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* |Introduction

 Polymer networks
— Process modeling for
recipe design
 Chemical vapor
deposition
— Recipe design
— In-situ sensing




Factors influencing material properties

When chemical composition alone does not determine the material
properties, we need to simultaneously consider the chemistry, the
process, the material structure, and the resulting properties, ultimately

the product.

Perfect Non-Equilibrium Disordered
Crystal - Structures: Liquid
Glass 85

Polycrystalline

kinetics = dynamics



Process Systems Engineering

Design, simulation, optimization, and control/

Factorial experimental design

[ Chemistry } A ] [ Properties }
Group contribution models
Optimization Molecular
Dynamics

Monte
Carlo

Control Processing} — { Structure }

Historically, systems engineering has been applied to systems in
which physics and chemistry are well understood. The new
challenge is to design systems with only a partial model.

e.g. materials, nanotechnology, synthetic biology



Modeling at across the scales:
typical picture
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Some modifications to the typical picture
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Approach

. Barriers to systems engineering in material structure design

1. Models are not accurate enough
2. Computational demands of models are too high

3. In-situ sensing is difficult

. Methodology development

1. Experimental design
2. Model reduction

3. Real-time estimation

. Develop and demonstrate in several specific applications



Current practice in materials development

e Design of materials and processes is
largely empirical

 Macroscopic models are used in
process design, but
molecular/microscopic models are
not

e Materials properties (advanced
materials) require consideration of
molecular structure




Measurement in material

80 .

_ 70} i:xc;d
In situ 60}
e Optical: reflection, scattering (UV, Vis, o

|R) 3 40}
e Process sensors: temperature, 30}

pressure, heat flow (DPC) 20/

107
Ex situ 300 200 600 860 1000
wavelength (nm)

e Optical spectra
 “Images”: AFM, SEM, TEM ’ A5

e Crystal structure: X-ray diffraction
(XRD)

e Size: gel permeation chromotography 3
(GPC), light scattering

e Composition: X-ray photoemission
spectroscopy (XPS)




Lattice model with kinetics

* Events
1. Adsorption: occupy a surface
Site

2. Desorption: leave the surface
(if have no side neighbors)

e Rates
1. k,=2events/s S _
Each lattice site is occupied
2. k,=7events/s or not

. . . o 264 =1.8x101°
e Simulate with stochastic
Solid-on-solid assumption

simulation algorithm (SSA) . 68 = 43107

D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions,” Journal of
Physical Chemistry, 81(25), 2340-2361 (1977).




Stochastic simulation algorithm

-

At

S P kN,

log(z1)

2?261 kiN;

\ kl = 28_1

<
= Z?lk N;

r1,To <1

ke = Ts !
N, = 38
kN N, — 9
kitN; = 16s ¢
J koNy, = 14s71
kiNy + koNy = 30s™*
r1 = 0.95
ro = 0.23
At = 0.0017s
p = 2

* Remove a surface atom at random (using x;)
* Recalculate N,
* Calculate new x, x,, ...



Highly branched macromolecules

.//—\\\\\J/’ linear

Increased concentration of chain
ends

Reduced crystallinity i f\_%:

Increased solubility hyperbranched

Hydrodynamic volume of highly
branched polymers are lower
than linear analogs

highly
Entanglements, leading to L branched
improved mechanical properties a (HB)

Improved processability




Motivation

Relate processing method to molecular

structure
— Promotes better understanding
— Can be used for design and optimization

Analytical results require too many limiting assumptions
— Flory assumes no cyclization
— Dusek (1994) includes cyclization in a Monte Carlo simulation

Would like to consider variations in process inputs, for example:

-~
M
Dropwise v Mix A, and B; at
addition of or ~ low T, then heat
A, into B, T **\:( L [\— ! up
A A MY

Other possibilities: vary concentration, alternate dropwise
addition of A, and B, heat up during the reaction



