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Enterprise-wide optimization (EWO) is a new emerging area that lies at the interface
of chemical engineering and operations research, and has become a major goal in the
process industries due to the increasing pressures for remaining competitive in the global
marketplace. EWO involves optimizing the operations of supply, manufacturing and
distribution activities of a company to reduce costs and inventories. A major focus in EWO
is the optimal operation of manufacturing facilities, which often requires the use of
nonlinear process models. Major operational items include planning, scheduling, real-
time optimization and inventory control. One of the key features of EWO is integration of
the information and the decision-making among the various functions that comprise the
supply chain of the company. This can be achieved with modern IT tools, which together
with the internet, have promoted e-commerce. However, as will be discussed, to fully
realize the potential of transactional IT tools, the development of sophisticated determin-
istic and stochastic linear/nonlinear optimization models and algorithms (analytical IT
tools) is needed to explore and analyze alternatives of the supply chain to yield overall
optimum economic performance, as well as high levels of customer satisfaction. An
additional challenge is the integrated and coordinated decision-making across the various
functions in a company (purchasing, manufacturing, distribution, sales), across various
geographically distributed organizations (vendors, facilities and markets), and across
various levels of decision-making (strategic, tactical and operational). © 2005 American
Institute of Chemical Engineers AIChE J, 51: 1846–1857, 2005

Introduction

The process industry is a key industrial sector in the U.S.
In particular, the chemical industry is the major producer
in the world (24% of world production) with shipments

reaching $459 billion (2% of the total U.S. GDP) and $91
billion in exports in 2003 (see http://www.eere.energy.gov/
industry/about/pdfs/chemicals_fy2004.pdf). However, due to
the increasing pressure for reducing costs and inventories, in
order to remain competitive in the global marketplace, enter-
prise-wide optimization (EWO) has become the “holy grail” in
process industries. For instance at the conference Foundations
of Computer-Aided Process Operations that took place in Coral
Springs in January 2003, under the theme “A View to the
Future Integration of R&D, Manufacturing and the Global
Supply Chain,” it became clear that there is great interest
among a variety of process industries, such as petroleum,
chemical, pharmaceutical, consumer products, to achieve the

goal of EWO (see http://www.cheme.cmu.edu/focapo, Lass-
chuit and Thijssen, 2004; Neiro and Pinto, 2004; Shah, 2004).
As shown in Figure 1, the supply chain in the petroleum
industry comprises many intermediate steps starting from the
exploration phase at the wellhead, going through trading and
transportation, before reaching the refinery, and finally the
distribution and delivery of its products, some at the retail level
(e.g., gasoline). In this case it is clear that the effective coor-
dination of the various stages is essential to accomplish the
goal of EWO. Figure 2 shows the R&D phase for the testing of
new drugs in the pharmaceutical industry, which can be re-
garded as the initial component in the supply chain of that
industry, and that is the major bottleneck. The goal of achiev-
ing enterprise-wide optimization in the two examples is clearly
still elusive, and motivates the research challenges outlined in
the article.

Enterprise-wide optimization is an area that lies at the inter-
face of chemical engineering (process systems engineering)
and operations research. It involves optimizing the operations
of supply, manufacturing (batch or continuous) and distribution
in a company. The major operational activities include plan-© 2005 American Institute of Chemical Engineers
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ning, scheduling, real-time optimization and inventory control.
Supply chain management might be considered an equivalent
term for describing EWO (see Shapiro, 2001). While there is a
significant overlap between the two terms, an important dis-
tinction is that supply chain management is aimed at a broader
set of real-world applications with an emphasis on logistics and
distribution, which usually involve linear models, traditionally
the domain of operations research. In contrast in enterprise-
wide optimization, the emphasis is on the manufacturing facil-
ities with a major focus being their planning, scheduling and
control which often requires the use of nonlinear process mod-
els, and, hence, knowledge of chemical engineering. We should
also note that many process companies are adopting the term
enterprise-wide optimization to reflect both the importance of
manufacturing within their supply chain, as well as the drive to
reduce costs through optimization.

One of the key features in EWO is integration of the infor-
mation and decision making among the various functions that
comprise the supply chain of the company. Integration of
information is being achieved with modern IT tools, such as
SAP and Oracle that allow the sharing and instantaneous flow
of information along the various organizations in a company.
The development of the internet and fast speed communication
has also helped to promote through e-commerce the implemen-
tation and deployment of these tools. While these systems still
require further developments to fully realize the vision of
creating an agile platform for EWO (i.e., transactional infor-
mation), it is clear that we are not too far from it.

While software vendors provide IT tools that in principle
allow many groups in an enterprise to access the same infor-
mation, these tools do not generally provide comprehensive
decision making capabilities that account for complex trade-
offs and interactions across the various functions, subsystems
and levels of decision making. This means that companies are
faced with the problem of deciding as to whether to develop
their own in-house tools for integration, or else make use of
commercial software from vendors.

