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bstract

The process systems engineering (PSE) as well as the operations research and management science (ORMS) literature has hitherto focused
n disparate processes and functions within the enterprise. These themes have included upstream R&D pipeline management, planning and
cheduling in batch and continuous manufacturing systems and more recently supply chain optimization under uncertainty. In reality, the modern
rocess enterprise functions as a cohesive entity involving several degrees of cross-functional co-ordination across enterprise planning and process
unctions. The complex organizational structures underlying horizontally and vertically integrated process enterprises challenge our understanding
f cross-functional co-ordination and its business impact. This article looks at the impact of enterprise-wide cross-functional coordination on
nterprise performance, sustainability and growth prospects. Cross-functional coordination is defined as the integration of strategic and tactical
ecision-making processes involving the control of financial and inventory flows (both internal and external) as well as resource deployments.
nitially, we demonstrate the existence of cross-functional decision-making dependencies using an enterprise network model. Subsequently, we

iscuss interactions between enterprise planning decisions involving project financing, debt-equity balancing, R&D portfolio selection, risk hedging
ith real derivative instruments, supply chain asset creation and marketing contracts which influence decision-making at the activity/process level.
everal case studies are included to re-enforce the point that planning and process decisions need to be integrated.
2007 Elsevier Ltd. All rights reserved.
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. Introduction

Globalization trends have significantly increased the scale
nd complexity of the modern enterprise. The enterprise has
een transformed into a global network consisting of multi-
le business units and functions. Operational functions include
&D pipelines, production networks (both batch and continu-
us) and supply chain networks. These functions are supported
y financial planning and marketing strategy functions. The
nterprise is exposed to internal and external uncertainties.
xamples of internal uncertainties include success prospects
f R&D projects due to technological risks; production upsets

uch as batch failures and plant shutdowns. External uncer-
ainties include pricing related uncertainties for raw materials
nd products (unless the firm is operating in a monosopny

∗ Corresponding author. Tel.: +1 765 494 4075; fax: +1 765 494 0805.
E-mail address: reklaiti@ecn.purdue.edu (G.V. Reklaitis).
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r a monopoly), exchange rate fluctuations, market size and
emand uncertainties due to competition and macro-economic
actors. Process enterprises respond to the evolving business
nd technology environments by strategic maneuvers involving
&D, manufacturing, supply chain and marketing functions.
trategic maneuvers involving R&D include capital budgeting,
&D project selection and project commercialization. Strategic
aneuvers involving the manufacturing function include capi-

al project planning, risk management and financing. Strategic
aneuvers involving the supply chain function include distri-

ution asset creation as well as supply chain risk management.
trategic maneuvers involving the marketing function include
ontracts design and management. Strategic decisions answer
he question—“What should the enterprise do to attain strate-
ic goals?”. In addition, tactical decisions must answer the

uestion—“How should the enterprise execute strategic deci-
ions?”. Tactical R&D decisions include project scheduling and
&D resource management. In recent times, strategic and tac-

ical R&D management has been termed as Innovation Process

mailto:reklaiti@ecn.purdue.edu
dx.doi.org/10.1016/j.compchemeng.2006.11.007


hemic

M
d
c
o
P
t
e
O
o
t
f
e
m
b
e
l
I
s

e
B
m
r
f
o
r
t
e
T
s
t
t
t
t
f
i
m
o
t
s
t
a
p
t
S
a
p
o
6
r
u
e
r
n
n
d
g

S
a

2

r
fi
e
t

2

m
l
e
1
m
H
e
r
W
i
u
m
b
p
w
h
t
fl
o
i
v
b
m
(
t
r

a
1
a
(
v
d
r
d
f
h
p
E

V.A. Varma et al. / Computers and C

anagement (IPM). Tactical manufacturing and supply chain
ecisions include batch plant scheduling in response to fore-
asted demands, production asset management and selection
f energy feedstock in response to market prices. Traditional
SE and ORMS literature streams tend to focus on sub-sets of

hese decisions whereas an enterprise functions as a cohesive
ntity with several degrees of cross-functional co-ordination.
ften lack of such cross-functional co-ordination leads to loss
f short and long term value. Further, organizational complexity
ends to challenge much of our understanding about cross-
unctional coordination and its business impact. Hence, from the
nterprise-wide performance viewpoint, it is sub-optimal to opti-
ize strategic and tactical decisions in a disparate fashion as has

een done hitherto in the literature. At the same time, integrated
nterprise-wide decision-making is significantly more chal-
enging in comparison to function-specific decision-making.
n fact rigorous literature on enterprise-wide modeling is very
parse.

The goal of this paper is to demonstrate that integration of
nterprise decision-making leads to substantial value creation.
y doing so, we hope to motivate a strong case for develop-
ent of models that will efficiently integrate decision-making

elated to R&D, manufacturing, supply chain and marketing
unctions and help in enhancing our understanding of co-
rdination across these functions. The paper does not cover
esearch opportunities in the area of enterprise-wide work prac-
ices/systems which is closely related to implementing the
nterprise-wide optimization strategies proposed in this paper.
hese practices/systems include robust and reliable data acqui-
ition systems, development of human skills required to drive
he proposed enterprise-wide coordination strategies and real-
ime modeling and solution systems that can help managers
est/develop their insights with formal decision models without
he need to understand formulation and algorithmic details. We
eel that these issues are too extensive and critical to be covered
n a single paper and justify and indeed require separate treat-
ent. The paper is organized as follows: We present an overview

f strategic and tactical decision models developed in the Opera-
ions Research-Management Science (ORMS) as well as process
ystems engineering (PSE) literature. The models reviewed are
hose that in our view are expected to play significant roles
s components of enterprise planning architectures. Section 2
resents a critical review of the relevant ORMS literature. Sec-
ion 3 presents a critical review of the relevant PSE literature.
ection 4 presents an enterprise network model that conceptu-
lizes the need for integration of decision-making. Section 5
resents a discussion supported by examples on the integration
f capital budgeting and R&D Project Prioritization. Section
presents a discussion supported by examples of integrating

esource allocation, manufacturing and scheduling decisions
nder uncertain R&D environments. Section 7 presents several
xamples on the integration of supply chain components such as
isk hedging contracts, integration of production and inventory

etwork decisions, integration of production and capacity plan-
ing decisions, integration of production and marketing strategy
ecisions. Section 8 presents an outlook on computational strate-
ies for enterprise wide modeling and optimization. Finally,
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ection 9 summarizes our perspective on the upcoming research
rea of enterprise-wide modeling and optimization.

. The ORMS strategic and tactical literature

A comprehensive enterprise-wide modeling framework
equires a unification of methodologies developed in corporate
nance as well as the operations research and Management Sci-
nce (ORMS) literature. Hence, we present separate surveys of
he strategic and operational literature.

.1. Strategic enterprise models

Strategic enterprise models (also called capital budgeting
odels) were devised to build enterprise portfolios that ensure

ong-term value creation. The earliest capital budgeting mod-
ls were based on pure economic analysis (Chapman & Ward,
996). The Discounted Cash Flow (DCF) method remains the
ost commonly used technique (Krishnan & Ulrich, 2001).
owever, it is based on expected values of uncertain param-

ters and is unable to generate quantitative details about the
isk associated with a given project (Poh, Ang, & Bai, 2001).

hile simple from every aspect, the DCF method has been crit-
cized on several counts. The DCF method fails to account for
ncertainties in the costs as well as commercial returns. The
ethod simply uses the expected values of the probability distri-

utions modeling these variables. Further, most real investment
rojects include several decision-making flexibilities embedded
ithin their execution structure. For instance, decision-makers
ave the flexibility to discontinue funding a project if a competi-
or captures an unacceptable share of its market segment. Such
exibilities are commonly termed as “Real Options” referring to
ptions on real investments (Pindyk & Dixit, 1994). Failure to
ncorporate the value generated by such options leads to under-
aluation of the investment project. The DCF method also has
een criticized for its rigid focus on single criterion decision-
aking versus more realistic multiple criteria decision-making

Linton, Walsh, & Morabito, 2002). Thus, a method is required
hat can incorporate project uncertainties, multiple reward and
isk criteria as well as embedded options.