Want the simplest model to explain the data
A2 and B3 monomers
— A and B react, A does not react with A, or B with B

— Second order kinetics on numbers of A groups and B groups

— A and B react with one rate if they are in the same molecule, and with another
rate if they are in different molecules

Cyclization parameter: encompasses reactivities, dilution, and mixing
Cyclization parameter is higher when
— Per molecule rate of cyclization is higher
— Concentration in lower
— Mixing is lower
View as a free parameter for the system (not for each simulation)

No sense of spatial location: well-mixed within some “mixing volume”



Simulations

e Kinetic Monte Carlo (SSA)

Evolution as a series of discrete events

Directly capture the bonding and configuration of
each monomer inside the mixing volume

Use simple reactivities for now, but easy to add in
complexity

No spatial positions (just connections)

e Comparison to mass action kinetic modeling

— Describes the evolution of a single molecular weight

Captures most of the behavior in the current MC
simulations using concentrations

(PI=1)

— Cannot be easily generalized

Another alternative: Population balance model

Can describe MWD, but also difficult to generalize for branching




Experimental Procedure

CH2[OCH2CH(CH3)]x-NH2 The A, solution is
| added dropwise to
CH3CH2CCH2[OCH2CH(CH3)]y-NH2 the B, solution

I
CH2[OCH2CH(CH3)]z-NH2

olyoxylalkylenetriamine

Bis(4-isocyanatohexyl)methane

(End capped PTMO)

e Polymerization conditions
— Solvent is isopropyl alcohol
— Temperatureis 23 C
— Withdraw samples during reaction

e Characterization of molecular weight
— Size exclusion chromatography (SEC)
— Laser light scattering (MALLS)




Comparison of molecular weights
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Dilution delays the onset of
gelation

Mw (x107%) (g/mol)

Distribution of MW is also
suppressed by dilution

Mw/Mn
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Amount of A, added (mol%) Unal et al, Polymer (2005)




Concentration and cyclization ratio

Concentrations of 10% (dilute) and 25% (concentrated) B, solids by weight
in IPA

— Initial concentration ratio of B, is 4.1 (assuming additive volumes of B, and
IPA)

Approximate ratio of y from comparison of experiments and simulations is
10 (0.1/0.01)

For the same kinetics and the same mixing environment, the cyclization
ratio y should be inversely proportional to the concentration of B,

Sources of error include the simple kinetics, the uncertainty in mixing
environment, and the volume change from A, addition

Given the simplicity of the model, this agreement is “good”.



degree of branching
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Modified addition strategy

A,+B; system e 9 R

:

No solvent = negligible cycle 5 /

formation |
0 i

: 0 20 4 6 8 100
NMR measurements provide A conversion (%)

branching structure (b)

— NMR suggests unequal reactivity
of free B,

Addition of monofunctional A
groups (A,:B;:A=1:1:1) A conversion (%)
(c)

— Non-intuitive effect

— Not a robust operating point L 0.2

[

Oguz,

2007.

Unal, Long, and Gallivan, Macromolecules,] 06

A conversion (%)




What is the state of the system?

Molecular simulation is described by a graph
— Nodes are B; monomers
— Classify each node as dendritic D, linear L, or terminal T

— Edges are chemical bonds

If interested in molecular weight distribution, can characterize system by
a population balance representation:

I:)D,L,T (t)

Molecular weight is D+L+T

Depending on the kinetics used, reactivity depends on
— Number of free groups (may be slaved to MW): 2T + L
— Unequal reactivities and cycle formation complicated the relationship

— Reactivities could depend on location of group in the graph, but not in our
current model

Minimal state depends on the reactivity model used.