Some commercial tools are becoming increasingly capable
of addressing some parts of the enterprise-wide optimization in
the process industry (e.g., Aspentech, Mahalec, 2001). As a
specific example of a strategic planning study, BASF per-

formed a corporate network optimization of packaged finished
goods in North America. There were 17 operating divisions
with multiple, heterogeneous systems: 25,000 SKU’s (stock
keeping units), 134 Shipping Points, 15,000 Ship-to locations,
956 million pounds shipped direct to customers, 696 million
pounds shipped to customers through distribution centers. By
using optimization tools from Aspen Technology, BASF re-
duced transportation and facility costs by 10%, next-day vol-
ume delivery increased from 77 to 96%, the number of distri-
bution centers was reduced from 86 to 15, generating $10
million/year savings in operating costs.

From the earlier example it can be seen that there is great
economic potential in EWO, and that some progress has been
made toward the goal of developing some of the basic building
blocks. However, major barriers are the lack of computational
optimization models and tools that will allow the full and
comprehensive application of EWO throughout the process
industry. This will require a new generation of tools that allow
the full integration and large-scale solution of the optimization
models, as well as the incorporation of accurate models for the
manufacturing facilities. Given the strong tradition that chem-
ical engineers have in process systems engineering and in the
optimization area (see Biegler and Grossmann (2004) for a
recent review), they are ideally positioned to make significant
contributions in EWO.

Challenges in Enterprise-wide Optimization

In order to realize the full potential of transactional IT tools,
the development of sophisticated optimization and decision-
support tools (analytical IT tools) is needed to help explore and
analyze alternatives, and predict actions for the operation of the
supply chain so as to yield overall optimum economic perfor-
mance, as well as high levels of customer satisfaction. A major
challenge that is involved in EWO of process industries is the
integrated and coordinated decision-making across the various
functions in a company (purchasing, manufacturing, distribu-
tion, sales), across various geographically distributed organi-
zations (vendors, facilities and markets), and across various
levels of decision-making (strategic, tactical and operational),
as seen in Figure 3 (Shapiro, 2001). The first two items con-
ceptually deal with issues related to spatial integration in that
they involve coordinating the activities of the various sub-
systems of an enterprise. The third item deals with issues
related to temporal integration in that they involve coordinat-
ing decisions across different timescales. Addressing these
spatial and temporal integration problems is important because
they provide a basis to optimize the decision-making in an
enterprise through the IT infrastructure.

In order to achieve EWO throughout the process industry,
this goal will require a new generation of computational tools
for which the following major challenges must be addressed:

Figure 1. Supply chain in the petroleum industry (courtesy ExxonMobil).

Figure 2. R&D componant of the supply chain in the
pharmaceutical industry.
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(a) The modeling challenge: What type of production plan-
ning and scheduling models should be developed for the var-
ious components of the supply chain, including nonlinear man-
ufacturing processes, that through integration can ultimately
achieve enterprise-wide optimization? Major issues here are
the development of novel mathematical programming and log-
ic-based models that can be effectively integrated to capture the
complexity of the various operations.

(b) The multiscale optimization challenge: How to coordi-
nate the optimization of these models over a given time horizon
(from weeks to years), and how to coordinate the long-term
strategic decisions (years) related to sourcing and investment,
with the medium-term decisions (months) related to tactical
decisions of production planning and material flow, and with
the short-term operational decisions (weeks, days) related to
scheduling and control? Major issues here involve novel de-
composition procedures that can effectively work across large
spatial and temporal scales.

(c) The uncertainty challenge: How to account for stochas-
tic variations in order to effectively handle the effect of uncer-
tainties (e.g., demands, equipment breakdown)? Major issues
here are the development of novel, meaningful and effective
stochastic programming tools.

(d) The algorithmic and computational challenge: Given
the three points earlier, how to effectively solve the various
models in terms of efficient algorithms, and in terms of modern
computer architectures? Major issues here include novel com-
putational algorithms and their implementation through distrib-
uted or grid computing.

Although progress has been made in some of the areas cited
above, significant research effort is still required to overcome
the four challenges above. The following sections briefly dis-
cuss the technical issues involved in each of the challenges.
The long term goal is to produce new analytical IT tools that
will help to realize the full potential of EWO in conjunction
with the transactional IT tools.

The modeling challenge

While the area of planning and scheduling has seen the
development of many models in operations research (OR) (e.g.,
Pinedo, 2001), over the last decade a significant number of
planning and scheduling models have been proposed specifi-
cally for process applications (for a recent review see Pinto and

Grossmann, 1998; Shah, 1998; Pekny and Reklaitis, 1998). In
contrast to general OR scheduling models, the process-oriented
models tend to require the use of material flows, and very often
network topologies that are quite different from the more
traditional serial and multistage systems. Furthermore, they
address both batch and continuous processes, and may require
the use of detailed nonlinear process models.

