
Protein Folding, De Novo Protein Design,

and Peptide Identification in Proteomics

Christodoulos A. Floudas
Princeton University

Department of Chemical Engineering

 Program of Applied and Computational Mathematics

 Department of Operations Research and Financial Engineering

 Center for Quantitative Biology



DNA

(genome)
RNA

(transcriptome)

Metabolic Networks

Protein - Ligand

Protein - Protein

Nucleic Acid - Protein

Design of Drugs 

and Inhibitors

Feedback

Nucleus

Cell

Phenotype

Protein

(proteome)

REVOLUTION OF GENOMICS



Outline

         From Sequence to Structure
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Structure Prediction In

Protein Folding

Review Aricles

• Klepeis J.L., H.D. Schafroth, K.M. Westerberg, and C.A. Floudas, "Deterministic

Global Optimization and Ab Initio Approaches for the Structure Prediction of

Polypeptides, Dynamics of Protein Folding and Protein-Protein Interactions",

Advances in Chemical Physics, 120, 265-457 (2002).

• Floudas C.A., "Research Challenges, Opportunities and Synergism in Systems

Engineering and Computational Biology", AIChE Journal, 51, 1872-1884 (2005).

• Floudas C.A., H.K. Fung, S.R. McAllister, M. Monnigmann, and R. Rajgaria,

"Advances in Protein Structure Prediction and De Novo Protein Design: A

Review", Chemical Engineering Science, 61, 966-988 (2006).

• C.A. Floudas, "Computational Methods in Protein Structure Prediction",

Biotechnology and Bioengineering, 97, 207-213 (2007).



Protein Primary Structure

• Made up primarily of amino acids

• This “alphabet” is often represented by a
one letter abbreviation

CH

H2N
C

O

OH

R

Amino group

Side chain

C  carbon

Carboxyl group

PDB: 1q4sA
MHRTSNGSHATGGNLPDVASHYPVAYEQTLDGTVGFVIDEMTPERATASVEVTDTLRQRWGLVHGGAYCALAEMLA

TEATVAVVHEKGMMAVGQSNHTSFFRPVKEGHVRAEAVRIHAGSTTWFWDVSLRDDAGRLCAVSSMSIAVRPRRD



Proteins: Sequence of Amino Acids

• 20 letter alphabet

• 200 amino acids/domain

• 3M known sequences

• 25K elucidated structures



Protein Secondary Structure

• Local structural motifs defined by

hydrogen bonding patterns
-helix -sheet



Protein Dihedral Angles

• Fixed bond length

• Fixed bond angles

• Dihedral angles as variable representation

Image from Creighton, 1993



Why Protein Folding ?
• Human Genome Project       (Nature, Vol 409, 15 Feb 2001)

• 3 x 109 base pairs

• ~ 3.1 x 104 genes
104 functional proteins

• Computational Structural Biology 

• Protein interactions

• Role of mutations
Drug design



Protein Folding Challenges

Structure Prediction Dynamics

Can we predict the

3-D structure from 

only the 1-D amino

acid sequence ?

Can we elucidate the

mechanism of the

folding process ?

How does the sequence

of amino acids physically

fold into the 3-D structure ?



Protein Structure Prediction
Amino acid sequence [PDB: 1q4sA ]
     MHRTSNGSHATGGNLPDVASHYPVAYEQTLDGTVGFVIDEMTPERATASVEVTDTLRQRWGLVHGGAYCALAEMLA

    TEATVAVVHEKGMMAVGQSNHTSFFRPVKEGHVRAEAVRIHAGSTTWFWDVSLRDDAGRLCAVSSMSIAVRPRRD

Beta strand and sheet structure
    MHRTSNGSHATGGNLPDVASHYPVAYEQTLDGTVGFVIDEMTPERATASVEVTDTLRQRWGLVHGGAYCALAEMLA

    TEATVAVVHEKGMMAVGQSNHTSFFRPVKEGHVRAEAVRIHAGSTTWFWDVSLRDDAGRLCAVSSMSIAVRPRRD

3D Protein Structure

Helical structure
    MHRTSNGSHATGGNLPDVASHYPVAYEQTLDGTVGFVIDEMTPERATASVEVTDTLRQRWGLVHGGAYCALAEMLA

    TEATVAVVHEKGMMAVGQSNHTSFFRPVKEGHVRAEAVRIHAGSTTWFWDVSLRDDAGRLCAVSSMSIAVRPRRD



Protein Folding: Advances

• Homology Modeling / Comparative Modeling
– The probe and template sequences are evolutionary related
– Honig et al.; Sali et al.; Fischer et al.; Rost et al;

• Fold Recognition / Threading
– For the query sequence, determine closest matching

structure from a library of known folds by scoring function
– Skolnick et al.; Jones et al.; Bryant et al.; Xu et al.; Elber et

al.;
– Baker et al.; Rychlewski & Ginalski; Honig et al.



Protein Folding: Advances

• First Principles with Database Information
– Secondary and/or tertiary information from

databases/statistical methods

– Levitt et al.; Baker et al.; Skolnick, Kolinski et al.;

Friesner et al.

• First Principles without Database Information
– Physiochemical models with most general application

– Scheraga et al.; Rose et al.; Floudas et al.



ASTRO-FOLD

Klepeis, J.L and C.A. Floudas.  Biophys J 85 (2003) 2119 
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Free Energy Calculations in

Oligopeptide Folding
Relevant References:

• Maranas C.D., I.P. Androulakis and C.A. Floudas, "A Deterministic Global Optimization

Approach for the Protein Folding Problem", DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, pp. 133-150, (1995).

• Androulakis I.P., C.D. Maranas and C.A. Floudas, "Prediction of Oligopeptide

Conformations via Deterministic Global Optimization", Journal of Global Optimization, 11,

pp. 1-34, June (1997).

• Klepeis J.L. and C.A. Floudas, "A Comparative Study of Global Minimum Energy

Conformations of Hydrated Peptides", Journal of Computational Chemistry, 20, pp.636-654,

(1999).

• Westerberg K.M. and C.A. Floudas, "Locating All Transition States and Studying Reaction

Pathways of Potential Energy Surfaces", Journal of Chemical Physics, 110, pp.9259-9296,

(1999).

• Klepeis J.L. and C.A. Floudas, "Free Energy Calculations for Peptides via Deterministic

Global Optimization", Journal of Chemical Physics, 110, pp.7491-7512, (1999).

• Westerberg K.M. and C.A. Floudas, "Dynamics of Peptide Folding : Transition States and

Reaction Pathways of Solvated and Unsolvated Tetra-Alanine", Journal of Global

Optimization, 15, 261-297 (1999).
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Prediction of Helical Segments

from First Principles

Relevant References:

• Klepeis J.L. and C.A. Floudas, "Ab Initio Prediction of Helical

Segments in Polypeptides", Journal of Computational

Chemistry, 23, 245-266 (2002).

• Subramani A. and C.A. Floudas, “A Novel Approach for the

Prediction of Helices and Beta Strands”, in preparation (2008).



ASTRO-FOLD Klepeis & Floudas,

2002c



Understanding Helix Formation

 Physical Characteristics of Helices
• Well defined backbones and hydrogen bonding patterns

• Different types of helices

•  : hydrogen bonding every fourth residues (3.6)

• 310 : backbone turn every three residues

Physical Understanding of Protein Folding
• Two competing explanations

• Local forces : hierarchical folding

• Non-local forces : hydrophobic collapse

Experimental Evidence for Helix Formation
•  Helix formation proceeds rapidly

•  Sequence sufficient to identify initiation \ termination

Helix formation dominated by local forces



Helix Prediction : Key Ideas
Klepeis & Floudas 2002a

 Overlapping oligopeptides

Ensemble of low energy states

Free energy calculations

Deterministic global optimization

Decompose polypeptide to identify local sites 

of helix formation and termination

Calculate properties of proteins using data from

many low energy states rather than a single state

Model proteins using detailed energy calculations

including entropic and solvation contributions

Predict low energy states using powerful global

optimization approaches such as aBB

Floudas 2000

Klepeis & Floudas 2000



Overlapping Oligopeptides

• Decompose polypeptide  sequence

  into smaller oligopeptide sequences

• Pentapeptides

• Heptapeptides

• Nonapeptides

• Capture local interactions governing

  helix formation

• Combine free energy calculations

  to get prediction



Ensemble of Low Energy States
Klepeis & Floudas 1999

Mathematical formulation

• Nonconvex optimization problem

• Requires global optimization search

Generate low energy states along

with global minimum energy state



Free Energy Algorithm
Klepeis & Floudas 1999

   BB based approaches capitalize on

• ability to identify domains

  of low energy

• information from lower

  bounding function L(x)

• initialize and locally

  minimize lower bounding

  functions multiple times in

  each domain

• unique lower bounding

  minima serve as initial points

  for minimizations of original E(x)

Free energy calculations require methods

for finding low energy local minima



Search Techniques
BB Deterministic Global Optimization

  Floudas & coworkers 1994,1995,1996,1998,1999,2000

• based on branch-and-bound framework

• convergence through successive subdivision at each

  level in the b&b tree to generate non-increasing

  upper bounds (original problem) and non-decreasing

  lower bounds (convexified problem)

• guaranteed -convergence for C2 NLPs

Conformational Space Annealing (CSA)
                 Scheraga & coworkers 1997,1998

• stochastic prediction of global minimum energy state

• genetic algorithm updates produce low energy states

• anneal using deviation between energy states

• termination criteria is heuristic



Free Energy Calculations

   Atomistic level free energy calculations

• include both enthalpic and entropic contributions

• model potential energy using semi-empirical force field

• employ harmonic approximation for entropic effects

• include cavity formation energy

• calculate solvation / ionization energies from solution

  of Poisson-Boltzmann equation Honig & coworkers 1988,1993,1995

• calculate total free energies for ensemble of low energy states

• employ efficient search techniques via global optimization

  F  = Fvac  +  Fcavity  +  Fsolvation  +  Fionization

Klepeis & Floudas 2002a



Overall Free Energy

• Potential

• Entropic

• Cavity

• Polarization

• Ionization

Fvac         -

 TSvac    +

Fcavity     +

Fsolvation  +

Fionization

Scheraga & coworkers

Honig & coworkers

1988, 1993, 1995

Honig & coworkers

1988, 1993, 1995

Honig & coworkers

1988, 1993, 1995





























• Calculate probability of conformer i from free energy

• Cluster probabilities for helical (AAA) conformers

• Classify residues using probability of central peptides

• Probability calculation for residue j (pentapeptide) is

Probability of Helix Formation
Klepeis & Floudas 2002a



Computational Study : 1R69
N-terminal domain of phage 434 repressor protein

• 69 residue fragment of N-terminal domain 

• Dimer involved with operator sites in phage genome

• N-terminal domain binds to DNA 

• Compact hydrophobic interior

• Five helices

• Extended first helix

• Helix 2 and 3 form helix-turn-helix motif



Computational Study : 1R69

Experimental

• Helices from 1-12, 16-22, 28-35, 45-50, 56-64

Comparison with PSIPRED

• Helices from 2-12, 17-24, 28-35, 42-52, 56-59

Predicted Exp

2-11 1-12

16-22 16-22

31-34 28-35

48-50 45-50

56-62 56-64



Computational Study : 9WGA
Wheat germ agglutinin

• Dimeric plant lectin

• 171 residue chains with four domains each (A, B, C and D)

• Internal repeating domain of 43 residues

• Homology in all Cys and many Gly positions

• Four disulfide bridges per domain

• Tight fold

• No helical or beta structure



Computational Study : 9WGA

Experimental

• Helices from 1-12, 16-22, 28-35, 45-50, 56-64

Comparison with PSIPRED

• Helices from 2-12, 17-24, 28-35, 42-52, 56-59
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Prediction of Beta Sheet Topologies via

Integer Linear Optimization

Relevant References:

• Klepeis J.L. and C.A. Floudas, "Prediction of Beta-Sheet

Topology and Disulfide Bridges in Polypeptides", Journal of

Computational Chemistry, 24, 191-208 (2003).



ASTRO-FOLD Klepeis & Floudas,

2002c



Formation of -Sheets
 Major challenge for accurate structure prediction

• Prediction of -strand location not accurate

• No reliable method for -sheet topology

• Antiparallel -sheets

• Parallel -sheets

• How to treat formation of disulfide bridges

Physical Understanding
• Local forces not as dominant (as for helices)

• Non local forces are significant

• Hydrophobic collapse

• Tertiary contacts

Experimental Evidence
• Hydrophobic collapse proceeds rapidly

Hydrophobic forces drive -sheet formation



-Sheet Prediction Klepeis & Floudas,

2002b



-Strand Protocol
• Classify nonhelical and all cystine residues

Hydrophobic H  :  Leu,Ile,Val,Phe,Met,Cys,Tyr,Trp

Bridge B  :  Ala,Thr

Turn T  :  Asn,Asp,Gly,Pro,Ser

Other N  : Arg,Lys,Glu,Gln,His

• Scan sequence for Hydrophobic residues and

  identify Hydrophobic to Hydrophobic segments

• Build  strands using rules for intervening residues

• Scan sequence and identify Turn to Turn segments

• Modify  strands which enclose, intersect or are

  enclosed within the Turn to Turn segments

93 % strand prediction accuracy for 11000 strands from

over 2000 PDB sequences (50 to 150 amino acids)





Illustration of strand Superstructure

Bovine Pancreatic Trypsin Inhibitor



Illustration of strand Superstructure

Bovine Pancreatic Trypsin Inhibitor



Residue-based Concepts
• Identify set i and assign hydrophobicity index Hi to

  nonhelical Hydrophobic and all cysteine residues

• Assign binary variable yij to each possible unique

  Residue-to-Residue contact

• Identify set si and assign hydrophobicity weight Ssi

  according to superstructure of potential -strands

• Assign binary variable wsi,sj to each possible unique

  Strand-to-Strand contact

Strand-based Concepts



-strand Superstructure

• Model incorporates ALL possible alternatives

• Number of postulated strands may be greater than actual

• Many possible sheet arrangements are allowable



Formulation : Key Concepts
Klepeis & Floudas 2002b

 Binary variables

Linear objective function

Linear constraints

Integer cuts

0-1 variables are used to characterize residue-to-residue

and strand-to-strand contacts

Objective is to maximize the hydrophobic potential

as controlled by the binary variables

Constraints account for different combinations of residue

and strand contacts (e.g., parallel/antiparallel)

Iterative addition of these constraints allow for the

generation of a ranked list of optimal solutions



Constraint Functions

• Allowable antiparallel

  combinations

• Allowable parallel

  combinations

• Limit number of strand contacts to (2)

• Disallow extended -ladders

• Disallow double

  intersecting loops











Objective Function

• Maximization of hydrophobic potential

• Additional disulfide contact energy



Computational Study of  Prediction

Bovine Pancreatic Trypsin Inhibitor

• 58 residue protein

• Inhibits serine proteases

• Three disulfide bonds

• Cys5-Cys55, Cys14-Cys38, Cys30-Cys51

• Two antiparallel strands (Strand 1 to Strand 2)

• Hydrophobic residue match (Strand 1 to Strand 3)



Computational Study of  Prediction

Bovine Pancreatic Trypsin Inhibitor

• Disulfide bridge matches : 5-55, 14-38, 30-51

• Residue matches (Strand 1 to Strand 2) :

  18-34 (Ile-Val), 19-33 (Ile-Phe), 23-29 (Tyr-Leu)

• Residue match (Strand 1 to Strand 3) : 22-45 (Phe-Phe)

PSIPRED comparison

• 2 strands :19-24 (79 %)  and 29-35 (54 %)

•  -sheet configuration can NOT be identified



Computational Study of  Prediction

SmD3 : Small Nuclear Ribonucleoprotein (T0059)

• 75 residue protein

• Common fold of SH3 proteins

• N-terminal helix

• Set of antiparallel -sheets

• Barrel-like topolgy



Computational Study of  Prediction

SmD3 : Small Nuclear Ribonucleoprotein (T0059)

• Multiple global optima with six contacts

• Consistent features include matches between strands 1-2 and 1-8

• One of the six global optima corresponds to experimental observations

PSIPRED comparison

• Length of  strands inconsistent with experimental results

• -sheet configuration can NOT be identified
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Prediction of Loop Structures with Flexible

Stems

Relevant References:

• Klepeis J.L. and C.A. Floudas, "Analysis and Prediction of Loop Segments in

Protein Structures", Computers and Chemical Engineering, 29, 423-436 (2005).