Mw (x107%) (g/mol)

Summary

Amount of A, added (mol%)

Good agreement on molecular weight

Cyclization suppresses molecular weight,
and can be promoted using dilution

Model contains information on
molecular structure too

Need more data to justify a more
detailed model

NMR measurements for molecular
structure are underway

Distance between groups may be
considered in the rate of cyclization



Chemical vapor deposition

Commonly used process for depositing thin films

e Thermal CVD e (Case study
— Volatile precursor — Yttrium oxide (Y,0;,)
— Heated substrate thin films
— Formation of solid film — Polycrystalline
Application Microstructure
Thermal barrier coatings High grain density, strong
Solid oxide fuel cells Graded microstructure
Microelectronics gate dielectric Amorphous
Oxygen sensors Nanocrystalline




Materials design via process design

Three main steps in the design of a material and process

Should simultaneous consider the entire problem, but can
decompose into:

Design of hardware (geometry)

Design of process settings (open loop control)
3.  Correct for disturbances (closed loop control)

Plant

A 4

v

v



Experimental testbed

Enables case study and demonstration of methods

reflectometer

‘APQOM
Uxygen
- . MF C -
Y
. CVD reactor . ! —
- o =
Y E ‘ —
Substrote —_— Sut. Pres,
| | [%}CODtPOH@P
— R to Vac,
| -
reactor | |
L LigNe

Trap

Schematic of CVD testbed



Designing with partial models

Much design work goes on without physics-based models

Ideal case

Experiments [<--;

A 4

Build models

A 4

Design system

_____________

Models exist at various resolutions:

trend fit continuum
constant lumped models molecular
< >
empirical mechanistic
bulk high spatial resolution

More understanding of process



Best fit parameters

Models often have unknown parameters that can be fit from data

e General case A
y(x) = 1(x,0)

— X is vector of inputs or “factors”

— 0 is vector of unknown model parameters

e Estimate @ from data vectors (x,y) (from the n experiments)

S = Z(yi ~ )A’(Xiig))z

é:minSr
0

dS
e When modelis linear in the parameters, d6’r =0 is
equivalent to J

Sensitivity of model

R ) dy
O=(X"X)*'X"y Xij = do. (%) to parameters
J



Uncertainty from the parameters

Uncertainty in the parameters leads to uncertainty in the prediction

e Variance of model error, for the n data points

Z(y| _ 9m (Xi ))2

_
Oy =

vV

m

Vin =N—= Py, “Degrees of freedom”

e Prediction variance for model m

on(X)=a" ()X X) a" ()6,

e

a™(X) =



Model discrimination

Goal is to determine which model is “true”

Bayesian probability
— Model m has p,, parameters
— A priori probability of model m is P(M, )
— Model is penalized for having more parameters and larger error
— Number of repetitions of the experimentis v,

P(Mm | y,Ve) oC P(Mm) % 2_pm/2 v Sr—ve/Z

Model discrimination

— Design experiment at settings where model predictions disagree most

2 y A
(Y () = ¥, ()
o’ + 02 (X)+ Gé(x)

Dm,q (X) -

Xexp — m)?.X I:)m,q (X) 74



Factorial experimental design

No mechanistic model is required in this approach

e Factorial experimental design X, 4
k k=
— Use when experiments are costly and 2", k=2
there is little understanding of the process T o °
y . . k=1 T
e Empirical modeling A + o o
— E.g. polynomial / | | | - X,
— Need 3* for curvature
X A
g 3k k=2
| | | R
. . > X £
e Using coded variables | | | °© o o
— More convenient for analysis T o ° °
— Under certain model conditions, + e ° °
N
X'X is diagonal - X — Xio | | | ‘
_ E g X — _1 XC - 2 1 1 | | o Xl
1o ow Xnigh ~ Xiow

[ D. C. Montgomery, Design and Analysis of Experiments, John Wiley (2005).]




