

Pan American Advanced Studies Institute Program on Emerging Trends in Process Systems Engineering

Wednesday, August 13: Seminar on Biosystems Engineering Mar del Plata, Argentina

## Biotechnology research for biomass-based products other than bioethanol

Telma Teixeira Franco - FEQ/ Unicamp, Brazil franco@feq.unicamp.br



**PASI 2008** 





STATE UNIVERSITY OF CAMPINAS, UNICAMP created October 1966 Unicamp concentrates almost 20% of the post-graduation (Msc +PhD) of the coutry.

- 14,000 undergraduate students,
- 14,000 post-graduate students (MsC+PhD),
- 2,100 lecturers and professors.
- 10,000 students on continuous education (evening /week-end courses)
- Chemical Engineering School  $\rightarrow$  570 bachelor and 450 PhD +MsC students

#### Outline

- •Sugarcane & Conventional use of sugarcane
- •Sugarcane bagasse bioethanol
- •Potential for biorefinery of sugar cane
- •Non-bioethanol research from sugarcane
  - •Feasibility of acrylic acid production from sugars
  - •Sugar acrylates by biocatalysis
  - •Photobioreactors and microalgae



#### **Evolution of sugarcane in Brazil**





Source: FO Licht

#### **Brazil: main crops 2004**



#### **Present Location of Sugar-Etanol Mills in Brazil**



Fingueruti, 2007

#### Existing Sugar and Ethanol Production Technology

#### SUGAR AND ETHANOL PRODUCTION



#### **Conventional sugar and ethanol chain - Brazil**



*Etanol, Alcoolquímica e Biorrefinarias* BNDES Setorial, *Rio de Janeiro, n. 25, p. 5-38, mar. 2007* 

#### **Technology for Ethanol Production**





## Sugarcane process to bioethanol and power introducing Hydrolysis



#### **Hydrolysis Steps**



- (I) Rind, pith and sand removed from fiber
- (II) Delignifying and hemicellulose hydrolysis step
- (III) Cellulose conversion by enzyme catalysis
- (IV) Liquor separation from lignin and washing
- (V) Removal of inhibitors and concentration of liquor, recover of condensed water for reuse in process

## **Biorefinery for chemicals/biochemicals**



Glucose Pentoses Lignin



Acrylic acid, ethanol, organic acids, polymers, ...

## Biobased product flow-chain from biomass feedstock



Kamm & Kamm, 2006

### **Products from sugar-cane - Brazil**



From: INDUSTRIAL PERSPECTIVES FOR BIOETHANOL. ed. Telma Teixeira Franco, Editora Uniemp, Sao Paulo, ISBN 85-98951-06-4, 2006.

#### **Present situation - first generation products**



Bonomi, 2006



#### **LEBBPOR - non bioethanol activities**



## Acrylic acid case, started in 2002 FEQ



- Polymerized as acid or as methyl, ethyl or butyl ester
- Polymer for flocculants, coatings, paints, adhesives, and binders for leather and textile.

## Why acrylic acid?

- Production capacity = 4.2 million tons (2003)
- Price = 0.85-0.90 \$/lb = 1.95 \$/kg (Chemical Market Reporter, 11 April 2005)

Market size = \$8 billion



## Alternative routes



Appl Microbiol Biotechnol (2005) 67: 727-734 DOI 10.1007/s00253-005-1942-1

 $H_2O$ 

#### Directly to acrylic acid is attractive



# Direct fermentation of sugars to acrylate

- Desired stoichiometry

   C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> ==> 2 CH<sub>2</sub>=CH-COOH + 2 H<sub>2</sub>O
   (0.8 kg/kg glucose)
  - ATP formation by this reaction to support growth and maintenance
  - Cell retention/recycling to minimize growth requirements
  - No aeration

# Fermentation titers obtained for products related to acrylic acid

| Acid      | Final<br>conc.<br>(g/L) | Ferment-<br>ation pH | Strain                  | Reference                       |
|-----------|-------------------------|----------------------|-------------------------|---------------------------------|
| Acetic    | 180-200                 | ?                    | Acetobacter             | (Maselli and Horwarth,<br>1984) |
| Propanoic | 65                      | 6.5                  | P. acidipropionici      | (Huang et al., 2002)            |
| Butanoic  | 42                      | 6.0                  | C. tyrobutyricum        | (Huang et al., 2002)            |
| Lactic    | 210                     | 6.2                  | Lactobacillus<br>lactis | (Bai et al., 2003)              |
| Pyruvic   | 135                     | 5.0                  | S. cerevisiae           | (van Maris et al., 2004a)       |
| Fumaric   | 64                      | 5.5                  | Rhizopus arrhizus       | (Riscaldati et al., 2002)       |
| Itaconic  | 75                      | 2.0                  | Aspergillus<br>terreus  | (Yahiro et al., 1997)           |

## Microbial tolerance to acrylate

In general, a high toxicity is to be expected

BUT:

- The C=C-COOH sub-structure is present in fumarate and itaconate
- Some cell types survive 35 g/L acrylate

Using selective pressure, genome shuffling, etc. it is expected that **50 g/L acrylate is a realistic maximum concentration** 

# Hypothetical metabolic pathways to acrylate



Which might give a high yield?