The most general batch scheduling model that has been
proposed for short-term scheduling for processing applications
is the State-Task Network by Kondili et al. (1993). This model
has the feature that it does not preassign equipment to tasks, the
batches are of variable size and can be combined and split. The
original model relied on a discrete time representation which
led to a mixed-integer linear programming (MILP) formula-
tion. Pantelides (1994) proposed the resource-task network as
an alternative representation that leads to a more compact
MILP model. Recent efforts on this problem have extended the
model to continuous time which greatly complicates the un-
derlying MILP model (e.g., see Schilling and Pantelides, 1996;
Zhang and Sargent, 1996; Ierapetritou and Floudas, 1998;
Mockus and Reklaitis, 1999; Maravelias and Grossmann,
2003). On the other hand there are a good number of specific
process scheduling models that have been developed to better
exploit the special structure of some problems (e.g., continuous
multistage with parallel units; see Jia et al., 2003), and to
incorporate process performance models and explicit handling
of changeovers (e.g., see Jain and Grossmann, 1998). Another
common occurrence is in long term cyclic scheduling models
in which at the very least the objective function must be
expressed in nonlinear form (e.g., see Pinto and Grossmann,
1994). It should be noted, however, that despite the progress
that has been made, the availability of a general purpose
scheduling and planning model for the process industries, par-
ticularly for continuous processes, is still elusive. This is not
only because of the great variety of problems that arise in
practice, but also because of a number of major computational
issues, namely difficulties in solving large-scale discrete and
continuous optimization problems, handling of nonlinear pro-
cess models, and treatment of uncertainties.

The general form of the deterministic problems in EWO
problems corresponds to the following multiperiod mixed-
integer programming problem

min�
t�T

ft�x,wt,wt-1,�t�

s.t. gt� x,wt,wt-1,�t� � 0 t � T

x � Rnx, xi � 0,1 i � 1,mx

wt � Rnwt,wtj � 0,1 j � 1,mw,t � T (P)

where ft, gt are scalar and vector functions (linear/nonlinear),
respectively, and T is a set of fixed or variable time periods.
The variables x represent decisions independent of the time
periods, while the variable wt represent decisions at each time
period t, where mx � nx, mw � nw. �t are exogenous or
endogenous parameters that have fixed values for deterministic
problems. When considering uncertainties, these parameters
are treated as random variables and problem (P) is extended as
a stochastic programming problem. Since EWO will require

Figure 3. Transactional and analytical IT (Tayur et al.,
1999).
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the formulation and solution of problems of type (P), both
linear and nonlinear that are one or several orders of magnitude
larger than current planning and scheduling models, research is
needed in order to produce effective computational models.

The multiscale optimization challenge

Integration and coordination are key components in EWO
(Shapiro, 2004; Song and Yao, 2001). The areas outlined in the
following sections correspond to major unresolved problem
areas.
Integration of Production Planning, Scheduling and Real-

time Optimization. The fundamental issue in this area is the
integration of models across very different timescales (Shah,
1998). Typically, the planning model is a linear and simplified
representation that is used to predict production targets and
material flow over several months (up to one year). Also at this
level effects of changeovers and daily inventories are ne-
glected, which tends to produce optimistic estimates that can-
not be realized at the scheduling level. Scheduling models on
the other hand tend to be more detailed in nature, but assume
that key decisions have been taken (e.g., production targets,
due dates). Two major approaches that have been investigated
for integrating planning and scheduling are the following:

(1) Simultaneous planning and scheduling over a com-
mon time grid. The idea here is to effectively “elevate” the
scheduling model to the planning level, which leads to a
very large-scale multiperiod optimization problem, since it
is defined over long time horizons with a fine time discreti-
zation (e.g., intervals of one day). A good example is the use
of the State-Task-Network for multisite planning (e.g.,
Wilkinson et al., 1996). To overcome the problem of having
to solve a very large scale problem, strategies based on
aggregation and decomposition can be considered (see Bas-
set et al., 1996; Birewar and Grossmann, 1990; Wilkinson,
1996). The former typically involve aggregating later time
periods within the specified time horizon in order to reduce
the dimensionality of the problem.

(2) Decomposition techniques for integrating planning and
scheduling are usually based on a two-level decomposition
procedure where the upper level problem (planning problem) is
an aggregation of the lower level problem (scheduling). The
challenge lies in developing an aggregated planning model that
yields tight bounds to reduce the number of upper and lower
level problems (Papageorgiou and Pantelides, 1996a, 1996b;
Bok et. al, 2000). Another solution approach relies on using a
rolling horizon approach where the planning problem is solved
by treating the first few periods in detail, while the later periods
are aggregated recursively (Dimitriadis et al. 1997).