• Monnigmann M. and C.A. Floudas, "Protein Loop Structure Prediction with

Flexible Stem Geometries", Proteins, 61, 748-762 (2005).



Outline

 Protein Loop Prediction
• Motivational Examples 

• Problem Definition

• Current Approaches

• Limitations

• Loop Prediction Strategies

• Overlapping Oligopeptides

• Pivot Point Constraints

• Computational Studies

• Bovine Pancreatic Trypsin Inhibitor

• Immunoglobulin Binding Domain of Protein G

• T0114 : Antifungal Protein (Streptomyces Tendae)

• Conclusions



Functional Significance of Loops
Endotoxins

• Natural pesticide used in agriculture

• CryIIIA class is active against potato beetle

Function 

• Bind to receptor proteins

• Inset into membrane

• Function as ion channels

Structure-Function

• 3 surface loops involved in 

  receptor binding & specificity

• Alanine replacements affect 

  receptor binding (loops 1 & 3),

  membrane binding (loop 2)  

  and toxicity Loop 1Loop 2
Loop 3



Functional Significance of Loops
Serine proteases

• Enzymes involved in a variety of physiological processes

• Function as digestive enzymes

• Function as regulators & cell differentiation

Chymotrypsin-like serine protease 

• Catalytic residues bridge beta-barrel

• Substrate specificity determined by 

   three adjacent surface loops 

• No direct contact with substrate 

Trypsin-like serine protease

• Subsite specificity in addition to primary

• Two surface loops flank catalytic residues 

• Kinetic studies highlight preferential

  substrate specificity for certain subclasses 



Protein Folding Problem

• To predict a protein’s native three-dimensional conformation 

  from its linear amino acid sequence defines the

  Protein Folding Problem

• Predictive ability would allow for the production of improved 

  drugs, biocatalysts and foster a better understanding 

  of molecular biochemistry and biophysics

• Anfinsen’s hypothesis 

          

• Express protein free energy as a function of the conformation

  of the protein (atomic coordinates)

• Use global optimization techniques to deduce the global

  minimum energy conformation (native state)

Native state               Lowest free

  of protein             energy of system



Loop Modeling 
Mini-Protein Folding Problem
• Structure determined from sequence of segment 

• Sequence-structure variability is integral to loop functionality

• Loops are not well conserved or regular as with basic secondary structure

• Identical loop segments in different proteins have unrelated conformations

• Structure influenced by stem regions that flank loop

N-terminal stem

C-terminal stem

Loop segment (8 residues)

Loop stems
• Stems consist of main chain atoms that precede and follow the loop

• Stem regions offer topological constraints

• Stem regions indicate the orientation for the rest of the protein



Methods for Loop Modeling
Database Methods
Find template that fits the two stem regions of the loop segment

• Search through all proteins, not just homologous proteins

• Many sequences fit, sort according to

• Geometric criteria for stem regions (orientation)

• Sequence similarity between loop and target segments

• Superpose and anneal onto stem regions

Limitations (1) requires correct loop conformation to exist in database

(2) exponential increase with length for geometric search

(3) only feasible for loops < 8 residues and specific classes

Ab-Initio Methods
Conformational search guided by scoring or energy function

• Generate large numbers of loop conformations between loop stems

• Models range from

• Unified atom models to all atom models (solvation forces)

• Cartesian to internal coordinates in discrete or continuous space

• Optimization approaches include local minimization, molecular
   dynamics, systematic searches, simulated annealing, monte carlo

Limitations (1) native conformation does not provide lowest energy

(2) effectiveness of conformational search procedure

(3) how to handle loop flexibility (conformational entropy)

Greer &

co-workers

Cohen &

co-workers

Levitt

Karplus &

coworkers

Chothia &

coworkers

Sali &

co-workers

Scheraga &

co-workers

Friesner &

co-workers

Karplus &

coworkers

Honig &

coworkers



Existing Approaches to Loop Structure Prediction

• Xiang, Z., Soto, C., and Honig, B., PNAS 99, 7432-7437, 2002

• Colony energy= potential energy – f(# close neighbors)

• favors conformers in broad energy basins

• random backbone, loop closure,
2000 conformers for each loop, rotamer libraries for side chains

• 553 loops of lengths 5 to 12 residues

• 2/3 of conformers improved when colony energy is used

Colony energy minimization

• DePristo, M., de Bakker, P.I.W., Lovell, S.C.,

and Blundell, T.L, Proteins 51, 41-55, 2003

• de Bakker, et al., Proteins 51, 21-40, 2003

• backbone angle sampling, probability

distributions p( , ), resolution up to 5°x5°

• 400 loops, 2-12 residues

• energy minimization with AMBER force field,

including Generalized Born/surface area

solvation model

–150
–100

–50
0

50
100

150

phi

–150

–100

–50

0

50

100

150

psi

0

0.005

0.01

0.015

0.02

p

Loop reconstruction with dihedral angle sampling



Existing Approaches to Loop Structure Prediction

• Jacobson, M.P., Pincus, D.L., Rappa, C.S., Day, T.J.F., Honig, B., Shaw,
D.E., Friesner, R.A., Proteins 55, 351-367, 2004

• Backbone angle sampling with probability functions p( , ), resolution 5°x5°

• unique in that up to 10^6 conformers are generated

• clustering and filters used to reject decoys before energy minimization

• filters based on information on surrounding protein:
steric clashes, loop closure, distance to remainder of protein

• test set of 833 loops from 4-12 residues length

Loop reconstruction by hierarchical clustering

Data-driven methods

• Baker and coworkers, Proteins 55, 656-677, 2004: fragment

database, heuristic scoring function

• Deane and Blundell, Protein Science 10, 599-612, 2001:

consensus method that combines database of known loops and

set of decoys

• Zhang et al.: efficient statistical energy function that compares

favorably to physically based energy functions



Derivation of Restraints

Dihedral angle restraints

• Backbone dihedral angles restrained

  according to classification of residue

  as either helix or strand

Distance restraints

• Ca-Ca distance restraints for hydrogen

  bond network of helix (residues i and i+4)

• Ca-Ca distance restraints for hydrogen

  bonds between residues in opposing strands

Bounds on loop residues

• Perform free energy calculations to

  derive tighter constraints on backbone

  variables of loop residues



Using Loop Stems
Topological Constraints
• In general, distance and orientation

  between loop stems are not known

Available Constraints
• 4 basic classes of loop stem combinations

• Distance constraints only known for beta-sheet connection

• Typically 4.5 - 6.5 angstroms between opposing residues in loop stems

• Usually such loops are relatively short (< 5 residues)

N-terminal

stem

C-terminal stem

Stem-to-Stem

distance

Antiparallel Beta-Sheet



Protein Loop Prediction Strategies

 Free Energy Calculations for Loop Modeling

• Overlapping Oligopeptides

••  Pivot Point ConstraintsPivot Point Constraints



Overlapping Oligopeptides

• Decompose loop segment and

  3 flanking stem residues at each end

  into smaller oligopeptide sequences

• Pentapeptides

• Heptapeptides

• Nonapeptides

• Impose appropriate bounds on residues

  in  loop stem regions (helix or strand)

• Combine free energy calculations

  to derive tighter bounds on dihedral

  angles for residues in loop segment



• Calculate probability of conformer i from free energy

• Cluster probabilities for (YYY) conformational states

• Classify residues using probability of central peptides

• Probability calculation for residue j (pentapeptide) is

Probability of Conformational States

YYY

YYY

YYY

YYY YYY YYY



 5 residue loop

 Helical segment at N-terminal stem

 Strand segment at C-terminal stem

Step 1: Initialization

• Select free energy model

• Set bounds for dihedral angles of helix

• Set bounds for dihedral angles of strand

Step 2 : Overlapping Pentapeptides

• 7 free energy based optimizations

• Impose appropriate helix/strand bounds

• Calculate cumulative probabilities for

  conformational state of  each residue (pYYY)

Step 3 : Overlapping Heptapeptides

• 5 free energy based optimizations

• Impose appropriate helix/strand bounds

• Impose reduced bounds from pentapeptides

• Calculate cumulative probabilities for

  conformational state of  each residue (pYYYYY)

 Proceed until full sequence simulation

• Use final bounds in tertiary structure prediction

Tighter Backbone Constraints



Overall Free Energy

• Potential

• Entropic

• Cavity

• Polarization

• Ionization

Fvac         -

 TSvac    +

Fcavity     +

Fsolvation  +

Fionization

Scheraga & coworkers

Honig & coworkers

1988, 1993, 1995

Honig & coworkers

1988, 1993, 1995

Honig & coworkers

1988, 1993, 1995



Ensemble of Low Energy States
Klepeis & Floudas 1999

Mathematical formulation

• Nonconvex optimization problem

• Requires global optimization search

Generate low energy states along

with global minimum energy state



The BB Framework
• Based on a branch-and-bound framework

• Upper bound on the global solution is obtained by

  solving the full nonconvex problem to local optimality

• Lower bound is determined by solving a valid convex

  underestimation of the original problem

• Convergence is obtained by successive subdivision

  of the region at each level in the brand & bound tree

• Guaranteed -convergence for C2 NLPs

Floudas 2000

Floudas & co-workers

Adjiman et al. 1998,2001



Protein Loop Prediction Strategies

 Free Energy Calculations for Loop Modeling

••  Overlapping Overlapping OligopeptidesOligopeptides

• Pivot Point Constraints



Pivot Point Constraints
Goals

• Improve conformational search

• Derive distance restraints for

  tertiary structure prediction

Pivot Point

• Define Ca of internal loop

  residue as the pivot point

• From free energy calculations

  of smaller oligopeptides derive

  cumulative probability ranges

  for two Ca to Ca distances between end residues (or other

  internal residues) and the pivot residue (d1 and d2)

• For most probable distance ranges

  (d1 and d2) sweep out different

  ranges of  and calculate dx range

• Impose dx ranges in free energy

  calculations of larger oligopeptides



Tighter Distance Constraints
5 residue loop

Pivot Point : Residue 3

 d1 :  Ca(1) to Ca(3)

 d2 : Ca (3) to Ca(5)

 dx : Ca(1) to Ca(5)

• 4 ranges for  and dx

• Free energy calculations

  for all 4 ranges constrained

Distance Min Max Min Max Min Max Min Max

5.5 10.2 11.0 7.8 10.2 4.2 7.8 0.0 4.2

6.0 11.1 12.0 8.5 11.1 4.6 8.5 0.0 4.6

6.5 12.0 13.0 9.1 12.0 5.0 9.1 0.0 5.0

7.0 12.9 14.0 9.9 12.9 5.4 9.9 0.0 5.4

6.0-6.5 11.1 13.0 8.5 12.0 4.6 9.2 0.0 5.0

Unique 12.0 13.0 9.1 11.1 5.0 8.5 0.0 4.6

Range

 = 0-45

1.0 2.0 3.5 4.6

 = 135-180  = 90-135  = 45-90



Constrained Formulation

Objective

• Nonconvex atomistic level forcefield

Constraints

• Enforce bounds on backbone variables

• Enforce upper / lower distances through square well constraints



Torsion Angle Dynamics

Initialization

• Difficult to identify low energy

  feasible structures

Torsion Angle Dynamics

• Identify feasible low energy

  structures (satisfy constraints)

• Fast evaluation of simplified

  force field (steric based)

• Unconstrained formulation

  using penalty functions

Implementation

• Solve equations of motion as

  preprocessing for each

  constrained minimization

Good Initial Points for

Local Optimization

Wuthrich & coworkers



Structure Prediction

Bovine Pancreatic Trypsin Inhibitor
Backbone variable restraints

• a-helical : 2-5, 47-54

• -strand : 17-23, 29-35, 44-46

Distance restraints

• Two -sheet contacts

• 32 lower and upper Ca-Ca for helix and -sheets

• 6 lower and upper S for disulfide bridge

Tertiary fold

• Best energy : -428.0 kcal/mol

• RMSD : 4.0 A

56 AAs



Bovine Pancreatic Trypsin Inhibitor

RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA

Helix 1 Helix 2Beta 1 Beta 2 Beta 3

Loop 1

11 residues

(Helix-Beta)

RMSD: 2.6 A

RMSD: 3.2 A

Loop 2

5 residues

(Beta-Beta)

RMSD: 0.4 A

RMSD: 1.4 A

Loop 3

8 residues

(Beta-Beta)

RMSD: 2.0 A

RMSD: 2.9 A
17 residues 14 residues11 residues



Large Scale Testing

• Set of 15 proteins

• Previous CASP competitions

• Benchmark systems

• Tested within context of ASTRO-FOLD

• Consistent results over all lengths

• Comparable to best results in which

   loop stems are fixed (+6 residues)

• Set of proteins from CASP5

•  Wide range of loops tested

•  Mixed structure predictions

• Comparisons available starting

  December 2002

R
M

S
D

Loop length

C
o

u
n

t



Loop Structure Prediction with

Flexible Stem Geometry



Flexible Stem Geometry
Assess quality of loop structure prediction with flexible

stem geometries
• use in ASTRO-FOLD ab initio structure prediction

Klepeis, J.L., Floudas, C.A., Biophysical J. 85: 2119-2146, 2003;
Klepeis, J.L., Floudas, C.A., J. Comput. Chem. 24(2), 191-208, 2003;
Klepeis, J.L., Floudas, C.A., J. Computat. Chem. 23, 245-266, 2003;
Klepeis, J.L., Pieja, M.T., Floudas, C.A., Biophysical J. 84, 869-882,
2003;

• investigate limit of prediction accuracy if long range
interactions are neglected

loop residues



Loop Structure Prediction Methodology

Create ensemble by dihedral angle sampling
– extracted p( , ) from ~2500 loops

– sampled p( , ) at 5ºx5º resolution

– created ensembles of 2000 conformers for each loop

Structure optimization with first principles force field

– Dunbrack rotamer library

– ECEPP/3 force field for structure optimization

Clustering to identify conformers that are

close to native
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New Use of Clustering

First steps of approach
• calculate pairwise RMSDs for ensemble

• choose RMSD threshold t

• for each conformer, record number of conformers
with RMSD<= t

Clustering has been used before to

• group conformers

• select conformers that represent

groups
 New use of clustering

• discard conformers that are far from

native



Clustering Example

• threshold t= 3.0Å

• large clusters for small RMSDs

  unfortunately also for large RMSDs

• not always advisable to consider

  centroid of largest cluster

• threshold t= 3.5Å

• increasing threshold shows that clusters

  with large RMSDs are small basins only

• large clusters with small RMSDs survive



Clustering Example

• threshold t= 4.5Å

• distribution more conservative the larger

  threshold

• for sufficiently large threshold clusters of

   conformers with large RMSDs can be

   discarded

• threshold t= 4.0Å

• for sufficiently large threshold

  distribution is monotonous

• tail with large RMSDs becomes apparent



Iterative Clustering Algorithm

1. Choose thresholds t and N,
choose critical cluster size Ncrit

2. Calculate cluster sizes Ni for all conformers in ensemble

3. If Ni>Ncrit for all i, stop

4. Discard conformers that generate clusters of size Ni<N

5. Go back to step 2



Results
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Treated >3000 loops, length 3+4+3 through 3+14+3

• Surprisingly, energy almost as good as colony energy

• Clustering always improves result

• For all loops, algorithm stops after 2 or 3 clustering steps

• RMSD grows only linearly with length for at least 20

residues



Quality of Ensembles
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+

k= 2 cluster size

k= 2 cluster size, select five

best in ensemble

• Quality of ensembles never restricts result

• Linear for at least up to 20 residues, but slopes differ

• Gap reduced when considering 5 representatives

• Slopes equal when considering 5 representatives



Results for CASP6 Targets
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+
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Comparison to Previous Results

Comparison difficult
• flexible stem residues

• fixed stems in all previous

results

1

2

3

4

5

4 6 8 10 12 14 16 18 20

our result

Jacobson et al.

de Bakker et al.

