Carlo method, at each step,
a local energy is used that does not include those positions where
a mutation has not been attempted.63 Cootes et al.64 reported
that the method was more efficient in finding good solutions
than the conventional Monte Carlo method, especially for
complex systems. Zou and Saven63 also devised the mean-field
biased Monte Carlo method, which biases the sequence search
with predetermined site probabilities, which, in turn, are
calculated using SCMF theory. They claimed their new method
converges to low-energy sequences faster than classic Monte
Carlo and configurational bias Monte Carlo methods.
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Successes of Monte Carlo Methods:Imposing sequence
specificity by keeping the amino acid composition fixed, which
reduced significantly the complexity, Koehl and Levitt65,66

designed new sequences for the fixed backbones of theâ1
domain of protein G,λ repressor, and sperm whale myoglobin,
using the conventional Monte Carlo method. The Baker group
also utilized the classic Monte Carlo algorithm in their
computational protein design program, RosettaDesign. Examples
of applications of the program include the redesign of nine
globular proteinssthe src SH3 domain,λ repressor, U1A,
protein L, tenascin, procarboxypeptidase, acylphosphatase, S6,
and FKBP12susing fixed templates.67

2.1.2.2. Genetic Algorithms.Originated in genetics and
evolution, genetic algorithms generate a multitude of random
amino acid sequences and exchange them for a fixed template.
Sequences with low energies form hybrids with other sequences,
whereas those with high energies are eliminated in an iterative
process that terminates only when a converged solution is
attained.68

Successes of Genetic Algorithms:With fixed backbones,
Belda et al.69 applied genetic algorithms to the design of ligands
for prolyl oligopeptidase, p53, and DNA gyrase. In addition,
with a cubic lattice and empirical contact potentials,70 Hohm et
al.71 also applied evolutionary methods to design short peptides
that resemble the antibody epitopes of thrombin and blood
coagulation factor VIII with high stability.

3. De Novo Peptide and Protein Design with Flexible
Template

The assumption of fixed template for de novo peptide and
protein design is highly questionable,72 because protein is
commonly known to exhibit backbone flexibility, as illustrated
by the superposition of NMR structures in Figure 1. De novo
design templates were observed to allow residues that would
not have been permitted had the backbone been fixed.73 The
Mayo group claimed that their ORBIT protein design program

was robust against 15% change in the backbone.33 Nevertheless,
they found, in a later case study on T4 lysozyme, that core
repacking to stabilize the fold was difficult to achieve without
considering a flexible template.33 The secondary structures of
R-helices andâ-sheets actually display twisting and bending in
the fold, and Emberly et al.74,75had applied principal component
analysis of database protein structures to quantify the degree
and modes of their flexibilities.

In this section, we classify the various methodologies of
incorporating backbone flexibility into the design template into
three main types according to their treatment of the backbone
and side-chain conformations. The first type involves consider-
ing a set of multiple discrete templates and performing de novo
design with discrete rotamers on each of the templates under
the fixed-backbone assumption. The second type considers a
continuum template by means of algebraic parametrization of
the backbone and variation of the parameters to allow for
backbone movement during sequence selection. However, it still
uses rotamer libraries to simplify the side-chain conformations.
Through novel sequence selection formulations76 and pairwise
contact potentials, which are discretized over distance bins,77-79

the third type considers a continuum design template in which
the CR-CR distances and dihedral angles assume continuous
values between upper and lower bounds observed from the
template structures,80 and it confirms sequence specificity to
the target fold, based on these bounded continuous distances
and angles via nuclear magnetic resonance (NMR) structure
refinement methods,81,82 rather than the discrete rotamer ap-
proach. It should be emphasized that the third type is the most
general case for treating the flexible template, because it allows
for all possible meaningful combinations of distances and
dihedral angles within their defined lower and upper bounds
(i.e., semi-infinite set). Similar frameworks were introduced for
defining flexibility in chemical processes (e.g., see the work of
Floudas and co-workers83-85). For each category, we will quote
some examples of successes of de novo peptide and protein
design.

Figure 1. Template flexibility, as illustrated by the superposition of the 20 nuclear magnetic resonance (NMR) structures of apo intestinal fatty acid-binding
protein (Protein Databank (PDB) Code: 1AEL).
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3.1. Flexible Template via Multiple Discrete Templates
and Discrete Rotamers.By incorporating protein backbone
flexibility via discrete templates and discrete rotamers, de novo
protein design frameworks either separate sequence selection
and backbone movement explicitly or iterate between sequence
space and structure space.86 Note that, in both cases, the
sequence search methods outlined in the previous section are
all applicable, because fixed backbones and discrete rotamers
are still assumed.