Example

Need to design experiments based on model structure

* Model  §(x)=6x*+6,x+06, or (%) =6 + 6% + 6,

x-1
* Original variables X, =1 Xigh =4 Xig = 2.5, X, = Z(Tj_l

-1<x. <1
(2 0 2
¢ 2fx.,=-1,x.,~1 1117 -
— Can’tinvert X = 1 -1 1 X X=10 210
— XX not full rank 2 0 2]
— More parameters than experiments
o 3k.. XC,l - '1, XC,2= O, XC,3= 1 _ _ _ -
— Full rank 1 -1 1 2 0 2
— Can compute unique 0 X=|0 0 1/, X"X=[0 2 0
11 1 2 0 3]




Model based experimental design

Is factorial design always “best”?

e Should design experiments to be optimal

 Need to specify what is desired
— Best parameter estimates
— Best model discrimination
— Most helpful in finding maximum of y

 Alphabetic optimal designs
— Most common is D-optimal
— Gives most overall information on all parameters
_ T
Xexp = mfx‘x X‘

— Consequently, X"X is easier to invert and parameter estimates are less
correlated



Example

* Model y(X) =6,x+6,

e Design two experiments using the D-optimal method

« _{xl 1}
X, 1

2 2
XTX={X1 + X, x1+x2}
X + X, 2
‘XTX‘: 20%° + %,7) = (X, + %,)° = X° + X,° = 2%X,

e To maximize X'X, x, and x, should be large and opposite
in sign (same as 2% factorial with coded variables)



Desired features in new approach

Want to retain the best features of both approaches

1.

3.

4.

5.

Mathematical and statistical underpinnings
Tractable computation
e.g. 1 day

Logic consistent with the empirical design approach

e.g. include design objectives
Transition from low to high resolution models as knowledge
is gained
Tradeoff between exploration and refinement

Global versus local minima



Challenges and open questions

How do we quantify the usefulness of an experiment?

Experimental design criterion

— Multiple and competing objectives

Local minima
— Parameter estimation .

— Selection of experiments

Need to avoid repeating experiments

— Kriging / spatial statistics x
— e.g. batch-wise design: multiple local minima

Effect of initial experiments
— Rate of convergence

— Steady state



Conceptual Approach

Experimental plan

—p

Run

Experiments

Experimental results

Design

of Experiments

>
INPUT:
1.Initial
probability

of models
2. Previous

measurements

of system

A

Model 1 Model 2
(Mechanistic) (Empirical)
Parameter
estimation

Stopping Criterion

- Are parameters/error constant?

-OR is confidence interval < goal

1. Model 1is good enough

OR

2. Need new model

Yes




Restrict new experimental points

Only perform experiments at potential optimal points

e We don’t expect any model to
be accurate over the entire f(x)
domain

e We use confidence intervals to '
identify regions of potential \

optima H )
e The next experiment may only M X<
LB

be performed within this min
region

e Rationale: 2

By performing experiments at/near the optimum, our models will
improve there, and this cycle will converge to the true optimum.



Case study 1: polynomial

Multiple minima in the interior, linear in parameters

MHF(z) = o] + a5 — 2127 4 2272y + 23125 — 1375 — 1321 — 1925 + 227

(z) = i+ 25— 212 + 22 xe + 012175 — 1325 + Oa19 + O3




Experimental design surfaces

D-optimal samples at corners, P-optimal along the edge

D-optimal P-optimal




Case study 1: Experimental points

Restriction brings experimental points near global and local optima

With no restrictions Restricted to potential optima
5V vV 5
O
3t U 3t Voo
O
1t & 1
o o™
"
=1 -1
O
-3 X -3 g
O v O
_5%' m_3 Q_i 1 3 r\57 _55 -3 1 1 3 5
Xl X1

D-optimal (triangle), P-optimal (circle), random (square), true minimum (x)



Film growth case study

Achieve desired film structure and processing time

* Process inputs
— temperature T (873-1073 K)
— concentration C (0.3-1.5 mol/m3)

* Goal: achieve desired grain density N, and time t;
e |Initial experiments: 22 factorial + 2 center points

dN

d_tl = F(]. — Ful) — (,0 + 1)Knuc(777T7 Ei7 Ed7 Nl) — Kagg(n7T7 Ei7 Ed)
dN'LS

i : = Knuc<777T7 EiaNl)

E,
F = aC’ewp(—RT>

f(Tv C) — (t - tgoal)z + 106(Nisl — ‘Z\[goal)2

e Four candidate models for flux F




Objective function for film growth

A single optimum set of T and C exists in the interior.

