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Lagrangean Relaxation
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Abstract

This paper reviews some of the most intriguing results and questions related to La-
grangean relaxation. It recalls essential properties of the Lagrangean relaxation and
of the Lagrangean function, describes several algorithms to solve the Lagrangean
dual problem, and considers Lagrangean heuristics, ad-hoc or generic, because these
are an integral part of any Lagrangean approximation scheme. It discusses schemes
that can potentially improve the Lagrangean relaxation bound, and describes sev-
eral applications of Lagrangean relaxation, which demonstrate the flexibility of the
approach, and permit either the computation of strong bounds on the optimal value
of the MIP problem, or the use of a Lagrangean heuristic, possibly followed by an
iterative improvement heuristic. The paper also analyzes several interesting ques-
tions, such as why it is sometimes possible to get a strong bound by solving simple
problems, and why an a-priori weaker relaxation can sometimes be “just as good”
as an a-priori stronger one.

Key Words: Integer programming, Lagrangean relaxation, column generation.

AMS subject classification: 90C11, 90-02.

1 Introduction

Why use Lagrangean relaxation for integer programming problems? How
does one construct a Lagrangean relaxation? What tools are there to an-
alyze the strength of a Lagrangean relaxation? Are there more powerful
extensions than standard Lagrangean relaxation, and when should they
be used? Why is it that one can sometimes solve a strong Lagrangean
relaxation by solving trivial subproblems? How does one compute the
Lagrangean relaxation bound? Can one take advantage of Lagrangean
problem decomposition? Does the “strength” of the model used make a
difference in terms of bounds? Can one strengthen Lagrangean relaxation
bounds by cuts, either kept or dualized? How can one design a Lagrangean
heuristic? Can one achieve better results by remodeling the problem prior
to doing Lagrangean relaxation? These are some of the questions that this
paper attempts to answer.
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The papers starts with a description of relaxations, in particular La-
grangean relaxation (LR for short). It continues with the geometric inter-
pretation of LR, and shows how this geometric interpretation is the best
tool for analyzing the effectiveness of a particular LR scheme. Extensions
of LR are also reviewed: Lagrangean decomposition and more generally
substitution. The Integer Linearization Property is described in detail, as
its detection may considerably reduce the computational burden.

The next section concentrates on solution methods for the dual prob-
lem, starting with subgradient optimization, and following with methods
based on Lagrangean properties: cutting planes (or constraint generation),
Dantzig-and-Wolfe (or column generation), the volume algorithm, bundle
and augmented Lagrangean methods, as well as some hybrid approaches.
This follows the review of some characteristics of the Lagrangean function,
important for the design of efficient optimization methods.

Cuts that are violated by Lagrangean solutions appear to contain ad-
ditional information, not captured by the Lagrangean model, and imbed-
ding them in the Lagrangean process may a priori appear to be a good
idea. They can either be dualized in Relax-and-Cut schemes, preserving
the structure of the Lagrangean subproblems, or appended to the other kept
constraints, but at the cost of possibly making the Lagrangean subprob-
lems harder to solve. The next section reviews the conditions for bound
improvement under both circumstances.

The following section is devoted to Lagrangean heuristics, which com-
plement Lagrangean bounding by making an attempt at transforming in-
feasible Lagrangean solutions into good feasible solutions.

Several applications are reviewed throughout the paper, with emphasis
on the steps followed either to re-model the problem or to relax it in an
efficient manner.

The literature on Lagrangean relaxation, its extensions and applica-
tions is enormous. As a consequence no attempt has been made here to
quote every possible paper dealing with Lagrangean relaxation. Instead, we
only list papers that we mention in the text because they directly relate to
the material covered here, as they introduced novel ideas or presented new
results, new modeling and decomposition approaches, or new algorithms.
Finally, we refer the reader to a few pioneer and/or survey papers on La-
grangean relaxation, as they may help get a clearer picture of the whole
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field: Everett (1963), Held and Karp (1970), Held and Karp (1971), Geof-
frion (1974), Shapiro (1974), Shapiro (1979), Fisher (1981), Fisher (1985),
Beasley (1993), and Lemaréchal (2001).

Notation

If (P ) is an optimization problem, the following notation is used:

FS(P ), the set of feasible solutions of problem (P )

OS(P ), the set of optimal solutions of problem (P )

v(P ), the optimal value of problem (P )

uk, sk, etc, the value of u, s, etc., used at iteration k

xT , the transpose of x

xk, the kth extreme point of some polyhedron (see context)

x(k), a solution found at iteration k

co(X), the convex hull of the set X.

2 Relaxations of Optimization Problems

Geoffrion (1974) formally defines a relaxation of a minimization problem
as follows.

Definition 2.1. Problem (RPmin) : min{g(x) |x ∈ W} is a relaxation of
problem (Pmin) : min{f(x) |x ∈ V }, with the same decision variable x, if
and only if

(i) the feasible set of (RPmin) contains that of (Pmin), i.e., W ⊇ V , and

(ii) over the feasible set of (Pmin), the objective function of (RPmin) dom-
inates (is better than) that of (Pmin), i.e., ∀x ∈ V , g(x) ≤ f(x).

It clearly follows that v(RPmin) ≤ v(Pmin), in other words (RPmin) is
an optimistic version of (Pmin): it has more feasible solutions than (Pmin),
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and for feasible solutions of (Pmin), its own objective function is better than
(smaller than) that of (Pmin); thus it has a smaller minimum.

Of course, if the original problem is a maximization problem, say,
(Pmax) : max{f(x) |x ∈ V }, a relaxation of (Pmax) is a problem (RPmax)
over the same decision variable x of the form (RPmax) : max{g(x) |x ∈W},
such that

(i) the feasible set of (RPmax) contains that of (Pmax), i.e., W ⊇ V , and

(ii) over the feasible set of (Pmax), the objective function of (RPmax) dom-
inates (is better than) that of (Pmax), i.e., ∀x ∈ V , g(x) ≥ f(x).

It follows that v(RPmax) ≥ v(Pmax), and, as in the minimization case,
(RPmax) is an optimistic version of (Pmax). In what follows, we will con-
sider indifferently maximization and minimization problems. Results can
easily be translated from one format to the other by remembering that
max{f(x) |x ∈ V } = −min{−f(x) |x ∈ V }.

The role of relaxations is twofold: they provide bounds on the opti-
mal value of difficult problems, and their solutions, while usually infeasible
for the original problem, can often be used as starting points (guides) for
specialized heuristics.

We concentrate here on linear integer programming problems, in which
the constraint set V is defined by rational polyhedral constraints, plus inte-
grality conditions on at least a subset of the components of x, i.e., V = Π∩Γ,
where Π is a rational polyhedron (Π may also contain sign restrictions on
x) and Γ is Rn−p × Zp−q × {0, 1}q, n ≥ p ≥ 1, p ≥ q ≥ 0, p and q integers.
We will call “integer programming problem” any such problem, i.e., we will
not distinguish in general between pure- (i.e., with p = n) and mixed- (i.e.,
with 1 ≤ p < n) integer problems. The special case of 0-1 programming
uses Γ = Rn−q × {0, 1}q, q ≥ 1.

The most widely used relaxation of an integer programming problem
(P ) : min (or max) {f(x) |x ∈ V } is the continuous relaxation (CR), i.e.,
problem (P ) with the integrality conditions on x ignored.
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3 Lagrangean Relaxation (LR)

We now introduce LR (Held and Karp (1970), Held and Karp (1971)).
Without loss of generality, we assume that (P ) is of the form

min
x

{fx |Ax ≤ b, Cx ≤ d, x ∈ X}, (P )

where X contains sign restrictions on x, and the integrality restrictions, i.e.
X = Rn−p × Rp, or X = R

n−p
+ × R

p
+, or X = R

n−p
+ × {0, 1}p. Let I(X)

be the set of the p indices of x restricted to be integer (or binary). The
constraints Ax ≤ b are assumed complicating, in the sense that problem
(P ) without them would be much simpler to solve. The constraints Cx ≤ d
(possibly empty) will be kept, together with X, to form the Lagrangean
relaxation of (P ) as follows.

Let λ be a nonnegative vector of weights, called Lagrangean multipliers.

Definition 3.1. The Lagrangean relaxation of (P ) relative to the compli-
cating constraints Ax ≤ b, with nonnegative Lagrangean multipliers λ , is
the problem

min
x

{fx+ λ(Ax ≤ b) |Cx ≤ d, x ∈ X}. (LRλ)

In (LRλ), the slacks of the complicating constraints Ax ≤ b have been
added to the objective function with weights λ and the constraints Ax ≤ b
have been dropped. One says that the constraints Ax ≤ b have been
dualized. (LRλ) is a relaxation of (P ), since (i) FS(LRλ) contains FS(P ),
and (ii) for any x feasible for (P ), and any λ ≥ 0, fx + λ(Ax − b) is less
than or equal to fx (i.e., better, since we are minimizing). It follows that
v(LRλ) ≤ v(P ), for all λ ≥ 0, i.e., the optimal value v(LRλ), which depends
on λ , is a lower bound on the optimal value of (P ).

Definition 3.2. The problem of finding the tightest Lagrangean lower
bound on v(P ) is:

max
λ≥0

v(LRλ), (LR)

it is called the Lagrangean dual of (P ) relative to the complicating con-
straints Ax ≤ b.

(LR) is a problem in the dual space of the Lagrangean multipliers,
whereas (LRλ) is a problem in x.
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From now on, when talking about a Lagrangean relaxation bound, or
simply Lagrangean bound, we will always mean v(LR), not v(LRλ) for
some arbitrary λ .

Remark 3.1. Suppose the problem under consideration has complicating
equality rather than inequality constraints. We will refer to such a problem
as (Q) in the sequel:

min
x

{fx |Ax = b, Cx ≤ d, x ∈ X}. (Q)

One can also dualize the constraints Ax = b by noticing that they can be
replaced by a pair of inequality constraints Ax ≤ b and −Ax ≤ −b. Then
let µ ≥ 0 and ν ≥ 0 be appropriately dimensioned Lagrangean multipliers.
The Lagrangean relaxation for given µ ≥ 0 and ν ≥ 0 is

min
x

{fx+ µ(Ax− b) + ν(−Ax+ b) |Cx ≤ d, x ∈ X} (LRµ,ν)

which can be rewritten equivalently as

min
x

{fx+ λ(Ax− b) |Cx ≤ d, x ∈ X} (LRλ)

with λ = µ − ν. Notice that in the equality case λ does not have to be
nonnegative for (LRλ) to be a relaxation of (Q).

4 Feasible Lagrangean solution

Let x(λ) denote an optimal solution of (LRλ) for some λ ≥ 0, then x(λ)
is called a Lagrangean solution. One may be tempted to think that a La-
grangean solution x(λ) that is feasible for the integer problem (i.e., that
satisfies the dualized constraints) is also optimal for that problem. In fact
this is generally not the case.

What is true is that the optimal value of (P ), v(P ), lies between fx(λ)+
λ[Ax(λ) − b] and fx(λ), since fx(λ) is the value of a feasible solution of
(P ), thus an upper bound on v(P ), and fx(λ)+λ[Ax(λ)−b] is the optimal
value of the Lagrangean problem (LRλ), thus a lower bound on v(P ). If,
however, complementary slackness holds, i.e., if λ[Ax(λ) − b] is 0, then
fx(λ) + λ[Ax(λ) − b] = v(P ) = fx(λ), and x(λ) is an optimal solution for
(P ).
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Theorem 4.1. 1. If x(λ) is an optimal solution of (LRλ) for some
λ ≥ 0, then fx(λ) + λ[Ax(λ) − b] ≤ v(P ).

2. If in addition x(λ) is feasible for (P ), then fx(λ) + λ[Ax(λ) − b] ≤
v(P ) ≤ fx(λ).

3. If in addition λ[Ax(λ) − b] = 0, then x(λ) is an optimal solution of
(P ), and v(P ) = fx(λ).

Remark 4.1. Notice first that this is a sufficient condition of optimality,
but it is not necessary. I.e., it is possible for a feasible x(λ) to be optimal
for (P ), even though it does not satisfy complementary slackness.

If the constraints that are dualized are equality constraints, and if x(λ) is
feasible for (Q), complementary slackness holds automatically, thus x(λ) is
an optimal solution of (Q), with v(P ) = fx(λ).

5 Geometric Interpretation

The following theorem, from Geoffrion (1974), is probably what sheds most
light on Lagrangean relaxation. It gives a geometric interpretation of the
Lagrangean dual problem in the space of x, i.e., in the primal space (the
dual space being that of the Lagrangean multipliers λ), and this permits
us to study Lagrangean relaxation schemes.

Theorem 5.1. The Lagrangean dual (LR) is equivalent to the primal re-
laxation

min
x

{
fx |Ax ≤ b, x ∈ Co{x ∈ X |Cx ≤ d}

}
, (PR)

in the sense that v(LR) = v(PR).

This result is based on LP duality and properties of optimal solutions
of linear programs. Remember though that this result may not be true if
the constraint matrices are not rational, or more precisely for non-rational
polyhedra that are not equal to the convex hull of their extreme points. In
practice though numbers are stored on computers as rational numbers, and
all matrices are therefore rational, but occasionally this modifies the true
structure of the associated polyhedra.

The following important definition and results follow from this geomet-
ric interpretation.
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Figure 1: Geometric interpretation of LR

Definition 5.1. One says that (LR) has the Integrality Property if Co{x ∈
X |Cx ≤ d} = {x |Cx ≤ d}.

If (LR) has the Integrality Property (IP for short), then the extreme
points of {x |Cx ≤ d} are in X. The unfortunate consequence of this prop-
erty, as stated in the following corollaries, is that such an LR scheme cannot
produce a bound stronger than the LP bound. Sometimes, however, this is
useful anyway because the LP relaxation cannot be computed easily. This
may be the case for instance for some problems with an exponential number
of constraints that can be relaxed anyway into easy to solve subproblems.
The traveling salesman problem is an instance of a problem which contains
an exponential number of (subtour elimination) constraints. A judicious
choice of dualized constraints leads to Lagrangean subproblems that are 1-
tree problems, thus eliminating the need to explicitly write all the subtour
elimination constraints (Held and Karp (1970), Held and Karp (1971)).

Remember that any Lagrangean relaxation bound is always at least as
good as the LP bound, never worse.

Corollary 5.1. If Co{x ∈ X |Cx ≤ d} = {x |Cx ≤ d}, then v(LP ) =
v(PR) = v(LR) ≤ v(P ).
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In that case, the Lagrangean relaxation bound is equal to (cannot be
better than) the LP bound.

Corollary 5.2. If Co{x ∈ X |Cx ≤ d} ⊂ {x |Cx ≤ d}, then v(LP ) ≤
v(PR) = v(LR) ≤ v(P ), and it may happen that the Lagrangean relaxation
bound is strictly better than the LP bound.

