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Objectives Module d’@’e

1. Learn about two major issues in Enterprise-wide Optimization (EWO):
Integration and Uncertainty

2. Learn how to model EWO problems
Mathematical Programming Framework

3. Learn about solution methods for:
Stochastic Programming
Bi-criterion Optimization
Lagrangean decomposition

For Background see following sites:

Mixed-integer programming: http://cepac.cheme.cmu.edu/pasilectures/grossmann.htm
Supply Chain Optimization: http://cepac.cheme.cmu.edu/pasilectures/pinto.htm
Enterprise-wide Optimization: http://egon.cheme.cmu.edu/ewocp/slides_seminars.html
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Enterprise-wide Optimization (EWO) Q@&

EWO involves optimizing the operations of R&D,
material supply, manufacturing, distribution of a
company to reduce costs and inventories, and to
maximize profits, asset utilization, responsiveness .

PetrOIeum indUStl’y __ Dennis Houston (2003)

- - e
e
Tt ‘ 5 -.-r:\ '
r-u. Ve, 00 . ! -
3 Sl |
St -

Wellhead  Trading  Transferof Refinery  Schedule Transferof  Terminal
Crude  Optimization Products  Products Loading

e The supply chain is large, complex, and highly dynamic

* Optimization can have very large financial payout
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Pharmaceutical supply chain

R&D Pharmaceutical industry  (Gardneretal , 2003)

Discovery
Targets Pre-
Hits clinical Phase 1 Phase 2a/b Phase 3 Ll HLSHEl
Leads Approval Management
. Development
Candidate
2-5yrs 0.5-2yrs 1-2yrs 1.5-3.5yrs 25-4yrs 0.5-2 yrs 10-20 yrs

e Pharmaceutical process (snan, 200
+ Primary production has five synthesis stages
* Two secondary manufacturing
+ Global market »~ :
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Key Issues:

l. Integration of planning, scheduling and control

Mutiple models /\g LP/MILP

MI(N)LP
RTO, MPC

Mu“ Ie : months, years
. p Economics
time scales
_ —days,weeks - Feasibility
ASchedullng Delivery

Secs, mins H
M Dynamic
Performance

e

Carnegie Mellon
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CAPD

ical I1. Integration of information, modeling and solution methods
| ENGIN

ERING CENTER
Scope
Strategic Optimization - . _
Moge“n P - Analytical Strategic Analysis
3 IT
A 4 .
Tactical Optimization |, '-0”9‘;3”;1 Tactical
Modeling System natysts
A 4 A 4
D Production Planning Optimization Logistics Optimization Short-Term Tactical
Forecasting and Order [« > . Vil Sae Analysis
Management System Modeling Systems g Sy
~ }\ ™ ~ }\ ™~
Production Scheduling Distributions Scheduling Optimization O,girzfl?/gir;al
Optimization Nlogleling Systems Modgling Systems
Transactional IT
Materials Requirement Distributions Requirements
Planning Systems Planning System
A A

Enterprise Resource

Planning System
A

A 4

A

External Data
Management Systems

Carnegie Mellon Source: Tayur, et al. [1999]



| Research Challenges g@\\?\e
J

-The modeling challenge:
Planning, scheduling, control models for the various components of the supply
chain, including nonlinear process models?

- The multi-scale optimization challenge:

Coordinated planning/scheduling models over geographically distributed sites, and
over the long-term (years), medium-term (months) and short-term (days, min)
decisions?

- The uncertainty challenge:
How to effectively anticipate effect of uncertainties ?

- Algorithmic and computational challenges:

How to effectively solve large-scale models including nonconvex problems in
terms of efficient algorithms, decomposition methods and modern computer
architectures?

Carnegie Mellon



ieal Examples of EWO problems 96(7\9
L FERING =

Multiperiod Supply Chain Design
Multiperiod mixed-integer linear programming model

Supply Chain Operation under Uncertainty
Two-stage programming LP model

Design of Responsive Process Supply Chains with Uncertain Demand
Bi-criterion mixed-integer nonlinear programming

Simultaneous Tactical Planning and Production Scheduling
Large-scale mixed integer linear programming

Optimal Planning of Multisite Distribution Network
Lagrangean decomposition for nonlinear programming model

Supply Chain Design with Stochastic Inventory Management
Lagrangean decomposition for mixed-integer nonlinear programming model

Carnegie Mellon



_ ; Multiperiod Supply Chain Design and Planning Q@\N?VQ
| ENEINEE T N~

Guillen, Grossmann (2008)

* Three-echelon supply chain
« Different technologies available at plants
e  Multi-period model

Markets

Suppliers

Technology 1

PUj¢ Wi
ijp

Technology |

Technology 1

<:>_.
{ >—

Technology |

Model = Plant location problem (Current et al.,1990) plus
Long range planning of chemical processes (Sahinidis et al., 1989)

Carnegie Mellon



Variables

PL
Caﬁ:

CEPL
Cv“’ ét
CL} w
R
FCr
FTDC,
I Ly
NE;
NPV
PU,,,

PL
¢ Jkpt

(2 ?Irpt
}Sr J‘lf pt
II ijpt

XPL

it
XW
} jkt

Carr Y./ 7

Notation

plants
warehouses
markets
products
time periods

capacity of manufacturing technology 7 at plant j in time period ¢

capacity expansion of manufacturing technology 2 at plant j in time period ¢
capacity of warehouse k in time period £

capacity expansion of warehouse £ in time period ¢

cash How in period t

fixed capital investment

fraction of the total depreciable capital that must be paid in period ¢

average inventory level at warehouse & in time period ¢

net earnings in period ¢

net present value

purchases of product p made by plant j in period ¢

flow of product p sent from plant j to warechouse k in period ¢

flow of product p sent from warehouse & to market [ in period ¢

sales of product p at market [ in time period ¢

input /output flow of product p associated with technology ¢ at plant j in ¢
binary variable (1 if the capacity of manutacturing technology ¢ at plant ;
is expanded in time period 7, 0 otherwise)

binary variable (1 if the capacity of warehouse k

is expanded in time period £, 0 otherwise)

binary variable (1 it a transportation link between plant j and warehouse k
is established in time period 7, 0 otherwise)

binary variable (1 if a transportation link between warehouse & and market [
is established in time period £, 0 otherwise)

CENTER

10



o Multiperiod MILP formulation (1) CAED
ENGINELT

ERING CENTER

1. Mass balances

PUi+ Y. Wyp=> Qg+ Y Wi Vj,p, 1
i€OUT (p) k icIN(p)

Wijpt = BipWiintt Vi, 4, p, 1 vp' € MP(i)

Plants

INVig—1 + Z.kaff’t — ; Qﬁpftf + INVip Yk, p,t } Warehouses
3

DgtK < ZQKPIE < Dg{tx vi,p,i } Markets
k

2. Capacity Expansion Plants

Wijpt <Chif  Vi,i,t  Vp€ MP(3)

v Plants
PL __ ~PL PL .
it — Ciji1 + CEBjy Vi, 5.t
2 )
CEEFXEF < cEEF < CBEEXEL '\ Vi,

3t
\\ /< ~
A

Binary variable (1 if technology i is expanded in plant j in period t)

Carnegie Mellon 1



o Multiperiod MILP formulation (I1) CHPD
ENGINI

Qh ERING CENTER

3. Capacity Expansion Warehouses

Y INV, <CRHE Wkt
p

g Warehouses
cyH =clVE L cEX? vkt

J

CEFHXWH < CEX? < CEWHXWH .. vkt
‘ " Binary variable (1 if warehouse k is expanded in period t)

4. Transportation Iinks B

QjitYik < Qjii < Qpé' Yt Ykt .
; Blnary variable (1 if there is a transport link between

WH-WH WH o N plant j and warehouse k in period t) T t

Qrii Yei <Qui < QWH Ym ,," VEk, 1t > I_I’f;l(nspor

g inks

B Binary variable (1 if there is a transport link between

warehouse k and market | in period t) /

Carnegie Mellon 19



Multiperiod MILP formulation (111)