Xiang et al.

RMSD [Å]

number of residues

we solve harder problem

• number of residues includes

3+3 stem residues in our case

• stem residues have tighter

probability distributions

Results of comparison
• Jacobson et al. result with fixed

stems better
use information on stem geometry,

if available

• new method results in very favorable slope

• new method is better than or only slightly

worse than methods for fixed stems



Structure Prediction In Protein

Folding: Outline

• Introduction to Protein Structure Prediction

• Free Energy Calculations in Oligo-peptides

• Prediction of Helical Segments

• Prediction of Beta Sheet Topologies

• Prediction of Loop Structures

• Derivation of Restraints

• Prediction of Protein Tertiary Structure



Derivation of Restraints

Relevant References:

• Klepeis J.L. and C.A. Floudas, "ASTRO-FOLD: a combinatorial and global

optimization framework for ab initio prediction of three-dimensional structures

of proteins from the amino acid sequence", Biophysical Journal, 85, 2119-2146

(2003).

• McAllister S.R. and C.A. Floudas, ”Enhanced Bounding techniques to Reduce

the Protein Conformational Search Space”, submitted for publication, 2008.



Derivation of Restraints

• Dihedral angle restraints
– For residues with -helix or -

sheet classification

– For loop residues using the
best identified conformer from
loop modeling efforts

• Distance restraints
– Helical hydrogen bond

network (i,i+4)

– -helical topology predictions

– -sheet topology predictions

Klepeis, JL and Floudas, CA. Journal of Global Optimization. (2003)



Structure Prediction In Protein

Folding: Outline

• Introduction to Protein Structure Prediction

• Free Energy Calculations in Oligo-peptides

• Prediction of Helical Segments

• Prediction of Beta Sheet Topologies

• Prediction of Loop Structures

• Derivation of Restraints

• Prediction of Protein Tertiary Structure



Prediction of Protein Tertiary Structure

Relevant References:

• Klepeis J.L. and C.A. Floudas, "Ab Initio Tertiary Structure Prediction of Proteins", Journal of

Global Optimization, 25, 113-140 (2003).

• Klepeis J.L., M. Pieja, and C.A. Floudas, "A New Class of Hybrid Global Optimization

Algorithms for Peptide Structure Prediction: Integrated Hybrids", Computer Physics

Communications, 151, 121-140 (2003).

• Klepeis J.L., M. Pieja, and C.A. Floudas, "A New Class of Hybrid Global Optimization

Algorithms for Peptide Structure Prediction: Alternating Hybrids and Application fo Met-

Enkephalin and Melittin", Biophysical Journal, 84, 869-882 (2003).

• Klepeis J.L. and C.A. Floudas, "ASTRO-FOLD: a combinatorial and global optimization

framework for ab initio prediction of three-dimensional structures of proteins from the amino

acid sequence", Biophysical Journal, 85, 2119-2146 (2003).

• Klepeis J.L., Y. Wei, M.H. Hecht, and C.A. Floudas, "Ab Initio Prediction of the 3-Dimensional

Structure of a De Novo Designed Protein: A Double Blind Case Study", Proteins, 58, 560-570

(2005).



Tertiary structure prediction























Constrained optimization
• Problem definition

• Atomistic level force field (ECEPP/3)

• Distance constraints



BB Global Optimization
•  Based on a branch-and-bound framework

•  Upper bound on the global solution is obtained by
solving the full nonconvex problem to local optimality

•  Lower bound is determined by solving a valid
convex underestimation of the original problem

•  Convergence is obtained by successive subdivision
of the region at each level in the brand & bound tree

•  Guaranteed -convergence for C2 NLPs

Adjiman, CS, et al. Computers and Chemical Engineering. (1998a,b)

Floudas, CA and co-workers, 1995-2006



Torsion Angle Dynamics

• Why? Difficult to identify
low energy feasible
points

• Fast evaluation of steric
based force field

• Unconstrained
formulation with penalty
functions

• Implemented by solving equations of motion
as preprocessing for each constrained
minimization

Guntert, P, et al. Journal of Molecular Biology. (1997)

Klepeis, JL and Floudas, CA. Computers and Chemical Engineering. (2000)

Klepeis, JL, et al. Journal of Computational Chemistry. (1999)



Conformational Space Annealing

• Induce variations

– Mutations

– Crossovers

• Subject to local
energy minimization

• Anneal through the
gradual reduction of
space

Lee, JH, et al. Journal of Computational Chemistry. (1997)

Scheraga and co-workers, 1997-2006.



Tertiary Structure Prediction

• Hybrid global optimization approach

– BB deterministic global optimization

– Conformational Space Annealing (CSA)

• Modifications

– Streamlined parallel implementation

– Integrated a rotamer optimization stage for quick energetic

improvements

– Improved initial point selection using a torsion angle dynamics

based annealing procedure from CYANA*

*Guntert, P, et al. Journal of Molecular Biology. (1997)



Global Optimization: Alternating Hybrid
• The BB and CSA algorithms have complementary strengths and

drawbacks

• Implement hybrid algorithm to capture strengths of both

• Parallelize by dividing problem, assigning subproblems

Klepeis, JL, et al. Biophysical Journal. (2003)



Alternating Hybrid: Implementation
• All secondary nodes begin performing BB iterations

• Once the CSA bank is full, CSA takes control of a subset
of secondary nodes

BB Control CSA Control
Primary

processor

Secondary

processors



Rotamer Side Chain Optimization

• Side chain packing is
crucial to the stability and
specificity of the native
state

• Rotamer optimization is a
quick way to alleviate steric
clashes

• Better starting point for
constrained nonlinear
minimization



Tertiary structure prediction

Results



Results – Tertiary Structure Prediction

•PDB: 1nre

Lowest energy predicted structure

of 1nre (color) versus native 1nre

(gray)

Lowest RMSD predicted structure

of 1nre (color) versus native 1nre

(gray)

Energy -1395.48

RMSD  6.63

Energy -1340.45

RMSD  3.52



Results – Tertiary Structure Prediction

•PDB: 1hta

Lowest energy predicted structure

of 1hta (color) versus native 1hta

(gray)

Lowest RMSD predicted structure

of 1hta (color) versus native 1hta

(gray)

Energy -941.02

RMSD  6.70

Energy -915.57

RMSD  2.58



Tertiary structure prediction

Blind studies



CASP7 Results – T311 (87/97 aa)

• PSIPRED used for -helical prediction

• A small number of loose, homology based

constraints introduced

TS 3

RMSD  5.75



CASP7 Results – T335 (42/85 aa)

• PSIPRED used for -helical prediction

• Distance constraints imposed based on -helical
topology prediction results

TS 1

RMSD  2.71



Results – Blind Tertiary Structure

Prediction

•S836

Lowest energy predicted structure

of s836 (color) versus native s836

(gray)

Lowest RMSD predicted structure

of s836 (color) versus native s836

(gray)

Energy -1740.11

RMSD  2.84

Energy –1697.88

RMSD  2.39



CASP7 Results ,T382 (121/123 aa)
• PSIPRED, PROFsec used for -helical prediction

• Distance constraints imposed based on -helical topology

prediction results

TS 2



CASP7 Results – T340 (90 aa)

• Selection by energy alone may not identify

the lowest RMSD structure



CASP7 Results-T354 (120/130 aa)

• Incorrect topology predictions can

misdirect global conformational search

1

2

3

4

5

1

2

3

4

5

Antiparallel
Parallel

NativePredicted TS3



CASP7 Results – T351 (60/117 aa)

• Overall RMSD can be deceiving, hiding a

correct topology prediction
Native Predicted TS1

9.69 RMSD



CASP7 – T367 Comparison
• PSIPRED used for -helical prediction

• Tight distance constraints imposed based on -

helical topology prediction results



Alpha-helical Topology and

Tertiary Structure Prediction of

Globular Proteins

McAllister S.R., Mickus B.E., J.L. Klepeis, and C.A. Floudas, "A Novel Approach for

Alpha-Helical Topology Prediction in Globular Proteins: Generation of Interhelical

Restraints", Proteins, 65, 930-952 (2006).



Outline

• Predicting -helical contacts
– Probability development

– Model

– Results

• Predicting -helical contacts in /  proteins
– Distance bounding

– Model

– Results

• Structure prediction of -helical proteins
– Framework

– Results



ASTRO-FOLD

Derivation of Restraints

-Dihedral angle restrictions

-C  distance constraints

(Reduced Search Space)

Helix Prediction

-Detailed atomistic modeling

-Simulations of local interactions

(Free Energy Calculations)

Overall 3D Structure Prediction

-Structural data from previous stages

-Prediction via novel solution approach

(Global Optimization and Molecular Dynamics)

Loop Structure Prediction

-Dihedral angle sampling

-Discard conformers by clustering

(Novel Clustering Methodology)

-sheet Prediction

-Novel hydrophobic modeling

-Predict list of optimal topologies

(Combinatorial Optimization, MILP)

Klepeis, JL and Floudas, CA. Biophys J. (2003)



Overview

• Problem

– Topology prediction of globular -helical proteins

• Approach

• Thesis: Topology is based on certain Inter-helical

Hydrophobic to Hydrophobic Contacts

– Create a dataset of helical proteins

– Develop inter-helical contact probabilities

– Apply two novel mixed-integer optimization models (MILP)

• Level 1 - PRIMARY contacts

• Level 2 - WHEEL contacts

McAllister, Mickus, Klepeis, Floudas. Proteins.  2006, 65:930-952.



Dataset Selection

•Protein Sources

–229 PDBSelect251 database

–62 CATH2 database

–20 Zhang et al.3

–7 Huang et al.4

•Restrictions

–No -sheets, at least 2 -helices

–No highly similar sequences

•Dataset

–318 proteins in the database set

1Hobohm, U. and C.Sander.  Prot Sci 3 (1994) 522 
2Orengo, C.A. et al.  Structure 5 (1997) 1093.
3Zhang, C. et al.  PNAS 99 (2002) 3581.
4Huang, E.S. et al.  J Mol Biol 290 (1999) 267.

McAllister, Mickus, Klepeis, Floudas. Proteins.  2006, 65:930-952.



Probability Development

•Contact Types

–PRIMARY contact

•Minimum distance hydrophobic contact between 4.0 Å and 10.0 Å

–WHEEL contact

•Only WHEEL position hydrophobic contacts between 4.0 Å and

12.0 Å

•Classified as parallel or antiparallel contacts

McAllister, Mickus, Klepeis, Floudas. Proteins.  2006, 65:930-952.



Model Overview

•Formulation: Maximize inter-
helical residue-residue contact
probabilities

–Binary variables       indicate
antiparallel helical contact

–Binary variables       indicates residue
contact

•Goal: Produce a rank-ordered list
of the most likely helical contacts

–Contacts used to restrict
conformational space explored during
protein tertiary structure prediction

McAllister, Mickus, Klepeis, Floudas. Proteins.  2006, 65:930-952.



Pairwise Model Objective

•Level 1 Objective

–Maximize probability of pairwise

residue-residue contacts

McAllister, Mickus, Klepeis, Floudas. Proteins.  2006, 65:930-952.



Pairwise Model Constraints

•Level 1 Constraints

–At most one contact per position

–Helix-helix interaction direction

–Linking interaction variables

McAllister, Mickus, Klepeis, Floudas. Proteins.  2006, 65:930-952.



Pairwise Model Constraints

•Level 1 Constraints

–Restrict number of contacts between a

given helix pair (MAX_CONTACT)

–Vary the number of helix-helix interactions

(SUBTRACT)

McAllister, Mickus, Klepeis, Floudas. Proteins.  2006, 65:930-952.



Pairwise Model Constraints

•Level 1 Constraints

–Allow for and Limit helical kinks

McAllister, Mickus, Klepeis, Floudas. Proteins.  2006, 65:930-952.



Pairwise Model Constraints

•Level 1 Constraints

–Consistent numbering

McAllister, Mickus, Klepeis, Floudas. Proteins.  2006, 65:930-952.

k

i

j

l



Pairwise Model Constraints

• Feasible topologies

m n p

1 1



Pairwise Model Objective

•Level 2 Objective

–Maximize the sum of predicted wheel

probabilities

McAllister, Mickus, Klepeis, Floudas. Proteins.  2006, 65:930-952.



Pairwise Model Constraints

•Level 2 Constraints

–Require at most one wheel contact for a

specified primary contact

•Level 2 Aim

–Distinguish between equally likely Level

1 predictions

–Increase the total number of contact

predictions

McAllister, Mickus, Klepeis, Floudas. Proteins.  2006, 65:930-952.



Results – 2-3 helix bundles

PDB:1mbh in PyMol PDB:1nre in PyMol

McAllister, Mickus, Klepeis, Floudas. Proteins.  2006, 65:930-952.



Results – 1nre Contact Predictions

2-3 A--9.351I-77L

2-3 A8.149L-81L9.345L-85L

1-3 P--12.728L-83V

1-2 A9.128L-45L6.025L-49L

Helix-Helix

Interaction

WHEEL

Distance

WHEEL

Contact

PRIMARY

Distance

PRIMARY

Contact

•subtract 0, max_contact 2



Results – 1hta Contact Predictions

2-3 A8.446L-62L

1-2 A9.15I-28L

Helix-Helix

Interaction

PRIMARY

Distance

PRIMARY

Contact

•subtract 0, max_contact 1



Results – Contact Prediction Summary

McAllister, Mickus, Klepeis, Floudas. Proteins.  2006, 65:930-952.



Summary

• Thesis: Topology of alpha helical

globular proteins is based on inter-

helical hydrophobic to hydrophobic

contacts

• Validated on alpha helical globular

proteins



Outline

• Protein structure prediction overview

• Predicting -helical contacts
– Probability development

– Model

– Results

• Predicting -helical contacts in /  proteins
– Distance bounding

– Model

– Results

• Structure prediction of -helical proteins
– Framework

– Results



ASTRO-FOLD for -helical Bundles

Overall 3D Structure Prediction

-Structural data from previous stages

-Prediction via novel solution approach

(Global Optimization and Molecular Dynamics)

Derivation of Restraints

-Dihedral angle restrictions

-C  distance constraints

(Reduced Search Space)

Helix Prediction

-Detailed atomistic modeling

-Simulations of local interactions

(Free Energy Calculations)

Loop Structure Prediction

-Dihedral angle sampling

-Discard conformers by clustering

(Novel Clustering Methodology)

Interhelical Contacts

-Maximize common residue pairs

-Rank-order list of topologies

(MILP Optimization Model)

McAllister, Floudas. Proceedings, BIOMAT 2005.



Hybrid Global Optimization Algorithm
• All secondary nodes begin performing BB iterations

• Once the CSA bank is full, CSA takes control of a subset
of secondary nodes

BB Control CSA Control
Primary

processor

Secondary

processors

Idle Work

BB control

•Maintains list of lower bounding subregions

•Tracks overall upper and lower bounds

•Defines branching directions
•Sends and receives work to and from BB work nodes

CSA control

•Maintains CSA bank
•Maintains queue of BB minima for bank increases

•Handles bank updates

•Sends and receives work to and from CSA work nodes

Idle work

•Performs shear movements and perturbations on CSA

structures

•Only executed during idle time of primary processor

BB work

•Torsion angle dynamics

•Rotamer optimization

•Minimization of lower bounding function

•Minimization of upper bounding function

CSA work

•Rotamer optimization

•Minimization of CSA trial conformation

McAllister and Floudas. 2007, Submitted for publication.