## Lactate pathway



Keq [acrylylCoA]/[lactoylCoA] =  $0.5 \% \rightarrow$  low yield

# 3-Hydroxypropanoate (3-HP) pathways



Keq [acrylylCoA]/[3-HPCoA] < 10 % ? Keq [acrylate]/[3-HP] < 10 % ?

**Export** 

- Active excretion of acrylic acid is required
- Export should not consume all ATP

sugars



### **Fermentation process**

- Microorganism: S. cerevisiae
- > Mode of operation: continuous



- > pH = 7 (controlled by Na<sub>2</sub>CO<sub>3</sub>)
- ➤Some assumptions:
  - Acrylate yield on glucose: 0.72 g.g<sup>-1</sup>
  - Acrylate concentration: 50 g.l<sup>-1</sup>
  - Lactate produced: 1 g.I<sup>-1</sup>

## Description of the chosen design



## Conclusions



- The designed process economically feasible
- Most interesting route:

sugar 📥 acrylic acid

- Preferably at low pH
- Recombinant biocatalyst might
  - survive at 50 g/L
  - produce & excrete acrylic acid
  - grow anaerobically
  - show a very high yield on sugars
- Incentive for checking these speculations

## Improvements to consider

1. If fermentation were at lower pH:

- less sodium carbonate
- less investment in extraction
- less waste

2. Sucrose costs much less, since no refined sugar is required, but probably just sugar-cane juice, as used in ethanol bioproduction.

## Main gaps in information

- Thermodynamic data of pathway intermediates
- Existence or accessibility of suitable exporter and pathway enzymes
- Metabolic consequences of blocking competing pathways
- Potential tolerance to acrylate
- Equilibrium data for extraction



#### JCTB1983/08-0043.R1

www.soci.org

J Chem Technol Biotechnol 83:000-000 (2008)

## Enzymatic direct synthesis of acrylic acid esters of mono- and disaccharides



<sup>6</sup> <sup>1</sup>School of Chemical Engineering, State University of Campinas, P.O. box 6066, 13081-970, Campinas, SP, Brazil

- <sup>2</sup>Interdisciplinary Research Center for Mass Spectrometry of Biopolymers, University of Potsdam, P.O. box 601553, D-14415 Potsdam,
   Germany
- 9 <sup>3</sup>Institute of Chemistry, University of Potsdam, P.O. box 601553, D-14415 Potsdam, Germany

10

11 Abstract

12

BACKGROUND: There is an increased need to replace materials derived from fossil sources by renewables. Sugar-cane derived carbohydrates are very abundant in Brazil and are the cheapest sugars available in the market, with more than 400 million tons of sugarcane processed in the year 2007. The objective of this work was to study the preparation of sugar acrylates from free sugars and free acrylic acid, thus avoiding the previous preparation of protected sugar derivatives, such as glycosides, or activated acrylates, such as vinyl acrylate.

## Building blocks from renewable resources by biocatalysis

## Why sugar acrylates?

- biomedical, chemical and pharmaceutical applicability ;

 If hydrogels – water-absorbent materials for applications such as general water absorbents, watertreatment additives;

Enzymatic synthesis

Sugar + fatty acid with lipase as biocatalysts – 1980's.
Sugar + acrylic / metacrylic acid with lipase (esterification or transesterification) – 1991's
BASF patent, indirect esterification of methyl glicosides

Enzymatic direct synthesis of acrylic acid esters of mono and disaccharides, J.Tsukamoto, PhD Thesis. Unicamp, Brazil. 2006

## Initially Calb was tested to catalyse n-butanol + acrylic acid esterification.....

Maximize the reacional conditions to increase the conversion to esters of acrylic acid using CalB ;

Evaluate the products by HPLC, MALDI-TOF-MS and KF analysis.


#### Enzymatic conversion of sugars and alchools to acrylate esters

| Substrates + media                                                           | Catalyst (mass)                            | Temp.<br>°C/time | Conv.(%) | Byprod. | Ref.:                    |
|------------------------------------------------------------------------------|--------------------------------------------|------------------|----------|---------|--------------------------|
| AA (43.7 mmol) +                                                             | CalB 60 mg                                 |                  | 61.6     | 0       | Tsukamoto et<br>al, 2006 |
| mmol) +toluene(3.5 $cm^{3}$ )                                                |                                            | 55 / 8 h         |          |         |                          |
|                                                                              | CalB 200 mg                                |                  | 94.6     | 0       |                          |
| AA (43.7 mmol) +<br>1-butanol (43.7<br>mmol) +toluene(5<br>cm <sup>3</sup> ) | $Cs_{2.5}H_{0.5}PW_{12}O_{40}$ (56 mg)     |                  | 15.9     | 3*      |                          |
|                                                                              | $Cs_{2.5}H_{0.5}PW_{12}O_{40com.}$ (56 mg) | 79.85 /          | 19.0     | 2**     | Chen et al, 1999.        |
|                                                                              | Amberlist 15 (14 mg)                       | 4 h              | 33.6     | 3*      |                          |
|                                                                              | $H_{3}PW_{12}O_{40}$ (25.2 mg)             |                  | 83.5     | 3*      |                          |
|                                                                              | $H_2SO_4$ (2.8 mg)                         |                  | 60.2     | 3*      |                          |
| AA/ButOH (molar<br>ratio: 0.75)                                              | $H_3PW_{12}O_{40}$                         | 80 / 4 h25 m.    | 98.0     | ?       | Dupont et al,<br>1995.   |
|                                                                              | H <sub>2</sub> SO <sub>4</sub>             | 80 / 11h17m.     | 98.0     | ?       |                          |