CENTER

5. Objective function

NPV = Z L Summation of discounted cash
(L4 ir)t= flows

CF,=NE,— FTDC, t=1,.. . NI'—1
CF,=NE,— FI'DCy,+ SVFCI t=NT

Net Earnings

NE, = [ZZ Vipt Fs At — ZZ j};;up[ ipt
- ZZ Z Cugpt Wigpt — Z “MII‘“ ZZZ .?k’;vt ﬂ»pt

i j peMP(i)

B Z Z Z Cktpt Qkipt ] +oDEP, Yt

(1 -sSVyFer
DEP, = 7 -

Fixed cost

FCI = z Z Z (bECERE + BEEXE) + Z Z (ap TCENT + gy X

CarnegieV Z Z Z ;?L}/:‘if + Z Z Z B’ HYRLII?: "
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Case study

EtEHTEl
Problem :
* Redesign a petrochemical SC to fulfill future forecasted demand

o=y

[l Potental plant location
A Potential ware. location

Carnegie Mellon y



Technologies in each Plant Site CHEPD

CENTER

02i0.40

0.83 —
One step oxidation of | 1
|-
ethylene —» Acetaldehyde

Ethylene —

HCN
0.17i i 090

1
Cyan:;lft Igﬁt§|c;)§gat'°n Y » Acrylonitrile

0.76

Hy  H2SO,4

0.43 l l015

Ammoxidation of
propylene

1.20

.

Active carbon l 0.01

1

0.83 i
Hydration of - » Isopropanol

Propylene | g propylene

0.38 ; 1.35 !
) Reaction of benzene . N ———» Phenol
Oxidation of cumene

Benzene —; and propylene 1 —> Acetone

0.61
0.67 lo_os T 001T001Too1

By-product Cumene H,SO, NaOH Others

Carnegie Mellon 15



Potential Supply Chain

CENTER

Horizon: 3 yrs Plants Warehouses Markets
j=1,2 k=1,2 1=1,2,3,4
Tarragona Leuna

Tarragona (existing plant)

(existing warehouse)

Technology 1 Technology 4
Technology 2 | | Technology 5 Neratovice
Technology 3 | | Technology 6

Neratovice (potential plant locat

ion) Sines

Technology 1

Technology 4

Technology 2

Technology 5

Technology 3

Technology 6

Tarragona

Neratovice

(potential ware. location)

Multiperiod MILP Models:

 Number of 0-1 variables: 450

*  Number of continuous variables: 4801
* Number of equations: 4682

e« CPU" time: 0.33 seconds

*Solved with GAMS 21.4 / CPLEX 9.0 (Pentium 1.66GHz)

Carnegie Mellon 16



Carnegie Mellon

Optimal Solution

NPV = $132 million

Plants Warehouses Markets
j=1,2 k=1,2 1=1,2,3,4

Tarragona  Tarragona

Tarragona (existing plant) (existing warehouse)

100,000 100,000
100,000 100,000 Sines
100,000 100,000

Neratovice (new plant) Leuna
77,727 51,817
194,698 . Neratovice
83,895 86,646 Neratovice

(new warehouse)

CENTER
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Supply Chain Operation under Uncertainty

You, Grossmann, Wassick (2008)

sl .

o

- "'F:"?'T - i

Chemical Supply chain: an integrated network of business units for the

ieal - supply, production, distribution and consumption of the products.

Carnegie Mellon




Case Study

%\9
« Given I
¢ Minimum and initial inventory 2@

+ Inventory holding cost and throughput cost
+ Transport times of all the transport links & modes
+ Uncertain customer demands and transport cost
« Determine
+ Transport amount, inventory and production levels

* Objective: Minimize Cost & Risks W

¢

Carnegie Mellon Page 19




gﬁ;\g

Stochastic Programming

 Scenario Planning
+ A scenario Is a future possible outcome of the uncertainty
+ Find a solution perform well for all the scenarios
« Two-stage Decisions
» Here-and-now: Decisions (X) are taken before uncertainty w reveals

+ Wait-and-see: Decisions (y,) are taken after uncertainty wreveals as
“corrective action” - recourse

w=1

w=2

W= 3

’ —w=4
X wW=5
] Yo ~w=0Q

Uncertainty
reveal

Carnegie Mellon Page 20



QQ\T;R
Stochastic Programming for Case Study ceNTes

 First stage decisions

+ Here-and-now: decisions for the first month (production, inventory, shipping)
« Second stage decisions

» Wait-and-see: decisions for the remaining 11 months

Carnegie Mellon

cost of scenario sl
cost of scenario s2

@ @ cost of scenarios3 ~ Minimize E [cost]

(4) cost of scenario s4

['5) cost of scenario s5 Yiie

Lt=1 ] t=23..12 | 2@

Page 21



Objective Function

%)

é’?@@

/ /

E[Cost] = Costl + >, Ps - Cost2s
~

-

First stage cost Probability of each scenario

N

Second stage cost

d{l;\lg

UJ

Costl = Cost2s =
Z Z Z fjlh gt | < Inventory Costs — Z Z Z Mk jlk.jt.s
+ZZZZ% ki Fk k! ot +%ZZZ% K sEh K it
k K j . K g
Freight Costs ——
+ ZZZZ’}%,ZJ et | ) + ZZZZ%,ZJ,S koljtos
+Zzzzék,3Fkk’,jt +ZZZZ(51€]Fkk’jts
koK oJ « Throughput Costs —| * ¥ J
+>.>.> Z O, j k5.t + > 20D 0k Skt
- k1 t k1 t
/%)\ Demand Unsatisfied — | zl: 27: zt: M55 Fjit,s
\'R
Carnegie Mellon N Page 22



Stochastic ProgrammingModel __________ div\lg
Multiperiod Planning Model (Case Study) cenTen

 QObjective Function:
+ Min: Total Expected Cost .

o Constraints:

+ Mass balance for plants
Mass balance for DCs

4

Mass balance for customers

L

*

Minimum inventory level constraint
+ Capacity constraints for plants

Carnegie Mellon Page 23



Stochastic Programming Model

Result of Two-stage SP Model

0.27

0.24

0.21

0.18

0.15

Probability

0.12

0.09

0.06

0.03

ical

E[Cost] = $182.32MM

- —

182 185 188
Cost ($ MM)

Carnegie Mellon

200
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gﬁ;\g

Problem Sizes

z Deterministic Two-stage Stochastic Programming Model
Proble Model 10 scenarios 100 scenarios | 1,000 scenarios
# of Constraints 1,369 13,080 130,170 1,301,070
# of Variables 3,937 37,248 370,338 3,701,240
# of Non-zeros 8,910 85,451 850,271 8,498,429
_ Deterministic Two-stage Stochastic Programming Model
JDIE Model 10 scenarios 100 scenarios | 1,000 scenarios
# of Constraints 6,373 61,284 610,374 6,101,280
# of Variables 19,225 182,496 1,815,816 18,149,077
# of Non-zeros 41,899 402,267 4,004,697 40,028,872

Note: Problems with red statistical data are not able to be solved by DWS

Carnegie Mellon Page 25



gﬁ;\g

Two-stage SP Model
Min ¢z + pigly +p2q3ye - - - + psqlys
s.t. Az — b — Master problem
The + Wiy = A1
Tox + Way2 = ho
L+ : >Scenario sub-
+ problems
: + =
Tsx —+ Wsys = hs |
x207y1207y2207y820
1 \\I
|
Y2 |_Scenario
|]|] > { sub-problems
Master o
problem |
X Vs .z

Carnegie Mellon Page 26



gﬁ;\g

Standard L-shaped Method

- T

min 0
Solve master problem to get ¢ T

> s.t. Ax=b

a lower bound (LB)

0 > ex+d; cuts
x>0
Add cut - Solve the subproblem to get min  qiy

e =) psms Ts an upper bound (UB) s.t. Wy =hs—Tsz

S

>0

dl p— Zpsﬁghs y o

S

No /\ Yes
W {STOP

Carnegie Mellon Page 27




%\9

Expected Recourse Function

+ The expected recourse function Q(x) is convex and piecewise linear
+ Each optimality cut supports Q(x) from below

Carnegie Mellon Page 28



Multi-cut L-shaped Method

| Solve master problem to get
a lower bound (LB)

Add cut
< el,s p— ﬂ-:_ngS
d o = 7l hs

Solve the subproblem to get

> an upper bound (UB)

NO /
UB-LB<Tol?

gﬁ;\g
min cT:B
S.t.