Results – Tertiary Structure Prediction

•PDB: 1nre

Lowest energy predicted structure

of 1nre (color) versus native 1nre

(gray)

Lowest RMSD predicted structure

of 1nre (color) versus native 1nre

(gray)

Energy -1395.48

RMSD  6.63

Energy -1340.45

RMSD  3.52



Results – Tertiary Structure Prediction

•PDB: 1hta

Lowest energy predicted structure

of 1hta (color) versus native 1hta

(gray)

Lowest RMSD predicted structure

of 1hta (color) versus native 1hta

(gray)

Energy -941.02

RMSD  6.70

Energy -915.57

RMSD  2.58



Results – Blind Tertiary Structure Prediction
(Collaboration with Michael Hecht)

•S836

Lowest energy predicted structure

of s836 (color) versus native s836

(gray)

Lowest RMSD predicted structure

of s836 (color) versus native s836

(gray)

Energy -1740.11

RMSD  2.84

Energy –1697.88

RMSD  2.39



Advances In De Novo

Protein Design

Christodoulos A. Floudas
Princeton University

Department of Chemical Engineering

 Program of Applied and Computational Mathematics

 Department of Operations Research and Financial Engineering

 Center for Quantitative Biology



De Novo Protein Design

Relevant References:

• Klepeis J.L., C.A. Floudas, D. Morikis, C.G. Tsokos, E. Argyropoulos, L. Spruce, and J.D. Lambris, "Integrated

Computational and Experimenal Approach for Lead Optimization and Design of Compstatin Variants with Improved

Activity", Journal of the American Chemical Society, 125 (28), 8422-8423 (2003).

• Morikis D., A.M. Soulika, B. Mallik, J.L. Klepeis, C.A. Floudas, and J.D. Lambris, "Improvement of the anti-C3 activity of

complement using rational and combinatorial approaches", Biochemical Society Transactions, 32, 28-32 (2003).

• Klepeis J.L., C.A. Floudas, D. Morikis, and J.D. Lambris, "Design of Peptide Analogs with Improved Activity using a Novel

de novo Protein Design Approach", Industrial and Engineering Chemistry Research, 43, 3817-3826 (2004).

• Fung H.K., Rao S., Floudas C.A., Prokopyev O., Pardalos P.M., and F. Rendl, "Computational Comparison Studies of

Quadratic Assignment Like Formulations for the In Silico Sequence Selection Problem in De Novo Protein Design", Journal

of Combinatorial Optimization, 10, 41-60 (2005).

• Fung H.K., Taylor M.S. and C.A. Floudas, "Novel Formulations for the Sequence Selection Problem in de Novo Protein

Design with Flexible Templates", Optimization Methods and Software, 22 (1), 51-71 (2007).

• Fung H.K., Floudas C.A, Taylor M.S., Zhang L., and D. Morikis, "Towards Full Sequence De Novo Protein Design with

Flexible Templates for Human Beta-Defensin-2", Biophysical J., 94, 584-599 (2008).

• Taylor M.S., Fung H.K., Rajgaria R., Filizola M., Weinstein H., and C.A. Floudas, "Mutations Affecting the Oligomerization

Interface of G-Protein Coupled Receptors Revealed by a Novel De Novo Protein Design Framework", Biophysical J., 94,

2470-2481 (2008).

Review Articles

• Floudas C.A., "Research Challenges, Opportunities and Synergism in Systems Engineering and Computational Biology",
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Complement System
• ~30 distinct plasma proteins that interact to attack/eliminate pathogens

• Activated via (3) interacting pathways

• (A) Classical   : Antibody-binding (IgM, IgG) to pathogens

• (B) Lectin     : Mannose binding protein to carbohydrates on bacteria or viruses

• (C) Alternative : Spontaneous binding to pathogens

  (A) : Adaptive/Acquired Immune Response

 (B); (C) : Innate/Natural Immune Response

• Activation of the Complement System results in :
• opsonization of pathogens (C3b; C4b)

• recruitment of inflammatory cells (C3a; C5a; C4a+)

• killing of pathogens (C5b, C6, C7, C8, C9)  

                                            MAC: Membrane Attack Complex

• Acute Complement-Mediated Conditions          Annual US Patient Population

• Myocardial Infarction (Heart Attack)                                        1,500,000

• Coronary Artery Bypass                                                              363,000

• Stroke                                                                                          600,000

• Chronic Complement-Mediated Conditions

• Rheumatoid Arthritis                                                                 2,100,000

• Alzheimer’s Disease                                                                 4,000,000

• Systemic Lupus Erythematosus                                                   500,000

Unregulated Activation

Host Cell Damage

Need for Inhibitors



Complement Pathways

• C3 is central in the complement system

• C3 activation/inhibition essential for all

   functions of the complement system

• C3 acts as “double edge sword”

• Promotes phagocytosis

• Host cell damage - cytolysis

with Prof.. John Lambris

(Univ. of Pennsylvania)

and Prof. Dimitris Morikis

(Univ. of California, Riverside)



Complement 3 : Design of Inhibitors

 Compstatin : Synthetic Inhibitor
• 13 amino acid cyclic peptide

   ICVVQDWGHHRCT

• Disulfide bridge 

•  beta-turn

With Prof. John Lambris, University of Pennsylvania, School of Medicine

With Prof. Dimitris Morikis, University of California at Riverside 

Objective 
Designed improved Inhibitors

(Compstatin-like inhibitors)



C3a

with Prof. John Lambris

(Univ. of Pennsylvania)

and Prof. Dimitris Morikis

(Univ. of California, Riverside)

Biologically active fragment of C3 component in the

complement pathway
A potent mediator of inflammation

Background

•77 residues, 3 S-S bonds, 4 -helices

• C-terminal primary binding site (LGLAR)

• Super-potent peptide (12-15 times more active than natural C3a)

WWGKKYRASKLGLAR corresponding to positions 63-77 identified by

Ember et al., Biochemistry, 1991

• Extensive sequence-activity studies by Ember et al., Biochemistry, 1991

• Ideal target for pharmaceutical development because of its small size and

the fact that no complement inhibitor is yet available in clinic

Functions

• Binds to C3a receptor (C3aR) with nanomolar affinity

• structure of positions 1-12 not resolved



Structure of C3a

N-terminal
C-terminal

helix III

helix IV

helix II

13
77

17

23

37

41

47

69

• Segment 1 – 12 is not shown

because structure data are not

available.

• helix I is segment 5 – 15.



Antibacterial Peptides

  Beta-Defensins
• Family of antimicrobial peptides

• Cationic peptides of 28-42 AAs

• Structure for only (2) humanBDs

• Structure-function unknown

• Low sequence identity 

• hBD-2 10x more potent than hBD-1

Objective 
Design improved

antibacterial peptides

25 30 35 40 44

hBD-2 I G D P V T C L K S G A I C H P V F C P

hBD-1 . . D H Y N C V S S G G Q C L Y S A C P

mBD-7 . N S K R A C Y R E G G E C L Q . R C I

mBD-8 . N E P V S C I R N G G I C Q Y . R C I

hBD-3 T L Q K Y Y C R V R G G R C A V L S C L

hBD-4 F E L D R I C G Y G T A R C R K . K C R

mBD-1 . . D Q Y K C L Q H G G F C L R S S C P

mBD-2 . A E L D H C H T N G G Y C V R A I C P

mBD-3 I N N P V S C L R K G G R C W N . R C I

mBD-4 I N N P I T C M T N G A I C W G . P C P

bBD-1 . . D F A S C H T N G G I C L P N R C P

bBD-2 . . N H V T C R I N R G F C V P I R C P

bBD-12 . . G P L S C G R N G G V C I P I R C P

45 50 55 60 64

hBD-2 R R Y K Q I G T C G L P G T K C C K K P

hBD-1 I F T K I Q G T C Y R G K A K C C K . .

mBD-7 G L F H K I G T C . N F R F K C C K F Q

mBD-8 G L R H K I G T C . G S P F K C C K . .

hBD-3 P K E E Q I G K C S T R G R K C C R R K

hBD-4 S Q E Y R I G R C P N T Y A . C C L R K

mBD-1 S N T K L Q G T C K P D K P N C C K S .

mBD-2 P S A R R P G S C F P E K N P C C K Y M

mBD-3 G N T R Q I G S C G V P F L K C C K R K

mBD-4 T A F R Q I G N C G H F K V R C C K I R

bBD-1 G H M I Q I G I C F R P R V K C C R S W

bBD-2 G R T R Q I G T C F G P R I K C C R S W

(with Prof. D. Morikis)



De Novo Protein Design

Define target template

Human -Defensin-2

 hbd-2 (PDB: 1fqq)

Full sequence design
Mayo et al.; Hellinga et al.; DeGrado et al;

Saven et al.; Hecht et al.

Design folded protein

Challenges
 In silico sequence selection

 Fold specificity

Backbone coordinates for N,Ca,C,O

and possibly Ca-Cb vectors from PDB

Which amino acid sequences will

stabilize this target structure ?

Combinatorial complexity
-Backbone length : n

-Amino acids per position : m

      mn possible sequences



De Novo Protein Design

Define target template

Human -Defensin-2

 hbd-2 (PDB: 1fqq)

Full sequence design
Mayo et al.; Hellinga et al.; DeGrado et al;

Saven et al.; Hecht et al.

Design folded protein

Challenges
 In silico sequence selection

 Fold validation/specificity

Backbone coordinates for N,Ca,C,O

and possibly Ca-Cb vectors from PDB

Which amino acid sequences will

stabilize this target structure ?

Combinatorial complexity
-Backbone length : n

-Amino acids per position : m

      mn possible sequences



De Novo Protein Design: challenges

 Pierce and Winfree, 2002

Fung, Rao, Floudas, Prokopyev,

Pardalos, Rendl, 2005

Full combinatorial

design of a 100-

residue protein

20100 or 10130 amino acid sequences,

(20r)100 rotamer sequences to

consider !

- No exact polynomial-time algorithms known

- For exponential-time algorithms, computation

time varies exponentially with number of design

positions

Average number of

rotamers per amino acid

- Currently often only possible to

design core, boundary or surface

regions of small protein domains

(25 – 74 residues)  (Gordon et al., J. Comput. Chem., 2003)

• Flexibility of Backbone Templates

• Full sequence combinatorial design of proteins of
practical size still challenging

• De novo protein design: NP-hard problem



Background and Advances
• Stochastic Methods: MC, Genetic Algorithms

Tuffery et al. (1991); Desjarlais, Handel (1995), (2003)

• Probabilistic Approaches, Combinatorial Libraries

Saven & co-workers (2000), (2001), (2004)

• Deterministic Methods

- Self-Consistent Mean Field (Koehl, Delarue, 1994)

      - Self-Consistent Mean Field and MC (Koehl, Levitt, 1999a.b)

- Dead End Elimination Criterion (Mayo & coworkers;Desjarlais,

Handel,1995,1999; Hellinga & co-workers; Desmet at al. 1992; Goldstein, 1994;Pierce et
al. 2000)

•  Iterative Sequence-Structure (Kuhlman et al. 2003)



Background 

    Different De Novo Protein Design Approaches

• Stochastic methods:

• Monte Carlo

   - Perturb the structure by some random change in residue or

rotamer. Move is accepted if Boltzmann probability is higher than

some random number.

• Genetic algorithms

  -Random sequences are allowed to mutate, cross-over, and

reproduce. High energy sequences are eliminated from population.

• Stochastic methods do not guarantee

convergence to the global energy minimum

 Metropolis et al., J. Chem. Phy., 1953

 Tuffery et al., J. Biomol. Struct. Dyn.,

1991



Background 

Different De Novo Protein Design Approaches

 Zou and Saven, J. Mol. Bio., 2000

Kono and Saven, J. Mol. Bio., 2001

Park et al., Current Opinion in Structural Biology, 2004

• Combinatorial Libraries: Probabilistic approach

    - set of 20 probabilities for each design position

    - maximize the total conformational entropy subject to constraints:

    - provide framework for designing and interpreting protein

combinatorial experiments

)()1))(,(())(,(ln))(,(max
)(,)(,,

o

r

ii

ri

i EErwrwrw

i: position     : amino acid    r( ): rotamer

Lagrange multipliers



Background

    Different De Novo Protein Design Approaches

• Deterministic methods:

• Self-Consistent Mean Field

   - refines iteratively a conformational matrix

   - initial guess for conformational matrix:                      for

rotamer k of residue I

    - mean field energy:

     - update conformational matrix:

    - convergence criterion (e.g., 10-4) is set to define self-consistency

 Koehl and Delarue, J. Mol. Bio., 1994

Lee, J. Mol. Bio., 1994
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Background 

Different De Novo Protein Design Approaches

 Koehl and Levitt, J. Mol. Bio., 1999I,II

• Self-Consistent Mean Field + Monte Carlo

    - energy function: full-atomistic using self-consistent mean field

approach

    - “Design in” for stability and “design out” for specificity, using the

approximation of a random energy model:

Initial sequence So

Randomly exchange 2

positions New sequence S1

Calculate

P=exp[-(E1-E0)/kT]

W = Ran[0,1]

If W < P,

So = S1

Eo = E1

Repeat N times

Partition function is assumed to depend on

amino acid composition but not the ordered

sequence  specificity  (confirmed by fold

recognition techniques) achieved by optimizing

sequence space and holding amino acid

composition fixed



Background

    Different De Novo Protein Design Approaches

• Deterministic methods:

• Dead-End Elimination

   - systematically eliminate rotamers that

   are incompatible with the lowest energy sequence

    - energy function:

    - different dead-end elimination criteria:

 Desmet et al., Nature, 1992

Voigt et al., J. Mol. Bio., 2000

Pierce et al., J. Comput. Chem., 2000

Gordon et al., J. Comput. Chem., 2003
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Background

 Looger & Hellinga, J. Mol. Bio., 2001

Fundamental Assumptions of Dead-End Elimination

Fixed backbone template

Discrete set of rotamers

0)],'(),([min)'()(
,1

}{||}{
>+

=

p

rj

ss
jcj

jcEjcEcEcE
ss

Generalized

 DEE criterion

• Dead-End Elimination

Different De Novo Protein Design Approaches

c: query cluster

c’: comparison cluster



Background 

•  Deterministic methods guarantee convergence to

the global minimum

•  Self-Consistent Mean Field and Dead-End

Elimination methods either:

1. assume a fixed template

2. fix the amino acid composition

2. consider an average set of templates

3. consider a discrete set of rotamers

True backbone flexibility is not allowed



De Novo Protein Design: Advances

Conferring novel functions onto template

• DEZYMER program for designing metalloproteins

  1. First identify the catalytic functional groups

that catalyze the desired reaction

   2. Relocate these groups from mother sequence

to the best positions in the de novo designed protein

• Succeeded to create Zn, FeS, and Cu binding sites in

thioredoxin, a protein which normally does not bind

metals

Richards and Hellinga,

J. Mol. Bio., 1991

Richards et al., J. Mol. Bio., 1991

Benson et al., Proc. Nat. Acad.

Sci. USA, 2000

(Richards et al., J. Mol. Bio., 1991)



De Novo Protein Design: Advances

Better stability and specificity

• Engineered -lytic protease showed over 200-fold

preference for one substrate kind over another

• Redesigned compstatin (complement 3 inhibitor) found

to have the best inhibitory activity of 16-fold more potent

than the parent peptide

•Higher stability by having more hydrophobic amino

acids in the core than parent proteins

•Redesign protein-protein interfaces

Wilson et al., J. Mol. Bio., 1991

Klepeis et al., J. Am. Chem. Soc., 2003

Klepeis et al., Ind. & Eng. Chem. Research, 2004

Kuhlman & Baker, 

Current Opinion in Structural Biology , 2004

Kortemme & Baker, 

Current Opinion in Chem. Bio., 2004



De Novo Protein Design: Advances

Locking proteins into particular conformations

• Enforced integrin I,  a cell-surface adhesion receptor

that binds with complement component iC3b, to adopt

either the open or closed conformation

•Restricted amino-terminal domain of calmodulin to its

calcium saturated closed form.

Shimaoka et al., Nat. Struct. Bio., 2000

Kraemer-Pecore et al.,

 Current Opinion in Chem. Bio., 2001

many more other successes, but…



• Scaling down the atomic van der Waals radii by a factor (~5-10%)

• Considering a fixed set of rotamers (DEE) or changing super-secondary structure
parameters which alter relative orientation and distance between secondary
structures

• Generating ensemble of random structures from template

Flexibility of Backbone Templates

Dahiyat, B.I. & Mayo, S.L. (1997)  Proc. Natl. Acad. Sci. USA, 94, 10172-10177.