Finally, real-time optimization (RTO) models are nonlinear
and are defined over short time intervals; integration of RTO
with planning and scheduling is a topic that has received
virtually no attention in the literature.
Optimization of Supply Chains. When considering a spe-

cific decision level (strategic, tactical or operational), it is often
desired to consider the entire supply chain of a given enterprise
(e.g., Equi et al. 1997; Erengüç, 1999; Neiro and Pinto, 2003).
Here again problem size can become a major issue as we have
to handle models across many length scales. Two major ap-
proaches are to either consider a simultaneous large-scale op-
timization model, or else to use decomposition either in spatial

or in temporal forms (Kulkarni and Mohanty, 1996), usually
using Lagrangean decomposition (Graves, 1982; Gupta and
Maranas, 1999). In the case of spatial decomposition the idea
is to severe the links between subsystems (e.g., manufacturing,
distribution and retail) by dualizing the corresponding inter-
connection constraints, which then requires the multiperiod
optimization of each system. In the case of temporal decom-
position the idea is to dualize the inventory constraints in order
to decouple the problem by time periods. The advantage of this
decomposition scheme is that consistency is maintained over
every time period (Jackson and Grossmann, 2003). See also
Daskin et al. (2002) for combining location and inventory
models.

Simultaneous optimization approaches for the integration of
entire supply chains naturally lead to the definition of central-
ized systems. In practice, however, the operation tends to take
place as if the supply chain were a decentralized system. What
is needed are coordination procedures that can maintain a
certain degree of independence of subsystems (Nishi et al.,
2002), while at the same time aiming at objectives that are
aimed at the integrated optimization of the overall system (see
Perea et al., 2001).

Uncertainty challenge

Uncertainty is a critical issue in supply chain operations.
Furthermore, it is complicated by the fact that the nature of the
uncertainties can be quite different in the various levels of the
decision making (e.g., strategic planning vs. short term sched-
uling). Most of the research thus far has focused on operational
uncertainty, such as quality, inventory management and han-
dling uncertain processing time (e.g., Zipkin, 2000, Montgom-
ery, 2000, Balasubramanian and Grossmann, 2002). Much less
work has focused on uncertainty at the tactical level, for
instance, production planning with uncertain demand (Gupta
and Maranas, 2003; Balasubramanian and Grossmann, 2004).
The reason for this is that the resulting optimization problems
are extremely difficult to solve since they give rise to stochastic
programming problems (Birge and Louveaux, 1997). In a sto-
chastic program, mathematical programs are solved over a
number of stages. Between each stage, some uncertainty is
resolved, and the decision maker must choose an action that
optimizes the current objective plus the expectation of the
future objectives. The most common stochastic programs are
two-stage models that are solved using a variant of Benders’
decomposition. When the second-stage (or recourse) problem
is a linear program these problems are straightforward to solve,
but the more general case is where the recourse is a MILP or a
MINLP. Such problems are extremely difficult to solve since
the expected recourse function is discontinuous and nonconvex
(Sahinidis, 2004).

As an example, consider the problem of production planning
across a supply chain with uncertain demands. The first-stage
problem is to create a production plan. After the demand is
realized, a plant process optimization problem must be solved
for each plant. The challenge is to find a production plan that
minimizes the expected production cost. The hierarchical na-
ture of supply chains lends itself naturally to stochastic pro-
gramming models, and in particular the decomposition princi-
ples that are used to solve them.
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Algorithmic and Computational Challenges

Realizing the vision of EWO will require the development of
advanced algorithms and computational architectures in order
to effectively and reliably solve the large-scale optimization
models. In this section, we briefly outline some of the more
technical aspects that are involved in this endeavor. We should
note that collaboration between researchers in process systems
engineering and operations research should be most fruitful in
this area.
Mixed-integer linear programming. When detailed pro-

cess performance models are not used, planning and scheduling
problems for EWO commonly give rise to mixed-integer linear
programming problems (MILPs). These optimization problems
can be computationally expensive to solve since in the worst
case they exhibit exponential complexity with problem size
(NP-hard). However, in the last 10 years great progress has
been made in algorithms and hardware, which has resulted in
an impressive improvement of our ability to solve mixed-
integer programming problems (MILPs) (Bixby, 2002; John-
son et al., 2000) through codes such as CPLEX and XPRESS.
Capitalizing on theory developed during the last 20 years, it is
now possible, using off-the-shelf LP-based branch-and-bound
commercial software, to solve in a few seconds MILP instances
that were unsolvable just five years ago. This improvement has
been particularly dramatic for certain classes of problems, such
as the traveling salesman problem, and certain industries, such
as the commercial airlines. In contrast, for the type of problems
that arise in process industries, the available LP-based branch-
and-bound software is not always capable of solving industrial-
size MILP models. One reason is that, nonconvex functions,
such as piecewise linear functions, and combinatorial con-
straints, such as multiple-choice, semicontinuous, fixed-charge,
and job sequencing disjunctions (i.e., either job i precedes job
j or vice-versa), abound in optimization problems related to
process industries. For such functions and constraints, the
“textbook” approach implemented in the current software is
often not practical.