Efforts to solve this problem have been collectively termed
s decision theoretic methods (Morgan & Henrion, 1990; Nutt,
998). Decision theory formalizes the key concepts of risk
nd return by defining the decision-maker’s utility function
Markowitz, 1991). Using this formalism, decision theory pro-
ides comprehensive portfolio management methods such as
ecision trees which allow management to undertake complex
esource allocation decisions between competing product can-
idates with full consideration to the possibilities of product
ailures (Sharpe & Keelin, 1994). The decision tree method also
as addressed portfolio management issues such as how many
rojects to pursue and how many projects to terminate (Ding &
liashberg, 2002). From a conceptual point of view the Decision
ree method is a manifestation of Stochastic Dynamic Program-
ing (Bertsekas, 2000). Roberts (1999) presents an interesting

ccount of market competition related risks to profitability in the
harmaceutical industry. One of the most comprehensive multi-
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roject analyses using decision trees is presented by Triantis and
hilds (2001). They model the present value dynamics of R&D
rojects using a stochastic partial differential equation which is
quivalent to addressing market risks. Subsequently, they dis-
retize the underlying continuous stochastic dynamics using a
rinomial model. The trinomial decision tree is used to analyze a
wo-product case to answer questions such as when to abandon a
roject given limited resources, how to stagger the development
f the two products depending upon where one is in the trino-
ial tree. In this fashion, optimal dynamic investment policies

re formulated. The work by Loch and Bode-Greuel (2001) in the
ascent biotech industry is another notable example where Real
ptions have been applied. While Real Options are penetrating

orporate decision-making gradually, several objections have
een raised against the decision tree method of analyzing these
ptions. A major criticism points to the occurrence of unman-
geably large decision trees, due to significantly rapid increase
n the number of project selection and sequencing decisions with
he size of the portfolio. Another criticism that is primarily raised
y the corporate finance community is the inability of the deci-
ion tree method to adapt the discounting rate of return to the
on-uniform risk profile of the project (Copeland & Antikarov,
000). Instead corporate finance researchers recommend the
se of financial no-arbitrage theory for purposes of investment
roject valuation.

The financial no arbitrage principle simply states that a risk-
ess (perfectly hedged) portfolio can fetch a return no different
han the risk-free or the ‘bank’ rate of return. This simple princi-
le has been used to establish fair valuations of financial options.
he most famous valuation formula based on the no-arbitrage
rinciple is the Black-Scholes formula (Black & Scholes, 1973)
sed to value European type call and put options on stocks and
ommodity assets. Corporate finance researchers have estab-
ished that several real options embedded in R&D projects show
ehaviors similar to European and American options (Amram &
ulatilaka, 1999). For example the option to abandon a project

n response to market downturns is identical to an American
ut. The option to defer the development of a product until mar-
et studies are undertaken is an example of a European call
ince the firm will choose to develop the product (at an exercise
rice = total forward capital requirement) only if the exercise
rice is lower than the cumulative returns. Such an option is
lso termed as a deferral option. The option to add capacity after
bserving the arrival pattern of products into R&D pipelines is
imilar to an American call and is termed as a growth option.
he right to shut down or slow down an operation paying certain
xed costs and the right to restart or speed it later for a differ-
nt fixed cost is called a ‘switching’ option. Corporate finance
esearchers (Pindyk & Dixit, 1994) argue that the similarity of
eal options and financial options implies that the no-arbitrage
ased valuation methods developed for financial options may
e re-engineered for valuation of R&D projects with embedded
eal options.
To demonstrate the no-arbitrage valuation of a drug project
ith an abandonment option, assume that a pharmaceutical

nterprise has a commercialized drug product that has only 2
ears of patent life remaining. Before the patent runs out the
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rm is weighing its options to market the drug as a different
ormulation for the same target (for example as an injection
s against a capsule). The firm is concerned about the mar-
et risks (technical risks are insignificant). Further the firm has
n option to out-license the drug to a generics company for a
icensing fee of K (‘Salvage’ value) in 2 years from now. Let
= Current estimated market value of the re-formulated drug.
ssume that after 2 years this value can either move to Xu
r Xd where u = exp(σ

√
dt) where dt = 2 years and σ = market

olatility and d = 1/u (Copeland & Antikarov, 2000). Then the
alue of the drug in the ‘up’-state (i.e. when the market moves
p) = Vu (t = 2) = max (Xu, K) and its value in the ‘down’-
tate = Vd (t = 2) = max (Xd, K). Then according to the financial
o-arbitrage theorem the value of the project with the embedded
bandonment option (with an existing risk free rate rfree) is:

(0) =
(

u − 1 − rfree

u − d

)
max(Xd, K)

1 + rfree

+
(

1 + rfree − d

u − d

)
max(Xu, K)

1 + rfree
(1)

This result contrasts with the DCF and the decision tree tech-
iques. In the first case each option would have been evaluated
ndependently, while in the second one the factors in parenthesis
n Eq. (1) would have disappeared and a subjective discount-
ng factor would have been used. A major drawback of the
eal Options methodologies is the combinatorial explosion of
ptions when projects are combined into a portfolio. Hence,
hile both decision trees and the no-arbitrage methods are fea-

ibly applied for single project valuation their applicability to
ven moderately sized portfolios runs into problems related to
omputational complexity.

By contrast, Monte Carlo/Discrete Event simulation meth-
ds (Law & Kelton, 2000) can accommodate uncertainties,
mbedded real options and alternative performance criteria
n a computationally feasible manner (Blau & Bunch, 2002).
imulation-based methods have been employed by Adler,
andelbaum, Nguyen, and Schwerer (1995) to analyze a rela-

ively complex engineering design process, by Blau et al. (2000)
n simulating an industrial-scale pharmaceutical new product
evelopment (NPD) pipeline, by Repenning (2001) in mod-
ling the control and dynamics of a 2-stage NPD system, by
ubramanian, Pekny, and Reklaitis (2003) in studying the effect
f activity re-scheduling on portfolio performance and by Blau,
ekny, Varma, and Bunch (2004) in optimizing the reward-risk

rade-offs for pharmaceutical R&D portfolios.

.2. Tactical enterprise models

Several planning and process level enterprise decision prob-
ems can be reduced to the so-called Resource Constrained
roject Scheduling Problem (RCPSP). Examples include sales

orce deployment, natural resource development projects, R&D
nd production scheduling. In the following paragraphs we
resent an overview of different models and associated algo-
ithms in the deterministic and stochastic RCPSP literature.
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The resource constrained project scheduling (RCPS) liter-
ture can be classified based on various formulations of the
cheduling problem (Brucker, 1995). In terms of the objec-
ive, project makespan and Net Present Value (NPV) remain
he most widely studied. Another classification criterion is
hether the scheduling problem is a single mode or multi-mode

Elmaghraby, 1997) problem. In a single mode problem each
roject activity has a fixed duration and resource requirement
hile in the multi-mode version at least one activity has process-

ng durations dependent upon the resources allocated to it. More
ecently, other classifications such as deterministic or stochas-
ic resource constrained project scheduling, single or multiple
roject scheduling have emerged. Doersch and Patterson (1977)
ere among the earliest researchers to show that the general
CPSP is NP-Hard and apply 0–1 integer programming to

he single mode RCPS problem. Due to the simplified nature
f the single project, single mode RCPS problem, extensive
fforts through the 1980s (Patterson, 1984) and 1990s were
irected towards this class of problems using exact approaches.
n early 1990s, with the availability of significantly greater
omputing power, implementation of exact branch-and-bound
lgorithms for reasonably large size instances became possible.
emeulemeester and Herroelen (1992, 1997) proposed branch

nd bound (B&B) algorithms for the makespan minimization,
ingle mode RCPS problem.

Icmeli and Erenguc (1996a) propose a B&B algorithm for
he NPV maximization (MAX-NPV) single mode RCPS prob-
em. The reported performances of several B&B algorithms for
he single and multi-modal RCPS problem have been primarily
ased on a standard set of small to medium test instances pro-
osed by Davis and Patterson (1975) and Sprecher and Kolisch
1996). On the other hand, realistic scheduling problems involve
undreds of activities with special precedence and resource-
ctivity structures. The inability to solve such large realistic
roblems using B&B has led to a broad literature on project
cheduling heuristics. Generally, these heuristics are based on
erial and parallel schedule generation schemes (Kolisch, 1996a,
996b; Naphade, Wu, & Storer, 1997; Salewski, Schirmer, &
rexl, 1997). The heuristics generate either non-delay (parallel

chedule generation scheme) or active (serial schedule gen-
ration scheme) schedules and typically use priority rules to
esolve resource conflicts. For example, Baroum and Patterson
1996) devise weighted cash flow based heuristic procedures
or the max-npv single mode, RCPS problem. They claim to
btain improved solutions on the standard Patterson set of test
roblems (7–50 activities) using their simple cash flow based
euristics. The primary drawback of these procedures is the large
nd unknown variability in quality of solutions across problem
nstances.

Heuristics for the multi-mode version of the RCPSP have to
ontend with another set of combinatorial decisions: the modes
f execution of each activity. Kolisch and Drexl (1997) propose a
ocal search based heuristic for the multi-mode RCPS problem,

hile Hartmann (1997) extends the local search approach to a
enetic algorithm (Goldberg, 1989). Icmeli and Erenguc (1996b)
resent detailed analysis of list scheduling algorithms for gen-
rating heuristic solutions to the multi-mode RCPS problem.
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hey propose a Net Marginal Gain (NMG) heuristic to assign
odes to activities during the list scheduling process. They use

everal priority rules for resolving resource conflicts and use
agrangian relaxation to establish quality of the solutions gen-
rated by their heuristic scheme. Mohring, Schulz, Stork, and
etz (2003) present a Lagrangian decomposition algorithm for

olving a single mode RCPS problem with a general objective
unction. Their algorithm relaxes all resource constraints and
olves the relaxed sub-problem by using a minimum cut net-
ork algorithm which runs in polynomial time. Weglarz (1999)
ives a comprehensive survey of algorithmic developments in
he field of project scheduling.