3.1.1. Approaches That Separate Sequence Selection and
Backbone Movement.These approaches consider an ensemble
of fixed backbones, search for sequences for each of them
(assuming a fixed template), and finally identify the best
solutions from all the results. Successes using different types
of search algorithms include successes using dead-end elimina-
tion, the self-consistent mean field (SCMF) method, and Monte
Carlo methods/genetic algorithms.

With regard to successes using dead-end elimination, by
varying the supersecondary structure parameters, Su and Mayo87

and Ross et al.88 generated several sets of perturbed backbones
from the native structure and redesigned the core of theâ1
domain of the streptococcal protein using the DEE algorithm,
under the fixed template assumption for each backbone. As
confirmed by NMR experiments, six of the seven sequences
tested folded into nativelike structures.

With regard to successes using the SCMF method, Kono and
Saven53 applied their SCMF-based protein combinatorial library
design strategy on a set of similar backbone structures to obtain
new sequences that are robust to distance changes in the template
for the immunoglobulin light-chain binding domain of protein
L.

With regard to the successes of Monte Carlo methods/genetic
algorithms, the Pande group generated families of 100 fixed
templates within a rootmean square deviation (rmsd) of 1 Å
from the initial backbone, using Monte Carlo method. With these
fixed template ensembles, they performed de novo design, which
was based on genetic algorithms, on their Genome@home
distributed grid system for 253 naturally occurring proteins.
They obtained sequences that exhibited higher diversity than
the corresponding natural sequence alignments, as well as good
agreement on the sequence entropies of the designed sequences
from the same template family.89,90

To incorporate protein flexibility, Kraemer-Pecore et al.91

executed a Monte Carlo simulation to generate 30 fixed
backbones that are within 0.3 Å rmsd of the initial template. A
genetic-algorithm-based sequence prediction algorithm (SPA),92

which combines filtering and sampling rotamers and energy
minimization, was then used for sequence search on each
template, under the fixed backbone assumption. The work led
to the identification of a sequence that folded into the WW
domain.

In designing protein conformational switches, Ambroggio and
Kuhlman93,94 also used the Monte Carlo-based RosettaDesign
to search for sequences for multiple fixed-template structures.

3.1.2. Approaches That Iterate between Sequence Space
and Structure Space.There are two good examples that belong
to this class. The first example is a genetic algorithm/Monte
Carlo-based framework used by Desjarlais and Handel,95 in
which a starting population of backbones is generated by small-
angle perturbations to the template, rotamers are randomly
selected on each backbone, and a genetic algorithm is subse-
quently used that exchanges not only rotamers but also backbone
torsional information in recombination. The framework is ended
with a Monte Carlo stage, which refines the backbone structures.

Using this novel approach, Desjarlais and Handel95 designed
three new core variants of the protein 434 cro. They also
compared results on 434 cro and T4 lysozyme with those
obtained earlier, using fixed-template models, and they found
that they were similar, given that the fixed-template models scan
over a much larger rotamer space.

The second example is that proposed by Kuhlman et al.96

and Saunders and Baker.97 Their method starts with a set of
initial backbones, uses the Monte Carlo method to search for
the sequence with the lowest energy for each of them, performs
atomic-resolution structure prediction for the sequences to allow
shifts in the structure space, and continues until the number of
iterations hits a predetermined number. They successfully
designed a new sequence for Top 7, which is a 93 residueR/â
protein with a novel fold.96 They also claimed that the new
method better captures sequence variation than approaches that
separate sequence selection and backbone movement explicitly.

3.2. Flexible Template via Continuum Template and
Discrete Rotamers.This method of constituting a continuum
template via backbone parametrization and performing sequence
search from rotamer libraries is proposed by Harbury and co-
workers.98-100 Based on the algebraic parametrization equations
developed for coiled coils by Crick,101 their method allowed
backbone movement by treating the parameters as variables
during sequence search for energy minimization, which, in turn,
is performed by the local optimization methods of steepest
descents (SD) minimization and adopted-basis Newton-Raph-
son (ABNR) minimization.

Successes:Harbury and co-workers98-100 adopted this ap-
proach to design a family ofR-helical bundle proteins with a
right-handed superhelical twist. The crystal structure of the
designed sequences with the optimal specificity was experi-
mentally validated to match the design template.