In the current methods, nonlinearities are often modeled by
introducing a large number of auxiliary binary variables and
additional constraints, which typically doubles the number of
variables and increases the number of constraints by the same
order of magnitude. Also, with this approach, the combinatorial
structure is obscured and it is not possible to take advantage of
the structure. In the case of EWO, where many of these
constraints appear at the same time and the sizes of the in-
stances are considerably larger, these issues are even more
serious. Recently, an alternative method, branch-and-cut with-
out auxiliary binary variables, inspired by the seminal work of
Beale and Tomlin (1970) on special ordered sets, has proved to
be promising in dealing with such constraints (de Farias, 2004).
It consists of enforcing the combinatorial constraints algorith-
mically, directly in the branch-and-bound scheme, through
specialized branching and the use of cutting planes that are
valid for the set of feasible solutions in the space of the original
decision variables. The encouraging computational results
yielded by the method on some of the aforementioned con-
straints provide a serious indication that it may be of great
impact on EWO problems for the process industries. The use of
cutting planes in an LP-based branch-and-bound approach has
also proven to be of significant importance in obtaining strong

bounds to reduce the required amount of enumeration (see for
example, Marchand et al., 2002).
Constraint Programming. The relatively new field of con-

straint programming has recently become the state of the art for
some important kinds of scheduling problems, particularly
resource-constrained scheduling problems, which occur fre-
quently in supply-chain contexts. Constraint programming
(CP) can bring advantages on both the modeling and solution
sides. The models tend to be more concise and easier to debug,
since logical and combinatorial conditions are much more
naturally expressed in a CP than in an MILP framework (e.g.,
Milano 2003). The solvers take advantage of logical inference
(constraint propagation) methods that are well suited to the
combinatorial constraints that characterize scheduling prob-
lems. In particular, the sequencing aspect of many scheduling
problems-the task of determining in what order to schedule
activities-can present difficulties to MILP because it is difficult
to model and gives rise to weak continuous relaxations. By
contrast, a CP model readily formulates sequencing problems
and offers specialized propagation algorithms that exploit their
structure. Furthermore, heuristics can readily be accommo-
dated in CP.

The greatest promise, however, lies in the integration of CP
and MILP methods, which is currently a very active area of
research (Hooker, 2000). Several recent systems take some
steps toward integration, such as ECLiPSe (Wallace et al.
1997), OPL Studio (Van Hentenryck 1999), and the Mosel
language (Columbani and Heipcke, 2002). Integration allows
one to attack problems in which some of the constraints are
better suited to an MILP-like approach (perhaps because they
have good continuous relaxations) and others are better suited
for a CP approach (because they “propagate well”). This is
particularly true of supply-chain problems, in which constraints
relating to resource allocation, lot sizing, routing and inventory
management may relax well, while constraints related to se-
quencing, scheduling and other logical or combinatorial con-
ditions may propagate well. In the context of scheduling prob-
lems, these models perform the assignment of jobs to machines
with mixed-integer programming constraints, while the se-
quencing of jobs is performed with constraint programming.
The motivation behind the former is to remove “big-M” con-
straints and exploit the optimization capability of mixed-inte-
ger programming. The motivation behind using the latter is to
exploit the capability of constraint programming for effectively
handling feasibility subproblems, as well as sequencing con-
straints. Hybrid methods have shown in some problems out-
standing synergies that lead to order magnitude reductions in
computation (Jain and Grossmann, 2001; Maravelias and
Grossmann, 2004; Hooker 2003; Hooker et al. 1999; Hooker
and Ottosson 2003).
Nonlinear programming. In order to develop real-time op-

timization models as part of the enterprise-wide optimization
models for process industries (energy, chemicals, and materi-
als) high fidelity simulation models are required that provide
accurate descriptions of the manufacturing process. Most of
these models consist of large sets of nonlinear equality and
inequality constraints, which relate manufacturing performance
to designed equipment capacities, plant operating conditions,
product quality constraints, and operating costs. The sensitivity
of these degrees of freedom to higher level decisions can also
be exploited by an integrated optimization formulation. The
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development and application of optimization tools for many of
these nonlinear programming (NLP) models (Nocedal and
Wright, 1999) has only recently been considered (see Biegler et
al., 2002).