\* 3-butoxypropionic acid; butyl 3-butoxypropanate and butyl 3-acryloxy propanoate

3-butoxypropionic acid and butyl 3-acryloxy propanoate

\*\*

#### **MALDI-TOF MS Analysis:** monosaccharides

**Table 2**. Calculated and observed masses (m/z) of sodiated resp. potassiated molecular ions generated in MALDI-TOF MS of hexoses, pentoses, and corresponding acrylates (A: reaction in the presence of molecular sieves; B: in the absence of molecular sieves).

|                |                     | calcd. $(m/z)$ |        | found  | l ( <i>m/z</i> ) |        | calcd. $(m/z)$ | found  | ( <i>m/z</i> ) |
|----------------|---------------------|----------------|--------|--------|------------------|--------|----------------|--------|----------------|
|                |                     | Hexoses        | D-Fru  | ictose | D-Gl             | ucose  | Pentose        | D-Xy   | ylose          |
|                |                     |                | Α      | В      | Α                | В      |                | Α      | В              |
| Free sugars    | $[M+Na]^+$          | 203.05         | 203.20 | 203.13 | 203.21           | 203.24 | 173.04         | 173.22 | 173.24         |
| _              | $[M+K]^+$           | 219.02         | 219.18 | 219.10 |                  |        | 189.01         |        |                |
| Monoacrylates  | [M+Na] <sup>+</sup> | 257.06         | 257.24 | 257.14 | 257.25           | 257.28 | 227.05         | 227.27 | 227.29         |
| -              | $[M+K]^+$           | 273.03         | 273.21 | 273.12 | 273.23           | 273.24 | 243.02         |        |                |
| Diacrylates    | [M+Na] <sup>+</sup> | 311.07         | 311.27 | 311.16 | 311.28           | 311.31 | 281.06         | 281.32 | 281.34         |
| -              | $[M+K]^+$           | 327.04         | 327.23 | 327.13 |                  |        | 297.03         |        |                |
| Triacrylates   | [M+Na] <sup>+</sup> | 365.09         | 365.51 |        | 365.35           | 365.51 | 335.08         | 335.54 |                |
| -              | $[M+K]^+$           | 381.06         |        |        |                  |        | 351.04         |        |                |
| Tetraacrylates | [M+Na] <sup>+</sup> | 419.10         | 419.60 |        | 419.33           | 419.36 | 389.09         |        |                |
| ·              | $[M+K]^+$           | 435.07         | 435.48 |        |                  |        | 405.05         |        |                |
| Pentaacrylates | [M+Na] <sup>+</sup> | 473.11         |        |        | 473.65           | 473.68 |                |        |                |
| ·              | $[M+K]^+$           | 489.08         |        |        |                  |        |                |        |                |

#### frutose



MALDI-TOF MS of the reaction mixtures of the lipase catalyzed esterifications of **D**-**fructose**, recorded after a reaction time of 48h. Asterisks indicate peaks from fructose and acrylates.



#### **Product distribution**



#### Enzyme reutilization



E.Vagetti, 2008

# Photobioreactor for CO<sub>2</sub> sequestration and microalgal biomass production

**Products** 

biomass

Fats →biodiesel

**Polysaccharides& gels** 

**O**2



# THE PROBLEM

The industrial processes most contributing to increasing atmospheric CO<sub>2</sub> concentrations:

- •electrical and petrochemical energy generating plants,
- •hydrogen and ammonia producing plants,
- •cement factories, and fermentative and chemical oxidation processes.



GHG emissions by sector in 2004 (IPCC, 2007)

### **Global warming – possible reasons**



### Pollution Gas emission

Carbon dioxide (CO<sub>2</sub>) Methane (CH<sub>4</sub>) Nitrous oxide (N2O) Hydrofluorcarbons (HFCs) Perfluorcarbons (PFCs) Sulphur hexafluoride (SF<sub>6</sub>)

### Global warming $\rightarrow$ consequences

### "Green-house" effect



Warmer, then hot. A middle-of-the-road scenario calls for warmings of more than 6°C in high northern latitudes.



Some of both. Global warming will bring more precipitation (bluish) to high latitudes in both winter (*left*) and summer (*right*) and less precipitation (reddish) to low latitudes.





Savanna will replace tropical forests.



Rising sea level will increase coastal flooding.



Most corals will suffer major declines.