What these two corollaries say is that unless (LR) does not have the
Integrality Property, it will not yield a stronger bound than the LP relax-
ation. It is thus important to know if all vertices of the rational polyhedron
{x ∈ X |Cx ≤ d} are in X. The following analysis will demonstrate the
importance of that concept.

Example 5.1 (The Generalized Assignment Problem, GAP). The
generalized assignment problem (GAP) consists of assigning a set of jobs
(j ∈ J) to machines (i ∈ I) with the smallest possible total assignment
cost (or possibly with the largest total profit value). The cost (or profit)
of assigning j to i is cij , thus the problem may be either a minimization
or maximization problem, and we will remind the reader of this possibility
by using the notation “min (or max)”. Every job must be done by one
machine (thus the multiple choice constraints (MC)). Every machine i is
available bi units of time, and assigning job j to machine i uses aij units of
time (thus the knapsack constraints (KP )). The model is then

min (or max)
∑

i

∑

j

cijxij (GAP)

s.t.
∑

j

aijxij ≤ bi, ∀i ∈ I (KP )

∑

i

xij = 1, ∀j ∈ J (MC)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J

• If one dualizes (MC) with unsigned multipliers λj , the Lagrangean
relaxation problem decomposes into one subproblem per machine i:

min (or max)
∑

i

∑

j

cijxij +
∑

j

λj(1 −
∑

i

xij) (LRλ)

s.t.
∑

j

aijxij ≤ bi, ∀i ∈ I (KP )
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xij ∈ {0, 1}, ∀i ∈ I, j ∈ J

= min (or max)
{∑

i,j

(cij − λj)xij +
∑

j

λj |
∑

j

aijxij ≤ bi,∀i, xij ∈ {0, 1},∀i, j
}

=
∑

j

λj+
∑

i

{
min (or max)

∑

j

(cij − λj)xij |
∑

j

aijxij ≤ bi, xij ∈ {0, 1},∀j
}

Thus the ith Lagrangean subproblem is a knapsack problem for the ith

machine. This problem does not have the Integrality Property since
the LP relaxation of a 0-1 knapsack problem does not always have
an integer optimal solution. This LR scheme can thus (and usually
does) yield a bound stronger than the LP bound and it was used in
particular in Fisher et al. (1986) and Guignard and Rosenwein (1990).

• If one dualizes (KP ), the Lagrangean relaxation problem decomposes
into one subproblem per job j (with λ nonpositive or nonnegative, de-
pending on whether it is a min or a max):

min (or max)
∑

i

∑

j

cijxij +
∑

i

λi(bi −
∑

j

aijxij) (LR′
λ)

s.t.
∑

i

xij = 1 ∀j ∈ J (MC)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J

= min
x

(or max
x

)
{∑

i

∑

j

(cij − λiaij)xij +
∑

i

λibi |
∑

i

xij = 1,∀j ∈ J,

xij ∈ {0, 1},∀i ∈ I, j ∈ J
}

=
∑

i

λibi+
∑

j

{
min

x
(or max

x
)
∑

i

(cij − λiaij)xij |
∑

i

xij = 1, xij ∈ {0, 1},∀i
}
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The jth Lagrangean subproblem is a multiple choice problem for the
jth job. The LP relaxation of each problem always yields an optimal
integer solution (choose the best assignment for each j), thus the
Lagrangean subproblems have the Integrality Property and the LR
bound is equal to the LP bound. No improvement over the LP bound
can be expected. It is worth mentioning however that solving this
Lagrangean relaxation for the GAP may have several advantages over
solving the LP relaxation. First the Lagrangean dual may be easier to
solve than the LP dual for large size problems. Secondly, in addition
to the LP bound, LR yields Lagrangean solutions, which are feasible
for the multiple choice constraints but may violate one or more of
the knapsack constraints. These Lagrangean solutions can be used as
starting points for Lagrangean heuristics. This relaxation is described
in Ross and Soland (1975).

6 Easy-to-solve Lagrangean subproblems

It may happen that Lagrangean subproblems, even though in principle
hard to solve because they do not have the Integrality Property, are in
fact much easier to solve through some partial decomposition; they can
sometimes even be solved in polynomial time, by exploiting their special
structure. It is of course important to be able to recognize such favorable
situations, especially if one can avoid using Branch-and-Bound. It should
be noted that these favorable cases do not in general occur naturally, but
only after some constraint(s) have been dualized, due to a weakening of the
original links between continuous and integer variables.

The first case is due to what we will call the Integer Linearization Prop-
erty (or ILP for short).

6.1 Integer Linearization Property

Geoffrion (1974) and Geoffrion and McBride (1978) described and used the
following important property of some Lagrangean subproblems. Without
loss of generality, let us assume that all variables are indexed by i ∈ I,
and maybe by some additional indices, and that some of the 0-1 variables
are called yi. If, except for constraints containing only these 0-1 variables
yi, the Lagrangean problem, say, (LRλ), has the property that the value
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0 yi 1       yi = 0 or 1 
 1   1 

         

v(LR
i
)

         

v(LR
i
)

0 0

Figure 2

taken by a given yi decides alone the fate of all other variables containing
the same value of the index i – that usually means that if variable yi is
0, all variables in “its family” are 0, and if it is 1, they are solutions of
a subproblem – one may be able to reformulate the problem in terms of
the variables yi only. Often, but not always, when this property holds, it is
because the Lagrangean problem, after removal of all constraints containing
only the yi’s – let us call it (LRPλ), for partial problem – decomposes into
one problem (LRP i

λ) for each i, i.e., for each 0-1 variable yi.

The use of this property is based on the following fact. In problem
(LRP i

λ), the integer variable yi can be viewed as a parameter, however we
do know that for the mixed-integer problem (LRP i

λ), the feasible values of
that parameter are only 0 and 1, and we can make use of the fact that there
are only two possible values for v(LRP i

λ), the value computed for yi = 1,
say vi (= vi · yi for yi = 1), and the value for yi = 0, that is, 0 (= vi · yi for
yi = 0), which implies that for all possible values of yi, v(LRP

i
λ) = vi · yi.

Hence the name “integer linearization”, as one replaces a piecewise linear
function corresponding to 0 ≤ yi ≤ 1 by a line through the points (0, 0)
and (1, vi).

We will first present an example of the simple decomposable case.

Example 6.1. Suppose that (LRλ) is of the form minx{fx + gy |Aixi ≤
piyi, all i, x ∈ X,By ≤ b, yi = 0 or 1, all i}, where there is one set of con-
straints Aixi ≤ piyi for each i, the constraints By ≤ b are over y alone, Ai

and pi are nonnegative, and X = Πi(Xi). Here xi may be a vector, with
possibly some integer part. To solve (LRλ), one can proceed as follows:

(i) ignore at first the constraints containing only the yi’s, i.e., By ≤ b;
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(ii) given the model, it is clear that the problem then separates into one
problem for each i:

min{fixi + giyi |Aixi ≤ piyi, xi ∈ Xi, yi = 0 or 1} (LRi
λ)

where yi plays the role of a 0-1 parameter:

for yi = 0, xi = 0, and fixi + giyi = 0,

for yi = 1, solve (LRi
λ | yi = 1): let vi = min{fixi + gi |Aixi ≤

pi, xi ∈ Xi}, then vi is the contribution of yi = 1 in the objec-
tive function.

(iii) replace v(LRλ) by v(PLλ) where problem (PLλ), usually much sim-
pler to solve than (LRλ), is

min{
∑

i

viyi |By ≤ b, yi = 0 or 1, all i}. (PLλ)

This process makes use of the integrality constraint on variable yi and
therefore even in cases where both (PLλ) and (LRi

λ | yi = 1) have the
Integrality Property, it is possible to have

v(LR) = min
λ
v(PLλ) = min

λ
v(LRλ) < v(LP ).

Example 6.2. We will now present a somewhat more complicated example
of ILP than the above model. de Matta and Guignard (1994) presents a
production scheduling problem for a tile manufacturing company. There
are several aggregate families of tiles, indexed by I, and i ∈ I stands for
a type of tiles that share important characteristics (size, color, material,
required oven temperature,. . . ). If it is allowed to leave a machine idle, we
will say that it is producing product i = 0 (that is, the “idle product”). The
bottleneck in the production line is tile baking, which is done in kilns, j ∈ J .
The kiln temperature must remain constant through the baking process.
Each kiln j bakes tiles of a certain type i at a certain temperature, and
therefore at a certain (constant) weekly production rate pij (related to the
flow rate of the cars loaded with tiles as they enter the kilns). Changeover
takes place only between weeks, and there is a changeover cost rlij as well
as a production loss Klij on machine (kiln) j for changing from product
(tile type) l to product i. In the original problem, backlogging was not
allowed, but we will consider here the more general case where the demand
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dis for tile type i in week s can be met by producing it in any period t
during the time horizon, i.e.,t ∈ {1, 2, . . . , T}. We will use T + 1 as the
name of the first period (week) beyond the time horizon. The reason we
need to consider it is that the production rate being fixed, we may end up
with remaining inventories in period T + 1. For consistency we also define
di,T+1 = max(

∑
s dis,

∑
j pij).

We are using a disaggregated model (similar in spirit to that of Bowman
(1956)) which yields a tight LP relaxation bound, and provides interesting
structural characteristics. Let xijts be the percentage of the demand dis

produced on machine j in period t, and let ylijt be a 0-1 variable equal to 1
if there is a production changeover from l to i on machine j at the beginning
of period t, 0 otherwise. One knows which product lj each machine j was
producing in the week preceding the first week (initial conditions). Let
cijts be the cost of either holding or backlogging the demand dis between
periods t and s if produced on j. The model can then be stated as follows:

min
∑

i,j,t,s

cijtsxijts +
∑

l,i,j,t

rlijylijt +
∑

i,j,t

cijt,T+1xijt,T+1 (IP )

s.t.
∑

j,t

xijts ≥ 1 ∀i, s
∑

s

disxijts =
∑

l

(pij −Klij)ylijt ∀i, j, t
∑

i

yljij1 = 1 ∀j
∑

l

ylijt =
∑

k

yikj,t+1 ∀i, j, t
∑

l,i

ylijT = 1 ∀j

xijts ≥ 0, ylijt ∈ {0, 1}, ∀l, i, j, t, s

If we dualize the demand constraint (the first constraint) with nonnegative
multiplier λ, the Lagrangean relaxation (LRλ) reads

min
∑

i,j,t,s

cijtsxijts +
∑

l,i,j,t

rlijylijt +
∑

i,j,t

cijt,T+1xijt,T+1+

+
∑

i,s

λis(1 −
∑

j,t

xijts) (LRλ)
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s.t.
∑

s

disxijts =
∑

l

(pij −Klij)ylijt ∀i, j, t
∑

i

yljij1 = 1 ∀j
∑

l

ylijt =
∑

k

yikj,t+1 ∀i, j, t
∑

l,i

ylijT = 1 ∀j

xijts ≥ 0, ylijt ∈ {0, 1}, ∀l, i, j, t, s
The first remark is that the model decomposes into one problem for each
machine j. Let (LRj

λ) be the subproblem corresponding to machine j:

min
∑

i,t,s

(cijts − λls)xijts +
∑

l,i,t

rlijylijt +
∑

i,t

cijt,T+1xijt,T+1 (LRj
λ)

s.t.
∑

s

disxijts =
∑

l

(pij −Klij)ylijt ∀i, t
∑

i

yljij1 = 1

∑

l

ylijt =
∑

k

yikj,t+1 ∀i, t
∑

l,i

ylijT = 1

xijts ≥ 0, ylijt ∈ {0, 1}, ∀l, i, t, s

In the first constraint of (LRj
λ), the right hand side contains not one, but a

set of 0-1 variables, so the structure is different from that presented above.
However, the second and third constraint together imply that exactly one
ylijt is equal to 1, for every i and t. That is, including if necessary the
“idle product”, at the beginning of period t, machine j switches to exactly
one product i from exactly one product l (which may actually be i = l).

Therefore if ylijt = 1,
∑

k 6=l

ykijt = 0 and one can find the corresponding xijts

and xijt,T+1 by solving the continuous knapsack-like problem

min
x

∑

s

(cijts − λls)xijts + cijt,T+1xijt,T+1 (P l,i,j,t
λ )

s.t.
∑

s

disxijts = pij −Klij
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0 ≤ xijts ≤ 1, xijt,T+1 ≥ 0.

(LRj
λ) then reduces to

min
y

∑

l,i,t

(v(P l,i,j,t
λ ) + rlij)ylijt

s.t.
∑

i

yljij1 = 1

∑

l

yljijt =
∑

k

yikj,t+1 ∀i, t
∑

l,i

ylijT = 1

ylijt ∈ {0, 1} ∀l, i, t

This problem can be solved as an acyclic shortest path problem, which
amounts to searching for a sequence of changes for machine j, from period
to period, from a product to another (or maybe the same) product. A
node corresponds to setting up machine j in period t to produce product
i. An arc from node (i, j, t − 1) to node (l, j, t) has cost v(P i,i,j,t

λ ) if i = l
(one continues to produce i in period t), and it is associated with yiijt = 1,

or it has cost v(P i,l,j,t
λ ) + rilj if i 6= l (one switches from i to l), and it is

associated with yiljt = 1. Notice that arc costs may be negative.

To summarize, the Lagrangean problem decomposes into one problem
per machine j, and these problems for machine j can be solved by solving
one continuous knapsack-like problem per (l, i, t) (i.e., per arc), and one
shortest path problem.

Notice however that the Lagrangean problem does not have the inte-
grality property. An example given in de Matta (1989) proves this fact.
One may (and actually does) obtain LR bounds much tighter than the LP
bound, even though the subproblems are trivial to solve.

7 Constructing a Lagrangean Relaxation

There are often many ways in which a given problem can be relaxed in a
Lagrangean fashion. We will list here a few, mostly to point out that often
some reformulation prior to relaxation can help, and that for many complex
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models, intuition and some understanding of the constraint interactions
may suggest ingenious and efficient relaxation schemes.

(1) One can isolate an interesting subproblem and dualize the
other constraints.

This is the most commonly used approach. It has the advantage that the
Lagrangean subproblems are “interesting” (in the sense usually that they
have a special structure that can be exploited) and there may even exist
specialized algorithms for solving them efficiently.

(2) If there are two (or more) interesting subproblems with com-
mon variables, one can split these variables first, then dualize the
copy constraint.

This is called Lagrangean decomposition (LD) (Soenen (1977)), variable
splitting (Näsberg et al. (1985)) or variable layering, Glover and Kling-
mann (1988). Shepardson and Marsten (1980), and Ribeiro and Minoux
(1986) are among the early papers introducing the approach. One must
first reformulate the problem using variable splitting, in other words, one
must rename the variables in part of the constraints as if they were inde-
pendent variables. Problem (P ) : minx{fx |Ax ≤ b, Cx ≤ d, x ∈ X} is
clearly equivalent to problem (P ′) : minx,y{fx |Ax ≤ b, x ∈ X,Cy ≤ d, y ∈
X,x = y}, in the sense that they have equal optimal values (but notice
that they have different variable spaces). In addition if x∗ is an optimal
solution of (P ), then the solution (x, y) ≡ (x∗, x∗) is optimal for (P ′), and
if (x∗, y∗) is an optimal solution of (P ′), then x∗ = y∗ and x∗ is optimal
for (P ). One dualizes the copy constraint x = y in (P ′) with multipliers λ,
this separates the problem into an x-problem and a y-problem:

min
x,y

{fx+ λ(y − x) |Ax ≤ b, x ∈ X,Cy ≤ d, y ∈ X} (LDλ)

= min
x

{(f − λ)x |Ax ≤ b, x ∈ X} + min
y

{λy |Cy ≤ d, y ∈ X}.