An important goal in EWO is the integration of these non-
linear performance models to determine optimal results from
IT tools. This research task is essential because these perfor-
mance models for real-time optimization ensure the feasibility
of higher level decisions (e.g., logistics and planning) for
manufacturing operations. Also, these models accurately rep-
resent operating degrees of freedom and capacity expansions in
the manufacturing process. As a result, incorporation of these
models leads to significantly superior results than typical linear
approximations to these models. Several studies have demon-
strated the importance of including NLP and MINLP optimi-
zation capabilities (Bhatia and Biegler, 1997, Jackson and
Grossmann, 2003; Jain and Grossmann, 1998), and the signif-
icant gains that can be made in planning and scheduling oper-
ations. On the other hand, the research challenge is that non-
linear models are more difficult incorporate and to handle as
nonlinear optimization problems because they introduce non-
monotonic behavior, nonconvexities and local solutions. In
addition the treatment of local degeneracies and ill-condition-
ing is more difficult and more computationally intensive opti-
mization algorithms are required. The recent introduction of
interior point (or barrier) methods for NLP (Byrd et al., 2000;
Vanderbei and Shanno, 1999; Waechter and Biegler, 2003)
have shown significant improvements over conventional algo-
rithms with active set strategies. Also, more recent conver-
gence criteria have been improved with the introduction of
filter methods (Fletcher et al., 2003; Waechter and Biegler,
2005), which rapidly eliminate undesirable search regions and
promote convergence from arbitrary starting points.
Mixed-integer Nonlinear Programming andDisjunctiveOp-

timization. Developing the full range of models for EWO as
given by problem (P) requires that nonlinear process models be
developed for planning and scheduling of manufacturing facil-
ities. This gives rise to mixed-integer nonlinear programming
(MINLP) problems since they involve discrete variables to
model assignment and sequencing decisions, and continuous
variables to model flows and, amounts to be produced and
operating conditions (e.g., temperatures, yields). While MINLP
optimization is still largely a rather specialized capability, it
has been receiving increasing attention over the last decade. A
recent review can be found in Grossmann (2002). A number of
methods, such as outer-approximation, extended cutting

planes, and branch and bound have proved to be effective, but
are still largely limited to moderate-sized problems. In addi-
tion, there are several difficulties that must be faced in solving
these problems. For instance in NLP subproblems with fixed
values of the binary variables, the problems contain a signifi-
cant number of redundant equations and variables that are often
set to zero, which in turn often lead to singularities and poor
numerical performance. There is also the possibility of getting
trapped in suboptimal solutions when nonconvex functions are
involved. Finally, there is the added complication when the
number of 0-1 variables is large, which is quite common in
planning and scheduling problems.

To circumvent some of these difficulties, the modeling and
global optimization of generalized disjunctive programs (GDP)
seems to hold good promise for EWO problems. The GDP
problem is expressed in terms of Boolean and continuous
variables that are involved in constraints in the form of equa-
tions, disjunctions and logic propositions (Raman and Gross-
mann, 1994). One motivation for investigating these problems
is that they correspond to a special case of hybrid models in
which all the equations and symbolic relations are given in
explicit form. An important challenge is related to the devel-
opment of cutting planes that provide similar quality in the
relaxations as the convex hull formulation without the need of
explicitly including the corresponding equations (Sawaya and
Grossmann, 2005). The other challenge is that global optimi-
zation algorithms (Floudas, 2000; Sahinidis, 1996) can in prin-
ciple be decomposed into discrete and continuous parts, which
is advantageous as the latter often represents the major bottle-
neck in the computations (e.g., through spatial branch-and-
bound schemes; see Lee and Grossmann, 2001). Finally, the
extension to dynamics of these models (e.g., Barton and Lee,
2004) should provide computational capabilities that are re-
quired to model real-time problems.
Computational Grid. Solving the large-scale EWO models

will require significant computational effort. To achieve the
goal of integrating planning across the enterprise, advances in
algorithms and modeling must go hand-in-hand with advances
in toolkits that enable algorithms to harness computational
resources. One promising approach that has emerged over the
last decade is to deliver computational resources in the form of
a computational grid, which is a collection of loosely-coupled,
(potentially) geographically distributed, heterogeneous com-
puting resources. The idle CPU time on these collections is an
inexpensive platform that can provide significant computing
power over long time periods. For example, consider the
project SETI@home (http://setiathome.ssl.berkeley.edu/),
which since its inception in the mid 1990s has delivered over
18,000 centuries of CPU time to a signal processing effort. A

Figure 4. Multisite planning for polymer production.

Figure 5. Predicted production and inventory plans for
one of the sites.
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computational grid is similar to a power grid in that the
provided resource is ubiquitous and grid users need not know
the source of the provided resource. An introduction to com-
putational grids is given by Foster and Kessleman (1999). An
advantage of computational grids over traditional parallel pro-
cessing architectures is that a grid is the most natural and
cost-effective manner for users of models and algorithms to
obtain the required computational resource to solve EWO
problems.

To allow a larger community of engineers and scientists to
use computational grids, a number of different programming
efforts have sought to provide the base services that grid-
enabled applications require (e.g., Foster and Kesselman, 1997
and Livny et al., 1997). A promising approach would seem to
use and augment the master-worker grid library MW (Goux et
al. 2001). The MW library is an abstraction of the master-
worker paradigm for parallel computation. MW defines a sim-
ple application programming interface, through which the user
can define the core tasks making up this computation, and the
actions that the master takes upon completion of a task. Once
the tasks and actions are defined by the user, MW performs the
necessary actions to enable the application to run on a compu-
tational grid (such as resource discovery and acquisition, task
scheduling, fault-recovery, and interprocess communication).