I/

o

20

— o0
873 923 973 1023 1073
T

Candidate flux models:
F, = 0
F2 — 010 + 92 o
Fs = 014+6,T+05C
01
F, = 1 —
4 0Cexp (RT)
Model selection: | P(M;|Y, MSEj)

MSE

= P(M;) x27P/2 x MSE;"/?

2?21(9(907:) B @j($i))2

n




Film growth experimental points

Comparison of D-optimal, P-optimal, and random sampling

With no restrictions Restricted to potential optima

1.5% 2 | 1.5 R i
= O
O
La.3r gL
X ><O
H \V/
Lok sl O
oo
L Q.9¢ O 0.9 .
[ P 0..57
0 - -
O
0.5/ 5 o _ 0.5
o O
7 % : - : Og .3k - SN . -
873 923 973 1023 1073 873 923 973 1023 L0
T Ak

D-optimal (triangle), P-optimal (circle), random (square), true minimum (x)




Evolution of potential optima

Iteration

e
F+++++ ++++++++14
F++++ +++++++++14
F++++ +++++++++14
F++++++++++++++4
F++++++++++++++14
PO+ ++++++++++++14
POO®D+ ++++++++++ 4
toeed+++++++++++4
F++0000000000004d
F+++000000000004d
F+ ++00000000004
F+++++0000000004
+++++OOOPDDDDY
tH+++ 1000060064

/L.\/.._.\/.._.\/.._.\r:_.\.r.._.\f_.\

LN 3 _I_ (0))} s LN

s
AT TN A A -

873

™
— — — o o o o
D

As experiments proceed, region shrinks down near the true optimum

973 1023 1073

923

Overall recommendation: Random selection of points from the potential optima.

Works as well as the greedy method.



iter
T, % error

C, % error

iter
T, % error

C, % error

No restriction to potential optima

N =5 v =10 v =20
D P Rand | D P Rand | D P Rand
0.05 9x10=° 0.02 0.07 5x10~% 0.03 0.02 0.01 0.04
221 10.8 26.8 304 141 108 754 637 515
7.40 1.95 2.80 9.03 5.24 5.46 16.1 13.6 9.93
169 7.1 8.48 255 125 33.6 676 579 138
675 28.4 30.6 907 401 115 2190 1800 434
8.1 6.7 8.8 8.4 7.2 9.0 7.7 7.4 9.4
[1.54 0.47 o.oz} 291  0.46 0.2 | 143 005 0.03
9.19 2.85 0.19 17.25  2.82 1.49 870 035 0.03
With restriction to potential optima
v=5 v =10 v =20
D P Rand D P Rand D P Rand
0.12 2x107° 2x10=° | 0.03 2x10=2 2x10=° | 0.03 6x10~* 2x10=°
392 106 21.3 331 150 67.6 885 738 845
3.98 2.62 2.64 10.7 6.11 4.45 18.0 15.4 10.4
227  65.8 12.5 248 130 37.3 74 67T 133
933 223 43.1 894 436 120 2440 2110 396
7.4 7.4 8.4 73 7.5 9.0 75 7.5 9.2
0.03 0.15 0.14 0.31  0.30 0.05 1.19  0.07 0.03
0.36 0.88 1.53 2.13 1.81 0.77 7.47  0.70 0.41




Summary:
experimental design

e The proposed approach locates the
best design as well as the greedy
approach, while also performing
exploration for model building.

e A unified approach to experimental
design combines aspects of empirical
and mechanistic methods, with a
consistent rationale.