#### Science, 316, 188-190, 2007.

### **PHOTOBIOREACTOR TECHNOLOGY**

- Initial studies Japan, decade of 1990's
- Carbon dioxide fixation into microalgal biomass
- Current studies show that other products have significance in the process



# THE STRATEGY

> potentiality for application in stationary sources of carbon dioxide



Biotechnological process for carbon dioxide sequestration

| Synechococcus<br>sp. PCC 8806,<br>PCC 8807      | Study of CO <sub>2</sub> mitigation by calcium carbonate formation.                                                                                                                                                                                                   | Lee et al., (2006)                   |                         |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------|
| -                                               | Development a feasibility model for microalgal CO <sub>2</sub> biofixation using photobioreactors equipped with solar collectors.                                                                                                                                     | Ono & Cuello<br>(2006)               |                         |
| Rhodomonas sp.                                  | Study of biomass production and carbon fixation in batch culture of the marine microalgae.                                                                                                                                                                            | Lafarga-De La<br>Cruz et al., (2006) |                         |
| <i>Chlorella</i> sp.                            | Study of the performance of open photobioreactors on the utilization of $CO_2$ by microalgae. The results indicate that about 70% of supplied $CO_2$ was utilized by the microalgae.                                                                                  | Doucha &<br>Lívanský (2006)          | Last 2 years literature |
| Nannochlopsis<br>oculta                         | Evaluation of the carbon balance in the bio-fixation of $CO_2$ in photobioreactors.                                                                                                                                                                                   | Hsueh et al.,<br>(2007)              |                         |
| Scenedesmus<br>obliquus                         | $CO_2$ bio-fixation in reactors in series with three stages. The results showed mean fixation rates of 37.9% in                                                                                                                                                       | Morais & Costa<br>(2007a)            |                         |
| Spirulina sp.                                   | cultures carried out with pulses of 15 min/hour at 6% $CO_2$ with a flow rate of 0.3VVM.                                                                                                                                                                              |                                      |                         |
| Anabaena<br>variabilis                          | Study of light transfer in photobioreactors for the production of $H_2$ with the simultaneous removal of $CO_c$ .                                                                                                                                                     | Berberoglu et al.,<br>(2007)         |                         |
| Scenedesmus<br>obliquus                         | Selection and isolation of species for the biological removal of CO <sub>2</sub> from thermoelectric energy generating stations                                                                                                                                       | Morais & Costa<br>(2007b)            |                         |
| Chlorella kessleri                              |                                                                                                                                                                                                                                                                       |                                      |                         |
| Aphanothece<br>microscopica<br>Nägeli (RSMan92) | Kinetic modelling of carbon dioxide removal in tubular photobioreactors and process optimisation. The kinetic data indicated maximum removal rates of 108.56mg <sub>CO2</sub> /L.min.                                                                                 | Jacob-Lopes et<br>al., (2007a)       |                         |
| <i>Chlorella</i> sp.                            | Study of efficiency of $CO_2$ reduction, biomass and lipid productivity in a semicontinuous photobioreactor system. The results obtained estimated maximum elimination capacity of 17.2g <sub>CO2</sub> /L.day                                                        | Chiu et al., (2007)                  |                         |
| Chlorella vulgaris                              | Evaluation of the performance of four photobioreactors for $CO_2$ removal. Maximum carbon dioxide conversion rates of 0.275g/L.h were obtained.                                                                                                                       | Fan et al., (2007)                   |                         |
| Chlamydomonas<br>reinhardtii                    | Evaluation of $CO_2$ uptake and $O_2$ production in a gastight photobioreactor.                                                                                                                                                                                       | Eriksen et al.,<br>(2007)            |                         |
| Chlorella sp.                                   |                                                                                                                                                                                                                                                                       |                                      |                         |
| Dunaliella parva                                | Study of fluid flow and mass transfer in a counter-<br>current gas–liquid inclined tubes photobioreactor                                                                                                                                                              | Merchuk et al.,<br>(2007)            |                         |
| Aphanothece<br>microscopica<br>Nägeli (RSMan92) | Evaluation of the growth kinetics of cyanobacteria<br>under different conditions of temperature, light<br>intensity and CO <sub>2</sub> concentration. Maximum rates of<br>incorporation of carbon in the biomass of<br>109.2mg <sub>carbon</sub> /L.h were obtained. | Jacob-Lopes et<br>al., (2007b)       |                         |

# Patents related to carbon sequester processes by microalgae in photobioreactors

| WO 2003094598 | Photobioreactor and process for biomass production and mitigation of pollutants in flue gas.     | Berzin (2003)  |
|---------------|--------------------------------------------------------------------------------------------------|----------------|
| US 2005239182 | Synthetic and biologically derived products produced using biomass produced by photobioreactors. | Berzin (2005a) |
| US 2005064577 | Hydrogen production with photosynthetic organisms and from biomass derived there from.           | Berzin (2005b) |
|               |                                                                                                  |                |
| KR 2005081766 | Continuous photobioreactor for carbon dioxide S                                                  | Chae           |

removal to inhibit global warming and mass-production (2005) of microalgae.