This process creates a staircase structure, and thus decomposability, in the
model. Notice that here λ is not required to be nonnegative.

Remember also that when one dualizes equality constraints, a feasible
Lagrangean solution is automatically optimal for the original integer pro-
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Figure 3: Geometric interpretation of Lagrangean decomposition

gramming problem. The copy constraint being an equality constraint, if
both Lagrangean subproblems have the same optimal solution, that solu-
tion is optimal for the IP problem.

Guignard and Kim (1987) showed that the LD bound can strictly dom-
inate the LR bounds obtained by dualizing either set of constraints:

Theorem 7.1. If v(LD) = maxλ[minx{(f − λ)x |Ax ≤ b, x ∈ X} +
miny{λy |Cy ≤ d, y ∈ X}] then v(LD) = min

{
fx |x ∈ Co{x ∈ X |Ax ≤

b} ∩ Co{x ∈ X |Cx ≤ d}
}
.

This geometric interpretation is demonstrated in Figure 3.

Corollary 7.1.

• If one of the subproblems has the Integrality Property, then v(LD) is
equal to the better of the two LR bounds corresponding to dualizing
either Ax ≤ b or Cx ≤ d.

• If both subproblems have the Integrality Property, then v(LD) = v(LP ).

If one applies LD to the GAP by splitting the constraints into two
nonoverlapping subsets, the (KP ) and the (MC) constraints, one then
obtains the same bound as when dualizing the multiple choice constraints.
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It would then seem to be uninteresting to split the variables, as this requires
a number of multipliers equal to the number of machines times the number
of jobs, as compared to only the number of jobs with the strong Lagrangean
relaxation. It is possible though that Lagrangean solutions can exploit the
two Lagrangean solutions obtained and it might be worth the extra work of
solving the Lagrangean decomposition dual, Jörnsten and Näsberg (1986).

Occasionally the variable splitting will correspond to a physical split of
one of the problem’s decision variables. This is illustrated by the following
example.

Example 7.1. Guignard and Yan (1993), and Yan (1996) describe the
following problem and scheme for a hydroelectric power management prob-
lem.

Electric utility production planning is the selection of power generation
and energy efficiency resources to meet customer demands for electricity
over a multi-period time horizon. The project described in the paper is
a real-world hydropower plant operations management problem of a dis-
patch type. The system consists of a chain of 10 consecutive hydropower
plants separated by reservoirs and falls with 23 identical machines installed
to generate electric power. Specifically there are two machines installed in
eight power plants (plants 1, 2, 3, 4, 5, 6, 7, and 10), three machines in
one power plant (plant 8) and four machines in the last power plant (plant
9). Each machine has two or four work parts for producing electric power,
according to different water throughput. Since demand for electric power
varies with different time periods, power plant managers must make opti-
mal decisions concerning the number of machines that should be operated
in each power plant during each time period. Managing the power gener-
ation requires decisions concerning water releases at each plant k in each
time period. A period is two hours. The model (which is confidential) was
constructed by an independent consulting firm. This results in a large com-
plex mixed-integer program. The problem is complex, with 2691 variables,
384 of which are binary, and 12,073 constraints. The firm had tried to solve
the problem for the utility company with several of the best MIP software
packages available, with help from the software companies themselves. Yet
they did not succeed. Guignard and Yan repeated the tests with several
solvers running under GAMS, on several RISC systems, also to no avail.
The best result after 5 days and six hours on an HP workstation was a
bracket [3174.97, 3534.17], i.e., a residual gap of more than 11%.
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Power Plant k

Power Plant k+1

low water

level of k

high water

level of k+1=

Figure 4: Variable splitting

In order to reduce the complexity of the model, they tried several La-
grangean relaxations and decompositions. One of the decompositions tested
consists in “cutting” each reservoir in half (see Figure 4), i.e. “splitting”
the water level variable in each reservoir, and dualizing the following copy
constraint:

high water level in k + 1 = low water level in k.

This Lagrangean decomposition produces one power management prob-
lem per power plant k. These subproblems do not have a special structure,
but are much simpler and smaller than the original problem, are readily
solvable by commercial software, and do not have the Integrality Property.
They were solved by Branch-and-Bound.

This LD shrinks problem size, and yields Lagrangean bounds much
stronger than the LP bounds. In addition the Lagrangean solutions can be
modified to provide feasible schedules.
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(3) One can dualize linking constraints.

Sometimes naturally, sometimes after some reformulation, problems may
contain independent structures linked by some constraints: minx,y{fx +
gy |Ax ≤ b, x ∈ X,Cy ≤ d, y ∈ Y,Ex + Fy ≤ h}. Dualizing the link-
ing constraints Ex + Fy ≤ h splits the problem into an x-problem and
a y-problem. Sometimes the original problem only contains x and some
reformulation introduces a new variable y, while the relationship between
x and y is captured by the new constraints Ex+ Fy ≤ h.

Example 7.2. A production problem over multiple facilities contains con-
straints related to individual facilities, and the demand constraints link all
plant productions. If one dualizes the demand constraints, the Lagrangean
problem decomposes into a production problem for each facility, which is
typically much easier to solve than the overall problem. If at least one
of these subproblems does not have the Integrality Property, this LR may
yield a tighter bound than the LP bound. In Andalaft et al. (2003), a
forest company must harvest geographically distinct areas, and dualizing
the demand constraints splits the problem into one subproblem per area,
which is typically much easier to solve than the overall problem.

Example 7.3. Consider a multi-period model in which facilities built in
one period can be used in that or a later period. One may be able to use
“action” (building) variables (say, binary variable xit, equal to 1 iff one
builds facility i in period t) in the “design” part of the model, and “state”
(existence) variables (say, binary variable yit, equal to 1 iff facility i exists
in period t) in the rest of the model. Thus yit ≥ yi,t−1 for all i and t. The
relationship between the two sets of variables is captured by the following
constraints:

xit ≥ yit − yi,t−1 and yit ≥ xiτ , ∀i, t, and τ ≤ t.

Both types of constraints are necessary to enforce that xit is 1 only in the
building period, i.e., when yit is 1 and yi,t−1 is 0, and yiτ remains 0 until
the smallest period τ = t for which xit is 1.

Dualizing these linking relationships between “built in period t” and
“built by period t” may split the model into a facility-building problem
and a facility-using problem. If neither has the Integrality Property, the
Lagrangean relaxation bound can be stronger than the LP bound. See for
instance Chajakis et al. (1994).
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This is actually a special case of Lagrangean substitution (LS), where
Ex+ Fy ≤ h is the copy constraint introduced in the reformulation.

(4) One can sometimes dualize aggregate rather than individual
copies of variables.

Instead of creating a copy y of variable x and introducing y into model (P )
by rewriting the constraint Cx ≤ d as Cy ≤ d, to yield the equivalent model
(P ′): minx,y{fx |Ax ≤ b, x ∈ X,Cy ≤ d, y ∈ X,x = y}, one can also create
a problem (P ′′) equivalent to problem (P ) by introducing a new variable y
and forcing the constraint Dy = Cx. This constraint is in general weaker
than the constraint x = y. Model (P ′′) is minx,y{fx |Ax ≤ b, x ∈ X,Dy ≤
d, y ∈ X,Dx = Cy}. The LR introduced here dualizes the aggregate copy
constraint Dx = Cy.

Here again the copy constraint is an equality constraint, therefore if the
Lagrangean subproblems have optimal solutions x and y that satisfy the
aggregate copy constraint, i.e., if Dy = Cx, then the x-solution is optimal
for the IP problem.

Example 7.4. Consider the bi-knapsack problem

max
x

{
∑

i

cixi |
∑

i

bixi ≤ m,
∑

i

dixi ≤ n, xi ∈ {0, 1},∀i}. (BKP )

One can introduce a new variable y, and write
∑

i bixi =
∑

i biyi. The
equivalent problem is

max
x,y

{
∑

i

cixi |
∑

i

biyi ≤ m,
∑

i

dixi ≤ n,
∑

i

bixi =
∑

i

biyi, xi, yi ∈ {0, 1},∀i}

(BKP ′)
and the LR problem is

max
x,y

{
∑

i

cixi − λ(
∑

i

bixi −
∑

i

biyi) |
∑

i

biyi ≤ m,
∑

i

dixi ≤ n, xi, yi ∈ {0, 1},∀i} (LRλ)

=max
x

{
∑

i

(ci − λbi)xi |
∑

i

dixi ≤ n, xi ∈ {0, 1},∀i}

+ max
y

{λ
∑

i

biyi) |
∑

i

biyi ≤ m, yi ∈ {0, 1},∀i}.
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Here λ is a single real multiplier of arbitrary sign. The Lagrangean bound
produced by this scheme is in between that of the LP bound and that of the
Lagrangean decomposition bound obtained by dualizing xi = yi ∀i. This is
similar in spirit to the copy constraints introduced in Reinoso and Maculan
(1988).

It would seem natural that a reduction in the number of multipliers
should imply a reduction in the quality of the LR bound obtained. This is
not always the case, however, as shown in example 7.5.

Example 7.5. Chen and Guignard (1998) consider an aggregate Lagrangean
relaxation of the capacitated facility location problem. The model uses
continuous variables xij that represent the percentage of the demand dj

of customer j supplied by facility i, and binary variables yi, equal to 1 if

facility i with capacity ai is operational. The constraint
∑

j

djxij ≤ aiyi

imposes a conditional capacity restriction on the total amount that can be
shipped from potential facility i.

min
x,y

∑

i

∑

j

cijxij +
∑

i

fiyi (CPLP)

s.t.
∑

i

xij = 1, all j meet 100% of customer demand (D)

xij ≤ yi, all i, j ship nothing if plant is closed (B)
∑

i

aiyi ≥
∑

j

dj , all j enough plants to meet total demand (T)

∑

j

djxij ≤ aiyi, all i ship no more than plant capacity (C)

xij ≥ 0, yi = 0 or 1, all i, j.

Constraint (T) is redundant, but may help getting tighter Lagrangean re-
laxation bounds.

The three best Lagrangean schemes are:

(LR) Geoffrion and McBride (1978), Ryu and Guignard (1992).

One dualizes (D) then uses the integer linearization property. The
subproblems to solve are one continuous knapsack problem per plant
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and one 0-1 knapsack problem over all plants. The Lagrangean re-
laxation bound is tight, and it is obtained at a small computational
cost.

(LD) Guignard and Kim (1987).

Duplicate (T). Make copies xij = x′ij and yi = y′i and use x′ij and y′i
in (C) and in one of the (T). One obtains the split

{(D), (B), (T )} → APLP (see Thizy (1994), Ryu (1992) for solutions
methods for APLP)

{(B), (T ), (C)} → this is like in (LR)

This LD bound is tighter than the (LR) bound, but expensive to
compute, in particular because of a large number of multipliers.

(LS) Chen and Guignard (1998).

Copy
∑

j djxij =
∑

j djx
′
ij and yi = y′i in (C). This yields the same

split as (LD), and the same bound, as proved in Chen and Guignard
(1998). This is very surprising, as it is less expensive to solve (LS)
than (LD), in particular because (LS) has far fewer multipliers.

In example 7.5, creating new copy variables x′ij and y′i, one can create

an LS by dualizing the aggregate (linking) copy constraints
∑

j

djxij =

∑

j

djx
′
ij and aiyi = aiy

′
i . Surprisingly (see Chen and Guignard (1998)

for details), one can prove that the LS bound for this problem is as strong
as the LD bound obtained by dualizing individual copies xij = x′ij and
yi = y′i. This suggests that “aggregating” variables before copying them
may be an attractive alternative to Lagrangean decomposition, at least for
some problem structures. A more general structure than CPLP is actually
described in Chen and Guignard (1998).

8 Characteristics of the Lagrangean Function

The Lagrangean function z(λ) = v(LRλ) is an implicit function of λ. Sup-
pose that the set Co{x ∈ X |Cx ≤ d} is a polytope, i.e., a bounded poly-
hedron, then there exists a finite family {x1, x2, . . . , xK} of extreme points
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Figure 5: The Lagrangean function for the maximization case

of Co{x ∈ X |Cx ≤ d}, i.e., of points of {x ∈ X |Cx ≤ d}, such that
Co{x ∈ X |Cx ≤ d} = Co{x1, x2, . . . , xK}. It then follows that

min
x

{fx+ λ(Ax− b) |Cx ≤ d, x ∈ X} = min
k=1,...,K

{fxk + λ(Axk − b)}

and z(λ) is the lower envelope of a family of linear functions of λ , fxk +
λ(Axk − b), k = 1, . . . ,K, and thus is a concave function of λ , with break-
points where it is not differentiable, i.e., where the optimal solution of
(LRλ) is not unique. Figure 5 shows a Lagrangean function for the case
where (P ) is a maximization problem, this (LR) is a minimization problem,
and z(λ) a convex function of (λ).

A concave function f(x) is continuous over the relative interior of its
domain, and it is differentiable almost everywhere, i.e., except over a set of
measure 0. At points where it is not differentiable, the function does not
have a gradient, but it always has subgradients.

Definition 8.1. A vector y ∈ (Rn)∗ is a subgradient of a concave function
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f(x) at a point x0 ∈ Rn if for all x ∈ Rn

f(x) − f(x0) ≤ y · (x− x0).

Definition 8.2. The set of all subgradients of a concave functionf(x) at a
point x0 is called the subdifferential of f at x0 and it is denoted ∂f(x0).

Theorem 8.1. The subdifferential ∂f(x0) of a concave function f(x) at a
point x0 is always nonempty, closed, convex and bounded.

If the subdifferential of f at x0 consists of a single element, that element
is the gradient of f at x0, denoted by ∇f(x0).

The dual problem (LR) is

max
λ≥0

v(LRλ) = max
λ≥0

z(λ) (LR)

= max
λ≥0

min
k=1,...,K

{fxk + λ(Axk − b)}

= max
λ≥0,η

{η | η ≤ fxk + λ(Axk − b), k = 1, . . . ,K}.

Let λ∗ be a minimizer of z(λ), and let η∗ = z(λ∗). Let λk be a current
“guess” at λ∗, let ηk = z(λk), and let Hk = {λ | fxk + λ(Axk − b) = ηk} be
a level hyperplane passing through λk.