e Experimental implementation O —
++++O®S+++++ +

* Batchwise sequential experimental bl Tege it
design may be preferable to sample S s sty
multiple local minima ©0:% 0000601111ttt t]

ol e o . o .7+ +++++++ 4

e A probabilistic foundation will be L sdsdadan
CPPOOO0OOD++++++++ 1

explored. WL bsdetnien

873 923 2 1023 1073

Bl



Motivation for in situ sensing

Sensing is limited in thin film processing

In situ sensing for thin film deposition is necessary for process
monitoring and control

In-situ measurements during process are limited (Edgar et al. 2000)
— Noisy and inaccurate
— Expensive and difficult to integrate
— Difficult to interpret

Emissivity correcting pyrometer

— Emission + reflectance measurement

— One normal incidence view port
— Currently limited to optically smooth surfaces

Goals:

1. Extend the applicability of a commercially available sensor from smooth
surfaces in MBE to rough surfaces in CVD (Breiland 1995)

2.  Use estimation theory to improve measurements for smooth and rough
surfaces



Process model P Wt GAL

h
Key question: What model will be most useful? G G
he he —|_ GeAt
Ge Ge

* G, G, ny ky, n,, k, are expected to =

drift slowly Z’l Z’l
— Model them as parameters 1 1
no no
: : ko | . ko .
* hand h, are the time integrals of G - dj+1 L )

and G,

e Relevant physical phenomena
— Fluid flow, gas phase reactions
— Surface chemistry
— Grain boundary motion
— Crystal growth and dislocations

— Chemical composition and
incorporation of impurities




Sensor model

The effective medium model is a common way to model surface microroughness.

B T12'+'T236_4262-+-r34e_42(52+53)_+_r12r23r34e—4253 2
oo 1'+'T12T23€_¢252-+-T12r34e—42(52+63).+.r23T346—d263
N; — M
SR
0p = 2miphy/A 04l
: JVE e+ 0 oss]
e T 2 0.3}
Q = (ﬁ%'+'ﬁ§)/2 8 0.5}
no= n-—jk E 0.2}
) 0.15
0.1
0.05] y

800 400 500 600 700 800 900 1000
wavelength (nm)




Moving horizon estimation

The general case of least squares estimation

' Tp-1 T p—1 T H—1

T mlln . <x§—m+1) P —m~+1[j—m ] —m41 T Z v R v + Z w; Q7w

e l=j—m+1 l=j—m+1
such that

Tjomtl = Tj—m+l = Tjomilfjom
v = y—9g(x)
w = x41 — f(@)
\ Special cases
y ]=8 |< m=5 /| p
| 2 | e RLS
[ ] 6
Ys y: — Q=0, P+1|, > oo Greatly reduced
° . o

® yl' . Vs ° e Modified MHE computational time!

Yo Y, o Vg
Y3 _ Q =0
N N ER N N A B

e re e Robertson D.G. et al. 1996 AIChE Journal (1996) 42, 2209-2224



———— 950 nm| |
— % — 470 nm

Simulated data

Unmodeled drift in thickness and roughness

reflectance
o
(V9]

Construct a simulation that o L%

approximates the time (m
] 2000 8
experimentally observed E £
. ~ 1000 g
behavior < ;’
0 0
Can better evaluate the o § g P
= ~
estimator, since the states ST E o5
£ w
are known 0 o’ o
0 50 100 0 50 100
195 0.+ 05

Growth rate is drifting due

to precursor depletion : W/f W

Surface is roughening due PN O S S U
to grain growth dynamics £ 19 om0

"0 50 100 0 50 100
time (min) time (min)