Su, A. & Mayo, S.L. (1997) , Protein Science, 6, 1701-1707.

- Overestimation of attractive forces between atoms and the

possibility of atom overpacking

- Only a subset of possible conformations is considered

Desjarlais, J.R. & Handel, T.M. (1999),J. Mol. Bio., 289, 305-318.

- Solve each structure in the ensemble assuming fixed backbone and

apply genetic algorithms and Monte Carlo sampling to combine results

into a single low energy structure

- Only a random subset of possible conformations is considered



• Iterating between sequence space and structure space

Flexibility of Backbone Templates

Saunders, C.T. & Baker D. (2005)  J. Mol. Bio., 346, 631-644.

Kuhlman, B. & Dantas G. & Ireton G.C. & Varani G. & Stoddard B.L. & Baker D. (2003)  J. Mol. Bio., 302,

1364-1368.

- Backbone flexibility only indirectly addressed

by transitions between similar structures in

the structure space

Structure prediction

using Rosetta (MC

energy minimization)

Sequence design using

RosettaDesign (MCsearch,

12-6 LJ energy function )

sequencestructure

• for each of an

ensemble of starting

structures around the

target fold



Flexibility of Backbone Templates 

De novo protein design framework allows true backbone flexibility

L U

C C C C C C

L U

L U

d d d

• C -C  distance and dihedral angles are

 bounded continuous functions

Incorporated in stage 1 through

the use of distance bins and in

stage 2 through lower and

upper bounds.

Incorporated in stage 2 through

the template-constrained folding

calculation. Bounds are ± 10o.

Floudas, AIChE J. (2005); Klepeis, Floudas, Morikis, Lambris, JACS (2003), IERC (2004);

Fung, Rao, Floudas, Prokopyev, Pardalos, Rendl, J. Comb. Optim. (2005)Fung, Taylor,

Floudas, Opt. Meth. Soft. (2007)

- NMR ensemble

- MD with GB

- MD with Explicit water molecules



    Sequence selection stage: generates a rank-ordered list of

sequences with the lowest energies by solving an integer linear programming

(ILP) model

- Quadratic-assignment-like models
(Klepeis et al., JACS (2003); Klepeis et al., IERC (2004); Fung et al., J. Comb.

Optim.,2005; Fung, Taylor, Floudas, OMS, 2007)

- Distance-dependent C -C , centroid-centroid forcefields
(Loose, Klepeis, Floudas, Proteins (2004); Rajgaria, McAllister, Floudas,

Proteins, 2006; Rajgaria, McAllister, Floudas, Proteins, Accepted, 2007)

  Fold specificity stage: calculates specificity of each sequence to the

flexible design template using full-atomistic force fields AMBER, ECEPP/3

- First principles via ASTRO-FOLD
(Klepeis and Floudas, Biophys. J., 2003)

- NMR structures refinement-based method via CYANA and

TINKER using AMBER

 De Novo Protein Design Framework



De Novo Protein Design Framework
Klepeis, Floudas, Lambris, Morikis 2003, 2004

Fung, Taylor, Floudas 2005, 2007

Sequence selection
• Identify target template for desired fold;

  specify coordinates of backbone

• Identify possible residue mutations

• Distance dependent

  pairwise potentials
• Generate rank-ordered energetic

  list from mixed-integer linear (MILP)

Fold Validation:Specificity
• Model selected sequences using flexible, detailed energetics

• Employ global optimization for free system

• Employ global optimization for

  system constrained to template

• Calculate relative probability for

  structures similar to desired fold



A High Resolution Ca-Ca and Side

Chain Centroid Based Distance

Dependent Force Field

R. Rajgaria S. R. McAllister and C. A. Floudas, Proteins, 70, 950-970 (2008)

R. Rajgaria S. R. McAllister and C. A. Floudas, Proteins, 65(2), 726-741 (2006)

C. Loose, J.L. Klepeis and C.A. Floudas, Proteins, 54:303-314 (2004)



• Create a distance-dependent force field to find

native protein folds.

• Design a training procedure that will make the

force field robust using large scale linear

optimization

• Test our force field against a very good distance

dependent force fields (e.g., TE-13)1 by

attempting to identify the native fold of novel

proteins.

Objectives

1 Tobi, D.; Elber, R. Distance-Dependent, Pair Potential for Protein

Folding. Proteins: Structure, Function, and Genetics 2000, 41, 40-46.



Force Field – Formulation*

 C  C  distance dependent
 8-bin definition (ID)

 More resolution for bin 3 to 6

 210 amino-acid combination (IC)

 1680 energy variables (      )

 Energy calculation
 Sum of pairwise interaction at a

particular distance

Table 1: Bin Definition

8-98

7-87

6.5-76

6-6.55

5.5-64

5-5.53

4-52

3-41

C -distance [Ao] Bin ID

*Loose. C., Klepeis. J.L., and Floudas. C.A., Proteins ,2004, 54, 303-314.

*Rajgaria. R., McAllister. S., and Floudas C.A. Proteins,2006, 65, 726-741 .

Parameter

Variable



Force Field – Formulation*

 Anfinsen’s hypothesis was used as main criteria for
energy evaluation

Many more constraints – based on physical properties
of interacting amino acids

]25,25[, IDIC

*Loose. C., Klepeis. J.L., and Floudas. C.A., Proteins ,2004, 54, 303-314.

 *Rajgaria. R., McAllister. S., and Floudas C.A. Proteins, 2006, 65, 726-741.



Constraints

 Smooth profile (Tobi and Elber*, 2000)

A

n,m
yh

sj,si
w

*Tobi. D., and Elber. R., Proteins ,2000, 41, 40-46.



Constraints

Smooth profile ( Tobi and Elber, 2000)

Decrease in effectiveness at long distances

Favorable interaction at 4-6.5 Å between hydrophobic groups
(Bahar and Jernigan, 1997)

 “Energy well” formation at around 4.5 to 5.0 Å (below this

“steric effects” and above this “insufficient contact”)



Hydrophobic Constraints*
 Captures interaction between certain

amino acids (Bahar and Jernigan, 1997)

 Favorable interaction at 4-6.5 Å between

   hydrophobic groups

 “Energy well” formation at around 4.5 to 5.0 Å

(below this “steric effects” and above this

“insufficient contact”)
Table 2: Amino Acid Classification

*Loose. C., Klepeis. J.L., and Floudas. C.A., Proteins ,2004, 54, 303-314.



High Resolution Decoys* - Idea

 Goal

 To create a large number of near-

native protein structures for a non-

homologous set of proteins that span

the Protein Data Bank.

 Hypothesis

 High quality near-native structures

maintain similar C -C  distances for

the hydrophobic residues contained

in the elements of secondary structure.

*Rajgaria. R., McAllister. S., and Floudas C.A. Proteins, 2006, 65, 726-741.



High Resolution Decoys - Generation

 The Set: 1482 non-homologous proteins from Skolnick and co-workers*.

Method

–  Identify hydrophobic residues in the secondary
structure

–  If protein contains little secondary structure then
consider all hydrophobic residues.

–  Introduce a range of distance variations for the
selected residues (8 values between 0.5 Å and 5.0 Å).

–  An ensemble of 200 structures is created through
torsion angle dynamics enforcing the distance bounds
on the hydrophobic core.

*Zhang. Y. and Skolnick J. PNAS, 2004, 101, 7594-99.



Method and Implementation

 Training

 1250 proteins and 500 decoys of each protein

 LP formulation to optimize energy parameters

 Due to limited computer memory

 Only a small subset of high quality decoys were used at a time

 Iterative dropping scheme was used to include all decoys in force
field generation

 Testing

 High Resolution Set

 150 randomly selected proteins

 500 decoys of each protein

 Medium Resolution Set
 151 randomly selected proteins

 200 decoys of each protein

   74   607   1.0-1.5

  15

   60

  1

Test

Set

   173   1.5-2.0

   458   0.5-1.0

   12   0.0-0.5

Training

Set

RMSD

(native)

Minimum RMSD distribution

  150

Test Set

   3.0-16.0

RMSD (native)



Results* – Testing the Force Field
 Evaluation Metrics

– average rank

– number of first ranked proteins

– average RMSD

– Z-score

Test on High Resolution Decoys

0.81

1.72

0.45

Avg. RMSD (Å)

     3.15    92  19.94   TE-13

     1.55    17  39.45   LKF

     2.11   113   1.87   HR

Avg. Z-score # FirstsAvg. RankFF name

*Rajgaria. R., McAllister. S., and Floudas C.A. Proteins, 2006, 65, 726-741.



Results – Testing the Ca-Ca

Distance Dependent Force Field

 Test on Medium Resolution Decoys

 Common proteins between HR training set and

LKF test set were removed

      2.01

      3.08

      3.83

Avg. Z-score

- not avail -   43/131  17.36   TE-13**

     3.51   93/151   5.84   LKF

     1.90   86/110*   4.32   HR

Avg.RMSD(Å) # FirstsAvg. RankFF name

**Tobi. D., and Elber. R., Proteins ,2000, 41, 40-46.



Side Chain Centroid based Force
Field

*Rajgaria. R., McAllister. S. R., and Floudas C.A.



Side Chain Based Force Field

 Importance

– C  based formulation disregards presence of the side chain

atoms

– Inclusion of side chain atoms might improve the energy

estimation

– Side chain dependence needed for protein design problems

 Need to revisit the interaction center definition

 “effective” distance range might be different

 define “centroid”



Force Field – Side Chain Based

Formulation

 Side Chain Centroid definition

TyrPhe

Pro

Arg



Force Field – Side Chain Based Formulation

 Side Chain Centroid distance

    dependence
 6-bin definition (ID)

 More resolution for bin 2 to 5

 210 amino-acid combination (IC)

 1260 energy variables (      )

 Energy calculation
 Sum of pairwise interaction

Table 5: 6-Bin Definition

7-86

6.5-75

6-6.54

5.5-63

5-5.52

4-51

Centroid-distance[Ao] Bin ID

7-86

8-97

6.5-75

6-6.54

5.5-63

5-5.52

4-51

Centroid-distance[Ao] Bin ID

Table 6: 7-Bin Definition



Results – Testing the Force Field

 Testing Centroid Based Force Field

on High Resolution Decoys

*Tobi. D., and Elber. R., Proteins ,2000, 41, 40-46.

     3.620.29 128/148   2.496bin-HRSC

0.81

1.72

0.45

0.32

Avg.RMSD (Å)

     3.39 125/148   2.017bin-HRSC

     3.15  92/148  19.94   TE-13*

     1.55  17/150  39.45   LKF

     2.11 113/150   1.87   HR

Avg. Z-score # FirstsAvg. RankFF name

*Rajgaria. R., McAllister. S. R., and Floudas C.A. , Proteins, Accepted for publicaion, (2007)



De Novo Protein Design Framework
Klepeis, Floudas, Lambris, Morikis 2003, 2004

Fung, Taylor, Floudas 2005, 2007

Sequence selection
• Identify target template for desired fold;

  specify coordinates of backbone

• Identify possible residue mutations

• Introduce distance dependent

  pairwise potential based on Ca

• Generate rank-ordered list

  from mixed-integer linear (MILP)

Fold Validation:Specificity
• Model selected sequences using flexible, detailed energetics

• Employ global optimization for free system

• Employ global optimization for

  system constrained to template

• Calculate relative probability for

  structures similar to desired fold



Sequence Selection : Key Ideas

• Consider template peptide of n positions

• At each position i = 1,2,...,n there can be j = 1,2,...,mi mutations

• Define equivalent sets k = 1,2,...,n and l = 1,2,...,mk

• Require k > i to represent all unique interactions

• Introduce 0-1 variables to indicate possible mutations

  at a given position

yi
j  = 

yk
l  =

1  if residue type j is in position i 

0  otherwise

1  if residue type l is in position k 

0  otherwise



Mixed-integer Nonlinear Model

• Eik
jl  is energy for protein with residue

  j at position I and residue l at position k
• taken from pairwise distance dependent
  energy function (xij, xkl) using Ca positions
• parameters derived from MILP model to
  select native over low energy decoys

Important Remarks
• yi

j  and yk
l are binary variables that control

  the residue  type at a given position
• Binary variables appear bilinearly Nonconvex

yi
j = 

yk
l =

1  if residue type j 
    is in position i 
0  otherwise

1  if residue type l 
    is in position k 
0  otherwise



Mixed-integer Linear Reformulation

• Transform bilinear combinations to linear variables wik
jl

• Reproduce properties of original formulation with constraints
                     if   yi

j    =    yk
l   =  0  wik

jl =   0
                     if   yi

j     =    yk
l   =   1  wik

jl =   1
                     if   yi

j   OR  yk
l   =   0  wik

jl =   0
• Use Reformulation Linearization Technique (RLT)
  based constraints to reduce integrality gap

Floudas 1995

Sherali & coworkers

Prove global optimality



Compstatin
Potent inhibitor of third component of complement

Structural features

• Cyclic, 13 residues

• Disulfide Bridge Cys2-Cys12

• Central beta-turn

  Gln5-Asp6-Trp7-Gly8

• Hydrophobic core

• Acetylated form displays

  higher inhibitory activity

Functional features

• Binds to and inactivates

  third component of complement

• Structure of bound complex not

  yet available

with Dr. John Lambris

(Univ. of Pennsylvania)

and Dr. Dimitri Morikis

(Univ. of California, Riverside)



Sequence Selection : Compstatin
Design a more potent C3 inhibitor

Variable positions

• Conserve cystine residues (maintain cyclic nature of peptide)

• Conserve turn residues (do not overstabilize the turn)

Consensus results from top sequences

Key finding from computations

• His conserved at position 10

• Position 11 provides most variation : maintain Arg

• Selections at positions 4 and 9 allow for turn flexibility

Position Exp

1 A,V

4 Y,V

9 T,F,A

10 H

11 T,V,A,F,H

13 V,A,F



New Enhancements of

Quadratic Assignment like

Models•  Three new algorithmic enhancement components to

consider:

1.  RLT with inequality constraints

2.  Triangle inequalities

3.  Preprocessing via DEE theorem

• Different combinations of the three components

incorporated into the QA-like model to check for

computational performance

 Fung, Rao, Floudas, Prokopyev, Pardalos, Rendl, J. Comb. Opt. (2005)
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- obtained by declaring        as binary and new reduction properties

- we compared performance of the two models

New sequence selection model for single template structure:

jl

ikw

Fung, Floudas et al., J. Comb. Optim., 2005; Fung, Taylor, Floudas et al., OMS, 2007

Stage one: New formulation for sequence selection 

jl

ikw



Sequence selection models for flexible template with

multiple structures: NEW MODELS

• We developed two different models:

1. Formulation using a weighted average of the structures

Position i

C 1
C 2 C 3

C 4

C 5

C 6
C 7

C 8

Position k

 3  4

    5  5.5    6   6.5

 7  8  9

Energy

dis(i,k)[Å]

HR forcefield

(Rajgaria and

Floudas, 2006)
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Flexible design template



2. Formulation using binary distance bin variables – Most General Model

iknb  = 1 if dis(i,k) falls into dist. bin n

 = 0 otherwise
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Sequence selection models for flexible template with

multiple structures

Flexible design template

Position i

C 1
C 2 C 3

C 4

C 5

C 6
C 7

C 8

Position k

 3  4

    5  5.5    6   6.5

 7  8  9

 Energy

 dis(i,k)[Å]