• If z(λ) is differentiable at λk, i.e., if (LRλ) has a unique optimal
solution xk, it has a gradient ∇z(λk) at λk:

∇T z(λk) = (Axk − b)⊥Hk.

• If z(λ) is nondifferentiable at λk, i.e., if (LRk
λ) has multiple opti-

mal solutions, one can show that the vector sk = (Axk − b)T is a
subgradient of z(λ) at λk. That vector sk is orthogonal to Hk.

If one considers the contours C(α) = {λ ∈ Rm
+ | z(λ) ≥ α}, α a scalar, these

contours are convex polyhedral sets. See Figure 6.

A subgradient is not necessarily a direction of increase for the function,
even locally, as seen on Figure 6.
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Figure 6: Contours of the Lagrangean function

9 Primal and Dual Methods to Solve Relaxation Duals

A number of methods have been proposed to solve Lagrangean duals. They
are either ad-hoc, like for instance dual ascent methods, or general purpose,
usually aiming at solving a generic nonsmooth convex optimization prob-
lem. This section reviews the most important approaches.

9.1 Subgradient Method

This method was proposed in Held and Karp (1971), then validated in Held
et al. (1974). See also Poljak (1977). It is an iterative method in which
at iteration k, given the current multiplier vector λk, a step is taken along
a subgradient of z(λk), then, if necessary, the resulting point is projected
onto the nonnegative orthant.
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Let x(k) be an optimal solution of (LRk
λ). Then sk = (Ax(k) − b)T is a

subgradient of z(λ) at λk. If λ∗ is an (unknown) optimal solution of (LR),
with η∗ = z(λ∗), let λ′k+1 be the projection of λk on the hyperplane H∗

parallel to Hk, defined by

H∗ = {λ | fxk + λ(Ax(k) − b) = η∗}.
The vector sk is perpendicular to both Hk and H∗, therefore λ′k+1 − λk is
a nonnegative multiple of sk:

λ′k+1 − λk = µsk, µ ≥ 0.

Also, λ′k+1 belongs to H∗:
fx(k) + λ′k+1(Ax(k) − b) = η∗

therefore

fxk + λk(Axk − b) + µsk(Ax(k) − b) = ηk + µsk · sk = η∗

and

µ =
η∗ − ηk

‖sk‖2
,

so that

λ′k+1 = λk +
sk(η∗ − ηk)

‖sk‖2
.

Finally define λk+1 = [λ′k+1]+, i.e., define the next iterate λk+1 as the pro-
jection of λ′k+1 onto the nonnegative orthant, as λ must be nonnegative.
Given the geometric projections described above, it is clear that λk+1 is
closer to λ∗ than λk, thus the sequence ‖λk −λ∗‖2 is monotone nonincreas-
ing.

Remark 9.1. This formula unfortunately uses the unknown optimal value
η∗ of (LR). One can try to use an estimate for that value, but then one
may be using either too small or too large a multiple of sk. If one sees
that the objective function values do not improve for too many iterations,
one should suspect that η∗ has been overestimated (for a maximization
problem) and that one is “overshooting”, thus one should try to reduce the
difference η∗ − ηk. This can be achieved by introducing from the start a
positive factor ǫk ∈ (0, 2), in the subgradient formula:

λk+1 = λk +
sk · ǫk(η∗ − ηk)

‖sk‖2
,

and reducing the scalar ǫk when there is no improvement for too long.
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Practical convergence of the subgradient method is unpredictable. For
some problems, convergence is quick and fairly reliable, while other prob-
lems tend to produce erratic behavior of the multiplier sequence, or of the
Lagrangean value, or both. In a “good” case, one will usually observe a saw-
tooth pattern in the Lagrangean value for the first iterations, followed by
a roughly monotonic improvement and asymptotic convergence to a value
that is hopefully the optimal Lagrangean bound. In “bad” cases, the saw-
tooth pattern continues, or, worse, the Lagrangean value keeps deteriorat-
ing. Many authors have studied this problem and have proposed remedies.
Camerini et al. (1975) and Bazaraa and Sherali (1981) are two often-quoted
papers devoted to improving algorithmic behavior via improved computa-
tions of the subgradient step size.

9.2 Dual ascent methods

In this kind of approach, one takes advantage of the structure of the La-
grangean dual to create a sequence of multipliers that guarantee a monotone
increase in Lagrangean function value. This approach had been pioneered
by Bilde and Krarup (1967) and Bilde and Krarup (1977) for solving ap-
proximately the LP relaxation of the uncapacitated facility location prob-
lem (UFLP). Erlenkotter (1978) independently developed a dual ascent
method for solving a Lagrangean relaxation of the same uncapacitated lo-
cation problem. This Lagrangean bound, because of the Integrality Prop-
erty, was actually equal to the LP bound of Bilde and Krarup (1967). The
LP size for UCLP gets very large for even moderate size problems, and
both approaches were successful at producing optimal LP values in a large
proportion of all cases tried. In addition the primal solutions found by Er-
lenkotter (1978) were often optimal for the UFLP as a very large percentage
of the LP solutions are actually integer.

In general though one cannot expect that LP solutions will almost al-
ways be integer, and dual ascent methods normally concentrate on the
dual task of optimizing the Lagrangean dual problem. These approaches
are structure-dependent and thus problem specific. Some examples of suc-
cessful Lagrangean dual ascent design and implementation are Fisher and
Hochbaum (1980), Fisher et al. (1986), Fisher and Kedia (1990) and Guig-
nard and Rosenwein (1990). General principles for developing a successful
Lagrangean dual ascent method can be found in Guignard and Rosenwein
(1989).
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9.3 Constraint Generation Method (also called cutting plane
method, or CP)

In this method Cheney and Goldstein (1959) and Kelley (1960), one uses
the fact that z(λ) is the lower envelope of a family of linear functions:

max
λ≥0

v(LRλ) = max
λ≥0

z(λ) (LR)

= max
λ≥0

min
k=1,...,K

{fxk + λ(Axk − b)}

= max
λ≥0,η

{η | η ≤ fxk + λ(Axk − b), k = 1, . . . ,K}.

At each iteration k, one generates one or more cuts of the form

η ≤ fxk + λ(Ax(k) − b),

by solving the Lagrangean subproblem (LRk
λ) with solution x(k). These cuts

are added to those generated in previous iterations to form the current LP
master problem:

max
λ≥0,η

{η | η ≤ fx(h) + λ(Ax(h) − b), h = 1, . . . , k}, (MP k)

whose solution is the next iterate λk+1. The process terminates when
v(MP k) = z(λk+1). This value is the optimal value of (LR).

9.4 Column generation (CG)

(CG) has been used extensively, in particular for solving very large schedul-
ing problems (airline, buses, . . . ). It consists in reformulating a problem
as an LP (or an IP) whose activities (or columns) correspond to feasible
solutions of a subset of the problem constraints, subject to the remaining
constraints. The variables are weights attached to these solutions.

There are two aspects to column generation: first, the process is dual
to Lagrangean relaxation and to CP. Secondly, it can be viewed as an
application of Dantzig and Wolfe’s decomposition algorithm, Dantzig and
Wolfe (1960) and Dantzig and Wolfe (1961). Let the xk ∈ {x ∈ X |Cxk ≤
d}, k ∈ K, be chosen such that Co{xk} = Co{x ∈ X |Cx ≤ d}. A possible
choice for the xk’s is all the points of Co{x ∈ X |Cx ≤ d} but a cheaper
option is all extreme points of Co{x ∈ X |Cx ≤ d}.
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Problem (P ) : minx{fx |Ax ≤ b, Cx ≤ d, x ∈ X} yields the Lagrangean
dual (i.e., in the λ -space) problem

max
λ≥0

min
x

{fx+ λ(Ax− b) |Cx ≤ d, x ∈ X} (LR)

which is equivalent to the primal (i.e., in the x-space) problem

min
x

{
fx |Ax ≤ b, x ∈ Co{x ∈ X |Cx ≤ d}

}
, (PR)

which itself can be rewritten as

min
x

{
f(

∑

k∈K

µkx
k) |A(

∑

k∈K

µkx
k)x ≤ b,

∑

k∈K

µk = 1, µk ≥ 0
}

(PR)

=min
x

{∑

k∈K

µk · (fxk) |
∑

k∈K

µk · (Axk) ≤ b,
∑

k∈K

µk = 1, µk ≥ 0
}
,

given that one can write x ∈ Co{x ∈ X |Cx ≤ d} as x =
∑

k∈K

µkx
k, with

∑

k∈K

µk = 1 and µk ≥ 0.

The separation of a problem into a master- and a sub-problem is equiva-
lent to the separation of the constraints into kept and dualized constraints.
The columns generated are solutions of integer subproblems that have the
same constraints as the Lagrangean subproblems. Column generation was
used for instance in Savelsbergh (1997) for the strong Lagrangean relax-
ation of the GAP. The bounds obtained were usually very tight, i.e., much
closer to the true IP value than the LP bound.

The value of the LP relaxation of the master problem is equal to the
Lagrangean relaxation bound. The strength of a CG or LR scheme would
then seem to be based on the fact that the subproblems do not have the
integrality property. It may happen however that such a scheme can be suc-
cessful at solving problems with the integrality property because it permits
the indirect computation of v(LP ) when this value could not be computed
directly, e.g., because of an exponential number of constraints, Held and
Karp (1970), Held and Karp (1971).

One substantial advantage of (CP) or (CG) over subgradient algorithms
is the existence of a true termination criterion v(MP k) = z(λk+1).

Although for certain families of problems, such as some multi-item ca-
pacitated lot-sizing problems with or without setup times, Guignard et al.
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(2002), (CG) can converge very quickly (in no more than fifteen to twenty
iterations in that lot-sizing application), it often happens in practice that
the process of generating enough constraints (in CP) or enough columns
(in CG) to achieve convergence takes a very long time. First in the initial
steps only a few constraints/columns are known and the approximation of
the Lagrangean function may be quite poor. It may take a while until the
family of constraints/columns generated permits a relatively accurate lo-
calization of the optimal multiplier vector. Secondly towards the end of the
process it often happens that the problems are highly degenerate, and many
iterations may be performed without true improvement either in multiplier
or in Lagrangean value. Many attempts have been made to correct this
behavior. Going into greater details is beyond the scope of this paper, we
will just mention a few possible approaches, described in du Merle et al.
(1998), du Merle et al. (1999), and Wentges (1997).

9.5 Bundle methods

Lemaréchal (1974) and Zowe (1985) introduced an extension of subgradient
methods, called bundle methods, in which past information is collected to
provide a better approximation of the Lagrangean function. The standard
CP algorithm uses the bundle of the subgradients that were already gen-
erated, and constructs a piecewise linear approximation of the Lagrangean
function. This method is usually slow and unstable. Three different stabi-
lization approaches have been proposed. At any moment, one has a model
representing the Lagrangean function, and a so-called stability center, which
should be a reasonable approximation of the true optimal solution. One
generates a next iterate which is a compromise between improving the ob-
jective function and keeping close to the stability center. The next iter-
ate becomes the new stability center (a serious step) only if the objective
function improvement is “good enough”. Otherwise, one has a null step,
in which however one improves the function approximation. In addition,
this “next iterate” shouldn’t be too far away from the “stability center”.
The three stabilization approaches propose different ways of controlling the
amount of move that is allowed. Either the next iterate must remain within
a so-called trust region, or one adds a penalty term to the approximation of
the function that increases with the distance from the stability center, or
one remains within a region where the approximation of the function stays
above a certain level (for a maximization problem). This proximity measure
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is the one parameter that may be delicate to adjust in practical implemen-
tations. There is a trade-off between the safety net provided by this small
move concept, and the possibly small size of the bound improvement.

9.6 The volume algorithm (VA)

The volume algorithm, Barahona and Anbil (2000), an extension of the
subgradient algorithm, can be seen as a fast way to approximate Dantzig-
Wolfe decomposition, with a better stopping criterion, and it produces
primal as well as dual vectors by estimating the volume below the faces
that are active at an optimal dual solution. It has been used successfully
to solve large-scale LP’s arising in combinatorial optimization, such as set
partitioning or location problems. In a way similar to the serious/null steps
philosophy of bundle methods, Bahiense et al. (2002) defines green, yellow
or red steps for VA, and introduces a precise measure for the improvement
needed to declare a green (or serious) step. This addition yields a revised
formulation (RVA) that is somewhere between VA and a specific bundle
method. The authors applied both VA and their modified algorithms to
Rectilinear Steiner problems.

9.7 Augmented Lagrangean methods

Augmented Lagrangeans have been used mostly in nonlinear continuous
programming and in stochastic optimization. They can however also be
used in nonlinear integer programming (NLIP) - and as a consequence in
linear integer programming as well - to solve directly primal relaxation
problems, instead of solving problems in the dual space. Such an approach
for the linear case can be found in Desrosiers et al. (1988).

A primal relaxation for NLIP was introduced in Guignard (1994). It
is equivalent to the Lagrangean relaxation in the linear case (see Theorem
5.1), but usually not in the nonlinear one.

The Primal Relaxation Problem of the nonlinear integer programming
problem

min
x

{f(x) | g(x) = 0, x ∈ P ∩X} (IP )

relative to the equality constraints g(x) = 0, with P a rational polyhedron
and X a set containing the integrality restrictions on the variables, is the
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continuous nonlinear problem

inf
x

{
f(x) | g(x) = 0, x ∈ Co{P ∩X}

}
(PR)

If the function f(x) is convex and g(x) linear, (PR) is equivalent (see
Rockafellar (1970)) to the Lagrangean dual problem

max
λ

inf
x

{
f(x) + λg(x) |x ∈ Co{P ∩X}

}
. (LR∗)

On the other hand, (PR) is equivalent to the Proximal Augmented La-
grangean problem

inf
x

{
f(x)+(α/2ρ)|x−x∗|2+u∗ ·g(x)+ 1

2
ρ|g(x)|2 |x ∈ Co{P ∩X}

}
, (PAL)

for any ρ > 0, sufficiently large, and any positive α, where x∗ is an op-
timal solution of the original problem (PR), and u∗ the associated opti-
mal multiplier corresponding to the dualized constraints g(x) = 0. (PAL)
can be solved by an adaptation of the proximal method of multipliers,
which takes into account the implicit constraints x ∈ Co{P ∩ X}, Con-
tesse and Guignard (1995). The Proximal Augmented Lagrangean func-
tion, L(x,w, u, α, ρ) = f(x) + (α/2ρ)|x−w|2 +u · g(x) + 1

2ρ|g(x)|2 depends
on the approximation u of u∗, the approximation w of x∗, the proximal
parameter α and the penalty parameter ρ.

There are several advantages in using an augmented Lagrangean rather
than a penalty method. First, there exists a finite value ρ of the penalty
coefficient ρ such that for any ρ larger than or equal to ρ, problem (PAL)
is equivalent to problem (PR). Second, the multipliers are updated via a
closed-form, fixed-step gradient formula ui(k+ 1) = ui(k) + ρ(Aix(k)− bi),
that guarantees convergence to the optimal Kuhn-Tucker multiplier u∗i ,
without any parameter adjustment or estimation, as would be the case in
subgradient methods. Finally, in the linear case, convergence is achieved
in a finite number of iterations (see for instance Bertsekas (1982)).