Axr = b
0s > e sx +d; s cuts
x>0

min gy
S.t. Wy — hs — Ts.fU
y >0

\/

" STOP

Carnegie Mellon
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CAPD

CENTER

Example

220

- = = Standard L-Shaped Upper_bound
- - - Standard L-Shaped Lower_bound
— Multi-cut L-Shaped Upper_bound
— Multi-cut L-Shaped Lower_bound

210

200

[EEN
(o]
o

- -
-------------------------

-

-

>
>
&
B
o
@)

1 21 41 61 81 101 121 141 161 181
Iterations

Carnegie Mellon Page 30



Responsive Supply Chains

Optimal Design of Responsive Process Supply Chains  you, Grossmann (2008)

4 ::f

Objective: design supply chains under responsive and economic criteria
with consideration of inventory management and demand uncertainty

ical
ERING

Carnegie Mellon




Responsive Supply Chains

Problem Statement

Where?
What? e
When? .

< i Ill i !w:.,

Production Network h o . @@ Network Structure

Costs and prices

Production and Operational Plan

transportation time

Demand information .
Max: Responsiveness

Production Schedule

| Cht ical
ERING

Carnegie Mellon




Responsive Supply Chains ﬁ\ﬁ
CENTER

Plant I: Ethylene + Benzene — Styrene (1 products)

Production Network of Polystyrene Resins
Three types of plants:

Plant II: Styrene — Solid Polystyrene (SPS) (3 products)
Plant III: Styrene —— Expandable Polystyrene (EPS) (2 products)

Basic Production Network

SPS -1
17 —» SPS-2

Ethylene Styrene ¥ Muylti Product SPS - 3
I
B * .
HZENC T Single Product g [ EPS-1
—» EPS-2

Multi Product

amical
HI{[FERING

Carnegie Mellon  Source: Data Courtesy Nova Chemical Inc. http://www.novachem.com/




Responsive Supply Chains

Location Map cevTee

WA |
o e e e
/ / A
OR & i J}
5 A g MA
LT ID = NY
PR
3 " e S
N

. e
Laml NV _
PX oA \_\ - uT co | 1\' DE

\ Ky >~ YA %MD
A / A oK N 1
Pacific \L} AZ [ nm 0 AR _sC |
Ocean R \\
b A MS AL GA Atlantic Ocean
W TX LAL
‘ ‘ £ u”\_‘ .
NN ~ FL!
\\ . A\
\( N
™ Gulf of Mexico
¢ < a
o B Possible Plant Site | Distribution Center
HI D @ Supplier Location A Customer Location

Mnical
ERING
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CHPD
Potential Network Superstructure | cewTer

\
WA\
_________ NV
Plant Site Ml \ /
Ethylene T SPS / CA
»> Styren
U /
B%nzene 1 AZ
EP >

|

: N
Syrer¥ 111 GA \
| EP NC

|

Ethylene
»> Styrene PA

Benzene 11 OH
Plant Site LA EP°7

1A MA
MN
Suppliers Plant Sites Distribution Centers Customers

amical
HI{[FERING
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Responsive Supply Chains %
CENTER

¢ Lead Time: The time of a supply chain network to respond to customer
demands and preferences in the worst case

2%
Responsiveness E:A
A

Responsiveness - Lead Time

([
I P

Lead Time

Lead Time is a measure of responsiveness in SCs

; ical
HI{[FERING
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Responsive Supply Chains

Lead Time for A Linear Supply Chain

« A supply chain network = > Linear supply chains

+ Assume information transfer instantaneously

\O
@ e

Suppliers Plants
————————————————————————————— Info .
1
- - . '
00 g il
=) |aﬂ s Bl = :>m
Supplier /s Plant /; site &; Plant i, site &, Plant i; site k; Distribution Center m Customer /d

Hikine

Carnegie Mellon




CHPD.

Responsive Supply Chains
Lead Time for Deterministic Demand CENTER
Transportation Delay = Transportation Time
emical j, emical j; -‘ Chemical j,+;
Ch l} “ Ch 1/ ‘ > A
lh —) AA
Supplier s Plant i, site k(; Plant i, site &, Distribution Center m Customer /d
/
Productlon Delay = Residence Time (single product plants)
A
< Path 1 >|
Path 2: >|
Path 3 >|
< Path >|
. — » Time
"l
Lead Time

ical

THERING

Carnegie Mellon




Responsive Supply Chai CPD
Lead Time of SCN cenen

» Lead time of a supply chain network (deterministic demand)

¢ The longest lead time for all the paths in the network (worst case)
¢ Example: A simple SC with all process are dedicated

T == SN 1.8 0.7
11 Path1l 7.7 days
- LS ‘ _ _ PlantSite2 _ _~ | Customer 1
Cometon]
I‘\ Plant Site 1 2.6

I
_oamere P 77N 1.2 0.5
| I Path 2 8.0 days
| |

Plant Site 3 / Customer 2

~__ v MWL -

For Pathl: 2+15+05+1.2+18+0.7=7.7 days
For Path2: 2+15+0.2+26+1.2+0.5=28.0days /\

= Lead Time = max {7.7, 8.0} = 8.0 days j@
AN Finical

ERING

Carnegie Mellon




Responsive Supply Chains i ! a 'Iit
CENTER
Transporation -.

Lead Time under Demand Uncertainty

@ ) Transporatlon Transporatlon

Suppher Is Plant i, site & Plant i, site &, Dlstrlbutlon Center m Customer /d
J
s s
Production Lead Time (Lr) Delivery Lead Time (Lp)

Stockout Probability (P)
Service Level

Inventory (Safety Stock)

Expected Lead Time = Lp + P(Stockout)-Lp
anical
ERING

Carnegie Mellon




Expected Lead Time of SCN EEM

» Expected Lead time of a supply chain network (uncertain demand)

¢ The longest expected lead time for all the paths in the network (worst case)

¢ Example: A simple SC with all process are dedicated

—_—— e e — — —

/A

Path1 2.1 days

—_—_——_— T O~

i

Path 2 2.0 days

____________ Customer 2

For Pathl: (2+15+0.5+1.2+1.8)x20% + 0.7 = 2.1 days
For Path2: (2+15+0.2+2.6+1.2)x20% + 0.5 =2.0 days

Expected Lead Time = max {2.1, 2.0} = 2.1 days —
phe. Safety Stock
ERING

Carnegie Mellon




Stock-out Probability (P)

Responsive Supply Chains i ’!;‘h—
CENTER
4
« Chance constraint for stockout probability

¢+ |ntegrate lead time, inventory management, demand
uncertainty y Ty

. — . < d. dl < Qs < daM dM < Qs < al
Probjiqe = Pr(Q@Sjias < djas)|—) @Sy ] v @ e
YT T (U = by (@M — db) 7T @U = db)(av — d)y

Chance constraint

Generalized Disjunctive Programming

Target Demand | na.... — »&LetDemang,
|
|

MINLP

d
Yj,ld,t)

vit)’
aM

%t - dg[':ld,t)( G ld,t d;;,ld,t)
[‘%ﬁ?ﬂ@t%k}/fld,t) - QS?,ld,tP

(dgld,t - dﬁld,t)(d%d,t - d;;,ld,t)