While there is a rich deterministic project scheduling liter-
ture, the literature on stochastic versions of this problem is
lmost void. Herroelen and Leus (2005) provide an exhaus-
ive survey of the limited volume of works. Stork and Mohring
2000) describe several Branch-and-Bound algorithms that opti-
ize Expected Makespans over a restricted set of scheduling

olicies.

. The process systems engineering (PSE) literature
eview: planning under uncertainty

The process systems engineering (PSE) community has
volved a rich set of tools and methodologies in the area of
perational planning and scheduling under uncertainty. The key
urpose of this section is to provide a synopsis of PSE modeling
nd algorithmic efforts in the area of planning and scheduling
nder uncertainty.

The PSE world has been instrumental in developing stochas-
ic optimization models for planning, scheduling and supply
hain problems primarily in response to the inherently uncertain
nvironment into which the process industry is embedded. The
arliest works of the 1990s focus on scheduling multi-product
atch plants under process and demand uncertainties (Straub &
rossmann, 1992). Carlson and Felder (1992) are among the
rst in the PSE community to use queuing network analysis for
odeling batch production networks effectively integrating a
ethodology traditionally applied to discrete part manufactur-

ng systems into the PSE area. Ierapetritou and Pistikopoulos
1995) present a two-stage stochastic programming (2-SSP)
odel that optimizes here-and-now design decisions with full

onsideration of second stage operating recourse decisions.
hmed, Tawarmalani, and Sahinidis (2000) describe the appli-

ation of a novel interval-based branch-and-bound strategy to
fficiently solve large scale capacity expansion MILPs under
emand uncertainty. Applequist, Pekny, and Reklaitis (2000)
resent a volume-polytope integration method based on the
asserre algorithm to evaluate the expectation term of stochas-

ic programs. Ierapetritou, Acevedo, and Pistikopoulos (1996)
olve the same problem using a decomposition scheme based
n the underlying block angular structure of the problem and
ence make their approach more scalable though they do not

xtend their analysis to more than two stages. Acevado and
istikopoulos (1997) identify that a significant component of the
omputational complexity in procedures that numerically eval-
ate the second stage function lies in the sub-problem solutions.
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hey propose a multi-parametric approach in which the solution
f second stage linear programs is established as function of the
ncertain variables by maintaining a list of several bases. Clay
nd Grossmann (1997) propose a 2-SSP for production plan-
ing involving uncertainties in costs and demands. They present
heoretical properties of the model as well as compare different
ecomposition strategies such as Benders decomposition and
uccessive aggregation. Bok, Heeman, and Park (1998) present
2-SSP capacity expansion model and apply that model to a

arge scale East Asian supply chain case study.
Bose and Pekny (2000) extend the concept of Model Pre-

ictive Control (MPC) to the management of supply chains.
hey use forecasting and scheduling models within a simula-

ion environment in order to optimize the expected customer
atisfaction level (CSL) for centralized, de-centralized and dis-
ributed supply chains and study the sensitivity of the CSL to
trategic system parameters such as lead times. Gupta, Maranas,
nd McDonald (2000) present a 2-SSP model that minimizes
edium term supply chain costs under demand uncertainty.
he key feature of their model is the identification of opti-
al supply policies under low, intermediate and high demand

egimes that enables analytical evaluation of the second stage
xpectation resulting in a MINLP. Recent research efforts in
upply chain (SC) management have focused on the strategic
spects of SC—the SC design problem and de-centralized SC
roblems. Jung, Blau, Pekny, Reklaitis, and Eversdyk (2004)
resent a simulation-optimization framework that jointly opti-
izes the strategic problems of warehouse location and safety

tock placement and the tactical problem of re-scheduling pro-
uction in response to demand uncertainty and events related to
he production environment. This framework effectively extends
he MPC framework of Bose and Pekny (2000) discussed
arlier.

The PSE community has also increasingly recognized the
mportance of including more detailed consideration of financial
omponents in supply chain and plant operational planning and
cheduling. For instance, Oh and Karimi (2004) have incorpo-
ated international tax management components such as transfer
rices, tax credits, duties and duty drawbacks in supply chain
ecisions. Badell, Romero, Huertas, and Puigjaner (2004) and
uillen, Badell, Espuna, and Puigjaner (2006) have addressed

he timing of short term cash flows, short term financing and
hort term working capital management in planning and schedul-
ng of batch plants. Finally, Barbaro and Bagajewicz (2004)
ave considered options in managing risk in production planning
nder uncertainty.

R&D pipeline management is another research domain that
ctively engages the PSE community. Honkomp, Reklaitis,
nd Pekny (1997) proposed an MILP model for selection
nd sequencing of R&D projects. Their formulation incorpo-
ates R&D uncertainties in an expected sense as against a
cenario-decomposition approach. Jain and Grossmann (1999)
ropose a continuous time formulation of the same prob-

em. Maravelias and Grossmann (2001) present a multi-period
tochastic programming model that incorporates product selec-
ion, manufacturing and testing decisions in a single monolithic

odel that is solved using Lagrangian decomposition.
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The R&D pipeline management goes beyond the issue of
cheduling. At a strategic level the problem manifests itself as a
ortfolio selection problem and as a capacity-planning prob-
em. The strategic portfolio selection problem addresses the
ssue of optimal selection and prioritization of R&D projects
nto a portfolio given future technical and market risks. The
bjective is to maximize an expected net present value (ENPV)
t a constrained level of financial risk. Rogers, Gupta, and
aranas (2002) represent a simplified version of the problem as
quadranominal multistage decision tree in which uncertainty

n product market value is represented by a Brownian geometric
odel and technical failure in product development by a bino-
ial. Rogers, Maranas, and Ding (2005) extend this model to

nclude in-licensing and timing of investment decisions. Blau et
l. (2004) propose a framework that combines a discrete event
imulator and a genetic algorithm to perform strategic portfolio
election. Their framework is able to capture an approximately
fficient parabolic reward-risk frontier for a pharmaceutical
&D portfolio. Subramanian et al. (2003) propose a dual loop
rchitecture (SIM-OPT) that enables the automated learning of
eactive scheduling policies by studying the responses of a pro-
ess scheduler to R&D events. Capacity planning aspects have
een addressed by Levis and Papageorgiou (2004) who consider
he problem in which the development stages and uncertainties
re aggregated into lumped product success probabilities while
roduct demand uncertainties are treated explicitly.

In summary the past two decades have seen the development
f several key stochastic optimization models and algorithms
y PSE researchers. Most of these models were developed to
olve operational planning and scheduling problems in domains
uch as batch and continuous processing, supply chain process
anagement and more recently R&D pipeline management.
owever, current global trends of process and business inte-
ration have resulted in the emergence of opportunities to
olve these models within coordinated architectures (Pekny,
002). The range of uncertainties that need to be handled has
xpanded tremendously due to such global winds of change.
hese uncertainties include fluctuating raw material and utility
rices, currency exchange rates and the more familiar demand
nd pricing fluctuations.

In the following section, we propose a general enterprise-
ide modeling architecture focused on coordinating enterprise-
ide decisions.

. A network model of the process enterprise

Fig. 1 presents a high level structural map of a typical process
nterprise. We emphasize that this is a generic enterprise model
ithout reference to any specific firm. The enterprise may be a
roup of one or more Strategic Business Units (SBUs). An SBU
s typically built out of two major divisions – A Product R&D
ivision and a Commercial Offerings Management division. In
ddition, de-centralized SBUs may have their own finance and

upport functions. In the present case, the finance and certain
upport functions are shown to service all of the SBUs. The
ectangular nodes represent individual functions within an SBU.
here are typically three types of functions—Planning, Process
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Fig. 1. A structural ma

nd Support. Planning functions are primary decision-making
unctions that supervise the activities of process functions. The
nput to a planning function is information about the state of the
rocess function that is being supervised. Planning functions are
mbedded within all SBU divisions to supervise the processes
ndertaken by those divisions. In the following paragraphs, we
riefly discuss each planning function and its influence upon the
nancial and inventory flows. The focus will then shift to the
ften ineffectual coordination across these planning functions
nd the potential value of coordinated decision-making.

.1. Product R&D

The Product R&D division manages all major growth plat-
orms that constitute the SBU’s R&D portfolio. The primary
lanning functions within this division include portfolio man-
gement, project management and resource management. These
unctions supervise the functioning of the stage gate process
O’Connor, 1994)—the R&D work process in which products
re developed incrementally in a way that allows close moni-
oring of technical and commercial milestones. Some stage gate
rocesses (especially in the pharmaceutical industry) encompass
ctivities such as process R&D, product design and engineering.

ypically these could be standalone activities within some or all
tages of development and run in series or parallel with other
ctivities within each stage. For example, in the pharmaceuti-
al industry process R&D and Engineering activities can start

T
r
m
d

he process enterprise.

s early as Phase II clinical trials or earlier in order to position
he business to meet large scale volume demands once the drug
oes into Phase III trials and beyond. The primary goal of these
unctions is to ensure a large and steady throughput of high
alue new commercial offerings (NCOs) streaming out of the
tage gate process. Market segment forecasting is yet another
ey planning component of the stage gate process. Kahn (2002)
rovides an excellent overview of recent forecasting practices
or new product development.