The advantage of including the proximal term (α/2ρ)|x− x∗|2 , α > 0,
is that if f(x) and g(x) are convex, L(x,w, u, α, ρ) is strictly convex in x
and has a unique minimum over x for given w, u, α and ρ . (PAL) can be
solved by a linearization method such as the method of Frank and Wolfe, or,
preferably, simplicial decomposition, known for its improved convergence
properties.



Lagrangean Relaxation 185

The advantage of using Co{P ∩ X} instead of P ∩ X is that problem
(PAL) can be solved efficiently via a linearization method such as simplicial
decomposition because its constraint set is polyhedral, while the problem
minx

{
f(x) + (α/2ρ)|x− x∗|2 + u∗(Ax− b) + (1

2)ρ|Ax− b|2 |x ∈ P ∩X
}

in
general cannot.

Contesse et al. (2002) describes a successful implementation of the Aug-
mented Lagrangean approach for solving capacitated facility location prob-
lems with a nonlinear objective function.

9.8 Two-Phase hybrid methods

Guignard and Zhu (1994) presented a method that combines the subgradient
method in a first phase, and constraint generation in a second phase. The
multipliers are first adjusted according to the subgradient formula, and
at the same time, constraints corresponding to all known solutions of the
Lagrangean subproblems are added to the LP master problem. The value
of the LP master problem is taken as the current estimate of the optimum
of the Lagrangean dual. This estimate gets more and more accurate as
iterations go by, so there is no need for any adjustment of the stepsize: one
keeps ǫk = 1 ∀k. The Lagrangean relaxation bound and the value of the
master problem provide a bracket on the dual optimum, and this yields a
convergence test, like for the pure constraint generation method.

One must make sure that the process does not cycle. If constraints get
repeated, the master problem cannot improve. After the same cut has been
generated a given number of times (say, 5 times), one can switch to a pure
constraint generation phase.

A similar hybrid method has been advocated more recently by Guig-
nard and Fréville (2000), combining (CG) with the subgradient method.
It is well known that it is difficult to generate a good set of columns at
the beginning of the algorithm, the paper suggests using an initial phase
that generates the “outside walls” of the Lagrangean function dome, to use
a graphical explanation of the procedure. If one views the (concave) La-
grangean function as a dome in R, where Rmcorresponds to the Lagrangean
multipliers λ and R to the Lagrangean function, then in the initial phase,
one will try to generate faces that together define a bounded polyhedron
containing the Lagrangean dome. In Figure 7, the three faces defined by
the solid lines (they are “outside walls”, although not all of them) define a
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Figure 7

bounded polyhedron. The dotted lines define faces of the dome that may
be discovered later in the algorithm. The initial phase uses a subgradi-
ent algorithm with large step size, purposely “overshooting” to discover
outside walls. Once the column generation master problem is feasible (or
equivalently once the cutting plane LP is feasible), or possibly some itera-
tions later if one thinks there is some advantage in generating a few more
faces, one switches to either constraint or column generation. From our
experience with column generation for the GAP, the columns (i.e. faces)
generated in the first phase contain more useful information than those
generated by the standard “phase 1” method (i.e., if one starts with arti-
ficial columns with a high cost), as evidenced by the fact that fewer new
columns need to be generated for convergence.

10 Subproblem Decomposition

In many cases, the Lagrangean subproblem decomposes into smaller prob-
lems, and this means that the feasible region is actually the Cartesian
product of several smaller regions. One clear advantage is the reduction in
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computational complexity for the Lagrangean subproblems: it is generally
much easier to solve 50 problems with 100 binary variables each, say, than
a single problem with 5,000 (i.e., 50×100) binary variables.

It also means that in column generation, the columns (i.e., the vectors
that are feasible solutions of the kept constraints) decompose into smaller
subcolumns, and each subcolumn is a convex combination of extreme points
of a small region. By assigning different sets of weights to these convex
combinations, one allows “mix-and-match” solutions, in other words, one
may combine a subcolumn for the first subproblem that was generated at
iteration 10, say, with a subcolumn for the second subproblem generated
at iteration 7, etc. , to form a full size column. If one had not decomposed
the problem ahead of time, one may have had to wait a long time for such
a complete column to be generated.

By duality, this means that in a cutting plane environment, one can also
generate “sub-cut” for each subproblem, which amounts to first replacing
η by z + λb in

max
λ≥0,η

{η | η ≤ fx(h) + λ(Ax(h) − b), h = 1, . . . , k} (MP k)

= max
λ≥0,z

{z + λb | z ≤ (f + λA)x(h), h = 1, . . . , k},

and then z by a sum of scalars zl, with zl ≤ (f l + λAl)x
(h)
l , where l is the

index of the Lagrangean subproblem, f l, Al, and x
(h)
l are the lth portions of

the corresponding submatrices and vectors, and xh
l is a Lagrangean solution

of the lth subproblem found at iteration h, yielding the disaggregated master
problem

max
λ≥0,zl

{
∑

l

zl + λb | zl ≤ (f + λA)lxh
l , h = 1, . . . , k}. (MPDk)

Example 10.1. Consider again the GAP (for the minimization case, al-
though it would work in exactly the same way with maximization). We
have seen that its strong Lagrangean relaxation is

min
∑

i,j

cijxij +
∑

j

λj(1 −
∑

i

xij) (LRλ)

s.t.
∑

j

aijxij ≤ bi, ∀i ∈ I (KP )
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xij ∈ {0, 1}, ∀i ∈ I, j ∈ J

= min
{∑

i,j

(cij − λj)xij +
∑

j

λj |
∑

j

aijxij ≤ bi,∀i, xij ∈ {0, 1},∀i, j
}

=
∑

j

λj +
∑

i

{
min

∑

j

(cij − λj)xij |
∑

j

aijxij ≤ bi,∀i, xij ∈ {0, 1},∀i, j
}

and (LR) is the maximum with respect to λ of v(LRλ).

Let EP (KP ) = {xk | k ∈ K} be the set of all integer feasible solutions
of the constraints (KP ), and let EP (KPi) = {xk

i· | k ∈ Ki} be the set of all

integer feasible solution of the ith knapsack, with K =
∏

i

Ki.

Then a feasible solution of (LRλ) can be described by xij =
∑

k∈Ki

µi
kx

k
ij ,

∀i, j.
The Lagrangean dual is equivalent to the aggregate master problem

AMP:

max
λ,ζ

{ζ | ζ ≤
∑

i,j

cijx
k
ij +

∑

j

λj(1 −
∑

i

xk
ij), k ∈ K} (AMP )

= max
λ,z

{z +
∑

j

λj | z ≤
∑

i,j

(cij − λj)x
k
ij ,∀k ∈ K}

with the substitution ζ = z +
∑

j λj .

If we had first written the column generation formulation for the La-
grangean dual, we would naturally have de-coupled the solutions of the
independent knapsack subproblems, using the independent sets Ki instead
of K, the column generation master problem would have been disaggre-
gated:

max
λ,z

∑

i

zi +
∑

j

λj (DMP )

s.t. zi ≤
∑

j

(cij − λj)x
k
ij , ∀i,∀k ∈ Ki

and its dual

min
µ

{
∑

k∈Ki

∑

I,j

cijx
k
ijµ

(i)
k |

∑

k∈Ki

∑

i

xk
ijµ

(i)
k ,∀j,

∑

k∈Ki

µ
(i)
k = 1,∀i, µi

k ≥ 0},
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is clearly the Dantzig-Wolfe decomposition of the primal equivalent (PR)

min
x

{
∑

i,j

cijxij |
∑

i

xij = 1, xij ≥ 0} (PR)

of (LR).

11 Relax-and-Cut

One question that often arises in the context of Lagrangean relaxation is
how to strengthen the Lagrangean relaxation bound. One possible answer
is the addition of cuts that are currently violated by the Lagrangean solu-
tion. It is clear however that adding these to the Lagrangean problem will
change its structure and may make it much harder to solve. One possible
way out is to dualize these cuts. Remember that dualizing does not mean
discarding! The cuts will be added to the set of “complicating constraints”,
and intuitively they will be useful only if the intersection NI (for “new in-
tersection”) of the new relaxed polyhedron and of the convex hull of the
integer solutions of the kept constraints is “smaller” than the intersection
OI (for “old intersection”) of the old relaxed polyhedron and of the convex
hull of the integer solutions of the kept constraints. This in turn is only
possible if the new relaxed polyhedron is smaller than the old one, since
the kept constraints are the same in both cases. This has the following
implications. Consider a cut that is violated by the current Lagrangean
solution:

(1) if the cut is just a convex combination of the current constraints, du-
alized and/or kept, it cannot possibly reduce the intersection, since
every point of the “old” intersection OI will also satisfy it; so in partic-
ular surrogate constraints of the dualized constraints cannot help. See
Figure 8.

(2) if the cut is a valid inequality for the Lagrangean problem, then every
point in the convex hull of the integer points of the kept constraints
satisfies it, because every integer feasible solution of the Lagrangean
subproblem does;

(3) it is thus necessary for the cut to use “integer” information from both
the dualized and the kept constraints, and to remove part of the inter-
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   x( )

OI=

NI 

Figure 8: A surrogate constraint of the dualized constraints cannot improve the

LR bound if dualized (the convex hull of integer solutions does not change)

section. (Remember that the Lagrangean solution is an integer point
required to satisfy only the kept constraints).

A Relax-and-Cut scheme could proceed as follows:

1. initialize the Lagrangean multiplier λ.

2. solve the current Lagrangean problem, let x(λ) be the Lagrangean solu-
tion. If the Lagrangean dual is not solved yet, update λ . Else end.

3. identify a cut that is violated by x(λ), and dualize it. Go back to 2.

The term “Relax-and-Cut” was first used by Escudero et al. (1994). In that
paper, a partial description of the constraint set was used, and violated
constraints (not cuts) were identified, added to the model and immediately
dualized. The idea, if not the name, had actually been used earlier. For
instance in solving TSP problems, subtour elimination constraints were
generated on the fly and immediately dualized in Balas and Christofides
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(1981). Lucena used a similar idea in Lucena (1982). The usefulness of
constraints is obvious, contrary to that of cuts. A missing constraint can
obviously change the problem solution.

We will now give examples of cuts that if dualized cannot possibly
tighten Lagrangean relaxation bounds.

11.1 Non-improving dualized cuts: example for the GAP

We have already introduced the GAP and its model:

min
∑

i

∑

j

cijxij (GAP)

s.t.
∑

j

aijxij ≤ bi, ∀i ∈ I (KP )

∑

i

xij = 1, ∀j ∈ J (MC)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J

If one dualizes (MC), the Lagrangean relaxation problem decomposes into
one subproblem per j:

min
∑

I,j

cijxij +
∑

j

λj(1 −
∑

i

xij) (LRλ)

s.t.
∑

j

aijxij ≤ bi, ∀i ∈ I (KP )

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J

= min
{∑

i,j

(cij − λj)xij +
∑

j

λj |
∑

j

aijxij ≤ bi,∀i, xij ∈ {0, 1},∀i, j
}

=
∑

j

λj +
∑

i

{
min

∑

j

(cij − λj)xij |
∑

j

aijxij ≤ bi,∀i, xij ∈ {0, 1},∀i, j
}

Thus the ith Lagrangean subproblem is a knapsack problem for the ith

machine. After solving all knapsack problems, the solution x(λ) may violate
some multiple choice constraint, i.e., there may exist some j for which∑

i xij 6= 1, and as a consequence the condition
∑

i

∑
j xij = |J | may

be violated. Adding this “cut” (it indeed cuts out the current Lagrangean
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solution!), and immediately dualizing it, does not reduce the intersection,
as every point of the old intersection OI already satisfies all multiple choice
constraints (MC), i.e., the dualized constraints.

11.2 Can kept cuts strengthen the Lagrangean bound?

We now want to investigate what happens if one keeps the cuts instead of
dualizing them. It is clear that adding these to the Lagrangean problem
will change its structure, but it may still be solvable rather easily. The
cuts will be added to the set of “easy constraints”, and intuitively they will
be useful only if the intersection NI (for “new intersection”) of the relaxed
polyhedron and of the new convex hull of the integer solutions of the kept
constraints is “smaller” than the intersection OI (for “old intersection”) of
the relaxed polyhedron and of the old convex hull of the integer solutions
of the kept constraints. This in turn is only possible if the new convex hull
polyhedron is smaller than the old one, since the dualized constraints are
the same in both cases.

Example 11.1. Consider again the GAP, and its weak Lagrangean re-
laxation in which the knapsack constraints (KP ) are dualized. One could
add to the remaining multiple choice constraints a surrogate constraint of
the dualized constraints, for instance the sum of all knapsack constraints,
which is obviously weaker than the original knapsack constraints. The La-
grangean problem does not decompose anymore, but its new structure is
that of a multiple choice knapsack problem, which is usually easy to solve
with specialized software, and much easier than the aggregate knapsack
without multiple choice constraints. Figure 8 shows the change in the in-
teger convex hull and the potential improvement in Lagrangean bound.

The above strengthening of the Lagrangean bound is simple, yet poten-
tially powerful.

12 Lagrangean Heuristics and Branch-and-Price

Lagrangean relaxation provides bounds, but it also generates Lagrangean
solutions. If a Lagrangean solution satisfies complementary slackness (CS),
one knows that it is an optimal solution of the IP problem. If it is feasible
but CS does not hold, it is at least a feasible solution of the IP problem and
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        x ( )

Figure 9: A surrogate constraint of the dualized constraints can improve the LR

bound if kept (the new convex hull of integer solutions is reduced)

one still has to determine, by BB or otherwise, whether it is optimal. Oth-
erwise, Lagrangean relaxation generates infeasible integer solutions. Yet
quite often these solutions are nearly feasible, as one got penalized for large
constraints violations. There exists a very large body of literature dealing
with possible ways of modifying existing infeasible Lagrangean solutions to
make them feasible. Lagrangean heuristics are essentially problem depen-
dent, and we will only try to give a few hints on how to proceed. One may
for instance try to get feasible solutions in the following ways:

(1) by modifying the solution to correct its infeasibilities while keeping the
objective function deterioration small.

Example: in production scheduling, if one relaxes the demand con-
straints, one may try to change production (down or up) so as to meet
the demand, de Matta and Guignard (1994).

(2) by fixing (at 1 or 0) some of the meaningful decision variables according
to their value in the current Lagrangean solution, and solving optimally
the remaining problem. We call this the “lazy” heuristic, Chajakis et
al. (1996). One guiding principle may be to fix variables that satisfy
relaxed constraints.