3.3. Flexible Template via Continuum Template and
Continuous Ranges of Backbone Angles.Considering discrete
rotamers is certainly not the best approach to adopt in de novo
design, because∼15% of the side-chain conformations are not
represented by common rotamer libraries.102 A recent two-stage
de novo design approach proposed by the Floudas group
considers a continuum design template without using discrete
rotamers for the possible side-chain conformations.10,11,14,27Their
flexible design template was generated using molecular dynam-
ics simulation with either generalized Born implicit solvation
or explicit water molecules based on a standard force field (see
Figure 2).132

The first stage selects a rank-ordered list of low-energy
sequences using novel quadratic assignment-like models26,76

driven by pairwise residue contact potentials, which were
developed by the group by solving a linear programming
parameter estimation problem, requiring that the native con-
formations for a large training set of 1250 proteins be ranked
energetically more favorable than their high-resolution decoys.77-79

The force fields developed were observed to produce very good
Z-scores, in regard to recognizing the native folds for a large
test set of proteins.77-79 Rather than being continuous, the
dependence of contact potential on distance is discretized into
bins. This designed feature serves to make the energy objective
function insensitive to a limited degree of backbone movement.
For example, in the high-resolution CR-CR force field,78 if
the pair of amino acids selected at two positionsi andk, which
are 3.5 Å apart in the template, are ARG and GLU, respectively,
their energy contribution to the objective function is-7.77 kcal/
mol. Despite small distance variations, this energy value is
constant for all ARG-GLU interactions, as long as the CR
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positions of the two residues are 3-4 Å (bin 1) apart. Two
classes of force fields have been developed: (i) CR-CR
distance-based force fields77,78and (ii) centroid-centroid distance-
based force fields.79 To perform sequence selection based on a
flexible template of multiple structures, Fung et al.76 also
developed two novel formulations: a weighted model, which
considers the distance between any two positions as the weighted
average of their distances in all structures, and a binary distance
bin model that decides which bin the distance falls into during
energy optimization. The latter approach is, in a sense, similar
to the backbone parametrization approach by Harbury and co-
workers,98-100where there are distance variables associated with
the backbone.

The second stage of the approach confirms fold specificity
of the sequences generated in the first stage based on a full-
atomistic forcefield. The group used to perform the task via
ASTRO-FOLD,103-111 which is a protein structure prediction
methodology via global optimization.112-127 Conformational
ensembles are generated for each sequence under two sets of
conditions. In the first circumstance, the structure is constrained
to vary, with some imposed fluctuations, around the template
structure. In the second condition, a free-folding calculation is
performed for which only a limited number of restraints (e.g.,
disulfide bridges), but not the underlying template structure, are
enforced. The relative fold specificity of the sequence (fspec)
can be determined by summing the statistical weights for those
conformers from the free-folding simulation that resembles the
template structure (denoted as set “temp”), and dividing this
sum by the summation of statistical weights for all conformers
from the free folding simulation (denote as set “total”):

where exp(-âEi) is the statistical weight for conformeri.
Note that, in this nonrotamer approach, in both the template-

constrained and free-folding calculations, all continuous CR-

CR and angle values between upper and lower bounds input by
the user are considered in sampling the conformers. Thus, true
backbone flexibility80 is conserved.

Lately, the Floudas group developed an approximate fold
validation method that is computationally less expensive than
ASTRO-FOLD. Through the CYANA 2.1 software for NMR
structure refinement,81,82 an ensemble of several hundred
conformers are generated for both a new sequence from the
first stage and the native sequence. The energies of the
conformers are then minimized using TINKER,128 and the fold
specificity of the new sequence is calculated using the formula

based on the assumption that the fold specificity to the flexible
template is unity for the native sequence.

Similar to the fold validation method via ASTRO-FOLD, all
continuous-distance and dihedral-angle values between their
upper and lower bounds, which are input into CYANA, based
on observations about the template structures, are considered
in generating the conformers. This distinguishes the method from
the common rotamer approach in which only discrete side-chain
conformations are allowed.

Recently, the Donald group derived a novel DEE criterion
called flexible-backbone DEE, which guarantees that no rota-
mers in the global minimum energy conformation compatible
with a flexible backbone will be eliminated.129,130 Discrete
rotamers are used for the de novo protein design, and the ideas
behind the development of the DEE algorithm are based on
continuous-backbone dihedral-angle ranges and real-space
restraint volumes on backbone movement.19,129,130

Successes:The Floudas group applied their two-stage de novo
strategy to (i) the design of new sequences for compstatin, which
is a synthetic 13-residue cyclic peptide that binds to complement
protein 3 (C3) and inhibits the activation of the complement
system (part of innate immunity);10-14 (ii) the design of a
potential peptide-drug candidate derived from the C-terminal
sequence of the C3a fragment of C3;131 and (iii) full-sequence
of humanâ-defensin-2, which is a 41-residue cationic peptide
in the immune system.132 In the case of the compstatin redesign,
sequences with 16-fold and 45-fold improvement in specificity
over the native sequence were confirmed in experiments.10,11

For the design of peptide drug from C3a, the best sequence
identified corresponds to 15-fold improvement.131

Based on experimental results from the redesign of theâ1
domain of protein G and the NRPS enzyme GrsA-PheA, the
Donald group demonstrated the importance of flexible backbone,
because the flexible-backbone DEE is able to design proteins
with lower energies than the traditional DEE algorithms.129
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