MW was developed by the NSF-funded metaNEOS project
and used to solve numerical optimization problems of unprec-
edented complexity (e.g., Anstreicher et al. 2002, Linderoth
and Wright, 2003). A major research direction here would be
the development and testing of decomposition-based and
branch-and-bound based algorithms for EWO models. The
MW toolkit has already been used with great success to par-
allelize both decomposition-based algorithms (e.g., Linderoth
and Wright, 2003), and also spatial branch-and-bound algo-
rithms (e.g., Goux and Leyffer, 2003, Chen, Ferris, and Lin-

deroth, 2001). However, for EWO the current functionality in
the MW toolkit is not sufficient. The simple master-worker
paradigm must be augmented with features that improve its
scalability and information sharing capabilities to be able to
solve the EWO models.

Illustrative Examples

In this section, we present four examples that illustrate the
four challenges cited in this article on problems encountered in
the area of Enterprise-wide Optimization. Example 1 deals
with a multisite planning and distribution problem that incor-
porates nonlinear process models, illustrating the modeling
challenge. Example 2 describes the simultaneous optimization
of the scheduling of testing for new product development and
the design of batch manufacturing facilities. This example
illustrates the challenge of multi-scale modeling given the
dissimilar nature of the activities and the need of combining a
detailed scheduling model with a high level design model.
Example 3 illustrates the third challenge with the design and
planning of off-shore gas field facilities under uncertainty.
Finally, Example 4 deals with a short term scheduling problem
that makes use of a hybrid model that combines mixed-integer
linear programming and constraint programming. This exam-
ple illustrates the challenge for developing new algorithms. We

Figure 6. Precedence tests for new proteins F and C.

Figure 7. Multistage batch plant for protein
manufacturing. Figure 9. Infrastructure for off-shore gas production.

Figure 8. (a) Optimal schedule and allocation for testing,
and (b) optimal capacity expansion of plant in
Figure 6.
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should note that while the examples presented are rather mod-
est in size compared to what ideally one would like to strive for
in EWO, examples 1 and 3 correspond to real world industrial
problems.

Example 1.

This example deals with the production planning of a mul-
tisite production facility that must serve global markets (see
Figure 4). The sites can produce 25 grades of different poly-
mers. Given forecasts of demands over a 6 to 12 month horizon
the problem consists of determining for each week of operation
what grades to produce in each site and the transportation to
satisfy demands in the various markets. An important feature of
this problem is that nonlinear process models are required to
predict the process and product performance at each site.

Neglecting effects of changeovers, the problem of optimiz-
ing the total profit can be formulated as a multiperiod NLP
problem. The difficulty is that the size of the problem can
become very large. For instance a 12 month problem involves
34,381 variables and 28,317 constraints. To circumvent this
problem, Jackson and Grossmann (2003) developed a temporal
decomposition scheme, based on Lagrangean relaxation. The
authors showed that much better results could be obtained
compared to a spatial decomposition (see Figure 5), and that
the CPU times could be reduced by one or two orders of
magnitude for optimality tolerances of 2-3%. The reason CPU
times are important for this model is that this allows one to use
it in real time for demand management when deciding what
orders to accept and their deadlines.

Example 2.

This problem deals with the case where a biotechnology firm
produces recombinant proteins in a multipurpose protein pro-
duction plant. Products A, B, D, and E are currently sold while
products C and F are still in the company’s R&D pipeline. Both
potential products must pass successfully 10 tests before they
can gain FDA approval (see Figure 6). These tests can either be
performed in-house or else outsourced at double the cost.
When performed in-house, they can be conducted in only one
specific laboratory. Products A-C are extracellular, while D-F
are intracellular. All proteins are produced in the fermentor P1
(see Figure 7). Intracellular proteins are then sent to the ho-
mogenizer P2 for cell suspension, then to extractor P3, and last
to the chromatographic column P4 where selective binding is
used to further separate the product of interest from other
proteins. Extracellular proteins after the fermentor P1 are sent
directly to the extractor P3 and then to the chromatograph P4.

The problem consists of determining simultaneously the
optimal schedule of tests and their allocation to labs, while at
the same time deciding on the batch plant design to accommo-
date the new proteins. Here, two major options are considered.
One is to build a new plant for products C and D (assuming
both pass the tests), the other is to expand the capacity of the
existing plant. This problem was formulated as an MILP prob-
lem (Maravelias and Grossmann, 2001), involving 612 0–1
variables, 32184 continuous variables, and 30903 constraints.
Here again one option is to solve simultaneously the full-size
MILP, while the other is to decompose the problem into the
scheduling and design functions using a Lagarngean relaxation
technique similar to the one in Example 1. The schedule
predicted for the tests is shown in Figure 8a. In Figure 8b, it can
be seen that the model selects to expand the capacity of the
various units rather than building a new plant. Also, since the
model accounts for the various scenarios of fall/pass for C and
F, it predicts that products D and E be phase-out in the case that
the two new proteins obtain FDA approval.