Part of the success of Lagrangean relaxation comes from clever implemen-
tations of methods for solving the Lagrangean dual, with powerful heuris-
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tic imbedded at every iteration. In many cases, the remaining duality
gap, i.e., the relative percentage gap between the best Lagrangean bound
found and the best feasible solution found by heuristics is sufficiently small
to forego enumeration. In some instances however an optimal or almost
optimal solution is desired, and a Branch-and-Bound scheme adapted to
replace LP bounds by LR bounds can be used. If the Lagrangean dual is
solved by column generation, the scheme is called Branch-and-Price, as new
columns may need to be “priced-out” as one keeps branching (Desrosiers
et al. (1984), Barnhart et al. (1998)). In that case, branching rules need
to be carefully designed (Ryan and Foster (1981)). The hope is that such
schemes will converge faster than LP-based Branch-and-Bound, as bounds
will normally be tighter and nodes may be pruned faster. The amount of
work done at a node, though, may be substantially more than solving an
LP.

Conclusion

• Lagrangean relaxation is a powerful family of tools for solving
approximately integer programming problems. It provides

– stronger bounds than LP relaxation when the problem(s) don’t
have the Integrality Property.

– good starting points for heuristic search.

• The availability of powerful interfaces (GAMS, AMPL,. . . ) and of
flexible IP packages makes it possible for the user to try various
schemes and to implement and test them.

• As illustrated by the varied examples described in this paper, La-
grangean relaxation is very flexible. Often some reformulation is
necessary for a really good scheme to appear.

• It is not necessary to have special structures embedded in a problem
to try to use Lagrangean schemes. If it is possible to decompose
the problem structurally into meaningful components and to split
them through constraint dualization, possibly after having introduced
new variable expressions, it is probably worth trying.
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• Finally solutions to one or more of the Lagrangean subproblems might
lend themselves to Lagrangean heuristics, possibly followed by inter-
change heuristics, to obtain good feasible solutions.

• Lagrangean relaxation bounds coupled with Lagrangean heuristics
provide the analyst with brackets around the optimal integer value.
These are usually much tighter than the brackets coming from LP-
based bounds and heuristics.
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DISCUSSION

Antonio J. Conejo

Universidad de Castilla - La Mancha, España

I think the paper of Prof. Guignard provides a significant and easy-to read
tour over many relevant issues arising while tackling mixed-integer linear
programming problems using Lagrangian relaxation procedures. It includes
theoretical insight as well as the practical technicalities needed to put an
algorithm to work.
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Binary variables allow modeling many realistic problems of practical in-
terest and, although currently available tools allow dealing with reasonably
large problems (which was not the case ten years ago, Bixbi (2002)), in-
sightful theoretical developments and efficacious heuristic tricks are needed
to attack the larger and larger problems arising nowadays in practical ap-
plications.

I direct my comments to the techniques available to solve the Lagrangian
dual problem. In my opinion, solving the Lagrangian dual problem consti-
tutes the most critical step toward the solution of the original mixed-integer
problem. My perspective is related to the solution of practical problems in
the power sector that are mixed-integer, large-scale, and both linear and
nonlinear, Conejo and Prieto (2001). Both efficient solutions and robust
solution procedures are a must in that industry.

My practical experience shows that all available techniques to solve the
Lagrangian dual problem are highly problem-dependent and their respec-
tive behaviors switch from efficacious to erratic as soon as the problem
under consideration changes, even if this change is not particularly signifi-
cant. This observation applies, of course, to subgradient and cutting plane
techniques, but also, though in a lesser extend, to trust region methods,
bundle methods and volume algorithms.

While solving continuous large-scale problems by Lagrangian relaxation,
an efficient manner to solve the Lagrangian dual problem is to endogenously
(not exogenously) update the multipliers as shown in Conejo et al. (2002).
I would appreciate author’s comments on the extension and application of
such continuity-based procedures to mixed-integer problems or their relax-
ations.

The endogenous multiplier updating procedure stated in Conejo et al.
(2002) is summarized below for reader’s convenience. For the sake of sim-
plicity a two-block problem including only equality constraints is consid-
ered. The extension of the results to a multi-block problem including also
inequality constraints is straightforward. This simplified problem has the
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form
min
x1,x2

f(x1, x2)

s.t. h1(x1, x2) = 0

h2(x1, x2) = 0

c1(x1) = 0

c2(x2) = 0

(A.1)

Where h1 and h2 constitute a convenient partition of the complicating
constraints.

The basic Lagrangian procedure applied to the above problem considers
the problem

min
x1,x2

f(x1, x2) − λ1h1(x1, x2) − λ2h2(x1, x2)

s.t. c1(x1) = 0

c2(x2) = 0

(A.2)

defined in terms of multipliers estimates λ1 and λ2.

Assuming some separable approximations for both f , h1 and h2, and fix-
ing some variables in these functions to their last computed values, problem
(A.2) above can be decomposed into the two problems below (A.3)-(A.5)
and (A.6)-(A.8). Note that this decomposition does not follow the standard
Lagrangian relaxation partitioning.

min
x1,x2

f(x1, x2) − λ2h2(x1, x2) (A.3)

s.t. h1(x1, x2) = 0 (A.4)

c1(x1) = 0 (A.5)

and

min
x1,x2

f(x1, x2) − λ1h1(x1, x2) (A.6)

s.t. h2(x1, x2) = 0 (A.7)

c2(x2) = 0 (A.8)
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where x1 and x2 denote the values of the corresponding variables at the
last iterate.

To reduce the computational cost, instead of solving these subproblems
to optimality, a single Newton step can be performed for every subproblem
(computing one search direction and performing one line search). The
values of the variables resulting from this step are then used to update the
parameters x1 and x2.

This procedure is not very different from a standard Lagrangian relax-
ation approach, except for performing a single iteration for each subprob-
lem. However, it presents one significant advantage: it provides efficient
endogenous information to update the multiplier estimates λ1 and λ2. The
single-step multipliers corresponding to the subproblem constraints (A.4)
and (A.7), ∆λ1 and ∆λ2, have the property that, if the values of x1 and x1

are the optimal ones, the best values for λ1 and λ2 are given by λ1 + ∆λ1

and λ2 + ∆λ2. These updated values can be used for the next iteration.

The resulting procedure is very simple to implement, uses few easily
updated parameters and does work well in practice for certain class of
problems (Conejo et al. (2002)).
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Jacques Desrosiers

École des Hautes Études Commerciales, Montreal, Canada

This paper demonstrates how useful Lagrangian Relaxation can be in solv-
ing practical large scale linear integer problems. I want to thank Monique
for writing such an insightful paper. I found particularly interesting all the
geometrical interpretations and applications provided all along the paper.
Links between solutions methods are also well treated although there is
one missing, namely, the Analytic Center Cutting Plane Method, an inte-
rior point based method to solve the Lagrangian dual problem, Goffin el
al. (1992).

I really have three comments for the author. The first is on how one
can get optimal solutions to problem P ; the second is on the integrality
property; and the last one is related to possible changes in the subproblem
structure.

1. Lagrangian relaxation provides a lower bound on the value of the
objective function of problem P (in case of minimization), and for
many applications, researchers are able to slightly modify infeasi-
ble solutions obtained from the Lagrangian subproblems with only
a small degradation of the objective function value. But these are
only approximate solutions to problem P . How can one find an op-
timal solution, without having recourse to primal methods such as
Dantzig-Wolfe decomposition?

Elements of an answer are already given here and there within the
paper: complementary slackness conditions, branch-and-bound, ad-
ditional cutting planes, etc. However, no method clearly indicates
the way to obtain a provable optimal integer solution to problem P.
Assume a single subproblem that is solved as an integer program.
The method has to deal with the following aspects. Given opti-
mal or near optimal multipliers, the solution to the corresponding
Lagrangian problem might be optimal, feasible but suboptimal, or
infeasible. How to design a branch-and-bound search tree?

2. In general, if the Lagrangian subproblem does not possess the in-
tegrality property, the lower bound provided by the Lagrangian re-
laxation process may improve on the linear relaxation of P . This is
quite interesting as long as the subproblem is solvable in a reasonable
amount of time.



Lagrangean Relaxation 205

It is well known that the knapsack problem is NP -hard and that the
classical formulation does not have the integrality property. Solving
it as an integer program improve on the LP bound of P . However
this subproblem can also be solved by dynamic programming, that is,
reformulated as a pure shortest path problem on a network for which
the size is pseudo-polynomial in term of the knapsack capacity. In
that case, that formulation possesses the integrality property but the
lower bound does not decrease for that. I would like the author to
comment on that situation.

3. Dualizing a new constraint in the objective function does not change
the constraint structure of the subproblem, but may quite well mod-
ify the nature of the subproblem. At least it changes the objective
function and this may have a major impact on the solution procedure
of the Lagrangian subproblem.

This happens in vehicle routing with time window applications. The
usual subproblem is a time constrained shortest path problem solved
by specialized dynamic programming algorithms. Dualizing a new
constraint that involves time variables dramatically changes the dy-
namic programming approach as both network flow and time variables
now appear in the objective function Ioachim et al. (1998).
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Laureano F. Escudero

Universidad Miguel Hernández de Elche, España

The splendid monograph of Monique Guignard has treated very clearly
some of the intriguing issues of Lagrangean relaxation for (mixed) 0–1 mod-
els. Stochastic programming (SP) is, perhaps, one of the fields that most
benefit can take from Lagrangean Decomposition (LD) and Substitution
(LS) for problems with continuous variables as well as 0–1 variables. In
this note we outline the SP framework where LD, SD and Augmented LD
can be used. It is based on the splitting variable representation of the De-
terministic Equivalent Model of the full recourse stochastic programming
problem.

1 Splitting variable representation

Consider the following deterministic model

min cx+ ay

s.t. Ax+By = b

x ∈ {0, 1}n, y ≥ 0,

(C.1)

where c and a are the row vectors of the objective function coefficients, b is
the rhs m-vector, A and B are the m× n and m× nc constraint matrices,
respectively, x and y are the n− and nc−vectors of the 0−1 and continuous
variables to optimize over a time horizon, respectively, and m, n and nc are
the related number of constraints, 0−1 variables and continuous variables.
The model must be extended in order to deal properly with uncertainty in
the values of some parameters. Thus, an approach to model the uncertainty
in the problem data is needed. See Birge and Louveaux (1997).

Definition C.1. A stage of a given time horizon is a set of time periods
where the realization of the uncertain parameters take place.

Definition C.2. A scenario is one realization of the uncertain parameters
plus the deterministic parameters along the stages of the given time horizon.

Definition C.3. A scenario group for a given stage is the set of scenarios
with the same realization of the uncertain parameters up to the given stage.
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Figure C.1: Scenario tree

Many of today approaches for stochastic programming are scenario
analysis-based approaches to deal with the uncertainty. To illustrate this
concept, consider Figure C.1. Accordingly with the non-anticipativity prin-
ciple, see Rockafellar and Wets (1991), two scenarios with identical real-
izations up to a given stage should have the same value for the related
variables with the time index up to the stage. Let the following notation
related to the scenario tree:

T , set of time periods along the time horizon, here, set of stages. Let also
denote T1 ≡ T − {|T |}.

Ω, set of scenarios.

G, set of scenario groups.

Gt, set of scenario groups in time period t, for t ∈ T (Gt ⊆ G).

Ωg, set of scenarios in group g, for g ∈ G (Ωg ⊆ Ω).

wg, weight factor representing the likelihood that is associated with sce-
nario group g, for g ∈ G. Note: wg =

∑
ω∈Ωg wω, where wω gives

the likelihood that the modeler associates with scenario ω, for ω ∈ Ω,
and

∑
ω∈Ωw

ω = 1 and
∑

g∈Gt wg = 1∀t ∈ T .

Different types of models can be presented depending on the type of re-
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course to consider, namely, simple, partial and full recourse. Let us consider
the last one for the minimization of the expected value, among other mea-
sures for risk management, see Schultz (2003). In that case, the stochastic
version of the model (C.1) becomes

min
∑

ω∈Ω

wω(cωxω + aωyω)

s.t. Axω +Byω = bω ∀ω ∈ Ω

v ∈ N
xω ∈ {0, 1}n, yω ≥ 0, ∀ω ∈ Ω

(C.2)

where cω and aω are the row vectors of the objective function coefficients
and bω is the rhs for scenario ω, xω and yω are the related variables, v =
(x, y) and N is the so-called feasible space to satisfy the nonanticipativity
constraints for the x– and y–variables, such that

v ∈ N = {vω
t |vω

t = vω+1
t ∀ω ∈ Ωg : g ∈ Gt, t ∈ T1}, (C.3)

where vω
t is such that vω = (vω

t ∀t ∈ T1) and vω+1 ∈ Ωg. Note: Some
uncertainty can also occur in the coefficients of the matrices A and B.

Let us represent the constraints (C.3) via a scenario-based splitting vari-
able representation, such that the model is as follows,

min
∑

ω∈Ω

wω(cωxω + aωyω)

s.t. Axω +Byω = bω ∀ω ∈ Ω

vω
t − vω+1

t = 0 ∀ω ∈ Ωg : g ∈ Gt, t ∈ T1

xω ∈ {0, 1}n, yω ≥ 0. ∀ω ∈ Ω

(C.4)

2 Branch-and-Bound. On node bounding

For optimizing the model (C.4) we can execute a Branch-and-Bound (BB)
scheme, such that a Lagrangean approach can be used at each BB node by
dualizing the nonanticipativity constraints

vω
t − vω+1

t = 0 ∀ω ∈ Ωg : g ∈ Gt, t ∈ T1, (C.5)

see Carøe and Shultz (1999), Groewe-Kuska et al. (2002), Hemmecke and
Schultz (2001), Klein Haneveld and van der Vlerk (2001), Novak et al.
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(2002), Römisch and Schultz (2001), and Schultz (2003) and Takriti and
Birge (2000), among others; in any case, heuristic Lagrangeans should be
used. The Lagrangean Decomposition model is as follows,

min
∑

ω∈Ω

wω(cωxω + aωyω) +
∑

t∈T1,ω∈Ωg :g∈Gt

µω
t (vω

t − vω+1
t )

s.t. Axω +Byω = bω ∀ω ∈ Ω

0 ≤ xω ≤ 1, yω ≥ 0. ∀ω ∈ Ω
(C.6)

where µω
t ∀ω ∈ Ωg : g ∈ Gt, t ∈ T1 denotes the row vector of the Lagrange

multipliers associated with the nonanticipativity constraints (C.5). The
vector can be updated by any of the methods presented in the paper of
Guignard.

Notice that the number of Lagrange multipliers depends on the number
of variables in the v–vector and the number of scenario groups, |G| − |Ω|,
in the time horizon T1.

3 Branch-and-Fix Coordination. On candidate TNF bound-
ing

Alternatively to the approach based in model (C.6), we propose a so-called
Branch-and-Fix Coordination (BFC) approach, such that it considers in a
coordinate way the |Ω| independent models

min cωxω + aωyω

s.t. Axω +Byω = bω

xω ∈ {0, 1}n, yω ≥ 0,

(C.7)

that result from the relaxation of the constraints (C.5). BFC is specially
designed to coordinate the selection of the branching variable and branching
node for each scenario-related Branch-and-Fix (BF) tree, such that the
relaxed constraints (C.5) are satisfied when fixing the appropriate variables
to either one or zero.