HR forcefield

(Rajgaria and

Floudas, 2006)

wik2

wik3

wik4

1 2  3

1 or 2 or 3



Antibacterial Peptides
  Beta-Defensins

• Family of antimicrobial peptides

• Cationic peptides of 28-42 AAs

• Structure for only (2) humanBDs

• Structure-function unknown

• Low sequence identity 

• hBD-2 10x more potent than hBD-1

Objective 
Design improved

antibacterial peptides

25 30 35 40 44

hBD-2 I G D P V T C L K S G A I C H P V F C P

hBD-1 . . D H Y N C V S S G G Q C L Y S A C P

mBD-7 . N S K R A C Y R E G G E C L Q . R C I

mBD-8 . N E P V S C I R N G G I C Q Y . R C I

hBD-3 T L Q K Y Y C R V R G G R C A V L S C L

hBD-4 F E L D R I C G Y G T A R C R K . K C R

mBD-1 . . D Q Y K C L Q H G G F C L R S S C P

mBD-2 . A E L D H C H T N G G Y C V R A I C P

mBD-3 I N N P V S C L R K G G R C W N . R C I

mBD-4 I N N P I T C M T N G A I C W G . P C P

bBD-1 . . D F A S C H T N G G I C L P N R C P

bBD-2 . . N H V T C R I N R G F C V P I R C P

bBD-12 . . G P L S C G R N G G V C I P I R C P

45 50 55 60 64

hBD-2 R R Y K Q I G T C G L P G T K C C K K P

hBD-1 I F T K I Q G T C Y R G K A K C C K . .

mBD-7 G L F H K I G T C . N F R F K C C K F Q

mBD-8 G L R H K I G T C . G S P F K C C K . .

hBD-3 P K E E Q I G K C S T R G R K C C R R K

hBD-4 S Q E Y R I G R C P N T Y A . C C L R K

mBD-1 S N T K L Q G T C K P D K P N C C K S .

mBD-2 P S A R R P G S C F P E K N P C C K Y M

mBD-3 G N T R Q I G S C G V P F L K C C K R K

mBD-4 T A F R Q I G N C G H F K V R C C K I R

bBD-1 G H M I Q I G I C F R P R V K C C R S W

bBD-2 G R T R Q I G T C F G P R I K C C R S W



De Novo Design of h D-2
Structural features of Human beta defensin - 2:

27, 28, 37Bulges

25 - 29Hairpins

32 - 35

21 - 24-Turns

16 - 19

20 - 38

15 - 30S-S bonds

8 - 37

5  - 10 Helix

36 - 39

25 - 28 Strands

14 - 16

PositionsStructural Feature

16142)(
,

++++++++ iyyyyyyyyy Val

i

Tyr

i

Trp

i

Phe

i

Met

i

Leu

i

Ile

i

Cys

i

ji

Ala

i

At least 2 hydrophobics on each  strand:

28252)(
,

++++++++ iyyyyyyyyy Val

i

Tyr

i

Trp

i

Phe

i

Met

i

Leu

i

Ile

i

Cys

i

ji

Ala

i

Constraints to

add to model:



De Novo Design of h D-2

+30Total helix charge

94Net charges

20Negative charges

105Positive charges

upper boundlower bound

iyyyyyyyyy Val

i

Tyr

i

Trp

i

Phe

i

Met

i

Leu

i

Ile

i

Cys

i

ji

Ala

i ++++++++ 17)(
,

Total number of hydrophobics more than wild type sequence for higher

stability (Kuhlman & Baker, Cur. Op. Struct. Bio., 2004):

More constraints to add…

• Using PSI-BLAST, homology search was run to determine properties
that are conserved among h D and similar sequences.

•Conserved properties are translated into constraints:
Charge properties of the 97 h D homologs from PSI-BLAST

1053)(0

9)(4

2)(0

10)(5

,

,

,

,

+

+

+

+

iyyyy

iyyyy

iyy

iyy

Glu

i

Asp

i

Lys

i

ji

Arg

i

Glu

i

Asp

i

Lys

i

ji

Arg

i

Glu

i

ji

Asp

i

Lys

i

ji

Arg

i



De Novo Design of h D-2
More constraints to add…

60Val

40Tyr

1100TrpTrp

40Thr

60Ser

5500ProPro

40Phe

30Met

70Lys

40Leu

60Ile

40His

7733GlyGly

30Glu

30Gln

7744CysCys

20Asp

60Asn

91Arg

30Ala

upper boundlower boundAmino acid

Amino acid occurrence of the

 97 h D homologs from PSI-BLAST

iyiy

iyiy

iyiy

iyiy

iyiy

iyiy

iy

iyiy

iyiy

iyiy

ji

Val

i

ji

Tyr

i

ji

Trp

i

ji

Thr

i

ji

Ser

i

ji

o

i

ji

Phe

i

ji

Met

i

ji

Lys

i

ji

Leu

i

ji

Ile

i

ji

His

i

ji

Glu

i

ji

G

i

ji

Cys

i

ji

Asp

i

ji

Asn

i

ji

Arg

i

ji

Ala

i

6040

2040

6055

4030

7040

6040

30

3066

2060

9130

,,

,,

,,

Pr

,,

,,

,,

,

,

ln

,

,,

,,

• No. of Cys fixed at 6 (3 S-S bridges)

• No. of Pro (inflexible) fixed at 5 (same as native sequence)

• Max. Trp set to 2 to allow greater flexibility

• No constraint on Gly



De Novo Design of h D-2
In Silico Sequence Selection

• Pos 1, 3, 12, 31, and 34 fixed at Gly

• Pos 5, 17, 21, 33, and 41 fixed at Pro

• Pos 8, 15, 20, 30, 37, and 38 fixed at Cys

• Full combinatorial optimization (all 20 amino acids

allowed) for other positions

Complexity: 2025 or 3.4 1032 sequences

Global energy minimum solution:

CysCysAlaMetProProTyrCysCysTyrTyrGlyGlyLysThrAspCysCysAsnArgProProTyrGlyGlyArgGlyGly

2020191817171615151413121211109887655433211

ProProHisAlaCysCysCysCysPhePheGlyGlyProProMetGlyGlyCysCysMetHisPhePheHisArgHisArgProPro

4141403938383737363534343333323131303029282726252423222121



Quadratic Assignment Like 

Formulation Comparison
• Problem 2:  full combinatorial optimization at pos. 2, 4, 6, 7, 9, 10, 11, 13, 

             14, and 16 (10 positions in total)

                     all other pos. fixed at their native residues

Sequence search space = 1.0  1013

• Problem 3:  full combinatorial optimization at pos. 2, 4, 6, 7, 9, 10, 11, 13, 

             14, 16, 18, 19, 22, 23, and 24 (15 positions in total)

                     all other pos. fixed at their native residues

Sequence search space = 3.3  1019

• Problem 4:  fix native Gly at pos. 1, 3, 12, 28, 31, and 34

                      fix native Pro at pos. 5, 17, 21, 33, and 41

                      fix native Cys at pos.  8, 15, 20, 30, 37, and 38

                      full combinatorial optimization at all other positions (24 

              positions in total)

Sequence search space = 1.7  1031

• Problem 5:  only fix native Cys at pos.  8, 15, 20, 30, 37, and 38

                      full combinatorial optimization at all other positions (35 

              positions in total)

Sequence search space = 3.4  1045



Quadratic Assignment Like 

Formulation Comparison
Computation time comparison of the 12 formulations:

 - , 6557530006----747133.4x1045Problem 5

 - , 29.0631.67----38.141.7x1031Problem 4

64.39, 2.873.22278.02052.2137.8570.14% gap3.013.3x1019Problem 3

44.02, 3.012.1613.2365.0412.80348741.931.0x1013Problem 2

 0.23, 0.210.150.050.040.050.300.141.3x108Problem 1

F7F6F5F4F3F2F1

Formulations

Sequence

Search

space

57569243886187252276326573.4x1045Problem 5

36.1525.0035.9235.4831.081.7x1031Problem 4

3.043.433.033.312.943.3x1019Problem 3

2.102.522.012.262.151.0x1013Problem 2

0.110.170.160.110.161.3x108Problem 1

cutoff = -40cutoff =-40cutoff=-40

F12F11F10F9F8

Formulations

Sequence

search

space

F1: Base case - original O(n2) formulation from Klepeis et al. (2003)(2004)

F2: original O(n2) formulation without RLTs

F3: O(n) formulation from Oral and Kettani (1990)(1992)

F4: O(n) formulation from Oral and Kettani (1990)(1992)

F5: O(n) formulation from Pardalos et al. (2004)

F6: original O(n2) formulation with inequality RLT constraints

F7: original O(n2) formulation with inequality RLT constrains and triangle

inequalities

F8: original O(n2) formulation with inequality RLT constraints and

preprocessing

F9: original O(n2) formulation with inequality RLT constraints and triangle

inequalities and preprocessing

F10: original O(n2) formulation with triangle inequalities

F11: original O(n2) formulation with preprocessing

F12: original O(n2) formulation with triangle inequalities and preprocessing

Cutoff for triangle

inequalities = -40

No cutoff for triangle

inequalities

Obtained after

100,000 CPU sec

67% reduction in CPU time



old formulation new formulation

3.4x1045
none 53,263 649

No. of linear 

biological constraints

CPU times[s]Problem 

complexity

First Problem

-CPU times generated using 

CPLEX 9.0 on one 

single Pentium IV 3.2 GHz processor

 Test case: human  defensin-2 (41 Amino acids; 3 C-C)

   First problem
   - mutate all positions except CYS. Allow
   all 20 amino acids for each mutated position
   - no biological constraints

   Second problem
   - mutation set derived from SASA patterning

   - 49 biological constraints

SASA < 20%: core. Allow only hydrophobic amino acids.

SASA 20-50%: intermediate. Allow all amino acids except CYS

SASA >50%: surface. Allow only hydrophilic amino acids

Bounds on charges, hydrophobic content, and amino acid occurrence from PSI-BLAST

Sequence selection: Comparison 

old formulation new formulation

6.4x1037
49 4,578 14

Second Problem

Problem 

complexity

No. of linear 

biological constraints

CPU times[s]



De Novo Protein Design Framework
Klepeis, Floudas, Lambris, Morikis 2003, 2004

Fung, Taylor, Floudas 2005, 2007

Sequence selection
• Identify target template for desired fold;

  specify coordinates of backbone

• Identify possible residue mutations

• Introduce distance dependent

  pairwise potential based on Ca

• Generate rank-ordered energetic

  list from mixed-integer linear (MILP)

Fold Validation:Specificity
• Model selected sequences using flexible, detailed energetics

• Employ global optimization for free system

• Employ global optimization for

  system constrained to template

• Calculate relative probability for

  structures similar to desired fold



Fold Validation : Astro-Fold based

How to discriminate among the selected sequences

For each selected sequence solve (2) folding problems

•  Free folding calculation

• Template constrained folding calculation

Quantify the specificity of the ensemble of structures similar to

the template using probability calculation



Derivation of Restraints
-Dihedral angle restrictions

-C C  distance constraints

Helix Prediction

-Detailed atomistic modeling

-Simulations of local interactions

(Free Energy Calculations)

Tertiary Structure Prediction
-Structural data from previous stages

-Prediction via novel solution approach

(Global Optimization and Torsional 

Angle Dynamics)

Flexible Stems Loop Prediction

-Dihedral angle sampling

-Discard conformers by clustering

(Novel Clustering Methodology)

-sheet Prediction

-Novel hydrophobic modeling

-Predict list of optimal topologies

(Combinatorial Optimization)

Force Field for High and Medium

Resolution Decoys
-Novel linear programming approach

-Distinguishes high resolution structures

(Large-scale linear programming)

Interhelical Contacts

-Maximize common residue pairs

-Rank-order list of topologies

(MILP Optimization Model)

 /  proteins proteins 

Improved Distance Restraints
-Iterative LP-based bound

 tightening approach

Enhanced ASTRO-FOLD



Fold Validation: NMR like framework

• Protein structure prediction method ASTRO-FOLD via first principles and

deterministic global optimization: computationally expensive for large

proteins (>200 residues)

• New fold specificity calculation method

For each amino acid sequence:

• input upper and lower C -C  distance bounds and

torsional angle bounds based on observations from

design templates

• ensemble generation via high temp torsion angle

dynamics and annealing torsion dynamics

Local energy minimization and evaluation:

• BFGS Quasi-Newton optimization algorithm

• directed by AMBER full-atomistic force field

Hundreds of structures

CYANA

TINKER



• For each sequence from stage one, a specificity factor to the design template(s)

is calculated

Stage two: Fold Validation

native

sequence

new

sequence

FOLD SPECIFICITY CALC.

conformers of new sequence

conformers of native sequence

exp(- )

exp(- )

i

i

spec
i

i

E

kT
f

E

kT

=



Framework allows for true backbone flexibility

• True backbone flexibility: bounded continuous distance
and dihedral angles

• Stage one

- distance dependence of energy is discretized into bins

- models for flexible template with multiple

       structures & continuum

• Stage two

- upper and lower bounds on distance and

       dihedral angles input by user

- CYANA and TINKER-AMBER consider all possible combinations
of continuous distance and angle values between bounds

Position i
C 1

C 2 C 3
C 4

C 5

C 6
C 7

C 8
Position k

 3  4

    5  5.5    6   6.5

 7  8  9

Energy

dis(i,k)[Å

]

HR forcefield

(Rajgaria and

Floudas, 2006)



De Novo Design of Inhibitors for
Complement 3: Compstatin variants

     with Prof. J.D. Lambris (U. Penn) and

            Prof. D. Morikis (UC, Riverside)



Compstatin
Potent inhibitor of third component of complement

Structural features

• Cyclic, 13 residues

• Disulfide Bridge Cys2-Cys12

• Central beta-turn

  Gln5-Asp6-Trp7-Gly8

• Hydrophobic core

• Acetylated form displays

  higher inhibitory activity

Functional features

• Binds to and inactivates

  third component of complement

• Structure of bound complex not

  yet available

with Dr. John Lambris

(Univ. of Pennsylvania)

and Dr. Dimitri Morikis

(Univ. of California, Riverside)



Sequence Selection : Compstatin
Design a more potent C3 inhibitor

Variable positions

• Conserve cystine residues (maintain cyclic nature of peptide)

• Conserve turn residues (do not overstabilize the turn)

Consensus results from top sequences

Key finding from computations

• His conserved at position 10

• Position 11 provides most variation : maintain Arg

• Selections at positions 4 and 9 allow for turn flexibility

Position Exp

1 A,V

4 Y,V

9 T,F,A

10 H

11 T,V,A,F,H

13 V,A,F



Compstatin Analogs
> 3x

0.5 - 3x

< 0.5x

> 3x

0.5 - 3x

< 0.5x

> 3x

0.5 - 3x

< 0.5x



De Novo Protein Design Framework
Klepeis, Floudas, Lambris, Morikis 2003, 2004

Fung, Taylor, Floudas, 2005, 2007
Sequence selection
• Identify target template for desired fold;

  specify coordinates of backbone

• Identify possible residue mutations

• Introduce distance dependent

  pairwise potential based on Ca

• Generate rank-ordered energetic

  list from mixed-integer linear (MILP)

Fold Validation
• Model selected sequences using flexible, detailed energetics

• Employ global optimization for free system

• Employ global optimization for

  system constrained to template

• Calculate relative probability for

  structures similar to desired fold



Fold Specificity : Compstatin
Determine ensemble for Free & Template systems

Find probability for portion of Free ensemble within some

deviation of Template ensemble



Compstatin Analogs
> 3x

0.5 - 3x

< 0.5x

> 3x

0.5 - 3x

< 0.5x

> 3x

0.5 - 3x

< 0.5x



Ac-compstatin

In Silico De Novo Design

Analog Ac-V4Y/H9A

Analog Ac-W4Y/H9A
Klepeis, Floudas, Morikis, Tsokos, Argyropoulos, Spruce, Lambris (2003) J.

American Chemical Society.

Klepeis, Floudas, Morikis, Lambris (2004) Ind. & Eng. Chem. Res.