The strategic decisions resting within this function include
roject selection, capital budgeting, project prioritization and
esource allocation. Ideally, all these decisions need to be coor-
inated. However, as we will see in the following sections, this
s often not the case, leading to sub-optimal portfolios and inef-
ective utilization of capital and R&D resources.

.2. Commercial offerings management (COM)

The COM is a group of functions that ensures highest
alue extraction from existing product offerings. The functions
nclude strategic product management, technical and engineer-
ng support services, Health, Safety and Environment (HSE)

anagement, supply chain management and Sales & Marketing.

he COM’s actions directly affect a host of outcomes including

evenue growth, profit growth, market shares, margins and other
etrics. The strategic product management function oversees

ecisions such as market segmentation, new market and busi-
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ess development, production, technical services, supply chain
nd marketing budgets etc. This function assumes a key role in
nsuring an effective allocation of capital and other resources
cross other COM functions. Technical and Engineering (T&E)
upport services ensure the smooth functioning of all production
nd material delivery systems that are critical towards ensuring
igh product throughput rates and product quality at the least
ost inputs. HSE has assumed an ever-increasing role in ensuring
igh standards of emissions controls, worker safety and health.
t is increasingly clear that share-holders and other key capital
arket players directly associate a firm’s intrinsic value with its

bility to stay ahead of environmental legislation. Hence, firms
ave a significant financial incentive to deploy systems that min-
mize their emission footprints. A case in point is the European
arbon emissions trading regime—a market mechanism that
as forced firms to consider CO2 sequestration technologies in
rder to reduce long-term emission credit costs. HSE is thus
ncreasingly representative of a process enterprise’s corporate
thics. The supply chain management function is composed of
series of sub-functions that include production and inventory
lanning, procurement and commodity trading (and contractual
anagement), safety stock planning and transportation logis-

ics. As shown in the figure, decisions originating from these
unctions directly impact the supply chain process operations.
ome of these decisions may be strategic (e.g. plant capacity
xpansions) while the others may be operational in nature (e.g.
roduction scheduling). The PSE community has developed a
et of tools to coordinate these decisions (as will be discussed
elow), but the industrial deployment of these tools has not kept
ace with their development. Finally, the Sales and Marketing
S&M) function is responsible for direct customer interface and
ricing. S&M also makes decisions on sales force deployment
ased upon the existing market shares, product offerings, mar-

eting costs and budgets. This decision problem can be looked
pon as a type of knapsack problem.

There are other support functions like finance and IT that
ervice the capital, information and other resource requirements

R
d
K
b

Fig. 2. An (early and advanced stage) R&D activity network of pla
al Engineering 31 (2007) 692–711

f the main planning and process functions. Closer integration
f finance with SBU planning functions is expected to ensure
moother servicing of working capital requirements at signifi-
antly reduced costs of capital.

The above discussion should suggest that decisions are frag-
ented across the enterprise assuming a control strategy that

esembles a “cascade control”. In certain situations, cascade con-
rol is appropriate. For example, the strategic planning function
perates on much longer time scales of up to several years. All
ther planning and tactical decisions need to align with strategic
lans involving market positioning and growth strategy. How-
ver, in many situations a top-down or “cascade” control strategy
an result in lags in response times to market events that can
esult in less than optimal value extraction from current offerings
s well as loss of valuable new product development opportu-
ities. One of the reasons for the lags is the “loop-back” effect
n decision-making. For example, in the area of new product
evelopment, management may opt for a portfolio of projects
o position the firm into preferred market segments only to find
ater that current resources are heavily overbooked and will not
e able to meet commercialization targets. Had strategic port-
olio selection and resource planning been undertaken jointly,
he portfolio would have been selected to align with resources.

hile a monolithic decision model that encompasses all major
lanning and process functions is unrealistic, closely related
lanning functions can indeed be coordinated. This is the key
essage of the rest of this paper.

. Integration of capital budgeting and R&D project
rioritization

Capital budgeting is an integral decision originating from
he portfolio management function. It involves the selection of

&D and other projects that require long-term investments. Tra-
itionally, reward-risk charting techniques (Cooper, Edgett, &
leinschmidt, 1998) and discounted cash flow analysis have
een deployed. However, Blau et al. (2004) show that this

nning and process functions for a pharmaceutical enterprise.
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resource allocation to a set of drugs may enable the firm to
ig. 3. An approximately efficient Reward-Risk frontier for a candidate set of
ine pharmaceutical drugs (adapted from Blau et al. (2004)).

trategy leads to the selection of sub-optimal pharmaceutical
ortfolios evolving through a stage gate process shown in Fig. 2.
ignificantly improved financial performance is generated when
apital budgeting concepts are integrated with R&D process
odels. This is because traditional capital budgeting models

ail to incorporate physical resource constraints. Hence, either
oo small a portfolio may be selected which exposes the firm to
igher technological, market and financial risks or too large a
ortfolio may be selected which will stretch the firm’s resources
n a way that will delay the launch of successful projects.
dditionally, project inter-dependencies (Verma & Sinha, 2002)

nduce non-linear response of reward and risk measures to dif-
erent portfolio compositions. Fig. 3 shows an approximately
fficient economic frontier for a candidate set of nine drugs

enerated using combined genetic algorithm-discrete event sim-
lation based algorithm architecture (Blau et al., 2004). Notice
hat the portfolio with the least risk and highest reward is a

a
a
p

Fig. 4. Effect of adapting resource allo
al Engineering 31 (2007) 692–711 699

ve-drug portfolio as against larger portfolios which were rec-
mmended by pure financial charting techniques. This is because
he five-drug portfolio includes drugs that synergize develop-

ent features such as success probabilities, costs, durations
s well as revenues. Yet the portfolio is small enough not to
ver-stretch physical resources along the R&D pipeline.

The network model of the enterprise as presented above rep-
esents hierarchical control architecture in which higher level
lanning functions act as supervisory controls on process level
unctions. Process level functions in turn regulate their opera-
ions based on internal decision models. However, the failure
f planning models to incorporate the process level regulatory
odels generates possibilities of un-coordinated decisions. For

xample, R&D planners must contend with the problem of allo-
ating capital to upstream R&D as well as downstream demands
or plant capacity expansions. Thus, there is a need to model
nancial planning decisions (e.g. allocation of capital), R&D
esource allocation and scheduling as well as downstream capac-
ty expansion decisions within an integrated model. It is quite
bvious that such a model would present formidable algorithm
ngineering challenges in view of its size and complexity. Pekny
2002) discusses algorithm architectures that could be used
or solving such large-scale, complex cross-functional decision
odels.

. Integration of dynamic R&D resource allocation and
cheduling decisions

R&D projects can be accelerated by varying financial and
hysical resource allocation to process development activi-
ies. For example in the pharmaceutical industry, consolidated
cquire their clinical sample requirements earlier. Fig. 4 shows
Gantt chart for two resource allocation policies applied to a

ortfolio of four pharmaceutical drug development projects in

cations on a four-drug portfolio.
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ig. 5. Left exhibit shows evolution of uncertainty when clinical trial is started
ere-and-now. Right exhibit shows evolution of uncertainty when clinical trial
s delayed until 1 period.

hase III. The projects are designated as 1, 2, 3 and 4. Each drug
ust complete three activities AI, AII and AIII (e.g. dosage

evelopment, process development, plant construction) before
t can be launched (activity MS). In resource allocation pol-
cy A, all projects are allocated standard resource levels while
n resource policy B certain activities of some projects are allo-
ated lower resources which leads to longer durations. However,
he net effect is the re-arrangement of start times in a way that
educes the time to market of drug D4 to 195 weeks without
elaying any other drug. A key challenge in the integration of
esource allocation and R&D decisions is the issue of estimating
rocess duration sensitivities to changes in the resource alloca-
ion levels. Though batch simulations and state-task network

odels (Kondili, Pantelides, & Sargent, 1993) can be used for
hat purpose, in doing so, we restrict the possible configurations
f the batch network. A fully integrated model of R&D port-
olio management and manufacturing processes would be able
o select the optimal batch network configurations in response
o the evolving state of the portfolio. Similarly, models for pro-
ess development are required for estimation of sensitivity of
ts duration to the design strategy. Each design strategy would
equire a given level of resources.