A presentation of the main ideas behind the BFC approach can be found
in Alonso-Ayuso et al. (2003). For the presentation of the BFC approach,
let Rω denote the BF tree associated with scenario ω, Qω be the set of
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active nodes in Rω for ω ∈ Ω, It the set of x–variables in stage t and (xω
t )i

is the i–th variable in vector It.

Definition C.4. Two variables, say, (xω
t )i and (xω′

t )i are said to be common
variables if ω, ω′ ∈ Ωg : g ∈ Gt, for ω 6= ω′, i ∈ It, t ∈ T1. Note: Two
common variables have nonzero elements in the nonanticipativity constraint
related to a given scenario group.

Definition C.5. Any two active nodes, say, q ∈ Qω and q′ ∈ Qω′

are said
twin nodes with respect to a given scenario group if the paths from their
root nodes to each of them in their own BF trees Rω and Rω′

, respectively,
either they have not yet branched/fixed on their common variables or they
have the same 0–1 values for their branched/fixed common variables (xω

t )i

and (xω′

t )i, for ω, ω′ ∈ Ω, i ∈ It, t ∈ T1.

Definition C.6. A Twin Node Family (TNF), say, Jf is a set of nodes
such that any node is a twin node to all the other nodes in the family, for
f ∈ F , where F is the set of TNFs in the problem.

Definition C.7. A candidate TNF is a TNF whose members have not yet
branched/fixed on all their common variables related to a given scenario
group.

Definition C.8. An integer TNF is a TNF where all x–variables take
integer values and the nonanticipativity constraints (xω

t )i − (xω′

t )i = 0 are
satisfied, ∀ω, ω′ ∈ Ωg : g ∈ Gt, ω 6= ω′, i ∈ It, t ∈ T1. Note: An integer TNF
is not a candidate TNF.

The bounding of a given TNF, say, Jf , f ∈ F , can be obtained by
solving the |Jf | independent LP models associated with the nodes in the
family. However, a better bound can be obtained by using Lagrangean
Decomposition (LD). By slightly abusing the notation, let the LD model

ZD(µ) = min
∑

j∈Jf

wj(cjxj + ajyj) +
∑

j∈Jf

µj(xj − xj+1)

s.t. Axj +Byj = bj ∀j ∈ Jf

0 ≤ xj ≤ 1, yj ≥ 0. ∀j ∈ Jf

(C.8)
where µj denotes the row vector of the Lagrange multipliers associated with
the nonanticipativity constraints xj −xj+1 = 0 ∀j ∈ Jf . The model can be
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decomposed in the LP models indicated above. Notice that some variables
in vector xj have been already branched/fixed in the paths from the root
nodes in the BF trees to the node members of the TNF. See also that
the number of Lagrange multipliers is the number of non branched/fixed
variables in the vector xj times the number of nodes, |Jf |, in the family.
This number is smaller (and it can be much smaller) than the number of
multipliers in a BB node.

Alternatively, another bound can be obtained by using a Lagrangean
Substitution strategy. In our case, it consists of aggregating (Guignard
(2003)) the nonanticipativity constraints, such that the new Lagrangean
term is as follows (see Appendix),

λ
∑

j∈Jf

(wj − P/n)xj (C.9)

where λ is the new Lagrange multipliers vector, n ≡ |Jf | and P =
∑

j∈Jf
wj

Notice that the vector λ is only included by the Lagrangean multipliers
of the variables in the x–vector. And, finally, notice that the new bound is
not worse than the simple LP bound. So, the new bound, as an alternative
to model (C.8), can be expressed

ZD(λ∗)

where
λ∗ = argmax{ZD(λ)}

and
ZD(λ) =

∑

j∈Jf

min{hjxj + wjajyj}

s.t. Axj +Byj = bj ∀j ∈ Jf

0 ≤ xj ≤ 1, yj ≥ 0, ∀j ∈ Jf

(C.10)

where
hj = wj(cj + λ) − λP/n.

Again, the updating of the Lagrange multipliers can be performed by
any of the schemes studied by Guignard in her paper.
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4 Branch-and-Fix Coordination. On integer TNF bounding

The splitting variable LP model to solve for a given integer TNF can be
expressed as follows,

∑

ω∈Ω

wωcωx̂ω+ min
∑

ω∈Ω

wωaωyω

s.t. Byω = bω −Ax̂ω ∀ω ∈ Ω

yω
t − yω+1

t = 0 ∀ω ∈ Ωg : g ∈ Gt, t ∈ T1

yω ≥ 0, ∀ω ∈ Ω

(C.11)

where x̂ω gives the value of the variables vector xω in the TNF, for ω ∈ Ω.
Notice that x̂ω

t = x̂ω′

t ∈ {0, 1} ∀ω, ω′ ∈ Ωg : g ∈ Gt, t ∈ T1, since it is
an integer TNF. See also that the dualization of the nonanticipativity con-
straints yω

t −yω+1
t = 0 results in |Ω| independent LP programs. However, an

Augmented Lagrangean Decomposition (ALD) can be expressed as follows,

ZD(π, ρ) =
∑

ω∈Ω

wωcωx̂ω + min
∑

ω∈Ω

wωaωyω +
∑

t∈T1,ω∈Ωg :g∈Gt

πω
t (yω

t − yω+1
t )

+ ρ/2
∑

t∈T1,ω∈Ωg :g∈Gt

||yω
t − yω+1

t ||2

s.t. Byω = bω −Ax̂ω ∀ω ∈ Ω

yω ≥ 0, ∀ω ∈ Ω
(C.12)

where πω
t ∀ω ∈ Ωg : g ∈ Gt, t ∈ T1 denotes the row vector of the Lagrange

multipliers associated with the nonanticipativity constraints yω
t −yω+1

t = 0,
and ρ is a strictly positive parameter.

Our aim is to obtain the bound

ZD(π∗, ρ),

where
π∗ = argmax{ZD(π, ρ)}.

Notice that ZD(π∗, ρ) gives the objective function value of a feasible solution
to the original problem. Here we are facing two issues. One is the updating
of the vector π, it can be done by any of the methods studied by Guignard
in her paper.
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The other issue is the optimization of the ALD (C.12). Its quasi-

separable quadratic terms of the form yωT

t yω+1
t prevent any direct decom-

position of the model. Moreover, the quadratic penalty term in the La-
grangean function can help to speed up the convergence of the Lagrangean
scheme. So, once the Lagrangean multipliers have been updated at each it-
eration, a separable quadratic approximation is introduced in model (C.12).
In Mulvey and Ruszczynski (1992) and Ruszczynski (1989), the method so–
called DQA (Diagonal Quadratic Approximation) is presented for obtaining
the separable quadratic model and its successive optimization. See in Es-
cudero et al. (1999) an heuristic procedure for updating the parameter ρ
that has given good results.

Appendix: On obtaining the Lagrangean term (C.9)

Let us multiply the nonanticipativity constraints xj−1 − xj = 0 ∀j ∈ Jf by
a weight, say αj and summing up, it results that

α1(xn − x1) + α2(x1 − x2) + α3(x2 − x3) + ...+ αn(xn−1 − xn)

=
∑

j∈Jf

(αj+1 − αj)xj = 0, (C.13)

where n ≡ |Jf | and, by convention, j − 1 = n for j = 1 and j + 1 = 1 for
j = n.

Notice that
∑

j∈Jf
(αj+1 − αj) = 0, so αj+1 − αj can be substituted

by wj − P/n, since
∑

j∈Jf
(wj − P/n) = 0, where P =

∑
j∈Jf

wj . Then,

the Lagrangean aggregating term λ
∑

j∈Jf
(αj+1 − αj)xj can be replaced

by λ
∑

j∈Jf
(wj − P/n)xj .
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The article provides an extensive introduction to using Lagrangian ap-
proaches for the exact or approximate solution of difficult combinatorial
optimization problems. Tapping into the wealth of research developed in
the last four decades on the subject, a nontrivial portion of which she di-
rectly contributed to, the Author leads the reader from the very definition
and basic properties of Lagrangian duality – in the setting of combinatorial
optimization – to discovering the intricate relationships between choosing
the right model, choosing the right solution approach and efficiently getting
valuable primal and dual information that can help to actually solving the
problem.

The article is clearly aimed at unexperienced readers, and it delivers
a lot of interesting material that practitioners should definitely be famil-
iar with. In particular, an extensive and commendable effort is done in
detailing all the available reformulation techniques that can be used to ob-
tain different Lagrangian relaxations for the same problem, among which
the most appropriate for the intended task has to be selected. A large
effort is done as well to provide insights about when and why a given La-
grangian relaxation may be better than another, either for the quality of
the obtained bound or for the efficiency with which the corresponding La-
grangian Dual can be (approximately) solved by the available algorithms.
Finally, more concise but still illustrative sections are devoted to hinting
at the possible use of primal information generated by the solution process
of the Lagrangian Dual, either for constructing Lagrangian heuristics or
within a “Relax-and-Branch-and-Cut” algorithm. I believe that the article
provides a fairly exhaustive description of these aspects of Lagrangian tech-
niques, and, possibly more importantly, succeeds in conveying the “beauty”
as well as the practical importance of these ideas.

Because of the focus, the choice of not going into the details of recent
developments into the tightly related, but still separate, field of NonDif-
ferentiable Optimization methods applicable to the solution of Lagrangian
Duals is appropriate. A minor concern is that most references about these
algorithms are not very recent, possibly conveying the impression that noth-
ing new, apart from the Volume Algorithm, has been happening for a long
time in this field; this is untrue, both for bundle algorithms (e.g. Frangioni
(2002), Kiwiel (1999), Lemaréchal and Sagastizábal (1998) and Miffin et al.
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(1998)) and for subgradient algortithms (e.g. Larsson et al. (1999)). How-
ever, the single reference Lemaréchal (2001) offers a more than adequate
entry point for the readers willing to learn more about, among the other
things, the mathematics and the algorithmic aspects of these problems.

However, I feel that something more is worth saying about the algorith-
mic approaches.

A first observation is that one entire class of interesting algorithms ca-
pable of solving Lagrangian Duals of combinatorial optimization problems
is not mentioned at all. This is the class of cutting plane methods based
on “centers” (Atkinson and Vaidya (1995), du Merle et al. (1998), Goffin
and Vial (2002) and Nesterov (1995)), of which the Analytic Center Cut-
ting Plane Method is a prominent member. These algorithms are based
on the idea of looking at the optimization process as a game between the
algorithm and the oracle which computes the function to be maximized.
Having computed a set of solutions x(k) to the Lagrangian relaxation, the
algorithm knows the localization set (LS), a polyhedral set in Rn+1 (n being
the number of Lagrangian variables) in which all pairs (λ∗, z(λ∗)) for each
optimal solution λ∗ to the dual problem must lie; this is precisely what is
used as the model of the dual function z() in pure cutting planes and (most
of) bundle approaches. Computing z() in a new point may allow to shrink
the LS if a better objective function value than all previously obtained
ones is produced (this raises the “floor” of the LS) and/or because a part
of the LS is cut away by the newly obtained subgradient. The game is that
of shrinking the LS to a point (or to an arbitrarily small volume) as fast
as possible, countering any effort from the oracle to produce information
as useless as possible. One way for doing it is to choose as next iterate
λk+1 the (λ-part of the) center of the LS. Different notions of centers can
be used, among which the analytic center, the point which maximizes the
product of the slacks of the constraints define the LS. These algorithms are
not easy to implement in efficient forms, since the Master Problem is in fact
a nonlinear optimization problem (with a logarithmic objective function);
however, sophisticated theory and tools have been developed, partly bor-
rowing ideas originally devised in the context of Interior Point algorithms,
that allow to solve these problems, and to update the solution after having
obtained more information form the oracle, efficiently. Although the last
word – computationally – has still to be written, these algorithms have
been shown to be effective, especially in cases – of which there is no lack –
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where the Lagrangian Dual is very difficult to solve with a high accuracy.

A second – and possibly more important given the expected audience
of the paper – observation is that one point and its consequences might
have been stated more clearly. The point is that the primal relaxation
(PR) in Theorem 2 is not only equivalent to (LD) in the sense that the
two have the same optimal objective function value; (LD) is the linear dual
of (PR). Hence, in order to prove the optimality of an optimal solution
λ∗ to (LD), any algorithm must construct an optimal solution x∗ of (PR)
(as an “optimality certificate”). Indeed, all known algorithms for solving
(LD) either (asymptotically) compute an (approximate) optimal solution of
(PR), or can be modified to do so. More in detail, at the generic iteration
k all algorithms described in the paper (and those based on centers, too)
can produce, at low to no cost, convex multipliers θi

k, “attached” to each
solution x(i) obtained during the optimization process, such that, roughly
speaking, the “convexified” primal solution x̃(k) = Σiθ

i
kx

(i) converges to an
optimal solution x∗ of (PR). Thus, Lagrangian approaches provide a “much
richer” primal information than that they are usually credited with. This
information has multiple possible uses:

• x̃ is a continuous (almost) feasible solution, and therefore all the
rounding techniques developed in the Linear Programming context
can be used as well in the Lagrangian one;

• the multipliers θ can also be thought of as a “probability distribution”
on the x(i), and this information may be used to combine them in
order to yield a feasible solution of the original combinatorial problem;
when the Lagrangian relaxation decomposes (cf. 9), the multipliers
θ may be used to drive a “mix-and-match” of the partial solutions to
construct a feasible solution of the original combinatorial problem;

• x̃ is completely equivalent to a continuous primal solution produced
by a continuous relaxation (it is precisely that if the Lagrangian re-
laxation has the integrality property), so it can be used exactly in the
same way for guiding branching decisions or providing the input for
separation routines for valid inequalities;

• of course, exploiting x̃ or θ does not rule out exploiting the integer
solutions x(i) of the Lagrangian relaxation; in fact, the combined use
of all this information can be very effective, Borghetti et al. (2003).
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In other words, solving a Lagrangian Dual is entirely equivalent to solving a
(possibly different) continuous relaxation with “nonstandard” algorithms;
apart from that, all that is done with a continuous relaxation, and possibly
even more, can be done in the Lagrangian case. I believe that this notion,
although trivial for experts, has not yet reached the majority of potential
users of Lagrangian techniques; this is due to the unfortunate historical fact
that the original subgradient algorithms did not produce primal solutions,
and that for a very long time they have been considered the only possible
solution methods for large-scale Lagrangian Duals. This information is
present in various points in the paper, but stating it more clearly may have
ensured that this often overlooked characteristic of Lagrangian approaches
is not missed by the less attentive and more practically-oriented reader.
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The paper presents a very instigating picture of issues that are fun-
damental to the use of Lagrangean relaxation to solve integer and com-
binatorial optimization problems. The picture was built with the insight
of somebody who contributed substantially to many of the topics being
covered. An aspect which permeates the whole presentation is the idea of
attaining ever stronger Lagrangean relaxation bounds. Among the differ-
ent options suggested in the paper to attain such bounds, Relax-and-Cut
is the one I would like to concentrate on. A reason for that, apart from
my personal interest in Relax-and-Cut, is a firm belief that a lot would be
gained if more research effort is devoted to this only marginally investigated
Lagrangean relaxation topic.