- AU 2006100045 Photobioreactor for mitigation of greenhouse gases. Davey (2006)
- WO 2006100667 A method for the enhanced production of algal Eyal & Raz biomass by sequestration of gaseous carbon dioxide. (2006)
- WO 20070111343 Photobioreactor for biomass production and mitigation Berzin & Wu of pollutants in flue gases. (2007)
  - EP 1801197Process and photobioreactor for the photosyntheticKlausetal.,production of biogas from carbon dioxide.(2007)
- WO 2007047805 Carbon neutralization system (CNS) for CO<sub>2</sub> Sheppard, sequestering. (2007)

# **BARRIERS AND LIMITATIONS**

composition of gases

➢ mixtures, NOx, SOx, CH₄, H₂, CO

> microalgae can assimilate other forms of carbon?

temperature of gases

- ≻ 100 300°C
- biological reactions: ~25-35°C



➤ scale-up

#### GREENFUEL RAISES \$13.9M FOR DEVELOPMENT AND SCALING PROJECTS

Financing Led by Access, DFJ, Polaris

**Cambridge, MA – May 14, 2008** – GreenFuel Technologies Corporation, a privately held company developing algae farm technologies for recycling CO<sub>2</sub> emissions, has closed a \$13.9M venture capital round led by Access Private Equity, Draper Fisher Jurvetson, and Polaris Venture Partners. GreenFuel intends to use these funds to prepare for algae farm technology development and scaling projects during 2008.

## **COMERCIAL PROJECTS**

- Solix Biofuels
- Greenfuel
- Petrosun
- > HR Biopetroleum/Royal Dutch Shell



HR Biopetroleum, Hawaii, USA (pilot plant, 2 ha)

#### **CASE STUDIES of our laboratory**

Fundamental work Maximization of microalgae growth conditions Light, CO<sub>2</sub>, Temperature, pH variation Maximization of CO<sub>2</sub> conversion and biofixation Reactor configurations Integration of refinery wastewater +flue gases



Biochemical Engineering Journal 40 (2008) 27-34



www.elsevier.com/locate/bej

#### Biomass production and carbon dioxide fixation by *Aphanothece microscopica Nägeli* in a bubble column photobioreactor

Eduardo Jacob-Lopes, Lucy Mara Cacia Ferreira Lacerda, Telma Teixeira Franco\*

School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970, Campinas-SP, Brazil Received 2 March 2007; received in revised form 29 October 2007; accepted 18 November 2007

#### Objective

 $\succ$  evaluate the carbon dioxide biofixation and growth kinetics of *Aphanothece microscopica Nägeli* microalgae under different conditions of temperature, light intensity and CO<sub>2</sub> concentration

#### **Conditions tested:**

temperature: 21,5, 25, 30, 35 and  $38,5^{\circ}$ C light intensities: 0,96, 3, 6, 9 and 11klux CO<sub>2</sub> concentration: 3, 15, 25, 50 and 62% (v/v)

# **Experimental apparatus**



Schematic diagram of the photobioreactor

### **Results**

### IMPROVING OF CARBON DIOXIDE BIOFIXATION BY MICROALGAE



Figure 3: Contour curves for carbon fixation rate into biomass by the *Aphanothece microscopica Nägeli* (cultivations in bubble column reactor). Tested conditions: temperature (21, 25, 30, 35, 38°C); light intensity (0.96, 3, 6, 9, 11klux) and CO<sub>2</sub> concentration (3, 15, 25, 50, 62%).



#### Kinetic parameters for process optimization

| Kinetic variable                                           | Value <sup>a</sup> |  |
|------------------------------------------------------------|--------------------|--|
| $\mu_{ m max}~( m h^{-1})$ specific growth rate            | 0.04               |  |
| $t_{\mathbf{g}}$ (h) (generation time )                    | 17.3               |  |
| $t_{ m log}~({ m h})$ duration of logarithmic growth phase | 120                |  |
| $X_{\rm m} ({\rm mg}{\rm L}^{-1})$                         | 5100               |  |
| $R_{\rm C} ({\rm mg}{\rm L}^{-1}{\rm h}^{-1})$             | 109.2              |  |

<sup>a</sup> Mean of three replicates are shown.

best values:  $\mu_{max}$ : 0.034h-1; Minimal generation time: 17 h

\*\* increase of 58.1% in the carbon fixation rate, no photo inhibition probably due to intracellular carbon concentration mechanism (CO2 $\rightarrow$ HCO<sub>3</sub>-, CO<sub>3</sub>-<sup>2</sup>



Available online at www.sciencedirect.com



Chemical Engineering and Processing 47 (2008) 1365-1373



www.elsevier.com/locate/cep

#### Rates of CO<sub>2</sub> removal by *Aphanothece microscopica Nägeli* in tubular photobioreactors

Eduardo Jacob-Lopes, Carlos Henrique Gimenes Scoparo, Telma Teixeira Franco\*

Biochemical Engineering Laboratory, Universidade Estadual de Campinas - UNICAMP, CEP 13083-970, Campinas, SP, Brazil

Received 16 February 2007; received in revised form 5 June 2007; accepted 6 June 2007 Available online 22 June 2007

#### Objective

> evaluate the carbon dioxide removal rates in the aqueous phase of tubular photobioreactor.

