



# Enterprise-wide Optimization: Strategies for Integration, Uncertainty, and Decomposition

Ignacio E. Grossmann
Center for Advanced Process Decision-making
Department of Chemical Engineering
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

August, 2008 Mar del Plata, Argentina PASI-2008



### **Objectives Module**



- 1. Learn about two major issues in Enterprise-wide Optimization (EWO): Integration and Uncertainty
- 2. Learn how to model EWO problems

  Mathematical Programming Framework
- 3. Learn about solution methods for: Stochastic Programming Bi-criterion Optimization

Lagrangean decomposition

#### For Background see following sites:

Mixed-integer programming: http://cepac.cheme.cmu.edu/pasilectures/grossmann.htm

Supply Chain Optimization: http://cepac.cheme.cmu.edu/pasilectures/pinto.htm

Enterprise-wide Optimization: http://egon.cheme.cmu.edu/ewocp/slides\_seminars.html



### **Enterprise-wide Optimization (EWO)**



EWO involves optimizing the operations of R&D, material supply, manufacturing, distribution of a company to reduce costs and inventories, and to maximize profits, asset utilization, responsiveness.

#### Petroleum industry

**Trading** 



Transfer of Crude



Refinery **Optimization** 



Schedule **Products** 



Transfer of **Products** 



**Terminal** Loading



**Pump** 

- The supply chain is large, complex, and highly dynamic
- Optimization can have very large financial payout

Wellhead



### Pharmaceutical supply chain



#### **Discovery**

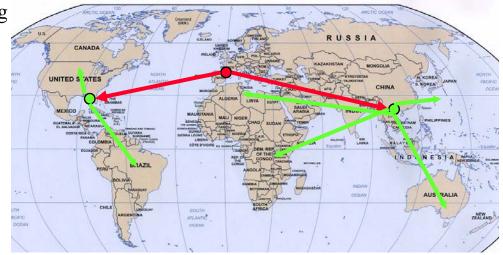
**R&D** Pharmaceutical industry

(Gardner et al, 2003)

Market

| Targets Hits Leads Candidate | Pre-<br>clinical<br>Development | Phase 1   | Phase 2a/b    | Phase 3     | Submission&<br>Approval | Lifecycle<br>Management |
|------------------------------|---------------------------------|-----------|---------------|-------------|-------------------------|-------------------------|
| 2-5 yrs                      | 0.5 - 2 yrs                     | 1 - 2 yrs | 1.5 - 3.5 yrs | 2.5 - 4 yrs | 0.5-2 yrs               | 10-20 yrs               |

- Pharmaceutical process (Shah, 2003)
  - Primary production has five synthesis stages
  - Two secondary manufacturing
  - Global market



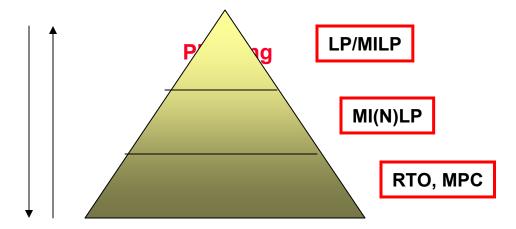


### **Key issues:**

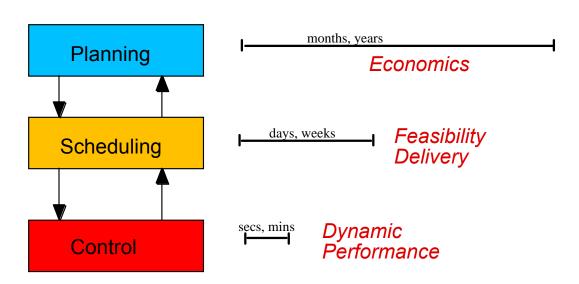


#### I. Integration of planning, scheduling and control

#### **Mutiple models**



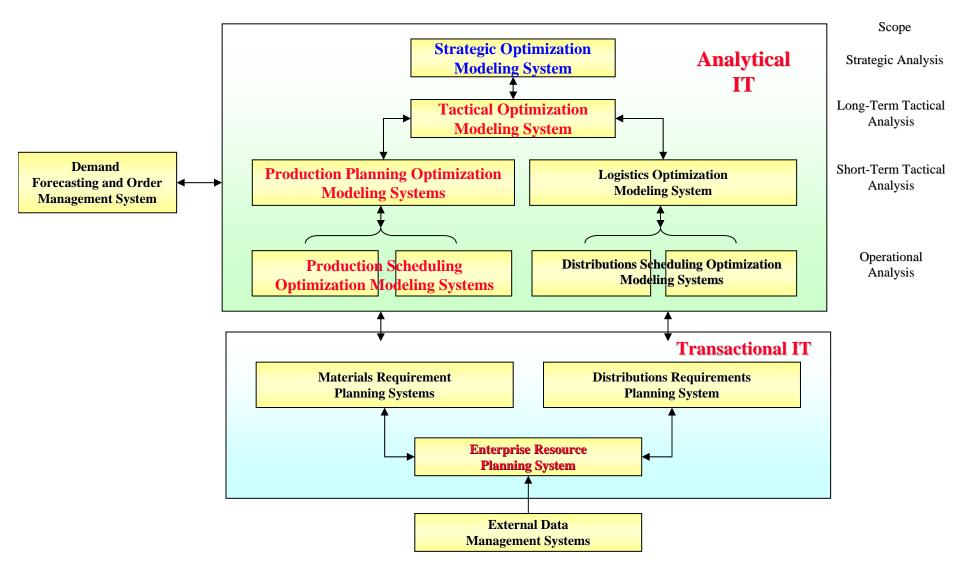
#### Mutiple time scales





#### II. Integration of information, modeling and solution methods







### **Research Challenges**



#### -The modeling challenge:

*Planning, scheduling, control models* for the various components of the supply chain, including *nonlinear process* models?