Taken to the extreme, Relax-and-Cut could be understood as Lagrangean
relaxation under exponentially many inequalities to dualize. It could also
be seen as a Lagrangean relaxation analog to polyhedral cutting-planes al-
gorithms (see Padberg and Rinaldi (1991), for instance). As is the case
for polyhedral cutting-planes algorithms, the goal in Relax-and-Cut is to
identify those (typically not so many) inequalities which are tight at the
Linear Programming (LP) relaxation of the underlying model. Assume
that these inequalities have been somehow identified and dualized. Then
optimal Lagrangean multiplier values must clearly be generated, if best
possible Lagrangean bounds are to be attained.

Likewise polyhedral cutting-planes algorithms, separation problems must
be solved throughout a Relax-and-Cut algorithm. More specifically, for
every Lagrangean relaxation subproblem, a separation problem must be
solved to identify, among the exponentially many inequalities available, one
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(provided it exists) which violates the subproblem solution. Relax-and-Cut
separation problems are, most of the time, easier to solve than they would
otherwise be for polyhedral cutting-planes algorithms. This applies since
one would normally be separating over integral structures such as trees,
linear assignments, etc.

In order to highlight some issues that are specific to Relax-and-Cut,
a generic implementation of a Relax-and-Cut algorithm, as suggested in
Lucena (1992) and Lucena (1993), is presented next. The implementation
is based on an adaptation of the Subgradient Method (SM), Held et al.
(1974). As such, due to the notoriously unstable practical behaviour of
SM, extensions of the idea to the Volume (Barahona and Anbil (2000)) or
Bundle (Bonnans et al. (1997)) algorithms are quite appealing. Although
convergence proofs for the proposed scheme have not yet been obtained,
good practical convergence (to the LP relaxation bound of the model under
study) has been observed for various of the applications attempted. For
the few cases where Lagrangean bounds did not attain their best possible
values, it appears likely that a Volume or Bundle version of the algorithm
should possibly obtain them. The algorithm has been specialized and tested
for a number of applications (Belloni and Lucena (2003), Calheiros et al.
(2003), Hunting et al. (1998). Lucena (1992), Lucena (1993), and Martin-
hon et al. (2003). The results obtained are very encouraging and together
with those in Escudero et al. (1994), clearly qualify Relax-and-Cut as an
interesting research topic.

1 A brief description of a Relax and Cut algorithm

Assume that a formulation for a NP-hard combinatorial optimization prob-
lem is given. Assume as well that, for an adequate measure of problem input
size, the formulation involves exponentially many inequalities. Typically,
some of these inequalities may be redundant. However, they are not nec-
essarily so for the formulation’s LP relaxation. The formulation can be
generically described as

min{cx : Ax ≤ b, x ∈ X}, (E.1)

where, for simplicity, x denotes binary 0 − 1 variables (i.e. x ∈ Bn, for
positive integral values of n). Accordingly, for positive integral values of m,
we have c ∈ Rn, b ∈ Rm, A ∈ Rm×n and X ⊆ Bn. Polyhedral region X may
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include, in addition to sign restrictions on x, some additional inequalities.

Assume, as it is customary in Lagrangean relaxation, that

min{cx : x ∈ X} (E.2)

is an easy (polynomial time) problem to solve. On the other hand, in what
is unusual for the application of Lagrangean relaxation, assume thatm is an
exponential function of the measure of problem input size referred above.
Dualizing inequalities

{aix ≤ bi : i = 1, 2, . . . ,m} (E.3)

in a Lagrangean fashion (regardless of the difficulties associated with du-
alizing exponentially many inequalities), let λ ∈ Rm

+ be the corresponding
vector of Lagrangean multipliers. A valid lower bound on (E.1) is obtained
through the Lagrangean Relaxation Subproblem (LRS)

min{(c+ λA)x− λb : x ∈ X} (E.4)

and the best possible LRS bound is given by the Lagrangean Dual Problem

max
λ∈R

m
+

{
min{(c+ λA)x− λb : x ∈ X}

}
. (E.5)

At any given iteration of SM, for a feasible vector λ of Lagrangean
multipliers, let x be an optimal solution to LRS (E.4). Denote by zlb
the LRS solution value and let zub be a known upper bound on (E.1).
Additionally, let g ∈ Rm be a vector of subgradients associated with the
relaxed constraints at x. Corresponding entries for g are given by

gi = (bi − aix), i = 1, 2, . . . ,m. (E.6)

In the literature (see Fisher (1981), for instance) Lagrangean multipliers
are usually updated by firstly determining a step size θ,

θ =
α(zub − zlb)∑

i=1,...,m

g2
i

, (E.7)

where α is a real number assuming values in (0, 2]. One would then proceed
to computing

λi ≡ max{0;λi − θgi}, i = 1, . . . ,m, (E.8)
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and then move on to the following iteration of SM.

Under the conditions imposed here, the straightforward use of updating
formulas (E.7)–(E.8) is not as simple as it might appear. The reason being
the exceedingly large number of inequalities that one would typically have
to deal with.

1.1 Relax and Cut modifications to the Subgradient Method

Inequalities in (E.3), for a given SM iteration, may be classified into three
different groups. The first one contains inequalities that are violated by x.
Typically, there are few inequalities in that group. This is even more true
if membership of the group is further restricted to include only most vio-
lated, or else maximal violated, inequalities. The second group is for those
(typically very few) inequalities that have nonzero multipliers currently as-
sociated with them. Notice that an inequality may belong, simultaneously,
to the two groups just defined. Finally, the third group consists of the
remaining inequalities.

In what follows, we may refer to the three groups of inequalities above
respectively as group one, group two and group three. It is worth men-
tioning that, for any nontrivial size problem instance, almost all dualized
inequalities belong to group three (even if those inequalities forced out of
group one are not taken into account).

Consider the traditional use of Lagrangean relaxation, say when one is
faced with a not very large number of dualized inequalities. For this situ-
ation, Beasley (1993) reported good practical convergence of SM to (E.5),
while, at any given SM iteration, arbitrarily setting gi = 0 whenever gi > 0
and λi = 0, for i ∈ {1, . . . ,m}. In our context, we extend the idea by
setting to 0 all subgradients associated with group three inequalities. In
doing so, only inequalities in groups one and two will be used to compute
θ.

The reasoning behind the SM modifications suggested above come from
two observations. The first one is that, irrespective of the suggested changes,
from (E.8), multipliers for group three inequalities (apart from the few in-
equalities forced out of group one) would not change their current null
values at the end of the SM iteration. We then call inequalities in group
three inactive inequalities. Clearly, inactive inequalities (except for the ones
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forced out of group one) would not directly contribute to Lagrangean costs
(at a current SM iteration). On the other hand, they would play a decisive
role in determining the value of θ and this fact brings us to the second
observation. Typically, for the application being described, the number
of strictly positive subgradient entries associated with inactive inequalities
tends to be huge. If these subgradients are explicitly used in (E.7), the
value of θ would result extremely small, leaving multiplier values virtually
unchanged from iteration to iteration. As a result, SM convergence would
be numerically jeopardized.

One should notice that, under the classification proposed above, in-
equalities may change groups from one SM iteration to another. It should
also be noticed that the only multipliers that may directly contribute to
Lagrangean costs (c+ λA), at any given SM iteration, are the ones associ-
ated with inequalities in groups one and two. These inequalities are thus
called active inequalities.

An important step in the scheme outlined above is the identification of
group one inequalities, i.e. most violated or else maximal violated inequal-
ities at x. In order to do so, a separation problem must be solved at every
iteration of SM.

To conclude this discussion, I would like to stress that there are plenty of
opportunities for research on Relax-and-Cut algorithms. The more obvious
ones are to extend the scheme to the Volume and to Bundle algorithms. An-
other relevant question is associated with group three inequalities. Clearly,
as pointed out above, explicitly considering all of these inequalities, while
searching for improvement directions, is unpractical. However, the idea of
using only a few relevant group three inequalities, appears to make sense.
Ways of judiciously selecting such inequalities do not seem straightforward.
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Rejoinder by Monique Guignard

I would first like to express my warmest thanks to the reviewers for thor-
oughly reading the paper, and for adding breadth and depth to it. Their
different perspectives on the field highlight various aspects that may not
have been considered in the original paper or may have been mentioned
only “en passant”, and thus provide a valuable complement. Rather than
replying to each author individually, I will review the points raised by cat-
egory, as there is some overlap.
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(1) Integrality Property and Strength of a Lagrangean Bound.

(J. Desrosiers) Different models (resp., compact formulations in a col-
umn generation context) may represent the same MIP problem. Dual-
izing constraints with the same meaning (capacity, minimum require-
ment, etc.) may yield different Lagrangean bounds (resp., different
master problems) and/or different Lagrangean subproblems (resp., pric-
ing problems). Occasionally, even though the Lagrangean subproblem
models are different, their decision variables have the same interpreta-
tion, and the Lagrangean solutions generated (resp., the columns) are
the same. In that case it may happen that one Lagrangean subproblem
(resp., pricing problem) has the integrality property and the other one
not. This is indeed possible, as the quality of the Lagrangean bound ob-
tained depends on the original model (resp., the compact formulation)
and it continuous relaxation.

(L. Escudero) In the process of obtaining the Lagrangean term (C.9),
the nonanticipativity constraints (NAC) xj−1 − xj = 0 are aggregated
with multipliers αj . The disadvantage is that in general the aggregate
constraint is weaker than the conjunction of the (NAC), so replacing
the (NAC) by the aggregate version already weakens the model. The
advantage is that far fewer Lagrangean multipliers are needed in the
associated Lagrangean decomposition. Another type of aggregate non-
anticipativity constraint could be used: (

∑
j≥2 α

j)x1 =
∑

j≥2 α
jxj with

αj > 0 for j ≥ 2. In spite of its nonsymmetrical shape (it singles out one
scenario), it might produce tighter bounds than (C.9), as it is equivalent
to (NAC) for binary vectors x1,. . . , xn (Guignard (2003)), and thus
can replace the (NAC) in the original model without weakening it. It
is not clear at this point how much the Lagrangean bound depends on
which scenario is singled-out, and how much the aggregation of (NAC)
weakens the relaxation, but work is in progress to test this, Weintraub
(2003).

(2) Solving the Lagrangean Problem. Searching for optimal multipliers is
often the most difficult part computationally. A lot of research has
taken place in the last thirty years, and the search for a better method is
far from over. New results keep appearing in the literature, concerning
either improvements to existing methods or entirely new approaches.
Two of the most recent and interesting types of approaches are:

(a) cutting plane methods based on centers.
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(A. Frangioni) Reference was made in section 9.4 to a paper repre-
sentative of that class, namely the 1996 (published in 1998) paper
by du Merle, Goffin and Vial; however in the text sent to the
reviewers, the reference itself was inadvertently left out of the ref-
erence section. Frangioni gives an excellent description of these
methods of centers, reminiscent of the method of centers of P.
Huard for nonlinear programming. The analytic center cutting
plane method is probably the best known in this family.

(b) endogenous multiplier updating procedures.

(A. Conejo) This method is an intriguing one. Lagrangean mul-
tipliers are updated based on information provided by a non-
Lagrangean-like decomposition of the problem. It also seems to
be computationally attractive. I intend to test the approach on
some difficult capacitated lot sizing problems with setup times,
for which a disaggregated Lagrangean relaxation yields a strong
bound that is however very difficult to compute.

(3) Primal Information and Optimal Solutions of the Original MIP
Problem.

(A. Frangioni) I fully agree with Frangioni that the importance of the
optimal solution of (PR) is often overlooked (and it was certainly not
stressed in my paper!). This solution plays a role quite similar to the
solution of the continuous relaxation of the MIP problem, and could
be used in similar ways. In addition of course, if the LR bound is
tighter than the LP bound, this solution is in some sense “closer” to
the integer solution, and is more desirable than the LP solution. Both
it and Lagrangean solutions can be used in the search for the optimal
integer solution.

(J. Desrosiers) The approach chosen to solve the integer problem to
optimality using primal and dual information from the Lagrangean
may vary depending on the problem structure and/or the way the La-
grangean dual problem is solved. In Guignard and Rosenwein (1990),
for instance, the solutions had to be arborescences. In the specially
constructed multi-branch branch-and-bound tree, when the best La-
grangean solution at a node contained a cycle, children nodes were
generated on multiple branches according to the rule that one arc of
that cycle at least had to be removed. In Ryu (1993), a specialized
Branch-and-Bound code was described for solving capacitated facility
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location problems. Lagrangean relaxation was solved at each node by
the subgradient method. It was found that for the efficient computa-
tion of bounds at each node, it was essential to be able to restart the
optimization at a child node from the final multipliers at the parent
node rather than from scratch. Depending on the Lagrangean scheme
used, however, the final multipliers at the parent node may be close
to optimal at the child node, requiring only a few updating steps, or
very far away from optimal. In the end it was found that a slightly
weaker Lagrangean scheme might be preferable overall simply because
the node reoptimization could be done more efficiently. In particular for
(CPLP), dualizing the demand constraint might be best overall since
the 0-1 variables don’t appear in it, and branching on a 0-1 variable
does not seem to change the situation drastically. More generically the
huge amount of research on column generation (or branch-and-price)
can be applied to the solution of MIP problems for which Lagrangean
bounds are computed at each node.

(4) Relax-and-Cut. Effect on Subproblem Structures.

(J. Desrosiers) Dualizing a new constraint or cut in the objective func-
tion does not change the constraint structure of the Lagrangean sub-
problem (or of the pricing problem), which is usually thought as the
determining classification factor. In some instances however, the struc-
ture of the objective function is modified, for instance by the introduc-
tion of variables that did not appear in it before, and a different type
of solution process may be needed, which may substantially increase
the computational burden.

(A. Lucena) Whatever version of Relax-and-Cut one considers, the pro-
cess typically involves identifying at each outer iteration, out of a possi-
bly exponential number of inequalities, one or several inequalities that
are then dualized in a Lagrangean fashion. Issues with the number
of such cuts, how they are managed, active vs. inactive inequalities,
and their impact on the practical solution of the Lagrangean dual, are
indeed important and promising research areas.

(5) Applications.

(L. Escudero) One of the most important applications of Lagrangean
decomposition is indeed in stochastic optimization, to decouple sce-
narios. The (NAC) can be used in the Branch-and-Fix coordination to
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grow compatible trees, and at each node of these trees, in a disaggregate
or aggregate manner, to provide a tighter bound than the standard LP
relaxation. Even the Augmented Lagrangean Decomposition approach
appears promising, if some separable quadratic approximation is used.
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