#### **Conditions tested:**

temperature: 21,5, 25, 30, 35 and  $38,5^{\circ}$ C light intensities: 0,96, 3, 6, 9 and 11klux CO<sub>2</sub> concentration: 3, 15, 25, 50 and 62% (v/v) For the simplified reaction (CO<sub>2</sub>  $\rightarrow$  Products), carried out in a batch reactor with constant volume, the molar balance is described by Eq. (1):

$$\frac{-\mathrm{d}[\mathrm{CO}_2]}{\mathrm{d}t} = r_{\mathrm{co}_2} \tag{1}$$

Assuming that the reaction rate is a function only of the carbon dioxide concentration, the rate law can be written in the following form:

$$-r_{\rm co_2} = k[{\rm CO_2}]^n \tag{2}$$

Considering a first order reaction (n = 1) and combining the rate law with the molar balance, Eq. (3) is obtained:

$$\frac{-d[CO_2]}{dt} = k[CO_2]$$
(3)

Integrating the differential equation, with  $[CO_2] = [CO_2]_0$  at t = 0, Eq. (3) becomes:

$$\ln \frac{[\text{CO}_2]_0}{[\text{CO}_2]} = kt \tag{4}$$

Thus, the graph of  $\ln ([CO_2]_0/[CO_2])$  as a function of time should be linear, with a slope corresponding to the rate constant of the reaction (*k*).

However, one should consider that the variation in carbon dioxide as a function of time is not only due to biological and physicochemical removal, since part of the CO<sub>2</sub> is lost with the exhaustion gases (desorption). The true rate of carbon dioxide removal from the system is obtained by determining the resulting rate constant of the reaction ( $k_R$ ), which corresponds to the difference between the rate constant of the reaction for the processes of absorption ( $k_1$ ) and desorption ( $k_2$ ). In this way, with



Fit of the experimental data by the integral method for the analysis of first order kinetic data

Initial cell conc. 0.1g/l

### IMPROVING OF GLOBAL CARBON DIOXIDE SEQUESTRATION BY MICROALGAE



Contour curves for the variable carbon dioxide removal rate.

\*Global sequestration rates indicate the presence of the another routes of carbon dioxide bioconversion (apart incorporation into biomass):

- Precipitation of carbonate and bicarbonate
- Exopolymers
- Volatile organic compounds (VOC's)



Contents lists available at ScienceDirect

#### Chemical Engineering and Processing: Process Intensification

Chemical Engineering and Processing rescuences

journal homepage: www.elsevier.com/locate/cep

# Effect of light cycles (night/day) on CO<sub>2</sub> fixation and biomass production by microalgae in photobioreactors

Eduardo Jacob-Lopes, Carlos Henrique Gimenes Scoparo, Lucy Mara Cacia Ferreira Lacerda, Telma Teixeira Franco\*

School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas, SP, Brazil

#### Objective

> evaluate the effect of the photoperiod on the biomass production and carbon dioxide fixation rates

#### **Conditions tested:**

Light cycles: 0:24, 2:22, 4:20, 6:18, 8:16, 10:14, 12:12, 14:10, 16:8, 18:6, 20:4, 22:2 and 24:0 (night:day)

| Photoperiod<br>(night/day) (h) | Px (g/Lday)               | X <sub>max</sub> (g/L)     | R <sub>CO2</sub> (g/L day) |
|--------------------------------|---------------------------|----------------------------|----------------------------|
| 0:24                           | 0.770° ± 0.038            | 5.100° ± 0.255             | 1.440° ± 0.072             |
| 2:22                           | $0.764^{2} \pm 0.042$     | $5.080^{2} \pm 0.305$      | $1.428^{2} \pm 0.085$      |
| 4:20                           | $0.501^{b} \pm 0.025$     | 3.400 <sup>b</sup> ± 0.187 | 0.936 <sup>b</sup> ± 0.065 |
| 6:18                           | $0.235^{\circ} \pm 0.014$ | 2.685° ± 0.174             | 0.439° ± 0.032             |
| 8:16                           | $0.240^{d} \pm 0.016$     | 1.640 <sup>d</sup> ± 0.116 | 0.448 <sup>c</sup> ± 0.040 |
| 10:14                          | 0.189° ± 0.009            | 1.300° ± 0.052             | 0.353 <sup>d</sup> ± 0.021 |
| 12:12                          | $0.301^{f} \pm 0.016$     | $2.060^{f} \pm 0.072$      | 0.562° ± 0.025             |
| 14:10                          | 0.1278 ± 0,006            | $0.944^8 \pm 0.018$        | 0.237 <sup>f</sup> ± 0.014 |
| 16:8                           | $0.035^{h} \pm 0.002$     | 0.343 <sup>h</sup> ± 0.013 | 0.065 <sup>8</sup> ± 0.003 |
| 18:6                           | $0.026^{i} \pm 0.001$     | $0.260^{i} \pm 0.013$      | $0.048^{g} \pm 0.003$      |
| 20:4                           | $0.015^{j} \pm 0.000$     | $0.200^{i} \pm 0.017$      | 0.0288 ± 0.001             |
| 22:2                           | $0.008^{k} \pm 0.000$     | $0.150^{i} \pm 0.009$      | $0.015^8 \pm 0.001$        |
| 24:0                           | $0.002^{1} \pm 0.000$     | $0.110^{i} \pm 0.004$      | $0.004^{g} \pm 0.000$      |
|                                |                           |                            |                            |