It can be shown that such project management problems
elong to the class of non-Markovian stochastic scheduling and
ssignment problems (Bertsekas, 2000). Scheduling an activ-
ty requires us to ensure that the activity was not started at any
revious node of the relevant path from the root of the underly-
ng tree of scenarios. The underlying scenario tree itself adapts
tructurally to decisions made at each node. A simple example
s given in Fig. 5. The left exhibit shows a tree in which a clinical
rial activity is scheduled at the current time. The right exhibit
hows a tree in which the same activity is scheduled at time t + 1
o that resolution of uncertainty has changed in response to the
ecision on starting the activity at time t. The point of this exam-
le is that the evolution of uncertain outcomes may be contingent
pon decisions made in the past. Contrast this with a commod-
ty’s price evolving stochastically over four quarters in which
ase the price is not a function of production-inventory deci-

ions. In short, business decision-making can either purely react
o the evolution of uncertain trends or can actually affect those
rends. Project and portfolio management problems are exam-
les of the latter since project and portfolio decisions influence

i
i
p
T

al Engineering 31 (2007) 692–711

he outcomes of those investments. For example, higher invest-
ents in certain projects may actually increase their probability

f success. We see significant opportunities for PSE methods to
e applied to such problems. Asset management problems (Goel

Grossmann, 2004) belong to this category since investments
nto assets like plants, oil fields, etc., can influence their produc-
ivity in uncertain ways. Rigorous approaches to such problems
nclude neuro-dynamic programming (Bertsekas, 2000) that
pproximate value-to-go functions. Several complications arise:
he “curse of dimensionality” which limits the number of value-
o-go functions that can be stored and learned, the structural
daptation of the scenario tree, and so forth. Goel and Grossmann
2004) propose a Lagrangian decomposition based Branch and
ound approach based on scenario dis-aggregation for a multi-
latform development problem in the oil exploration industry.
on-anticipativity constraints that link scenarios are dualized

nto the ENPV objective so that each scenario is associated
ith an MILP. The solution of this set of MILPs generates an
pper bound at each node. Branching is performed on the vio-
ated non-anticipativity constraints. Nodal solutions infeasible
ith respect to some or all non-anticipativity constraints are

ransformed into feasible solutions. Global optimality has been
emonstrated on industrial scale case examples. This seems as
et to be the only work in the area of non-Markovian decision-
aking in the PSE community.
Varma, Blau, Reklaitis, and Pekny (2005a) and Varma, Blau,

eklaitis, and Pekny (2005b) present an algorithm architecture
or the stochastic scheduling and allocation problem which is
on-Markovian.. The architecture searches for efficient R&D
roject scheduling and resource allocation policies defined over
policy space denoted by �. The decision problem can be

ormally stated as follows:

Maximizeπ∗ ∈ ΠENPV(π)

Subject to Risk ≤ βRisk ATMi ≤ βATM(i) ∀i ∈ {1, . . . , N}
(2)

The architecture is flexible enough to handle any non-linear
isk measures like Variance of NPV, semi-variance (downside
isk), value-at-risk (the spread of returns between the lower 5%
uartile of the NPV distribution and the mean value), probability
f losing money, etc. The last constraint set limits to the Aver-
ge time to Market (ATM) for each project. The rationale for
imiting project ATMs emerges from loss of first-mover advan-
ages (Cooper et al., 1999) as well as narrower sales windows
or products like drugs that bear time-bound intellectual prop-
rty right protections. The architecture shown in Fig. 6 (Varma
t al., 2005a, 2005b), has three components: a process simula-
or which for an R&D pipeline is a discrete event simulator; a
rocess optimizer which is typically a scheduling MILP with
daptive resource allocation decisions and a preference func-
ion learner. The process optimizer is developed and described
n Varma, Uzsoy, Blau, and Pekny (in press). The architecture

s used to learn efficient stochastic resource allocation policies,
.e., policies that supervise levels of resources to be allocated to
harmaceutical R&D projects as function of the portfolio state.
he algorithm is summarized as follows:
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Fig. 6. The algorithm architecture for the stochastic scheduli

Step 1: simulation-based learning step.
• Step 1.1: initialize N linked lists (LL) of drug “States”

where state of a Drug i = s = (DSi, NLEVi, NHEVi)
where DSi = development stage of drug i; NLEVi = number
of drugs with expected value lower than Drug i;
NHEVi = number of drugs with expected value larger than
Drug i. Declare a function pfi(s,m) = probability of selec-
tion by the MILP of resource allocation level ‘m’ in a state
s for drug i ∈ I.

• Step 1.2: at the end of each event “measure” the vec-
tor of drug states (s1, . . ., sn) and the vector of resource
allocations selected by the MILP (m1, . . ., mn). For each
drug still in the portfolio, check if the state occurred
already exists in its LL(i). If so, update its probability
of selection. If not then add a “state-node” to LL(i). At
the end of all timelines for each linked list LL(i), for
each state s, calculate pf*(i,s) = maxm ∈ {0,1,2}pfi(s,m) and
m*(i,s) = argmaxm ∈ {0,1,2}pfi(s,m).

Step 2: sort all LL(i), i = 1, . . ., n, in decreasing order of state
occurrence probabilities.
Step 3: simulate the policy stored in {LL(i): i = 1, . . ., N}.
The architecture was run on the same nine-drug portfolio as
he one used by Blau et al. (2004). It was assumed that the dura-
ions of process development and manufacturing activities will

c
u
a
n

Fig. 7. Effect of dynamically adapting resource all
d resource allocation problem (Varma et al., 2005a, 2005b).

ontract by 7.5% upon increase in the appropriate resource allo-
ations by 15%. The architecture was used to test four R&D
olicies: Policy 0, genetic algorithm based static prioritization
nd non-adaptive resource allocation. The prioritization used
as (5, 8, 9, 1, 7, 4, 3, 2, 6)—the economically efficient prior-

tization sequence determined by Blau et al. (2004); Policy 1,
eactive scheduling and non-adaptive resource allocation; Policy
, reactive scheduling and adaptive resource allocation; Policy
, GA-based static prioritization and adaptive resource alloca-
ion. Adaptive resource allocation was performed based on the
esource allocation policy learned using the architecture shown
n Fig. 6.

The left exhibit of Fig. 7 depicts the project-wise ENPV com-
arisons for the four policies while the right exhibit shows the
roject-wise ATM comparisons for the four policies. Clearly,
olicies 2 and 3 uniformly dominate Policies 0 and 1 across
ll projects. This analysis demonstrates the value of adaptive
esource allocation. The main reason for this result is that in
olicies 0 and 1 (non-adaptive resource allocation) fractional
apacity remains un-utilized so that some projects are forced to
ait until “standard” resource levels become available. In Poli-
ies 2 and 3 (adaptive resource allocation) fractional capacity is
sed to sustain the development of less prioritized projects albeit
t a slower pace. This analysis clearly establishes that there is sig-
ificant value embedded in these resource “switching” options.

ocations on average times to market (ATM).
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urther, the ENPV improvements are highlighted in the project
TMs shown in the right exhibit of Fig. 7. Clearly Policies 2 and
generate additional value by enabling significantly reduced

verage times to market. Interestingly, comparison between
olicies 0 and 1 and between Policies 2 and 3 reveal that reac-

ive scheduling tends to speed some projects and delay others.
he GA-based sequence performs relatively well because of

he genetic algorithm’s ability to incorporate both reward and
isk explicitly into its fitness function. On the other hand, the
eactive scheduling MILP only implicitly models risk since
on-linear risk terms cannot be incorporated. Nevertheless, this
nalysis shows the non-linear effects that can arise when adap-
ive resource allocation and scheduling concerns are modeled
n an integrated fashion. Clearly, such models need to be fur-
her integrated with capacity planning and financial planning

odels.
Another domain that needs to be integrated with project

anagement models like the ones discussed above is project
nancing. Consolidated financing of projects exacts several

ong-term costs that can over-ride any gains realized in the
peedier execution of R&D projects. Large capital expenditures
eed to be financed by either the firm’s liquidity reserves or
sing debt-equity channels (Smith, 1977). Debt-based capital
s serviced by interest payout related costs while equity-based
apital is serviced by dividend payouts. These capital service
osts are long-term liabilities that can adversely impact individ-
al project valuations (Modigliani & Miller, 1958). A case in
oint is the pharmaceutical industry where the capital demands
eep fluctuating due to the progression of drug products through
he pipeline. Further internal political constraints may prevent
he firm from fully utilizing its working capital. This raises the
pecter of over-capitalizing the pipeline which can significantly
dd to the long term capital service costs. This in turn could lead
o severe profitability downgrades due to excessive costs of capi-
al. At the same time, under-capitalizing the pipeline will lead to
retarded R&D pipeline. Hence, the key question that emerges

rom this discussion is: how to optimally schedule the capital-
zation of the pipeline as a function of the evolving portfolio?
lternatively, under conditions of pipeline over-capitalization

nd physical resource limitations, physical capacity expansion
eeds to be considered. Such expansion would be financed by
he excess capital and would enable the firm to speed some of
ts on-going drug development projects. However, the downside
o this strategy is that the firm will begin to incur recurring costs
f servicing the added resources by way of manpower as well
s equipment maintenance costs. Hence, a model is required
o resolve the trade-off between revenue growth generated by
ncreased speed to market and higher physical resource ser-
ice overheads. Such a model might also serve to determine
he optimal capacity expansion plan.