Comparison of methods

mMHE estimate is less oscillatory than RLS

RLS mMHE

2000 5 20 2000 E
E £ = £
=~ 1000 =d £ a0 =~ 1000 &
K] = ~ < ~
0 © 0 0 © 0
0 50 100 < 0 50 100 0 50 100 5 0 50 100
200 4 10 100 q 4
E & e E
G £ 8 £
100 r—4 £ 5]/ 50 g 2f
'Em = [ 1 [|. "C:w ’&AA‘R
fil] Q \.f » <]
0 U A= 0 O o
0 50 100 0 50 100 0 50 100 0 50 100
2.5 0.1 2.5 0.1
TN
1.5 0 - 1.5 0
0 50 100 0 50 100 0 50 100 0 50 100
2.5 0.2 2.5 0.2
‘::N "‘“:N 0 11}""’**—'**1'?—_ ‘::N 2 1&,—‘5»&-.«5——::-.-;,-——_. .MN 0 1*’/_
\ r :
1.5 0 1.5 0
0 50 100 0 50 100 0 50 100 0 50 100

time (min) time (min) time (min) time (min)



MMHE variance

Predicted variance decays, except for the integrating states h and h,

10"° 10°
Significant pitfall of RLS g | o 10—2kw
when states are correlated et Lo
0 50 100 0 50 100
10 10°
MHE considers this & 10 — B gt \i
covariance between states 0 15
0 50 100 0 50 100
10° 10°
Highly correlated states nF 107 S o A0 .
— Thickness and refractive index g 10
. 0 50 100 . 0 50 100
— Extinction coefficient and 10 10
roughness R g LR \
vii B )t

o
ul
o

0 50 100 100
time (min) time (min)



Quantification of performance

mMHE outperforms RLS and can be further optimized

Compare normalized sum m EKF | 10 | 20 | 30 | 40
squared error over entire RLS — | 25 | 51 |5.0|5.5
trajectory (average 5 runs) mMHE | 6.0 | 6.1 | 4.0 | 3.4 |[ 2.8

MmMHE outperforms RLS for all
horizon lengths With m = 10

EKF can also be an option, but 0180 | Pajo | 10P1)0
longer horizon can improve 0.1 5.45 | 898 | 9.71
estimates 0.1R | @ [ 302 |7.97[ 947
10Q 2.13 4.96 7.43

MMHE improves estimate over 01Q | 598 | 7.96 | 11.4
RLS except for large R and R Q 3.52 | 5.44 | 9.22
small Q 10Q 2.06 3.17 7.97
— Process model is the primary 0.1Q | 305 19.8 || 30.8
error here 10R | @ 5.42 | 599 | 8.27
10Q | 325 | 352 | 5.45




Experimental data

o Reflectance data indicates a slowly decreasing
growth rate

34 ——©€— 950 nm
0-4'1}( — % — 470 nm|]

reflectance
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Comparison to ex situ measurements

RLS mMHE ex situ
10 20 30 EKF | 10 20 30 | ellipsometry
h (nm) | 605 | 555 421 490 | 498 541 477 510.0
he (nm) | 119 52 413 42 72 69 63 60.4
ny 1.6 1.9 1.4 2.1 2.0 1.9 2.1 1.8315
kq 0.02 | 0.03 | 0.005 | 0.05 | 0.02 | 0.02 | 0.02 0.0012
No 1.7 | 2.0 1.5 2.3 2.2 2.0 2.3 1.8828
ko 0.03 | 0.02 | 0.01 | 0.05 0 0.005 0 0

e mMHE matches ex-situ measurements better than RLS
e Extended Kalman filter performs well, except for

roughness prediction.

[ R. Xiong and M. A. Grover, Journal of Applied Physics (2008) ]




Summary: in situ sensing

MHE is the general least squares-based
state estimation. RLS, mMHE, and EKF
are special cases of MHE.

MmMHE was developed to address the
computational issue of MHE. It combines :
advantages of RLS and MHE. i

In both simulated and experimental
processes under different conditions,
MmMHE consistently yielded better
estimates by utilizing

— process dynamic model

— sensor model

— estimates of uncertainties

MMHE is a robust estimator in terms of
tuning matrices and the horizon size.
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Overall conclusions

There is a need for modeling in
materials design

Uncertainty in the models must be
included

Need a combination of modeling
and statistics, coupled with domain
knowledge and experiments
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