Fung, Floudas (2005)

x7  x16

x45



Redesign of Complement 3a

     with Prof. J.D. Lambris (U. Penn) and

            Prof. D. Morikis (UC, Riverside)



Residues 1-12 not

shown

47

69

77

17

23

37

41

• Background:

- fragment of the complement 3 protein, active mediator of inflammation

- 77-residue, 3 S-S bonds, 4 -helices

- sequence of C-terminal (pos 73-77) primary binding site: LGLAR

- extensive sequence-activity studies by Ember et al. (1991)

- super-potent peptide (12-15 times more active than natural C3a),

WWGKKYRASKLGLAR (pos 63-77) identified by Ember et al. (1991)

• De novo design of C3a:

- redesign pos 63-68, 70-72

- goal: identify peptides that

are more active than natural C3a

Complement 3a



• We used 3 sets of design templates:

De novo design of C3a

1. Single structure from X-ray crystallography
• Huber et al., 1980

• Resolution: 3.2Å

• Residue 1 to 12 missing

• Side-chain information is also missing

2. Flexible templates from MD simulations with GB implicit solvation

• Initial structure: composite of C3a domain of C3’s

crystal structure (Janssen et al., 2005) for Val1-Ala70

and Huber et al.’s crystal structure for Ser71-Arg77

• Starting from 10ns, one structure generated at

each 1ns increment.

• 11 flexible template structures in total

3. Flexible templates from MD simulations with explicit water molecules

• Structures generated using the same method as

for the previous set of flexible templates except

water molecules were treated explicitly in MD

simulations

• 11 flexible template structures in total



Flexible design template with multiple structures for C3a

Green: from MD simulations with GB implicit solvation

Magenta: from MD simulations with explicit water molecules



• Structural deviation among the 3 sets of flexible design templates:

De novo design of C3a

Cyan: single structure from X-ray

crystallography

Purple: structure at 5 ns from MD simulations with GB

implicit solvation

Green: structure at 5 ns from MD simulations with

explicit water molecules

  The structural deviation means we should use all three sets of
templates to get different predictions for active sequences



• Forcefields and models applied for sequence selection:

• Generated 500 sequences for each

De novo design of C3a

Single X-ray crystal structure

MD simulations with GB implicit solvent

MD simulations with explicit water

Design templates Forcefields Sequence selection models

• HR C -C  forcefield

only

• HR C -C  forcefield

• HR centroid-centroid

forcefield

• HR C -C  forcefield

• HR centroid-centroid

forcefield

• Basic model for single

structure

• Weighted average

model for multiple

structures

• Binary distance bin

model for multiple

structures

• Weighted average

model for multiple

structures

• Binary distance bin

model for multiple

structures



• Mutation set for sequence selection

• Biological constraint

• Fold specificity stage: upper and lower bounds on angles and distances are

based on observations about the flexible template(s).

De novo design of C3a

- Maintain native charge on helix

6963   3=+ iyyyy
i

Glu

i

i

Asp

i

i

Lys

i

i

Arg

i

charge=+3

Problem complexity

=2.59 109

Position 63 64 65 66 67 68

SASA 54.6% 41.1% 51.6% 49.9% 31.0% 46.4%

Classification surface intermediate surface intermediate intermediate intermediate

Mutated? yes yes yes yes yes yes

Allowed 

residues AILMFYWV
AILMFYWV RND

QEGHKST
RNDQEGHKST RND QEGHKST RNDQEG HKST

AILMFYWVRND

QEGHKST

69 70 71 72

51.3% 41.8% 36.4% 55.1%

surface intermediate intermediate surface

no yes yes yes

R RNDQEGHKST A RNDQEGHK ST RNDQEG HKST



Sequences from flexible templates generated with MD simulations  

Design templates from MD simulations with

GB implicit solvation

Design templates from MD simulations with

explicit water molecules

Forcefield: HR centroid-centroid

(Rajgaria et al., 2007)

WT L R R Q H A R A S H L G L A R n. a. n. a.

WR-15 W W R S K W R E E Q L G L A R ex. water binary dist. bin

WR-15-1 W W Q R R W R D E Q L G L A R gen. Born wt. avg.

WR-15-2 W W R R Q W R D E Q L G L A R gen. Born wt. avg.

WR-15-3 W W Q R R W R D E R L G L A R gen. Born wt. avg.

WR-15-4 W W Q R R W R D N Q L G L A R gen. Born wt. avg.

WR-15-5 W W Q R R W R E E R L G L A R gen. Born binary dist. bin

WR-15-6 W W R R Q W R D E R L G L A R gen. Born binary dist. bin

WR-15-7 W W R R Q W R E N Q L G L A R gen. Born binary dist. bin

WR-15-8 W W R R S W R E E R L G L A R gen. Born binary dist. bin

WR-15-9 W W R N R W R E N R L G L A R gen. Born binary dist. bin

WR-15-10 W W G K K Y R A S K L G L A R n. a. n. a.

WR-15-11 W W R R Q W R E D H L G L A R ex. water wt. avg.

WR-15-12 W W N R K W R E D H L G L A R ex. water wt. avg.

WR-15-13 W W R R Q W R E E Q L G L A R ex. water binary dist. bin

WR-15-15 W W R R Q W R E D K L G L A R ex. water binary dist. bin

WR-15-16 W W R R Q W R E E H L G L A R ex. water binary dist. bin

WR-15-17 W W R R H W R E D Q L G L A R ex. water binary dist. bin

WR-15-18 W W R R Q W R E E K L G L A R ex. water binary dist. bin

WR-15-19 W W R R Q W R E Q K L G L A R ex. water binary dist. bin

flexible 

templates

sequence 

selection modelSequences synthesized

Super-

agonist from

Ember et al.,

1991



Conclusions

De Novo Peptide Design : Structure to Function
• Novel method for sequence selection

• Distance dependent pairwise interaction energy

• MILP reformulation: Quadratic Assignment-Like

• RLT constraints

• Preprocessing via DEE

• New Formulation

• Quantification of fold specificity

• Template flexibility

• Constrained and free energy calculations

• Ranking of sequence-structure specificity

• Sequence Selection for Compstatin, Human beta

defensin-2, C3a, and HIV-1

• Fold specificity for Compstatin analogs, C3a

Functionally enhanced peptides for C3 inhibition
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PeptidePeptide  Identification InIdentification In

ProteomicsProteomics

Relevant PublicationsRelevant Publications

• P.A. DiMaggio and C.A. Floudas, A mixed-integer optimization framework

for de novo peptide identification, AIChE Journal, 53(1), 160-173 (2007).

• P.A. DiMaggio and C.A. Floudas, De novo peptide identification via tandem

mass spectrometry and integer linear optimization, Anal. Chem., 79, 1433-

1446 (2007).

• P.A. DiMaggio, C.A. Floudas, B. Lu, and J.R Yates, A hybrid methodology

for peptide identification using integer linear optimization, local database

search, and QTOF or OrbiTrap tandem mass spectrometry, J. Proteome

Res., 7, 1584-1593 (2008).
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Presentation OutlinePresentation Outline

• Introduction to proteomicsproteomics and review of peptide andpeptide and

protein identification protein identification using  tandem mass spectrometrytandem mass spectrometry

• Survey of existing de novode novo and databasedatabase algorithms for

peptide identification

• De Novo approach for peptide identification, PILOT

• Hybrid approach based on our mixed-integer linearmixed-integer linear

optimizationoptimization model and algorithmic framework (denoted

as PILOT_SEQUELPILOT_SEQUEL) for peptide identification peptide identification

• Comparative studiesComparative studies of PILOT, and PILOT_SEQUELPILOT_SEQUEL,

and existing state-of-the-art database and hybrid methods

on tandem MS from Ion Trap, QTOF, and OrbiTrapOrbiTrap mass

analyzers
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Proteomics: Bottom-Up Peptide and Protein

 Identification via Tandem MS

LKYVI STCMYAR DILNGG

GAWKLK ILFAD

MS-MS spectra

A B C

Peptide Mixture Peptide Identifications

Protein sample Protein identifications

Protein 

level

Enzymatic

digestion

Peptide 

level

Mixture separation

MS-MS sequencing

MS-MS spectra 

level

Validation

Database search

E
x
p
e
rim

e
n
ta

l C
o
m

p
u
ta

ti
o
n
a
l

Validation

Peptide

grouping

?
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 Fundamental problem in proteomics:

Protein and peptide identification and quantificationProtein and peptide identification and quantification

 Advances in high-throughputhigh-throughput experimentation

High-performance liquid chromatography (HPLCHPLC) coupled with

tandem mass spectrometry (MS/MS)

Protein / Peptide

Mixture

Electrospray Ionization (ESI)

HPLCHPLC

MS and MS/MSMS and MS/MS

FragmentationFragmentation……

Problem Introduction and Definition
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 ObjectiveObjective:

Use these fragment ions to construct the amino acid sequence

of the parent peptide

Tandem MS/MS from CIDTandem MS/MS from CID

*Adapted from http://www.matrixscience.com/help/fragmentation_help.html

 Collision-induced dissociationCollision-induced dissociation (CID) causes a positively-charged

peptide to fragment along its backbone and results in several types of

fragment ionsfragment ions in the tandem mass spectrum (i.e., a, b, c, x, y, z, etc.)

 IssuesIssues: The type of an ion peak (a, b, c, x, y, or z) in a tandem MS

is not known a priori and the primary sequence of candidate peptide

must be derived using ions of theions of the same typesame type

Hypothetical

parent peptide*

R or KR or K
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 Specific Aim 1:Specific Aim 1: Investigate and develop a de novode novo

computational approach for peptide identification based exclusively

on information of the ion peaks in the peptide spectrum

 Specific Aim 2:Specific Aim 2: Study and develop a new hybridhybrid in silico

method which will combine the de novo approach of Specific Aim 1

with database techniques for peptide identification

 Specific Aim 3:Specific Aim 3: Incorporate uncertaintyuncertainty into the de novo

framework to address experimental uncertainty in problem

parameters

 Specific Aim 4:Specific Aim 4: Study and develop computational methods for

protein identificationprotein identification given the de novo prediction and/or hybrid

prediction of the individual peptides

 Specific Aim 5:Specific Aim 5: Research and develop computational methods

and experimental protocols for protein quantificationprotein quantification

Proteomics
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Peptide & Protein Identification Peptide & Protein Identification 

via Tandem MSvia Tandem MS

• Database-based methods
• Correlate the experimental spectra with spectra

  of peptides/proteins which exist in the databases

• SEQUEST – Eng et al. (1994), Mascot – Perkins et. al (1999), SCOPE –

Bafna and Edwards (2001), MS-CONVOLUTION and MS-ALIGNMENT –

Pevzner et. al (2001), Poptiam – Hernandez et. al (2003)

• De Novo Methods
• Predict peptides without sequence databases

• Exhaustive listing; sub-sequencing; graphical

• Graph theory and shortest path algorithms

• Graph theory and dynamic programming

• Bayesian scoring of random peptides

• Lutefisk – Taylor and Johnson (1997,2001),  SHERENGA – Dancik et. al

(1999), PEAKS – Ma et al. (2003),  NovoHMM – Fischer et al. (2005),

PepNovo – Frank and Pevzner (2005),  EigenMS – Bern and Goldberg (2006)
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ChallengesChallenges

• Tandem MS are missing ion peaksmissing ion peaks due to

incomplete fragmentationincomplete fragmentation and/or instruments with low

mass-to-charge ratio (m/z) cutoff (i.e., ion trap mass

analyzers)

• Incorporating parametric uncertaintyuncertainty in the measured

values for ion peaks during peptide identification

• Existing de novo techniques enumerate an

exhaustive number of candidate sequencesexhaustive number of candidate sequences from the

tandem mass spectrum

• No straightforward method for including post-post-

translational modificationstranslational modifications  into existing frameworks
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Introduction to De Novo PeptideIntroduction to De Novo Peptide

IdentificationIdentification

Given the tandem mass spectrum (MS/MS)
of a peptide, derive the primary sequence of
the peptide without consulting other sources

of information (i.e., protein databases)

The De Novo Peptide Identification Problem:The De Novo Peptide Identification Problem:

YLYKNAR

YLFPMTR

YLYELAR

YFEELAR

YEYLLAR

YLYKKGR

YFEKNAR

YLY[171.06]AAR

QQ: Which of these possible
primary sequences

corresponds to the correct
peptide?

Derive candidate sequences by
connecting the ion mass peaks by the

weights of amino acids

mass-to-charge ratio
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Traditional De Novo MethodsTraditional De Novo Methods

Spectrum Graph ApproachSpectrum Graph Approach**

 Solve via dynamic programmingdynamic programming

 Nodes assigned probabilistic weights

 Highest scoring path is selected

* Taylor and Johnson (1997,2001), Dancik et. al (1999), Fernandez de Cossio et. al (2000), Chen et. al (2001), Lubeck et. al (2002), Cannon and Jarman

(2003), Chen and Bingwen (2003), Jarman et. al (2003), Frank and Pevzner (2005), Bern and Goldberg (2006)

paths on the graph =

   amino acid sequences

Transform tandem MS/MS into

a spectrum graphspectrum graph, where:

mass-to-charge ratio



             12

Database MethodsDatabase Methods

Raw Tandem MS/MS for

YLYEIAR

Predicted*

YLYEIAR

Predicted*

YLYQNVK

Predicted*

NRIISLLV

Which predictedpredicted  spectrum matches the

experimental spectrum under question?

MP = 926.45 Da

Peptides From Protein Database

*Predicted spectra generated with MassAnalyzer 1.03
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 Cross-CorrelationCross-Correlation (e.g., SEQUEST*)

Experimental Spectrum  x Predicted Spectrum  y

Displacement value Discrete Fourier Transforms

Determine

“mathematical

overlap”

*Eng et. al (1994)

Database Methods (contDatabase Methods (cont’’d)d)



             14

 Probabilistic Matching*Probabilistic Matching* (e.g., Mascot, SCOPE)

Predict primarily y- and b-ions, and their offsets, based on the following formulae:

Q: Is ion matchmatch with experimental spectrum

Actual?

Random?

“A”:  Likelihood ratioLikelihood ratio  hypothesis testhypothesis test (Bafna and Edwards (2001),

Havilio et. al (2003))

 Null hypothesisNull hypothesis  (Sadygov and Yates (2003))

 Integration of spectral dependencies into model (Bafna and 

Edwards (2001), Havilio et. al (2003))

 Empirically estimated probabilities

*Perkins et. al (1999), Bafna and Edwards (2001), Pevzner et. al (2001), Havilio et. al (2003), Hernandez et. al (2003), Sadygov and Yates (2003)

Database Methods (contDatabase Methods (cont’’d)d)
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Drawbacks of Existing MethodsDrawbacks of Existing Methods

 De Novo MethodsDe Novo Methods

 Database MethodsDatabase Methods

 False predictionsFalse predictions if missing protein in database

 Difficult to identify post-translational modifications /modifications /

mutationsmutations

 Often exhibit dependenciesdependencies on training data sets and

databases

 Exhibit variable prediction accuraciesaccuracies

 Computationally intensiveintensive  exhaustive enumeration

 Many are instrument dependent
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Our Approach toOur Approach to  Address the PeptideAddress the Peptide

Identification ProblemIdentification Problem

Novel TechniqueNovel Technique: Using Mixed-Integer Linear OptimizationMixed-Integer Linear Optimization (MILP) to
formulate the peptide sequencing problem

Binary variablesBinary variables {0-1 variables} define whether or not peaks (pi) and
paths between peaks (wij) are used in the construction of the candidate

sequence, where 1 indicates yes and 0 indicates no

P.A. DiMaggio and C.A. Floudas, AIChE Journal, 53(1), 160-173 (2007).
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I. PreprocessingPreprocessing of
Tandem MS Data

II. Mathematical ModelMathematical Model for
Peptide Identification

III. PostprocessingPostprocessing of
Candidate Sequences

Components of Framework:

M

Validation of Candidate
Sequences

 Cross-Correlation (de novo)   Database Alignment (hybrid)

            De Novo: PILOT             Hybrid: PILOT_SEQUEL

Algorithmic FrameworkAlgorithmic Framework
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I. Preprocessing AlgorithmI. Preprocessing Algorithm

 Determine boundary conditionboundary condition (BCtail) for the N-terminusN-terminus of the y-ion series

 For tryptictryptic peptides,

        C-terminusC-terminus  amino acid is

 Identify multiply-charged ions

 Identify neutral lossesneutral losses of

   small molecules

      i.e., -H2O,  -NH3, etc.