Equity capital leads to floating service liabilities due to
uctuating dividend yields, unless the firm engages in a capital-

ntensive share buy-back to terminate these floating liabilities,

n contrast to the more deterministic nature of debt instruments.
ebt can be justified for financing high-risk drug projects on

he basis of enabling accurate estimation of total debt servicing
iabilities which is not possible with equity capital. Equity cap-

i
t
p
p

Fig. 8. An integrated supply chain network.

tal for such high-risk projects can be justified on the basis of
roviding the firm with the flexibility to lower dividend payouts
n case the drug fails. Thus, another question would be: how
o control the debt-equity ratio as a function of the R&D port-
olio’s evolution? A comprehensive review of debt and equity
nancing is available in Boyd and Smith (1998). Further what
ercentage of sales-generated internal accruals and other receiv-
bles should be channeled into the R&D pipeline’s capitalization
s a function of the portfolio’s evolution? Similar questions
an be raised in the context of the energy sector that demands
arge capital investments into natural resource development
rojects.

. Integration of supply chain design and operations

Reklaitis and McDonald (2004) discuss the significance of
ntegrated supply chain management (ISCM). Fig. 8 shows
n integrated multi-stage supply chain network. Integrated
SCM captures strategic and tactical decisions such as raw
aterial procurement contracts (e.g. hedging via future con-

racts), routing to plant sites, capacity planning and lead time
anagement (production scheduling), routing of finished prod-

cts, warehouse positioning, network inventory management
nd marketing strategies (e.g. revenue sharing contracts). A
esearch goal is to integrate these decisions into one monolithic
lgorithm architecture. Clearly, much work needs to be done
efore such a goal can be achieved. In this section, we sum-
arize frameworks that target subsets of these decisions. We

tart with hedging strategies for raw material cost reductions,
nd then discuss integration of production-inventory systems
nd finally integration of production-inventory and marketing
trategies.

.1. Integration of operational planning with currency and
ommodity risk-hedging

Large commodity chemical producers are constantly exposed
o the risk of fluctuating raw material and feedstock prices. This

s especially true for the petrochemical industry whose produc-
ion economics is strongly dependent upon the volatile crude
rices. Just as currency contracts (DeRosa, 1998) help com-
anies limit their liquidity procurement costs; similar contracts
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elp companies limit their commodity procurement costs. These
erivative instruments include forwards, futures and options on
ommodity futures. A commodity forward or future is a contract
hat obligates the firm to buy a certain quantity of raw material
r feedstock that is traded at a pre-determined price known as
he “strike” price (Andersen, 1987). A commodity call option is
contract that provides the firm with a right but no obligation

o buy a certain quantity at a pre-determined price known as the
exercise price”. Similarly, a commodity put option provides the
rm with a right but no obligation to sell certain quantity at a
re-determined exercise price. The firm can enter into “long”
ositions (e.g. long commodity calls) by buying derivatives at
paid premium (debit) or can enter into “short” positions (e.g.

hort commodity calls) by selling at a gained premium (credit).
ince the commodities are traded (e.g. at the Chicago/New York
ercantile Exchanges) their prices are normally assumed to fol-

ow multiplicative Brownian motion (Schwartz, 1997) just like
tock prices and exchange rates. Using these derivative instru-
ents, firms can hedge against the possibility of high future raw
aterial and feedstock costs. How do these decisions impact

rocess operations? For instance, in the absence of commod-
ty contracts the firm may need to switch to coal based energy
hen natural gas prices spike. This might lead to enhanced pro-
uction costs by way of additional costs incurred in pollution
reatment operations as exhausts from coal-fired boilers need
o be closely monitored and treated. Further, coal based energy
eneration capacity might need to be expanded at considerable
apital investment. In contrast, a company can forego these costs
y simply entering into a natural gas forwards contract (at a
remium) which will allow the firm to operate its production
acilities powered by natural gas even when its price spikes.
ommodity forwards, futures and options (long positions) have

imited downside by way of contract premiums but involve sev-
ral decisions on parameters such as maturity dates and strike
rices. The maturity date must synchronize with the production
chedules. For instance, typical maturity dates must coincide
ith periods of increased production volumes. This means that

ommodity derivative pricing models need to be incorporated
nto production planning and scheduling models failing which
ill lead to either (1) increased inventory cost by way of pre-
ature procurement of raw material or feedstock resulting from

hort maturity times or (2) a complete ineffectiveness of the con-
ract due to excessively long maturity times. Similarly, strike
rices in case of commodity options can have significant impact
n profitability. Excessively low strike prices will lead to signifi-
antly increased contract premiums especially when commodity
rices remain relatively less volatile over the period of maturity.
xcessively high strike prices tend to increase the likelihood of

he commodity option not being exercised which again leads
o ineffective utilization of the working capital component set
side for risk hedging purposes.

.2. An example of integration of commodity and real

ptions for improved support of process operations

Process plants face fluctuations in raw material and utility
osts as well as demands. Often significant cost savings may

•

al Engineering 31 (2007) 692–711 703

e realized by operating the same plant in different modes in
esponse to fluctuating utility costs and demands. In this section,
e will demonstrate the cost reduction benefits of integrating

ommodity and real options using a production example.
Energy intensive process operations such as distillation are

owered by steam boilers that run on various types of feed-
tock. The feedstock could be a price-stable feedstock such as
oal or a price-volatile feedstock such as natural gas. At first
ight coal is more attractive because of its lower cost and price
tability. However, there is significant cost-incentive to employ
atural gas since exhaust from coal-fired boilers needs to be
ubjected to extensive treatments before discharge. Moreover,
t is possible to enter into natural gas contracts ahead of time
n order to hedge against the possibility of price fluctuations.

e demonstrate the potential benefits of deploying such a strat-
gy towards operating cost reduction by developing a simple
ulti-stage stochastic programming model for a hypothetical
rm.

A commodity chemicals firm operates N production facili-
ies within a complex. Each facility is equipped with coal fired
nd/or natural gas fired power generation systems. Natural gas
nd coal feedstock are shipped to central holding facilities from
here they are distributed on demand to the power plants for

he N facilities. Further natural gas can be purchased from the
pen market or by using commodity options. Since coal price
pC) is expected to remain stable, no coal hedging contracts are
nvestigated.

As shown in Fig. 9, the price of natural gas (pNGk) follows
geometric Brownian motion represented by a binomial lat-

ice where k denotes the index of a scenario node. We assume
finite planning horizon of T periods so that the depth of the

cenario tree equals T. The key decision to be made is: how
uch of the energy requirement to source from natural gas and

ow much from coal at each node of the binomial lattice? In
ther words when to switch across feedstock sources and by
ow much? Further, the firm identifies the option to expand the
ower generation capacity sourced from either feedstock. How-
ver, the capacity expansion budget is constrained by the current
ebt and equity positions held by the firm. In the real options
iterature such capacity expansion options are known as “growth
ptions” (Copeland & Antikarov, 2000). Further, the firm can
uy options to source natural gas at a lower than market price
hich can avoid the cost of switching to coal. We call this option
“sourcing option”—a call option on natural gas futures. The
rm acquires long positions on such options at the start of the
lanning horizon. The price of each such sourcing option is
etermined by Black’s (Black, 1976) pricing formula and hence
s a function of natural gas price volatility (σ), current price,
trike price, and time to maturity. Strike prices and times to matu-
ity are decision variables. The following list displays the other
ey parameters and decision variables that will be used within
he model. The model is defined on the nodes of the binomial
attice:
Index sets
o I: set of plant sites;
o K: set of scenario nodes on the binomial lattice.
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Fig. 9. The energy feedstock supply network and the binomi

Parameters
o Ei = power demand (in kW) at plant site i on a quarterly

basis;
o B = capacity expansion budget;
o pNGk = price per mmBTU of natural gas at node k;
o pC = price per mmBTU of coal;
o TCNG

i = NG transportation cost per mmBTU from storage
to site i;

o TCC
i = coal transportation cost per mmBTU from storage

to site i;
o OCNG

i = operating cost overheads per mmBTU of natural
gas at site i;

o OCC
i = operation cost overheads per mmBTU of coal at site

i;
o HCNG = storage cost per mmBTU of natural gas;
o HCC = storage cost per mmBTU of coal;
o Cxi = capacity expansion cost per kW of NG capacity

added;
o Cyi = capacity expansion cost per kW of coal capacity

added;
o Probk = probability of node k.
Decision variables
o xki = kW sourced from natural gas generator at site i in

scenario node k;

o x

Opt
k = mmBTU of NG sourced by exercising sourcing

options at node k;
o x

Open
k = mmBTU of NG sourced from open market at node

k;
ice model representing the fluctuations in natural gas prices.

o yki = kW sourced from coal generator at site i in node k;
o y

Open
k = mmBTU of coal purchased at start of t(k) at node

k;
o ING

k = mmBTU of natural gas left unutilized at the end of
period t(k);

o ICoal
k = mmBTU of coal left utilized at the end of period

t(k);
o EXki = capacity (in kW) added to NG-plant at node k;
o EYki = capacity (in kW) added to COAL-plant at node k;
o CapXki = NG capacity (in kW) at node k and site i;
o CapYki = coal capacity (in kW) at node k and site i;
o Nt = number of sourcing options with time to maturity of t

periods;
o pStrikeNG,t = strike price per mmBTU of natural gas for

sourcing option expiring at the start of time period t;
o V

Opt
t = total price of NG sourcing options maturing at start

of time period t.