Safety Stock

2
PTObj,ld,t Z

amical
ERING

Carnegie Mellon




Objective Functions

 Responsiveness
¢+ Measured by expected lead time

g n n—1
By I 1 P N N O O S S
- é TP > ProbjaYy M.+ > ProbjaVil i+ Y ProbjaYyy ;AN i+ ProbjiaYiS AR+ Y 1a\e 14

r=1 r=1

 Economics
¢+ Measured by net present value (NPV)

NPV = Z Z Z Salesjqt - Priceja > Sales income
J
- Z Z Z Z Purchjsi - RMCosty s, » Purchase cost

@ _ZZZ > D prodiijse: UCOStzlst_ZZZSChCOStkzt ____» Operating cost
Y i s jEJP;s t 7

&
@Q —ZZZZ%M TCOSthlSt_ZZZZSjmldt TCostjmuy; | —> 1ransport cost

m Ild t
- Z Z Yk J IPCOStk K Z Z Ym Jdd - IDCOStm Jdd — Z Z Yk k' ]LCOStm’ld —— InveStment COSt
m__ld
- Z Z Y Ssjma - ICOSt) mias — Z Z Z Wl i WICosty — » Inventory cost

j m ld t

amical
ERING
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Responsive Supply Chains

Bi-criterion Multiperiod MINLP Formulation

Choose Discrete (0-1), continuous variables NPV ¢
* Objective Function:
+ Max: Net Present Value o
Bi-criterion

* Min: Expected Lead time

o Constraints:
+ Network structure constraints Expected Lead Time

/;@ ¢ Cyclic scheduling constraints  |——
I
L

¢ QOperation planning constraints

9
é/g// ) + Probabilistic constraints

Pareto Curve

ihb ical
ERING

Carnegie Mellon




Responsive Supply Chains ﬁ\ﬁ
CENTER

Procedure for Pareto Optimal Curve

NPV | Maximize: NPV — & Lead Time

Pareto Curve / (¢ = 0.001)
Highest NP/ | ----eoeeom oo

Lowest NPV }---------

Minimize: Lead Tjime
\

/)

Shortest Lead Time Longest Lead Time Lead Time

amical
HI{[FERING
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C/PD

Case Study

E\AWA —

e P o {
S \ ""\\,.;,‘ =1 PH _' !
y S T P S P
oR ¢{ \___ F dMN S TS Y T UTA
ID | s | w7 {‘{-3 SNy ‘E_
] wy I~ o fym 22— X R
~H 1A "'\r. VL& 4 PA L5 cT
NV T L NE ] @ i — TN
\ . \ / OH [—ras iy
,' CA uT - - “ 4 IL .IN _._A_‘J-" v/ l% DE
\ m Ks | Mo L Loy o VA mp
4 A T
A2 i, AR T .SC
. A . . 1 Ms| AL iGA
. W TX ) LAL ._- ’L-.u.,\ — M

I AK \‘ -3 Gulf of Mexico
: % Sae B Possible Plant Site m Distribution Center
- : o

@ Supplier Location A Customer Location

* Problem Size:

+ {# of Discrete Variables: 215

+ {# of Continuous Variables: 8126
+ # of Constraints; 14617

amical
HI{[FERING

Responsive Supply Chains
CENTER

Suppliers

Plant Sites

Distribution Centers Customers

» Solution Time:
+ Solver: GAMS/BARON
+ Direct Solution: > 2 weeks
¢ Proposed Algorithm: ~ 4 hours

Carnegie Mellon




Responsive Supply Chains %
CENTER

Pareto Curves — with and without safety stock

750

700

650

600

NPV (M$)

450

400

350

300

ical

fffffffffffffffffffffffffffffffffffffffffffffffff BfestQhQ!QefMmﬁmw
........ e oo, WO IO
More: Responswe
——with safety stock : :
| —I-Withoutsafetystock 7777777777777 i”f”””iﬁ 7777777777 i"""""é 7777777777
| | L i | s
1.5 2 2.5 3 3.5 4 4.5 5 5.5

Expected Lead Time (day)

3 THERING

Carnegie Mellon




Responsive Supply Chains

Safety Stock Levels - Expected Lead Time

Safety Stock (104 T)

ical

200
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50

OEPS in DC2
OSPS in DC2
B EPS in DC1

ESPS in DC1

R More inventory,
“~_ more responsive

~ o~
-~
~—
—
e e - -

2.83 3.48 4.14 4.8
Expceted Lead Time (day)

THERING
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Optimal Network Structure A
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Pareto Curve 0
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CAHED
Optimal Network Structure — (A) cire

Shortest Expected Lead Time = 1.5day NPV = $489.39

MN

ical Suppliers Plant Sites Distribution Centers Customers
201C
HILFERING

Carnegie Mellon




CABD
Optimal Network Structure — (B) cire

Expected Lead Time = 2.96 days NPV = $644.46 MM

MN

ical Suppliers Plant Sites Distribution Centers Customers
201C
HILFERING

Carnegie Mellon




CAHED
Optimal Network Structure — (C) cire

Longest Expected Lead Time =5.0day NPV =$690 MM

@ Benzene |
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Suppliers Plant Sites Distribution Centers Customers

amical
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Simultaneous Tactical Planning and
Production Scheduling g S

Goal: Improve the asset utilization of geographically distributed assets and reduce
cost to serve by improving enterprise wide tactical production planning.
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Multi-scale optimization: temporal and spatial integration
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Erdirik, Grossmann (2006)

Production Planning for Parallel Batch Reactors

Materials:

»Raw materials, Intermediates, Finished products
»Unit ratios (lbs of needed material per Ib of material
produced)

Production Site:

v' Reactors:

Products it can produce

Batch sizes for each product

Batch process time for each product (hr)
Operating costs ($/hr) for each material

Sequence dependent change-over times
/costs

AN Y U N N

=> Lost capacity
(hrs per transition for each material pair)

Time the reactor is available during a given
month (hrs)

<\

Customers:
»Monthly forecasted demands for desired products
> Price paid for each product

@/—’ Reaction 1

A "
1\ INTERMEDIATE
U $TORAGH

@\ I, I\ / -
T
Reaction 2 ‘
4
@ at
\ / I‘ \‘ \\ -
/| Reactiop 3" +—>O)——> grorac
//' AN N
AR RN *
[I ’ \ D \\ \\
/ // I\I ! \\\ \\
1 v V! \ So \<
¥ w v A
A A
[==] [==] I JD“
A A
o0 o0
A
[==]
dueldate due date due date
| | | | |
I I I I I
\ A Y, \ J
Y Y
week 1 week 2 week t
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Problem Statement CHRD.

CENTER

PDETERMINE THE PRODUCTION PLANE

v Production quantities

v" Inventory levels

v Number of batches of each product

v Assignments of products to available processing equipment
v" Sequence of production in each processing equipment

OBJECTIVE:

To Maximize Profit.
Profit = Sales — Costs
Costs=0Operating Costs + Inventory Costs +Transition Costs

55



Approaches to Planning and Scheduling

Decomposition
Sequential Hierarchical Approach

Planning

|____months, years |
I

days, weeks
Challenges:
v'  Different models / different time

v

scales
Mismatches between the levels

Simultaneous Planning and Scheduling
Detailed scheduling over the entire horizon

Challenges:

v" Very Large Scale Problem
v" Solution times quickly intractable

Goal: Planning model that integrates major aspects of scheduling
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Results for Detailed MILP Scheduling Model: 4 reactors,6 products
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MILP Detailed Scheduling Model

Objective Function:

A~

Profit=>>'CP,-S,, - ZZZZCOP -XB,, . - ZZCINV -(INV,, + INVFIN, , + INVINT,,) - ZZZZZCTM (,km” lkm,z,,+Z,-,k,m,1,[)

Assignment constraints and Processing times:

YW, .. <1 ieIM(m),Y e (L(m)NL({)),Vm,Vt

im,lt =

D W= D W, Vie(Lm)N L)l = N(1),Vm,Vt

ieIM (m) ielM (m)
PT.,,. =BT, W, VielM(m),VIle(L(m)NL()), Vm, Vi
Xi,m,l,t = Ri,m BT;,m ’ I/Vi,m,l,t VZ € IM(m)’ VZ € (L(m) ﬁL(t)), vmv\Vlt

Detailed timing constraints and sequence dependent change :

Ziwnii ZWer AW, =1 Vie M(m), Vi' e IM(m),i* = i,V1 & (L(m) A L(1)),] # Nt, ¥m, vt
= eri,i‘ Livmis Ve (L(m) L)1 # Nt,Vm, Vt
Ziimis ZWii i W =1 Viite IM(m), i #i,V1 € (L(m) A L(t)), Ym, V1,1 # H,

Te,, =Ts,,, + > Pl 4.7 Zigmis +TRT,, —-TX,, +(ZZ¢,, i) Um L
i i k

TRT,, =TRTL,, +TRT2,,, — m.i:
TX,, =TRTL,,, wm. 1,1
TRTL,, <UPPER-Y,,,, m I,

TRT2,,, <UPPER-(1-Y,,,)  vmi:




MILP Detailed Scheduling Model

Mass and Inventory Balances:

X, .. =INVP" + INVINT'Y), icIFINT, VI e (L(m)n L(t)), Vm, vt
INVINTY,, = INVP", + Z A e Z Z AA, ) ey i€ IFINT, VI € (L(m)N L(2)), VI' € L(2), Ym,Ym' # m, V1t
['>1,1'eL(m) m'#m l'eL(m')
X, .. =INVP'" +INVP' + Z AA; e T Z z AA, ,, ) ey 1 €IFINT, V1 € (L(m)A L(1)), VI' € L(2), Ym,¥m'" # m,Vt
1'>1,0'eL(m) m'#=m ['eL(m")

<Ts,.., +Bigh -(1-YY,

1,l'\m,m't

) ) Ve (L(m)n L), VI € (L(m)A L)), Ym,Im" £ m,Vt

s, +>.PT,.,

T, 0, ST +ZPT .+ Bigh, - (1Y, ) VIe (L(m)n L), V1" € (L(m) L(t)), Vm,Ym" £ m,Vt

A m,m'

AA,

i,m,l,m'\["

. <UBOUND, -(YY, ., ,.,) i €IFINT, VI e (L(m)n L(2)), V1" € (L(m )" L(¢)), Ym,Ym" % m, ¥t
AA.

i,m,l,m'l'
m'#m ['e(L(m")NL(t))

. <UBOUND,-(W,, ) i<IFINT, VI e (L(m)nL(t),Vm,Vt

AA4; ) iy SUBOUND, (W, .| ,) i €IFINT,, VI e (L(m)" (1)), Ym, V1

I'e(L(m)AL(2)) §

AA <UPBOUND, , Z Wietmers) 1 €IFINT, VI € (L(m)A L(0), V1" € (L(m )N L(1)), Ym,Ym" % m,Vt

i,m,l,m'\ '\t —
i'e ENDINT (i',i)

INVY+Y > INVROT = > INVC,,,,

m le(L(m)NL(t)) m le(L(m)NL(t))

WYY N NVEL, =S, 4V e

m le(L(m)NL(t))

Xy =220 UNVC, 4 X Adyy g+ 2 3 Adyp, ) 1T e Wm0 L), v

m'=m ['e(L(m")NL(t))

INT
+INVYT e imNT v

"<l
I'e(L(m)NL())

WY Y X

im,lt = Si,t +INI/;fIN ie (IEi UIFI-),Vt
m le(L(m)NL(t))




Proposed MILP Planning Models CARD

CENTER

Replace the detailed timing constraints by:

Model A. (Relaxed Planning Model)
v Constraints that underestimate the sequence dependent changeover times
v" Weak upper bounds (Optimistic Profit)

Model B. (Detailed Planning Model)

v Sequencing constraints for accounting for transitions rigorously
(Traveling salesman constraints)

v' Tight upper bounds (Realistic estimate Profit)
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@h_n « Generic Form of Proposed MILP Planning Models ~ CHED

CENTER

v" Mass Balances on State Nodes

v Time Balance Constraints on Equipment
Product 1 Changeover Changeover
time Product 2 time
—»\\\\\\|« PANANNN] e |
N -

Available time for R

v" Objective Function

61



Key Variables for Model

:the assignment of products to units at each time period

:number of each batches of each product on each unit at each period

FP

imt

:amount of material processed by each task

Products: A,B,C,D, E, F — Reactor 1 or Reactor 2 or Reactor 3

RllAUAUA||B|I| D || B | | E [ B ]|

R2 | | FE |l B | | P E s lle|f[ e I |
R3 | Il F | [ B | I| FEl]l e | | L c |[ b | |
< T1 > < T2 > < T3 >
YPA,reactorl,timel - 1 IPB,reactorZ,timeZ :1
NBA,reactorl,timel - 3 NBB,reactorZ,timeZ - 2
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Proposed Model B (Detailed Planning) gﬁ{;}\e

Sequence dependent changeovers (traveling salesman constraints):

v Changeovers within each time period:

1. Generate a cyclic schedule where total transition time is minimized.

KEY VARIABLE:

ZP. :becomes 1 if product i is after product i’ on unit m at time period t, zero otherwise

ir'mt

P1, P2, P3, P4, P5

2. Break the cycle at the pair with the maximum transition time to obtain the sequence.
KEY VARIABLE:
zzp .. becomes 1 if the link between products i and i’ is to be broken, zero otherwise

=>P4—>P5—P1—-P2—-P3

ZZP by 3 m T 63



ical MILP Model CAHED
ENGIN

According to the location of the link to be broken:
A

CENTER

P2, P3, P4, P5, P1 —— ZZP oy pp 1= 1

P3,P4,P5 P1,P2 —» ZZP ,, p3 1= 1 _ o S
The sequence with the minimum total transition time is the
P4, P5,P1, P2, P3 —> ZZP p3 p4 1= 1 optimal sequence within time period t.

P5, P1, P2, P3, P4 —> ZZP _, s 1= 1

P1,P2,P3, P4, P5 —> ZZP o py 1= 1

lmt ZZ ii'mt Vi’m’t \
lmt Zzll}’nt Vi"m’t

YP /\[/\ﬁYm,] < ZzP,, Vimt

imt iimt

Generate the cycle and break the cycle to find the
optimum sequence where transition times are minimized.

imt — i,i,m,t

YP >ZP Vi, m,t >
ZPR, +YP., <1 Yii'#imt

i,i,m,t

ZP,, 2YP, —> YR . Vimt

i'#i

ZZZZ > =1 Vm,t

ZZP. P. Vi,i'm,t

i'mt — ii'mt

Having determining the sequence, we can determine the total transition time within each week.
64



Limitation: Large Problems

The proposed planning models may be expensive to solve for long term horizons.

ROLLING HORIZON APPROACH::

Problem 1

| Il\/lcl)dtlal IIBI IModeIA Model A Model A Model A

Week 1

Problem 2
Fixed INIIO?eIIBI IModeIA Model A IModeIA
-— [TTT11 | I |

Week 2

Problem 3

Fixed Fixed Il\/IIocIjeIIBI IModeIA IModeIA |
- .. EEEEEE | |

Week 3

v The detailed planning period (Model B) moves as
the model is solved in time.

v Future planning periods include only
underestimations for transition times.