Table 1: Kinetic parameters for Aphanothece microscopica Nägeli in different light cycles

Values are mean  $\pm$  S.D. of quadruplicate analysis; Within the same column, means having different superscripts (a–1) are significantly different (p < 0.05) by Tukey's test.



Percent carbon dioxide fixation rates (into biomass) as related to the duration of the light periods (bubble column reactor for optimized conditions).

Final considerations :

Highest CO<sub>2</sub> removal very often does not correspond to the highest specific growth rates,

Possibility that photosynthetic reactions also leads to the formation of extracellular products;

CO<sub>2</sub> is incorporated to phosphoglycerate (PGA) catalyzed by carbonic anhydrase

High levels of intracellular  $CO_2$  (1000x)

# Development of operational strategies to remove carbon dioxide in photobioreactors

### Eduardo Jacob-Lopes<sup>1</sup>, Sergio Revah<sup>2</sup>, Sergio Hernández<sup>3</sup>, Keiko Shirai<sup>4</sup> and Telma Teixeira Franco<sup>1\*</sup>

<sup>1</sup>Department of Chemical Processes, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazil. <sup>2</sup>Department of Process and Technology, Universidad Autónoma Metropolitana-Cuajimalpa, UAM-C, México DF, México. <sup>3</sup>Department of Hydraulic and Process Engineering, Universidad Autónoma Metropolitana-Iztapalapa, UAM-I, Mexico DF, Mexico. <sup>4</sup>Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, UAM-I, Mexico.

Chemical Engineerind Science, Accepted, 2008.

#### Objective

> evaluate different operational strategies for photobioreactors in order to remove carbon dioxide using microalgae

#### Conditions tested:

- reactors: bubble column and airlift
- > operational mode: simple operation, air recirculation and two stages in series

[A-B]: (1): reactor; (2): gas entrance sampler; (3): gas exit sampler; (4): liquid sampler.

[C-D] (1): reactor; (2): gas entrance sampler; (3): gas exit sampler; (4): air dehumidifier; (5): storage tank; (6): pump.

[E-F]: (1): reactor 1; (2): gas entrance sampler; (3): gas exit sampler; (4): air dehumidifier, (5): reactor 2; (6): gas entrance sampler; (7): gas exit sampler.

(5)

(F) ALR reactors in series



(1)

(A) BCR reactor with simple operation

(2)

(1)

(2) =



(B) ALR reactor with simple operation

(4)





(2)

#### Airlift reactors:



Kinetic data for the airlift reactor with simple operation. EC: elimination capacity. RE: removal efficiency.



Kinetic data for two airlift reactors in series in the optimized conditions. Tested conditions: configuration (airlift); operational mode (simple operation, air recirculation and two reactors in series). EC: elimination capacity. RE: removal efficiency.

#### Daily carbon sequestering capacity of the reactors.

| System                                 | Carbon sequestered<br>(g <sub>carbon</sub> /L <sub>reactor</sub> .day) |
|----------------------------------------|------------------------------------------------------------------------|
| BCR (simple operation)                 | $12.90\pm0.15$                                                         |
| BCR (operation with air recirculation) | $5.55\pm0.16$                                                          |
| BCR (operation in series)              | $18.30\pm0.18$                                                         |
| ALR (simple operation)                 | $14.32\pm0.12$                                                         |
| ALR (operation with air recirculation) | $8.67 \pm 0.10$                                                        |
| ALR (operation in series)              | 24,13 <u>+</u> 0.09                                                    |

BCR: bubble column reactor; ALR: airlift reactor



Industrial approach



refinery flue gases

refinery wastewater

# Refinery wastewater improving for microalgal production and CO<sub>2</sub> biofixation: predictive modelling and simulation

Eduardo Jacob-Lopes<sup>1</sup>, Carlos Henrique Gimenes Scoparo<sup>1</sup>, Maria Isabel Queiroz<sup>2</sup>, Kelerson Modenesi<sup>3</sup>, Telma Teixeira Franco<sup>1\*</sup>

1Biochemical Engineering Laboratory, Universidade Estadual de Campinas, UNICAMP, P.O. Box 6066, 13083-970, Campinas-SP, Brazil. 2Biotechnology Laboratory, Chemical Departament, Fundação Universidade Federal do Rio Grande, FURG, 96201-900, Rio Grande-RS, Brazil. 3Petróleo Brasileiro S/A – Replan/Petrobras, 13140-000, Paulínia-SP, Brazil.