Min
T∑

t=1

V
Opt
t +

K∑
k=1

Probk

{
(pNGkx

Open
k + pStrikeNG,tx

Opt
k )

+ pCyOpen
k + HCNGING

k + HCCIC
k +

N∑
{(OCNG

i

i=1

+ TCNG
i )xki + (OCC

i + TCC
i )yki + CxiEXki + CyiEYki}

}
(3)
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ubject to

Opt
t = Nt(pNG0ϕ(d1) − pStrikeNG,te

−rfreetϕ(d2))

d1 = ln(pNG0/pStrikeNG,t) + (σ2/2)t

σ
√

t

d2 = ln(pNG0/pStrikeNG,t) − (σ2/2)t

σ
√

t
(4)

ING
k′ + x

Opt
k + x

Open
k = 7.37

∑
i ∈ I

xki + ING
k , ∀k ∈ K

IC
k′ + y

Open
k = 7.37

∑
i ∈ I

yki + IC
k , ∀k ∈ K

xki + yki = Ei, ∀i ∈ I, k ∈ K x
Opt
k ≤ Nt(k), ∀k ∈ K (5)

CapXki = CapXk′i + EXk′i, ∀i ∈ I, k ∈ K

CapYki = CapYk′i + EYk′i, ∀i ∈ I, k ∈ K (6)

N

i=1

CxiEXki +
N∑

i=1

CyiEYki ≤ B, ∀k ∈ K (7)

0 ≤ xki ≤ CapXki, 0 ≤ yki ≤ CapYki, ∀i ∈ I, k ∈ K

EXki ≥ 0, EYki ≥ 0, ∀i ∈ I, k ∈ K (8)

The objective function (Eq. (3)) is the sum of the total ‘here-
nd-now’ cost incurred to acquire natural gas sourcing option
ontracts and the second stage expected costs. The second stage
xpected cost is the sum of the natural gas and coal transportation
nd procurement costs (by way of exercising sourcing options
s well as from the open market), the operating overheads and
he capacity expansion costs. Eq. (4) represents Black’s pricing
Black, 1976) constraint. These constraints could be eliminated
f the strike prices were fixed. Eq. (5) represents the energy
alance constraints: The sum of total feedstock inventory from
he previous period’s node (k′), total inventory sourced from
he open market and options must equal the total feedstock uti-
ization and any unutilized inventory, the total natural gas and
oal utilization must equal the total energy demand and the
atural gas mmBTUs sourced from options must be less than
he total number of options for any period since each natural
as sourcing option supplies a single mmBTU. Eq. (6) repre-
ents the capacity balance constraints in order to incorporate any
ntermediate capacity expansions. Eq. (7) represents the budget
onstraints on capacity expansions. Eq. (8) represent that the
otal energy supply from natural gas and coal must not exceed
ts physical generation capacity. The above formulation is the
o-called explicit form of a multi-stage stochastic programming
ormulation. The formulation is an MINLP due to the highly
on-linear Black-Scholes pricing constraint and demonstrates

he challenges in solving formulations that involve pricing and
ther financial considerations.

We display the non-linear effects of this problem by solv-
ng a T = 4-period and N = 4-site case instance shown in Fig. 9.

m
a
i
t
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ach period stands for a quarter (=13 weeks). We obtained
he price of natural gas futures trading on New York Mercan-
ile Exchange (NYMEXTM) closing February 28, 2005 at a
pot rate of $6.20 per mmBTU. For purposes of demonstra-
ion we fix the strike price at 5.15 per mmBTU for all the
our quarters (in-the-money). The short-term volatility rate of
atural price movements is estimated at $0.1 per quarter from
YMEX historical pricing data (www.nymex.com). The firm
egotiates for delivery of feedstock commodities at the start of
ach quarter. It is assumed that the firm uses North Appalachia
NAP) coal trading at $62 per ton with a calorific value of
1 mmBTU/ton (www.eia.doe.gov). Hence, the price of coal
hich is assumed to remain stable is $5.63 per mmBTU. Fur-

her, in each period each of the plant sites demand 10,000 kW of
nergy (1 kW = 56.9 BTU/min). Assume that the initial natural
as based power plant capacity is 8,000 kW and the initial coal
ased power plant capacity is 2,000 kW. For simplicity an aver-
ge power generation expansion cost of $12 per kW is assumed
rom historical data. The total power plant capacity expansion
udget is assumed at $600,000. For all scenarios the transporta-
ion costs of natural gas (from the Sabine Pipeline Co.’s Henry
ub in Louisiana) are assumed to be constant at $0.45, $0.5,
0.1 and $0.4 per mmBTU to the four plant sites, respectively.
or all scenarios the transportation costs of coal (from various

ocations within the U.S.) are assumed to be constant at $0.25,
0.35, $0.15, $0.30 per mmBTU to the four plant sites, respec-
ively. With this data the above multi-stage stochastic program
as solved for a long portfolio of 200,000 natural gas Euro-
ean calls for periods t = 1, t = 2 and t = 3. The formulation was
olved using ILOG CplexTM Optimization Suite. Fig. 10 shows
he firm’s optimal capacity expansion and power switching poli-
ies for this option portfolio. The total expected energy cost
hich includes the option premiums paid upfront as well as the

ransportation, feedstock procurement costs = $22.40 Million. A
ignificant observation of the solution is that even when the nat-
ral gas price moves up in a large number of scenario nodes,
atural gas is still used. This is because of the availability of
00,000 natural gas options that help the firm hedge against the
atural gas spikes. The premiums for the option maturing at time
= 1 (start of Quarter 1) is $260,615, for option maturing at time
= 2 is $305,332, the option maturing at time t = 3 is $345,085.
s the uncertainty increases the option premium increases. Had

hese options not been available the total energy cost would have
een $22.90 Million. Further, the volatility of the total energy
ost for the plan with the options is $0.055 million while that
or the plan without options is $0.1 million.

Fig. 11 shows the non-linear energy cost vs. strike price
urves for different volumes of options. We assume that all
ptions are bought at the same strike price. The trend for each
olume of options is explained as follows: At low strike prices
in-the-money) the likelihood of exercising the option is high
cross all scenario nodes and the energy cost savings justify
he higher option premiums. However, at very high or out-of-
oney strike prices the likelihood of exercising the option is low
nd renders the option contract ineffective against hedging pric-
ng risk. In the above case, all options with strike prices higher
han the current market price are totally ineffective. The fig-

http://www.nymex.com/
http://www.eia.doe.gov/
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Fig. 10. The scenario tree showing the energy policy of the enterprise—
re was generated by fixing strike prices and volumes and then
pplying the energy optimization formulation. The least annu-
lized expected energy cost occurs by buying 300,000 options
ith strike price set at 30% of current market price i.e. $2.48
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ig. 11. Total annualized expected energy cost vs. strike price for different volume
mBTU on the NYMEXTM 28 February, 2005).
ive capacity expansion, energy option trading and feedstock switching.
er mmBTU. This means that the options have to be deep-in-
he-money which leads to high premiums. Also, buying options
t-the-money is expected to result in the highest energy cost. It
s possible in the above example that an option contract with

s of natural gas options (cmp = current market price of natural gas = $6.2 per
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(Wan, Reklaitis, & Pekny, 2005). In the first phase, the architec-
ture learns the value-to-go functions at each node of the scenario
tree. In the second stage a roll-back of the tree is performed
to determine the optimal policy. The left exhibit of Fig. 14
ig. 12. Left exhibit: the dual loop architecture for optimizing multi-stage netw
ustomer satisfaction levels (CSL) emerging from integration of safety stock pr

uch higher strike prices but lower annualized energy cost than
he current best may exist. Clearly, better search methods are
equired to explore the highly non-linear space of strike prices
nstead or enumeration. Pricing formulas tend to be non-convex
hich implies that local MINLP methods are inadequate for

dentification of global optima. Future research needs to focus
n solving this class of energy policy optimization problem with
rbitrary commodity pricing formulas.

.3. Integration of production and network inventory
ecisions

Safety stocks provide intermediate and product inventory
uffers to hedge against the risk of demand uncertainties. Jung
t al. (2004) propose an algorithm architecture that integrates
upply chain design by way of warehouse positioning decisions
nd network safety stock planning with production-inventory
lanning and scheduling. Their framework solves an aggre-
ate planning model for warehouse positioning. Output from
he aggregate model serves as input to a dual loop algorithm
rchitecture shown in the left exhibit of Fig. 12. The outer or
he “strategic” loop performs a non-linear stochastic gradient
earch in the space of multi-product network safety stocks. The
nner loop simulates a multi-stage production-inventory network
or given network safety stocks while ensuring that production
chedules adapt to production and demand realizations. Such
egulatory measures are enabled using a multi-period determin-
stic planning and scheduling MILP model. The architecture thus
ntegrates production-scheduling (operational) decisions while
ptimizing safety stock (strategic) decisions. The problem can
e stated formally as:

Minimizeπ∗ ∈ Π, θ ∈ Θ

N∑
i=1

μi(CSLi(θi, π) − CSLTarget
i )

Subject to CSLi(θi, π) ≥ CSLTarget
i ∀i ∈ {1, . . . , N}

(9)
The optimization is performed over the space of network
afety stock levels denoted by 
 (handled in the outer loop) and
he space of all production planning policies � (handled in the
nner loop). The objective is to minimize the weighted devia-
afety stocks and production policies. Right exhibit: the gains in multi-product
ion management (Jung et al., 2004).

ions of customer satisfaction levels for N products from their
arget levels while ensuring that the target levels are met. The
ight exhibit of Fig. 12 demonstrates significant improvement
chieved for the CSLs of all products involved in a large-scale
ndustrial case study using this architecture over the case without
ny network safety stocks.