*Ref. Dimitriadis et al, 1997 65



M.  EXAMPLE: 5 Products, 2 Reactors, 1 Week CABD

CENTER

Method Number of Number of Number of  Time Solution
binary continuous Equations (CPUs) %)
variables variables
A Relaxed Planning 20 49 67 0.046 1,680,960.0 > % 6.484 Difference
B Detailed Planning 140 207 335 0.296  1,571,960.0 '
Scheduling 594 2961 2537 150 1,571,960.0
Obj Function Items ($) Relaxed Planning Detailed Planning Scheduling - -
Sales 2,652,800 2,440,000 2,440,000 Detailed Planning and
Operating Costs 971,840 868,000 868,000 . .
Transition Costs 0 40 40 Scheduling are Identical!
Inventory Costs 0 0 0
Gantt Chart:
mi © € e ] K K. | K ‘|m ‘L K ] E L E | [ E T E m}
R2 A \ | A | | A | A | A V] H | | H \ H [ H | }
R3 G \ G 3\5 3|i G ‘|i |5‘ G L G 7! |72 G 86 D [ D | }
m_ I | 5] I — B B B |
3 45 55 &l B3 T &2 2 ‘
rs | 5 2 2 0 2 ‘

A B CDEF G HJK



EXAMPLE 2 - 15 Products, 6 Reactors, 48 Weeks CHPD

ENTER

v' Determine the plan for 15 products, 6 reactors plant so as to maximize profit. ‘

A e » 15 Products, A,B,C,D,E,F,G,H,J,K,L,M,N,O,P
T * B, G and N are produced in 2 stages.
> ’
| Ly —s - 6 Reactors, R1,R2,R3,R4,R5,R6

— 5 * End time of the week is defined as due dates
]ék—f%y; _ « Demands are lower bounds

) ©
R3 }‘.‘\‘ Rea 3 @
]E “\“'::\\\ : D
R4 i \ ®
1 '.‘ R O
== "‘ / @
. R Rea QD
L] EReamm— © Relaxed planning yields 21% overestimation of profit
- [(Reacion 5 ——» (P
number of  number of
binary continuous  number of time solution
method variables variables equations  (CPU s) ($)
relaxed planning (A) 2,592 5,905 9,361 362 224,731,683
rolling horizon (RH) 10,092 25,798 28,171 11,656 184,765,965
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Decomposable MILP Problems

Complicating Constraints Complicating Variables
A
ioaing | MAX €' x max a’ y+ Y ¢/x,
complicating — complicating i=l,.n
constraints St Ax=>b variables \ff |
st Ay+ D,x, :di i=1.n

Dx=d i=1.n

>0, x, >0,i=1,..
xeX ={x|x,,i=1,n,|x, 20} YRR "

Benders decomposition

Lagrangean decomposition Note: can reformulate by defining

Y:=DY:;1  Complicating constraints

and apply Lagrangean decomposition

68



Carnegie Mellon Qg%\[z
CENTER

Lagrangean Relaxation (Fisher, 1985)

» MILP optimization problems can often be modeled as problems with

complicating constraints.

» The complicating constraints are added to the objective function (i.e.
dualized) with a penalty term (Lagrangean multiplier) proportional to the

amount of violation of the dualized constraints.

» The Lagrangean problem is easier to solve (eg. can be decomposed) than the

original problem and provides an upper bound to a maximization problem.

69



Carnegie Mellon

agrangean Relaxation d%\la

Z =max cx
st.Ax<b
(1P)
Dx<e
n Assume integers only
X € Z + Easily extended cont. vars.

Assume that Ax < b is complicating constraint

Z,(u)=max cx+u(b— Ax)
Dx<e
xelZ;

where u>0 Lagrange multipliers

70



Carnegie Mellon ] CHED
L agrangean Relaxation \—

Z=max cx Z, (u)=max cx+u(b— Ax)
Complicating Constraint —» Ax<b — Dx<e
Dx<e xeZ’!
xeZ’ where  u>0

This is a relaxation of original problem because:

1) removing the constraint A4x < b relaxes the original feasible space,
i) Z,,()=Z always holds as in the original space since (b—A4x) =0

and Lagrange multiplier is always % = 0.

Lagrangean Relaxation Yields Upper Bound —> Z, (u) > Z

71



C ie Mell :
HresIeTeon Lagrangean Relaxation Q%\I%

Original problem: /Z =max cx
st.Ax<b
Dx<e
xel/’
@, (1)
Relaxed problem: Z,(u)=max cx+u(b— Ax)
Dx<e ®2..w)
xeZ; @, ()
dual Zp
Lagrangean dual: Z, =minZ,,(u) gap I 7

u>0

72



Carnegie Mellon

Relaxed problem:

Lagrangean dual:

Combine Relaxed and

Lagrangean Dual Problems:

Graphical Interpretation

Z,(u)=max cx+u(b— Ax)
Dx<e

n
xel,

Z,=minZ, ,(u) -
u>0

Z, = min{max cx +u(b— Ax)

u>0 x>0

Dx<e

n
xel/Z,

|

73

CENTER



Carnegie Mellon ] . CHPD
Graphical Interpretation %

4

' Z, =maxcx
Z, :mln{max cx+u(b—Ax)} D
= < :> Ax < b
Dx<e n
Nice Proof X € COnV(Dx < e, X € Z+)
X € Zn Frangioni (2005)
’ x>0

Optimization of Lagrange multipliers (dual) can be interpreted as optimizing
the primal objective function on the intersection of the convex hull of non-

complicating constraints set {x\Dx <eXxe€ Zf} and the LP relaxation of the

relaxed constraints set {x\Ax <bxe Zf} :
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CarnegieMellon Graphical Interpretation QQ\N?\DF

!

Z, =MmaXcx
Ax<b eX
xeConv(Dx<e,xeZ’)
x>0

r Zp
‘e
) ° ®
;
; °
;
;
;
;
;
: é
;
Y e °
¢
4 °
“
3
. :
. ;
;
g ° X dua
. °* I
“ o
. o
.
s
ST
S

Conv{X‘Dx <eXe Zf}

{x‘Dx < e} / B
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Carnegie Mellon g%\[fl
CENTER

Theorem

Lagrangean relaxation yields a bound at least as tight as LP relaxation

Z(P)<Z,<Z,,W)<Z,,

CX

76



Carnegie Mellon

CHPD
Lagrangean Decomposition (Guignard & Kim, 1987) %

» Lagrangean Decomposition is a special case of Lagrangean Relaxation.
» Define variables for each set of constrain, add constraints equating different variables

(new complicating constraints) to the objective function with some penalty terms.

7 —max cx Z'=max cx Z,,(v)=max cx+v(y—x)
st. Ax<b Ax<b Ax <b
Dx<e Dyse Dy<e

n
xe”Z, /@ = Zf
New complicating

constraints X € Zn n
+
n yez,
VEeL,

Dualize x =y

7



Carnegie Mellon Lagrangean Decomposition CABD

( Z, ,(v=—max cx+v(y—x)
Ax<b
Dy<e

CENTER

n
xezZ.

- )

Subproblem 1 Subproblem 2

Z v)=max (c—vy)x e Z. W =nax yy
Ax<b Dy<e
Zn Zn
=7 C yesi, -
Lagrangean

Z,, =min (ZLm(V) +Z1py (V)) dual

v=0

78



Carnegie Mellon Ch PD
Notes cemen

» Lagrangean decomposition is different from other possible relaxations
because every constraint in the original problem appears in one of the

subproblems.

Graphically: The optimization of Lagrangean multipliers can be interpreted as

optimizing the primal objective function on the intersection of the convex hulls of

constraint sets.