Journal of Biotechnology, Submited, 2008.

### **Petrochemical industry**

Generation and consumption of Energy

- Refinery Paulínia Replan/Petrobras (1,04%)
  - 2.954.022 equivalent ton CO<sub>2</sub>/year (99% CO<sub>2</sub>)
  - 1.181 ton CH<sub>4</sub>/year
  - 33 ton N<sub>2</sub>O

source: Chan, 2007

| Composition      | of wastewater from             | refinery industry |
|------------------|--------------------------------|-------------------|
| *Values are mean | is $\pm$ SD of all months cons | sidered.          |

| Parameter      | Treated                           |
|----------------|-----------------------------------|
|                | effluent*                         |
| рН             | $8.3\pm0.24$                      |
| Temperature    | $\textbf{28.1} \pm \textbf{2.41}$ |
| (°C)           |                                   |
| BOD (mg/L)     | $14.0\pm1.36$                     |
| Nitrite (mg/L) | $0.1\pm0.00$                      |
| Nitrate (mg/L) | $15.4\pm0.32$                     |
| Ammonia        | $1.2\pm0.10$                      |
| (mg/L)         |                                   |
| Phosphate      | $0.5\pm0.00$                      |
| (mg/L)         |                                   |
| Phenol (mg/L)  | $\textbf{0.02} \pm 0.00$          |
| Cyanide (mg/L) | $\textbf{0.04} \pm 0.00$          |
| Oil and grease | $4.6\pm0.38$                      |
| (mg/L)         |                                   |
| TSS (mg/L)     | $0.13\pm0.00$                     |

Water collected from the discharge point of the activated sludge treatment for 8 months from May to December of 2007,

#### To evaluate the use of refinery wastewater in microalgae cultivation for CO2 biofixations



Growth curves in the refinery wastewater (closed symbols) and in the synthetic BGN medium (open symbols).

#### Growth data of *Aphanothece microscopica Nägeli* in different tests

| Media | X <sub>max</sub><br>(g/L) | μ <sub>max</sub><br>(h⁻¹) | pH <sub>(end)</sub> |
|-------|---------------------------|---------------------------|---------------------|
| M1    | 0,16                      | 0,033                     | 8,96                |
| M2    | 5,06                      | 0,028                     | 9,12                |
| M3    | 0,71                      | 0,026                     | 8,92                |
| M4    | 2,28                      | 0,040                     | 8,95                |
| M5    | 4,92                      | 0,044                     | 9,10                |
| M6    | 4,34                      | 0,034                     | 8,75                |
| M7    | 3,80                      | 0,052                     | 9,0                 |
| M8    | 3,43                      | 0,047                     | 9,31                |
| M9    | 2,05                      | 0,046                     | 8,9                 |

### CO<sub>2</sub> removal rates and O<sub>2</sub> release rates (for M9 media)



Figure 9: Carbon dioxide sequestration and oxygen release rates;  $\bullet$  CO2  $~\circ$  O2 (measurements in the gaseous phase)

### Photosynthetic quotient (PQ)



Ratio between O<sub>2</sub> release rate and CO<sub>2</sub> sequestration rate
## Liquid phase studies



Carbon dioxide sequestration rates and fit of the experimental data by the integral method (measurements in the liquid phase)



Comparison between carbon dioxide sequestration rates evaluated in the liquid and gaseous phases

## Rates of carbon fixation into biomass



Figure 13: Percentage of carbon sequestered effectively fixed into biomass.



Moving to continuous operation prediction ...

According to Modifief Gompertz model  $\rightarrow$  for the M9 culture medium:  $\mu_{max}$ =1.22d<sup>-1</sup>,  $\lambda$ =15h and X<sub>max</sub>=2.05g/L.

Cell concentrations and biofixation were predicted (mass balance to CSTR operation)

 $\rightarrow$  58.8kg  $_{biomass.}m^{3}.day^{-1}$  with a biofixation of 110.0kg  $_{CO2.}m^{3}.day^{-1}$  ;

 $\rightarrow$ The amount of produced oil would depend on the strain of the algae;

Figure 2: Fit of the models to experimental data.

### Ricinus oil sunflower soybean Palm oil cotton



|             |             | Yields of the cro |              |             |
|-------------|-------------|-------------------|--------------|-------------|
| 1.500 kg/ha | 1.500 kg/ha | 3.000 kg/ha       | 20.000 kg/ha | 3.000 kg/ha |

|     | % vegetal oil |     |     |     |
|-----|---------------|-----|-----|-----|
| 47% | 4 <b>2</b> %  | 18% | 20% | 15% |

|     | vegeta | l oil (kg/ha) |       |     |
|-----|--------|---------------|-------|-----|
| 705 | 630    | 540           | 4.000 | 450 |

Fonte: diversas (Embrapa, MDA, IBGE, CONAB)

# 1<sup>st</sup> or 3<sup>th</sup> generation of biofuels?





## Thank you

### franco@feq.unicamp.br



#### Chemical Engineering, FEQUnicamp, Campinas, Brazil