.4. Integration of production and dynamic capacity
lanning decisions

The next example of enterprise wide planning emerges from
he area of multi-product capacity expansion under competitive
ncertainties. Excessive capacity addition can lead to unutilized
apacity especially when competitor products capture some of
he market share. Fig. 13 shows the scenario in which a com-
etitor product arrives into a key market segment which forces
he firm to adapt its production system to the reduced demand.
hus, the question is: What must be the firm’s capacity expan-
ion or growth option strategy to hedge against the risk of future
nutilized capacity? Wan, Reklaitis, and Pekny (2006) formu-
ate this problem as a dynamic stochastic optimization problem
ith the objective of identifying the optimal capacity expansion

trategy. The problem is formulated as a stochastic dynamic pro-
ram and solved using a neuro-dynamic programming approach
n which value-to-go functions are learned using a hybrid Least
quares Support Vector Machine (LSSVM) based architecture
Fig. 13. Capacity planning under competitive uncertainties.
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ig. 14. Left exhibit: the LSSVM based capacity management architecture. Rig
l., 2006).

hows the architecture while the right exhibit shows the opti-
al variation of the second stage capacity for a case study as a

unction of the competitor’s market share as determined by the
rchitecture.

.5. Integration of marketing strategy and production
nventory process

Production-Inventory P&C and marketing strategy functions
re linked much more directly. Marketing strategy forecasts
hort-term demands based on competition and pricing models.
he forecasts trigger production-inventory P&C models which
utput decisions such as multi-product manufacturing volumes,
afety stocks, plant and warehouse inventories and even capacity
lans. These decisions flow into the production process func-
ions where they trigger short to medium term scheduling and
lant operational models. Since plant operations are subject to
dverse events such as batch failures or weeping/flooding of
istillation columns that reduce product purity, unusual exother-
icity generated hot spots in fixed bed reactors etc. production

nventories may deviate from target levels. Such deviations
nd other process information are communicated to the inven-
ory data warehousing function. It is a challenge to the market
trategy function to incorporate feedback information about
nventory deviations into its strategy models. Strategy models

ust not only incorporate external market forecast and compe-
ition related information but also forecasts of deviations from
roduction targets. For instance, the market strategy model does
ot need to learn about the probability of a certain distillation
olumn flooding in an operating quarter (13 weeks), however,
t is sufficient to learn the probability distribution of the devia-
ion of the product’s actual volume from the target volume. The
roduction volumes specified by the marketing strategy models

ill tend to be higher than those based on pure market fore-

asts which will compensate for any production mal-functions.
imilarly, real time assessments of inventory depletion rates at
arious warehouses in the supply chain network can allow the

A
c
i
p

hibit: the optimal control law of capacity as a function of market share (Wan et

roduction-Inventory P&C to better co-ordinate transportation
esources across the network.

Supplier–customer contracts play key roles in defining the
nterprise market strategy. The de-centralized SC literature has
ocused on certain types of contracts such as revenue-sharing,
F contracts to reduce overall supply chain costs to all agents.
ome of these contracts include mutually coordinated param-
ters such as supplier-to-retailer pricing, quantity and salvage
olumes of unsold inventories. Despite its importance, the liter-
ture integrating production-inventory planning and marketing
trategy is sparse. An example is the work of Subramanian
2004) who optimize parameters of a supplier–retailer QF-
ontract for a grocery supply chain with full consideration of
etailed production-inventory models for both the entities. The
eft exhibit in Fig. 15 shows their co-ordination network between
he entities. As shown in the right exhibit in Fig. 15 they iden-
ify the “win-win” regimes that result in the largest increase
n profitability of both entities. This contribution demonstrates
he emergence of computational tools like multi-agent sim-
lations to solve problems involving entities with complex
ehaviors as determined by their attempts to adapt their respec-
ive production-inventory systems. These kinds tools are better
uited to deal with industrial problems than more theoretical
pproaches such as the classical game theory which fails to
apture such complex behaviors.

. Outlook on computational strategies

A single monolithic model that can used to jointly and effi-
iently optimize each and every enterprise decision is unlikely
o exist for the foreseeable future. Even if such a model were
o exist, decomposition strategies would have to be identified
nd implemented within appropriate algorithm architectures.

rchitectures (Pekny, 2002) based on appropriate algorithm

omponents promise significant potential for efficiently and
n some cases optimally solving enterprise wide planning
roblems. In general, optimal algorithm architectures include
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ig. 15. De-centralized supply chains: left exhibit shows a supplier–retailer co
n operating costs (Subramanian et al., 2004).

ynergistic combinations of the best search features of individual
lgorithm components. In our view, formalisms for identifying
fficient algorithm architectures for enterprise-wide planning are
n a nascent state of development. Research directed at devel-
ping such formalisms would need to address the following
uestions:

. Which algorithm components should be selected for the given
decision problem based on the specific types of decisions
and uncertainties? For example, an algorithm architecture
might address multi-stage R&D capacity expansion deci-
sions. Varma et al. (2005b) show that this capacity planning
problem can be cast as a non-linear integer program wherein
the non-linearities arise from the dependencies of queuing
statistics on capacities. The objective is to minimize total
cost of capacity expansion while ensuring that products are
not unduly delayed. A branch-and-bound algorithm is subse-
quently proposed which efficiently solves realistic problems
to global optimality. This strategy is valid only so long as
no resources are shared across multiple projects and that
resource allocations to projects are fixed. If these assump-
tions are relaxed, the search space also includes multi-stage
resource allocation decisions in addition to capacity expan-
sion decisions. Since the Branch and Bound algorithm is
effective for capacity planning, one could synthesize an algo-
rithm architecture consisting of two modules: a resource
allocation module driven by a simulated annealing based
search in the space of discrete resource allocations and a
capacity expansion module driven by the branch and bound
algorithm. Each point explored in the space of resource allo-
cations would be “submitted” to the branch and bound driven
capacity module. The challenge for the algorithm designer
is: how to utilize information from the capacity module’s
branch and bound to improve the search efficiency of the
simulated annealing based resource allocation module. This
example shows the criticality of selecting appropriate algo-
rithm components and mining the information to reinforce

the performance of each component.

. How should the algorithm components be combined into a
computationally efficient engine? A related question is: how
should the information flow across algorithm components be

v
d
t
d

ation network. The right exhibit shows the effect of a QF-Contract parameter

controlled in order to achieve a given computational com-
plexity or a given solution quality? The potential pitfall is an
“assembly-line” approach to algorithm architecture design
in which components are simply bound together. Instead,
algorithm components need to be seamlessly integrated and
as far as possible event driven, i.e., appropriate components
should invoke their functionality in response to demands
from other components. Event driven architectures usually
limit the computational resource demands.

. How to build the “algorithmic occam’s razor”, i.e., par-
simonious architectures that efficiently optimize as many
enterprise-wide decisions as possible using the least com-
putational resources?

However, to date no comprehensive architectures even exist
hat integrate project selection, resource allocation and capac-
ty management in the R&D planning area. Architectures are
lso required for integration of production planning, schedul-
ng, inventory planning and capacity management. These are
xtremely inter-twined decision problems with highly non-
inear and combinatorial decision interactions under production,
emand, pricing and competitive uncertainties. Clearly, progress
n addressing these problems is badly needed if enterprise-wide
ptimization is to be achieved, and the “algorithm architec-
ures” approach seems efficient, reliable, robust and adaptive
o practitioner concerns.

. Conclusions and outlook on enterprise-wide modeling

This paper demonstrates the significant research potential
n building optimization models and developing algorithms for
olving enterprise-wide problems. We presented a conceptual
odel that views the enterprise as a network of planning and pro-

ess functions. Each function is associated with a decision model
hich regulates its operations. The current model architecture

uggests that operational planning functions are supervised by
trategic planning functions. In turn process functions are super-

ised by operational planning functions. We point out major
rawbacks of this architecture and provide several examples
hat demonstrate integration between financial and operational
ecision models. These examples include integration of capi-
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al budgeting (portfolio selection) and R&D pipeline models,
ntegration of scheduling and resource allocation models in
he context of controlling project development durations, and
ntegration of commodity derivatives and production-inventory

odels. However, these are only modest attempts at integrat-
ng a small subset of enterprise-wide decision models. Much
ork remains to be done to target methodologies for coordinat-

ng decision models or even building holistic cross-functional
odels. The algorithmic infrastructure developed by the pro-

ess systems engineering (PSE), strategic finance and operations
esearch communities should form the basis for research in
arge-scale enterprise-wide modeling and optimization.
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