KK  147 Da

RR  175 Da

 For high-resolutionhigh-resolution instruments only

 Measure distance between isotopesisotopes

tail

tail

Algorithm for N-terminus Boundary IonsAlgorithm for N-terminus Boundary Ions
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II. Mathematical Model:II. Mathematical Model:  Objective FunctionObjective Function

Illustration using the y-iony-ion series for

YLYELAR

 Maximize the use of high intensity

peaks in constructing the candidate

sequence

 Based on the observation that y-y-

and b-ionsb-ions are consistently the most

abundant peaks in intensity in MS/MS mass-to-charge ratio
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II. Mathematical Model:II. Mathematical Model:  ConstraintsConstraints

Conservation of MassConservation of Mass

Boundary Conditions (BC)Boundary Conditions (BC)

Complementary IonsComplementary Ions

tolerance “relaxes” equality

 BC elements are dependent on ion type

 BC elements are checked in a

preprocessing algorithm

 If elements missing then BC set is adjusted

b             y

a             x

c             z

Eliminates

different ions of

different type
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  II. Mathematical Model: MILP  II. Mathematical Model: MILP

Relationship

between pi & wi,j

Flow conservation lawFlow conservation law

P.A. DiMaggio and C.A. Floudas, AIChE Journal, 53(1), 160-173 (2007).
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 II. Two-Stage Framework II. Two-Stage Framework

 During the Stage IStage I calculations,

the candidate sequence is

constructed using only singlesingle

amino acid weightsamino acid weights

 Most tandem MS are missing ion peaksmissing ion peaks due to incomplete

fragmentation and/or instruments with low m/z cutoff (i.e., ion

trap mass analyzers)

 Stage IIStage II calculations allow for combinations of aminocombinations of amino

acidsacids to bridge the gap between missing ion peaks

 Combinations of amino acids are penalized in objectivepenalized in objective

functionfunction to favor use of single amino acid weights in

derivation of candidate sequences
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III. III. De NovoDe Novo Post-Processing Algorithm Post-Processing Algorithm

 Amino acid permutations substituted for weightsweights in

candidate sequences from Stage II calculations

 No current models exist for accurate prediction of ion

intensity trendsintensity trends as a function of peptide composition

for generalized mass analyzers

 Assume normalized intensity distribution + rewardreward  //

penaltypenalty based on observation/absence of supporting

ions

 Cross-correlate of all theoreticaltheoretical mass spectra of

candidate peptide sequences with experimentalexperimental

tandem mass spectrum

P.A. DiMaggio and C.A. Floudas, AIChE Journal, 53(1), 160-173 (2007).
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 De Novo Algorithm De Novo Algorithm

I. PreprocessingPreprocessing of
Tandem MS Data

II. Mathematical ModelMathematical Model for
Peptide Identification

III. PostprocessingPostprocessing of
Candidate Sequences

Components of Framework:

PILOT: Peptide identification via Mixed-Integer Linear Optimization

and Tandem mass spectrometry
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Illustrative Example for PILOT:Illustrative Example for PILOT:  DAFLGSFLYEYSRDAFLGSFLYEYSR

DA, AD, SV, VS, EG, or GE
no supporting yn-1 ion

N-terminus boundary
conditions, BCtail

R  peak at 175 DaC-terminal amino acid

Preprocessing AlgorithmPreprocessing Algorithm

Adjust BCtail  m/z(yn-2 ion) = 1381.69 Da

ObjfCandidate Sequence

2.6391F(L/I)GSF(L/I)YYTDR

2.6968F(L/I)GSF(L/I)YYESR

2.7444F(L/I)GSF(L/I)YE(L/I)HR

2.7544F(L/I)GSF(L/I)YEH(L/I)R

2.8547F(L/I)GSF(L/I)YEYSR

2.9374F(L/I)GSF(L/I)YHQNR

2.9499F(L/I)GSF(L/I)YQHNR

2.9674F(L/I)GSF(L/I)YHAGNR

2.9850F(L/I)GSF(L/I)YHGANR

ObjfCandidate Sequence

2.6351F(L/I)GSF(L/I)[172.04]NAANR

2.6351F(L/I)GSF(L/I)[171.04]DAANR

2.6351F(L/I)GSF(L/I)[171.04]GEANR

2.6351F(L/I)GSF(L/I)[171.04]SVANR

2.6501F(L/I)GSF(L/I)[171.04]EGANR

2.6501F(L/I)GSF(L/I)[172.04]QGANR

2.7847F(L/I)GSF(L/I)Y[265.12]NR

2.8148F(L/I)GSF(L/I)Y[208.10]GNR

2.8323F(L/I)GSF(L/I)Y[194.06]ANR

Stage I SequencesStage I Sequences Stage II SequencesStage II Sequences

PostProcessingPostProcessing::  DAFLGSFLYEYSRDAFLGSFLYEYSR

P.A. DiMaggio and C.A. Floudas, AIChE Journal, 53(1), 160-173 (2007).

Filtered spectrum

Identified peaks

Integer cuts

Stage I sequences

All

sequences

Raw

MS/MS

spectrum

X = high confidence residue

X = low confidence residue
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De Novo Comparative StudyDe Novo Comparative Study

To benchmark the performance of PILOTPILOT, we tested it on
several tandem mass spectra from

 Quadrupole time-of-flight spectra, QTOF (higher resolution)

 Ion trap spectra (lower resolution, low m/z cutoff)

and compared the predictions to other state-of-the-
art de novo methods, namely:

 Lutefisk, LutefiskXP – J.A. Taylor and R.S. Johnson, Anal. Chem., 73,
2594-2604 (2001).

 PEAKS – B. Ma et al., Rapid Commun. Mass Spec., 17, 2337-2342 (2003).

 NovoHMM – B. Fischer et al., Anal. Chem., 77, 7265-7273 (2005).

 PepNovo – A. Frank and P. Pevzner, Anal. Chem., 77, 964-973 (2005).

 EigenMS – M. Bern and D. Goldberg, J. Comp. Biol., 13(2), 364-378 (2006).
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 Open Proteomics DatabaseOpen Proteomics Database*: contains MS/MS spectra for 5

different organisms recorded with ESI-Ion TrapESI-Ion Trap mass spectrometers

 Mass spectra accompanied with predictions from SEQUESTSEQUEST

 Assignments examined on individual basis for quality

 Organism studied:  Mycobacterium smegmatis

*http://bioinformatics.icmb.utexas.edu/OPD/

Which identifications are correct?

1.1. XcorrXcorr > 2.2 and CnCn > 0.1 for +2 charge state

2. Consistent identification with MascotMascot

3. Number of observed b and y ions

Number of predicted b and y ions

De Novo Comparative Study: Ion Trap MS/MSDe Novo Comparative Study: Ion Trap MS/MS

Xcorr Xcorr = cross correlation= cross correlation

score computed byscore computed by

SEQUESTSEQUEST

CnCn = normalized = normalized

difference in cross-difference in cross-

correlation valuecorrelation value

between #1 and #2 hitbetween #1 and #2 hit

in the searchin the search



             28P.A. DiMaggio and C.A. Floudas, Anal. Chem., 79, 1433-1446 (2007).

De Novo Comparative Study: Ion Trap MS/MSDe Novo Comparative Study: Ion Trap MS/MS



             29P.A. DiMaggio and C.A. Floudas, Anal. Chem., 79, 1433-1446 (2007).

De Novo Comparative Study: Ion Trap MS/MSDe Novo Comparative Study: Ion Trap MS/MS
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 Quadrupole time-of-flight (QTOF) spectra have better

resolutionresolution that ion trap spectra

 Examined QTOF data for a mixture of 4 known proteinsknown proteins*:

  Spectra were assessed for qualityquality based on the metric:

 Alcohol dehydrogenase (yeast)

 Myoglobin (horse)

 Albumin (horse, BSA)

 Cytochrome C (horse)

*http://www.csd.uwo.ca/~bma/peaks/

( i = intensity of ion peak i)

De Novo Comparative Study: QTOF MS/MSDe Novo Comparative Study: QTOF MS/MS



             31P.A. DiMaggio and C.A. Floudas, Anal. Chem., 79, 1433-1446 (2007).

De Novo Comparative Study: QTOF MS/MSDe Novo Comparative Study: QTOF MS/MS



             32P.A. DiMaggio and C.A. Floudas, Anal. Chem., 79, 1433-1446 (2007).

De Novo Comparative Study: QTOF MS/MSDe Novo Comparative Study: QTOF MS/MS
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De Novo Method SummaryDe Novo Method Summary

 Developed accurate de novode novo framework, PILOTPILOT, for

the identificationidentification of peptidesof peptides via tandem mass

spectrometry (MS/MS)

 PILOTPILOT outperformed several state-of-the-art de novo

methods in a comparative studycomparative study for ion trap and QTOF

tandem mass spectra

 Key elementsKey elements of de novo framework:

 Novel mixed-integer linear optimization (MILP)

formulation for peptide identification

 Preprocessing algorithm for filtering spectra and

identifying important ion peaks

 Post-processing algorithm for cross-correlating

theoretical tandem mass spectra with experimental

tandem mass spectrum
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Hybrid Method for Peptide IdentificationHybrid Method for Peptide Identification

 Main Idea: Can use protein databases to resolve

ambiguous residue assignments from de novo

sequence predictions

 Combine strengths of de novo and database methods

361 HPEYAVSVLL RLAKEYEATL EDCCAKEDPH ACYATVFDKL

HPEYAVEGLL R

 Local database search tools, such as FASTA*, can be

utilized to align de novo sequences in a protein database

*W. Pearson and D. Lipman. PNAS, 85:2444-2448, 1988.

… but several modifications are necessary
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II. Modified ILP Model for Hybrid MethodII. Modified ILP Model for Hybrid Method

RelationshipRelationship

between pbetween pii &  & wwi,ji,j

Flow conservation lawFlow conservation law

Conservation of MassConservation of Mass

relaxed by tolerancerelaxed by tolerance

Boundary Conditions forBoundary Conditions for

C-terminus and N-terminusC-terminus and N-terminus

Complementary IonsComplementary Ions

Tryptic Peptide
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III. III. PostProcessingPostProcessing using Modified FASTA Algorithm using Modified FASTA Algorithm

 Scoring Matrices

 Hashing

 Smith and Waterman Optimization

 Tryptic Peptide Databases

A R N D C Q E G H I L K M F P S T W Y V B Z X

A 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

R -5 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

N -5 -5 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

D -5 -5 -5 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

C -5 -5 -5 -5 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

Q -5 -5 -5 -5 -5 5 -5 -5 -5 -5 -5 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

E -5 -5 -5 -5 -5 -5 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

G -5 -5 -5 -5 -5 -5 -5 15 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

H -5 -5 -5 -5 -5 -5 -5 -5 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

I -5 -5 -5 -5 -5 -5 -5 -5 -5 5 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

L -5 -5 -5 -5 -5 -5 -5 -5 -5 5 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

K -5 -5 -5 -5 -5 5 -5 -5 -5 -5 -5 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

M -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

F -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 5 -5 -5 -5 -5 -5 -5 -5 -5 1

P -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 15 -5 -5 -5 -5 -5 -5 -5 1

S -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 5 -5 -5 -5 -5 -5 -5 1

T -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 5 -5 -5 -5 -5 -5 1

W -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 5 -5 -5 -5 -5 1

Y -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 5 -5 -5 -5 1

V -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 5 -5 -5 1

B -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 5 -5 1

Z -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 5 1

X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Modify BLOSUM matrix to
conserve mass between query
and template sequences

ktup = 4 to optimize only high
quality sequence matches

 IsobaricIsobaric residues

 Explicit Conservation of Mass between template & query

Q

G A

W

S V

N

G G

P.A. DiMaggio, C.A. Floudas, B. Lu, and J.R Yates, J. Proteome Res., 7, 1584-1593 (2008).
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Hybrid AlgorithmHybrid Algorithm

I. PreprocessingPreprocessing of
Tandem MS Data

II. Mathematical ModelMathematical Model for
Peptide Identification

III. PostprocessingPostprocessing of
Candidate Sequences

Components of Framework:

PILOT_SEQUEL: Peptide identification via Mixed-Integer Linear Optimization, and Tandem

mass spectrometry, and local SEQUEnce aLignment
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Hybrid Approach for Peptide IdentificationHybrid Approach for Peptide Identification

Distributive Computing FrameworkDistributive Computing Framework

Beowulf ClusterBeowulf Cluster :

80 nodes with dual

Intel Xeon 3.0 GHz

processors

PILOT_SEQUEL: Peptide identification via Mixed-Integer Linear Optimization, and Tandem

mass spectrometry, and local SEQUEnce aLignment
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Example for PILOT_SEQUEL:Example for PILOT_SEQUEL:  VEADIAGHGQEVLIRVEADIAGHGQEVLIR

No N-terminal pair with significant
score: Upper bounding calculations
select 1192 Da and 1378 Da as N-

terminal boundary conditions

N-terminus boundary conditions,
BCtail

Peaks observed at 147 and 175 Da 
allowed to be both K and R

C-terminal amino acid

Preprocessing AlgorithmPreprocessing Algorithm

ObjfCandidate Sequence

2.41ATVVGHGQQVNIR

2.73ANNACFEEVIIR

2.78IACFEEVIIR

2.98ANNAGHGQQVNIR

3.04IAGHGQQVNIR

3.26ANNAGHGWAVIIR

3.32IAGHGWAVIIR

3.38ANNAGHGQEVIIR

3.43IAGHGQEVIIR

ObjfCandidate Sequence

3.41IAG[194.05]QEVIIR

Stage I SequencesStage I Sequences

Stage II SequencesStage II Sequences

Selected Peptide:Selected Peptide:  VEADIAGHGQEVLIRVEADIAGHGQEVLIR

Filtered spectrum

N- and C-terminal boundary conditions

Integer cuts

Stage I sequences

Query all sequences

in nr protein database

Raw

MS/MS

spectrum

bold font = high confidence residues

LKTEAEMKVEADLAGHGQEVLIR

VEW IAGHGQEVLIRDe novo peptide:

Database protein:
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Hybrid Comparative Study: Hybrid Comparative Study: OrbiTrap OrbiTrap MS/MSMS/MS

 OrbiTrap instruments have 2-3 times the resolution of

conventional mass spectrometers.

 Examined 380 OrbiTrap tandem MS for a control mixture

of 16 known proteinsknown proteins from:

 SEQUEST was used to search a target protein database

comprised of 5009 proteins (appended with a database

containing the reversed sequences of these proteins).

 The validity of the spectra/peptide matches were assessed

using DTASelect*.

 bovine, bovine serum, horse, chicken, rabbit, ecoli

*D.L. Tabb et al. J. Proteome Res., 1:21-26, 2002.



             41+A. Frank et al. J. Proteome Res., 6:114-123, 2007.

*

*De novo algorithm trained on OrbiTrap tandem MS+.  A sequence
tag algorithm was used to perform database search in place of the
direct lookup method based on hashing.

Residues predicted for de novo sequences:

PILOT             4249/4364 (0.974)

PepNovo           2958/4364 (0.678)

Hybrid Comparative Study: Hybrid Comparative Study: OrbiTrap OrbiTrap MS/MSMS/MS
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Hybrid Comparative Study: Hybrid Comparative Study: OrbiTrap OrbiTrap MS/MSMS/MS

P.A. DiMaggio, C.A. Floudas, B. Lu, and J.R Yates, J. Proteome Res., 7, 1584-1593 (2008).
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Hybrid Method SummaryHybrid Method Summary

 Developed accurate hybridhybrid framework,  for the

identificationidentification of peptidesof peptides via tandem mass

spectrometry (MS/MS) which combines strengths of de

novo and database techniques

 PILOT_SEQUEL outperformed several state-of-the-

art algorithms for hybridhybrid and databasedatabase peptide

identification in a comparative studycomparative study using OrbiTrap

tandem mass spectra.

 Major components of hybrid method:

 Modified integer linear optimization (ILP) formulation

for peptide identification

 Enhanced implementation of FASTA

 Distributed computing framework for performing

several sequence alignment calculations
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