Subproblem 2
Subproblem 1

79



Carnegie Mellon QRF/’\I%
Graphical Interpretation? AT

Subproblem 2 N

Subproblem 1 / CX

/
{x‘Dx < e} {x‘Ax < b} Conv{X‘Ax <bxe Zf}

Note: Z g, Z,  refer to dual solutions 80



Carnegie Mellon Ch PD
Theorem

CENTER

» The bound predicted by “Lagrangean decomposition™ is at least as tight as
the one provided by “Lagrangean relaxation” (Guignard and Kim, 1987)

» For a maximization problem

Z(P)<Z,,<Z,,<Z,,

Solution of Dual Problem

Piecewise linear

1
V

Non-differentiable

u or v 81



CarnegieMellon How to iterate on multipliers u? d@\[ﬂ

Assuming Dx <'d is a bounded polyhedron (polytope) with extreme points

x*k=12..K  then

maX{cx+u(b Ax)|Dx<d,x € X}= max {cx" +u(b— Ax*)}

k=1,..K

!} Dual problem

min max{cx® +u(b— Ax*)} = mln{n‘n> cx +u(b— Ax").k =1,.K}

u>0 k=1,.K

Cutting plane approach

min 7 |
subgradient
st.nz ex* + u: 1,.K K, = no. extreme points
iteration n
u>0,neR

Note: xk generated from max{cx + uk(b-Ax) subproblems 82



Carnegie Mellon

Subgradient Optimization Approach CAED

CENTER

Subgradient  s* = (b — Ax")

Steepest descent search 3, = /% 1 15"

Update formula for multipliers (Fisher, 1985)

U =t 0, (292, )b - Ax) o A

where a, €[0,2]

Note: Can also use bundle methods for nondifferentiable optimization
Lemarechal, Nemirovski, Nesterov (1995)
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Carnegie Mellon Solution of Langrangean Decomposition QRF/’VQ

1. Iterative search in multilpliers of dual

Select Maxl, € a*
Set UB = +oo, LB=-
Solve (RP’) to find V°

4

Fork=1..K

v

Solve (P1) and (P2):
Obtain Z,

v

Upper Bound

Solve (P) with fixed binaries
or use heuristics: Obtain ZB

Lower Bound

k = k+1

Update uk

2. Perform branch and bound search
where LP relaxation is replaced by
Lagrangean relaxation/decomposition to
a) Obtain tighter bound
b) Decompose MILP

Typically in Stochastic Programming
Caroe and Schultz (1999)

Goel and Grossmann (2006)

Tarhan and Grossmann (2008)

Return ZLB &
Current Solution

Remarks
1. Methods can be extended to NLP, MINLP
2. Size of dual gap depends greatly on
how problems are decomposed
3. From experience gap often decreases with
problem size.

Notes: Heuristic due to dual gap
Obtaining Lower Bound might be tricky
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Multisite Distribution Network

Jackson, Grossmann,Wassick, Hoffman (2002)

S

=

Bl sITEF

\

—

1 [ [ [ |
- SITE G

B S'TEC

¢ Objective: Develop model and effective solution strategy for large-scale
multiperiod planning with Nonlinear Process Models

Carnegie Mellon



Multisite Distribution Model d‘{r/@

*Develop Multisite Model to determine:
1)What products to manufacture in each site
2)What sites will supply the products for each market
3)Production and inventory plan for each site
»ODbjective: Maximize Net Present Value

*Challenges/Optimization Bottlenecks: Large-Scale NLP

—Interconnections between time periods & sites/markets
» Apply Lagrangean Decompostion Method

Carnegie Mellon



Spatial Decomposition %3

max PROFIT = SCost " *SALES " — PCost {*" * PROD J*"
+ A%RM (PROD "M — SALES ™®)

ﬂw

SITE S CONSTRAINTS:: Market A CONSTRAINTS:
f(PROD*" )< 0 £(S4LESE* )< 0
max(~ PCost!™" PRODI™ |+ 22 PROD™™ || max(SCost!™" SALESE™| - 22*¥ SALES®)

Site SUBPROBLEM for all S (NLP) Market SUBPROBLEM for all M (LP)

Carnegie Mellon



Temporal Decomposition g@&

r—=—=-= - =71

eDecompose at each time
period

*Duplicate variables for
Inventories for each time
period

qr—————————

*Apply Langrangean
Decomposition Algorithm

Carnegie Mellon



Multisite Distribution Model - Spatial

3 Multi-Plant Sites, 3 Geographic Markets
*Solved with GAMS/Conopt2

%g

# Time Variables/ Optimal Solution Full Space Lagrangean % Within Full
Periods Constraints Profit (m||||0n_$) Solution Time Solution Time Optlmal
(months) (CPU sec) (CPU sec) Solution

2 3345/ 2848 164 52 10 10%

4 6689 / 5698 326 478 127 11%

6 10033 /8548 497 1605 279 9%

8 13377/11398 666 2350 550 9%

Carnegie Mellon




Multisite Distribution Model - Temporal

o 3 Multi-Plant Sites, 3 Geographic Markets

e Solved with GAMS/Conopt2

d\T/D\Q

# Time Variables/ Optimal Solution Full Space Lagrangean % Within Full
Periods Constraints Profit (million-$) Solution Time Solution Time Optimal Solution
(months) (CPU sec) (CPU sec)

3 5230/ 5005 116.05 395 97 2.2

6 9973 /8551 236.53 2013 138 2.3

12 19945 /17101 474.18 10254 2178 2.2

Carnegie Mellon

Temporal much smaller gap!

Reason: material balances not violated at each time period
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CENTER

Stochastic Inventory System

1 lRepIenishment
(D)
>
(D)
—
o
=
- Lead
(D) .
> Time
=
Reorder Point
- Order |\ | [
placed

Safety Stock

 Inventory System under Demand Uncertainty

¢ Total Inventory = Working Inventory (WI) + Safety Stock (SS)
¢ Estimate WI with Economic Order Quantity (EOQ) model

Carnegie Mellon



Economic Order Quantity Model d{?\a

Replenishment

\ i | i
Order quantity i i l Average
©) _ Inventory
S (Q/2)
(b
-
- 7
SF--Nr--N-1 -\ -\
- /\
~ Constant Demand
= Rate =D
Time

2Q 3Q
D D

¢ F' = Fixed ordering cost for each replenishment
+ /1 = Unit inventory holding cost

Carnegie Mellon



Economic Order Quantity Model

Total Cost = +h-% = Q*:,/ZFTD

Order cost  Holding cost

Economic Order Quantity
(EOQ)

Annual Cost
A

Minimum
Total Cost

Order Cost Curve

Optimal Order quantity O

Order Quantity (Q*)

Carnegie Mellon



(O,r) Inventory Policy

Order
Inventory Level
placed _
. lRepIenlshment
Order Quantlty:>
Q)

Reorder
Point —p4-----%-4------\--1-----\+-1-----\—"-"---
(r)

— Time
Lead Time

+ When inventory level falls to », order a quantity of O
+ Reorder Point () = Demand over Lead Time

Carnegie Mellon



Stochastic Inventory Model

CENTER

Stochastic Inventory = Working Inventory (EOQ) + Safety Stock

Inventory Level

Reorder
Point (r):>

<= Safety Stock

Place — K *I<— Receive ' 1 Time
order Lead Time order

Reorder Point = Expected Demand over Lead Time + Safety Stock

Carnegie Mellon



Safety Stock Level

d@g

D ~ N(u,0?) ——=> Safety Stock =|z,0| , P(2 < 2z4) = « (Service Level)

Leadtime=L =) D~ N(L-u,L-0%) =)

(Service Level a)

Safety Stock= z,0VL

Safety Stock

Carnegie Mellon



Risk-Pooling Effect*

 Single retailer: safety stock = z,0

* Decentralized system:

¢ Each retailer maintains its own inventory

+ Demand at each retailer is D; ~ N(p;,0?) Warchouse

safety stock = z, Zi\;l o;

Warehouse Retailer

* Centralized system:

+ All retailers share common inventory
+ Integrated demand 3", D; ~ N(3, i, 3, 07)

Retailer

N Warehouse
safety stock = z, \/ > 07 l=q

Retailer

Carnegie Mellon™ GD Eppen, “ Effect of centralization in a multi-location newsboy problem”, Management Science, 1979, 25(5), 498




Supply Chain Design with Stochastic Inventory Management Qﬁ?\e

CENTER

« Given: A potential supply chain You, Grossmann (2008)
¢ Including fixed suppliers, retailers and potential DC locations
¢ Each retailer has uncertain demand, using (O, r) policy