Example 3

This problem deals with the design and planning of an
off-shore facility for gas production. It is assumed that a
superstructure consisting of a production platform, well plat-
forms (one for each field) and pipelines is given (see Figure 9).
It is also assumed that for some of the fields there is significant
uncertainty in the size and initial deliverability (production
rate) of the fields. The problem consists of determining over a
given time horizon (typically 10 – 15 years) decisions regard-

Figure 11. State-task network for batch process manufacturing products P1, P2, P3, P4.

Figure 10. Example with uncertain gas fields D and E.
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ing the selection and timing of the investment for the installa-
tion of the platforms, their capacities and production profiles.

Goel and Grossmann (2003) developed a mixed-integer op-
timization model assuming discrete probability distribution
functions for the sizes and initial deliverabilities. Also, the
model was simplified with a linear performance model to avoid
the direct use of a reservoir simulation model. The optimization
problem gives rise to a very difficult stochastic optimization
problem, which has the unique feature that the scenario trees
are a function of the timing of the investment decisions. Goel
and Grossmann (2003, 2005) have developed two solution
methods, a heuristic and a rigorous branch and bound search
method for solving this problem. The example in Figure 10
involves 6 fields over 15 years, with two of the fields having
uncertain sizes and deliverabilities. If one were to solve di-
rectly the deterministic equivalent problem in which all sce-
narios are anticipated this would give rise to a very large
multiperiod MILP model with about 16281 0–1 variables, and
2.4 million constraints, which is impossible to solve directly
with current solution methods. Fortunately, the methods by
Goel and Grossmann circumvent the solution of such a large
problem. The solution is shown in Table 1, which postpones
the investment in the uncertain fields to years five and seven,
with an expected NPV of $146 million, and a risk of less than
1% that the NPV be negative. Interestingly, if one simply uses
mean values for the uncertain parameters, the platforms at the
uncertain fields are installed in period 1 and the financial risk
increases to 8%. Obviously, in practice models like these
would be solved periodically by updating them with new
information on the fields.

Example 4

This example deals with the scheduling of a batch process
shown in Figure 11, using the state-task network representation
in which circles represent material nodes with various storage
options (finite, unlimited, zero-wait, no storage), and the rect-
angles represent operational tasks that must be performed (e.g.,
mixing, reaction, separation). This batch process produces four
different products, P1, P2, P3 and P4. Note that 8 units are
assumed to be available for performing the operations of the

various tasks. Of course not all units can perform all tasks, but
only a subset of them. Given data on processing times for each
task, as well as on the mass balance, the problem consists of
determining a schedule that can produce five tons of the four
products, and that minimizes the makespan (completion time).
If this problem is formulated with a continuous time approach,
such as the one by Maravelias and Grossmann (1993) in order
to accommodate arbitrary processing times, the corresponding
MILP cannot be solved after 10 h of CPU-time. This can be
qualitatively explained by the fact that scheduling and MILP
problems are NP-hard. To address this difficulty, however,
Maravelias and Grossmann (2004) developed a novel hybrid
solution method that combines MILP with constraint program-
ming. Using such a technique the problem was solved to
rigorous optimality in only 5 s. This example then shows the
importance of special solution methods that effectively exploit
the structure of scheduling problems.

Concluding Remarks

This article has provided an overview of the emerging area
of enterprise-wide optimization, that is driven by needs of the
process industries for reducing costs and remaining competi-
tive in the global marketplace. Some of the major challenges
have been highlighted, and several examples presented to il-
lustrate the nature of the applications and the problems that are
faced.

It is hoped that this article has shown that EWO offers
new and exciting opportunities for research to chemical
engineers. While EWO lies at the interface of chemical
engineering (process systems engineering), and operations
research, it is clear that chemical engineers can play a major
role not only in the modeling part, but also in the algorith-
mic part given the strong and rich tradition that chemical
engineers have built in mathematical programming. Thus, in
collaboration with operations researchers, chemical engi-
neers should be well positioned for developing novel com-
putational models and algorithms that are to be integrated
with coordination and decomposition techniques through
advanced computing tools. This effort should help to expand
the scope and nature of EWO models that can be effectively
solved in real-world industrial problems. These models and
methods have the potential of providing a new generation of
analytical IT tools that can significantly increase profits and
reduce costs, thereby strengthening the economic perfor-
mance and competitiveness of the process industries.

Figure 12. Optimal schedule with makespan of 15 hours.

Table 1. Solution of Stochastic Model for Figure 10

Proposed Solution

Year 1 PP, A, B, C, F
Year 5 E
Year 7 D
ENPV $146.32 Million
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