+ Assume all DCs have identical lead time L (lumped to one supplier)

Suppliers Distribution Retailers
Centers

Carnegie Mellon



Problem Statement QG%\Q

* Objective: (Minimize Cost)
+ Total cost = DC installation cost + transportation cost + fixed order cost
+ working inventory cost + safety stock cost
« Major Decisions (Network + Inventory)

+ Network: number of DCs and their locations, assignments between
retailers and DCs (single sourcing), shipping amounts

+ Inventory: number of replenishment, reorder point, order quantity,
neglect inventories in retailers 7

.
.
.
// Va -
] H 6// . ‘//’/‘:\7(/\/ \}//
_________ g
[1 supplier =l NNASSARN
\\
.
~

: O retail XN
@ retailer . 2N
Sa &€= — \\ N \\\\
eDC | AP N
~ \
AN
gt

Supplier Distribution Centers Retailers
Carnegie Mellon



EOQ cost %[g

D = expected annual demand = Z XHiYij i o
v(z) = cost for shipping a order of size z from supplier S
h = unit inventory holding cost
F = fixed cost for place an order
n = number of orders per year
X = days per year
L = order lead time
B = weighted factor associated with the transportation cost
8 = weighted factor associated with the inventory cost
v(x)=g + ax
Annual EOQ cost at a DC: .
D D
F-¢n+ﬁ-n-fv(g)+6?-h+- o

ordering cost  transportation cost Working inventory cost

Carnegie Mellon



Working Inventory Cost

Annual working inventory cost at a DC:

F-n+p8-n-(g+ %)+ 0LL

n

ordering cost transportation cost

Inventory cost
—

N—
'

Convex Function of n

The optimal number of orders Is:

n* = /((0hD)/2(F + fBg))

The optimal annual EOQ cost:

(P)n+052 =

V/20hD(F + Bg) + BaD




Safety Stock Cost for DCs QQ{I?R

«  Demand at retailer i ~ N(z, o2)

e Centralized system (risk-pooling)

Expected annual cost of safety stock at a DC Is:

safety stock cost =|h -z, [L > 0%
i€l

where zq is the standard normal deviate for which P(z < z,) = «

Carnegie Mellon



Other Parameters and Variables dﬁ%

O supplier

- @ O retailer
® DC

I set of retailers (DC) indexed by i
f; fixed (annual)cost of locating a DC at retailer j,j € I

di; cost per unit to ship from DC j to retailer ¢

Y. { 1 if retailer j is selected as a DC
771 0 if not

{ 1 if retailer ¢ is served by DC based on retailer j
0 if not

Carnegie Mellon



INLP Model Formulation QQ\NZ%

4, . O supplier
é‘?é’?ﬁg min Z f3 X DC installation cost - o ® 0 i
jeJ
+ B Z Z dijX#:Yi; DC — retailer transportation
jE€J i€l
+ Z 20h(F; + Byg;) Z xuiYiy; + 0 Z Z(anﬂ'iYij) EOQ
jeJ i€l icl jed
+ Z(Ghza Z 02L;Y;;) Safety Stock
jeJ icl

st. Y V=1, Viel

SjuswiubISSy
]ﬁ
5
.
/ ) NG ,’Z\\‘ 2 '/ll\
/! # k
v Y

jeJ s g%

}/.,;j < Xj , Vi e I,] cJ ) Eo A__@
X;,Y;€{0,1} , Viel,jeJ ‘~~“}‘3x@
Supplier Distribution Centers Retailers

Nonconvex INLP

Carnegie Mellon



Illustrative Example d@%

Small Scale Example

* A supply chain includes 3 potential DCs and 6 retailers (pervious slide)
+Different weights for transportation (£) and inventory (&)

Supplier Distribution Centers tailers Supplier Distribution Centers Retailers Supplier Distribution Centers

B=0.01, =0.01 B=0.1, 6=0.01 B£=0.01, 6=0.1

* Model Size for Large Scale Problem

+ INLP model for 150 potential DCs and 150 retailers has 22,650 binary
variables and 22,650 constraints — need effective algorithm to solve it ...

Carnegie Mellon



Model Properties d\}/:%

* Variables Y, can be relaxed as continuous variables (MINLP)

* Local or global optimal solution always have all Y, at integer
+ |f 4=0, it reduces to an “uncapacitated facility location” problem

+ NLP relaxation is very effective (usually return integer solutions)

JjeJ iel jeJd JjeJ Jed

min D HXi+ D >0 d::ijsj + 2 K X Y+ ) q\/E 61’21,'5.1'
V i€l il
Z1

72,

.t. Y,i=1 , Viel _ :
> > Y ! Avoid unbounded gradient

jeJ
Y, <X, , VieljelJ
Yij >0 , Viel,jeJ

X;,€{0,1} , VjeJ Non-convex MINLP

Wit where di; = fui(dy +a5), 617 = Lot K; = \/26h(F; + Bg;), ¢ = 6hz,
ENGINI

Carnegie Mellon



Lagrangean Relaxation g@\NI?\DF

e Lagrangean Relaxation (LR) and Decomposition

+ LR: dualizing the single sourcing congweirte =1V €1

¢ Spatial Decomposition: decompose the probler’g:forxeagcp
potential DC j eI

¢ Implicit constraint: at least one DC should be installed,
min 3= { £, V52 ipecial e Ok sybpepblefhec s xd

JEF iel icl @
-7
B . ,,” ///I
Sntn l(ij S Xj ] VJ e J, 2 e I | ‘::’___7/:’!—;’@
. . -7 ‘e\\‘\// /:,:/
Y;; 20 , |Vjedl|iel e NNRE
. R /,’ />>\«\/\( 4——}'@
Xj: € {0: 1} , |Vi€eJd < ' LN
€-=—=—====== »> L5 [ J= \/\ >3
E on -~ \\:7/#\.\4" N
2 . — So SO A4 T=<2
—Z12+) wY;; <0 , |VieJ IS 4&{;}3@
icl POCIA NN
2 s ‘5:“-*\—3‘@
 —225+) 6°Y; <0 , |VieJ
‘et N
ical Z]-j 2 O: Z2j 2 0 ’ VJ €J Supplier Distribution Centers Retailers

decompose by DC j
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Computational Results

e 88 ~150 retailers

¢ Each instance has the same number of potential DCs as
the retailers

cﬁ;\g

Lagrangean Relaxation (Algorithm 2)

BARON (global optimum)

No.

Realers | 7| || Uber | LOWEr | oy | e | Time )| | UPPer | Lower | g
88 0.001 0.1 867.55 867.54 0.001% | 21 356.1 867.55* 837.68 3.566 %
88 0.001 0.5 1230.99 | 1223.46 | 0.615 % 24 322.54 1295.02* | 1165.15 11.146 %
88 0.005 0.1 2284.06 | 2280.74 | 0.146 % | 55 840.28 2297.80* | 2075.51 10.710 %
88 0.005 0.5 2918.3 2903.38 | 05149 | 51 934.85 3022.67* | 2417.06 | 25.056 %
150 0.001 0.5 1847.93 | 1847.25 | 0.037 % 13 659.1 1847.93* | 1674.08 10.385 %
150 0.005 0.1 3689.71 3648.4 1.1329% | 53 3061.2 3689.71* | 3290.18 12.143 %

Carnegie Mellon

* Suboptimal solution obtained with BARON for 10 hour limit.




Conclusions CHPD.

CENTER

1. Enterprise-wide Optimization area of great industrial interest
Great economic impact for effectively managing complex supply chains

2. Two key components: Planning and Scheduling
Modeling challenge:
Multi-scale modeling (temporal and spatial integration )

3. Computational challenges lie in:
a) Large-scale optimization models (decomposition, grid computing )
b) Handling uncertainty (stochastic programming)

Carnegie Mellon 109