#### - The multi-scale optimization challenge:

Coordinated planning/scheduling models over *geographically distributed* sites, and over the *long-term* (years), *medium-term* (months) and *short-term* (days, min) decisions?

#### - The uncertainty challenge:

How to effectively anticipate effect of uncertainties?

### - Algorithmic and computational challenges:

How to *effectively solve large-scale* models including *nonconvex problems* in terms of efficient algorithms, decomposition methods and modern computer architectures?



### **Examples of EWO problems**



#### **Multiperiod Supply Chain Design**

Multiperiod mixed-integer linear programming model

#### **Supply Chain Operation under Uncertainty**

Two-stage programming LP model

#### **Design of Responsive Process Supply Chains with Uncertain Demand**

Bi-criterion mixed-integer nonlinear programming

# Simultaneous Tactical Planning and Production Scheduling Large-scale mixed integer linear programming

Optimal Planning of Multisite Distribution Network

Lagrangean decomposition for nonlinear programming model

Supply Chain Design with Stochastic Inventory Management
Lagrangean decomposition for mixed-integer nonlinear programming model



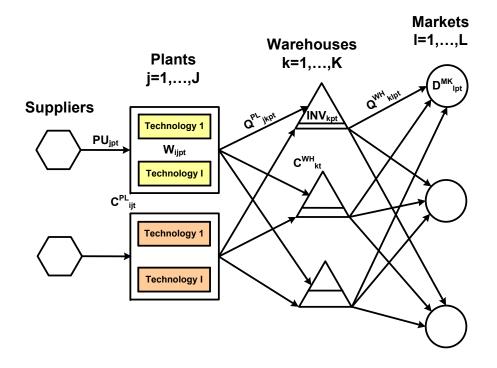
### **Multiperiod Supply Chain Design and Planning**



- Three-echelon supply chain
- 1 4

Guillen, Grossmann (2008)

- Different technologies available at plants
- Multi-period model



Model = Plant location problem (Current et al.,1990) plus

Long range planning of chemical processes (Sahinidis et al., 1989)



#### **Notation**



| j | $_{ m plants}$            |
|---|---------------------------|
| k | warehouses                |
| l | $\max$                    |
| p | $\operatorname{products}$ |
| t | time periods              |

Variables  $C_{ijt}^{PL}$   $CE_{ijt}^{PL}$   $C_{kt}^{WH}$   $CE_{kt}^{WH}$ capacity of manufacturing technology i at plant j in time period tcapacity expansion of manufacturing technology i at plant j in time period tcapacity of warehouse k in time period tcapacity expansion of warehouse k in time period t $CF_t$ cash flow in period t FCIfixed capital investment  $FTDC_t$ fraction of the total depreciable capital that must be paid in period taverage inventory level at warehouse k in time period t $IL_{kt}$  $NE_t$ net earnings in period tNPVnet present value  $\begin{array}{c} PU_{jpt} \\ Q_{jkpt}^{PL} \\ Q_{klpt}^{WH} \end{array}$ purchases of product p made by plant j in period tflow of product p sent from plant j to warehouse k in period t

 $SA_{lnt}$ sales of product p at market l in time period t

 $W_{ijpt} \\ X_{ijt}^{PL}$ input/output flow of product p associated with technology i at plant j in t binary variable (1 if the capacity of manufacturing technology i at plant j

flow of product p sent from warehouse k to market l in period t

is expanded in time period t, 0 otherwise)

 $X_{kt}^{WH}$ binary variable (1 if the capacity of warehouse k

is expanded in time period t, 0 otherwise)

 $Y_{jkt}^{PL}$ binary variable (1 if a transportation link between plant j and warehouse k

is established in time period t, 0 otherwise)

Carr  $Y_{klt}^{WH}$ binary variable (1 if a transportation link between warehouse k and market l

is established in time period t, 0 otherwise)



#### **Multiperiod MILP formulation (I)**



#### 1. Mass balances

$$PU_{jpt} + \sum_{i \in OUT(p)} W_{ijpt} = \sum_{k} Q_{jkpt}^{PL} + \sum_{i \in IN(p)} W_{ijpt} \quad \forall j, p, t$$

$$W_{ijpt} = \mu_{ip} W_{ijp't} \quad \forall i, j, p, t \quad \forall p' \in MP(i)$$

$$INV_{kpt-1} + \sum_{j} Q_{jkpt}^{PL} = \sum_{l} Q_{klpt}^{WH} + INV_{kpt} \quad \forall k, p, t$$

$$D_{lpt}^{MK} \leq \sum_{k} Q_{klpt}^{WH} \leq \overline{D_{lpt}^{MK}} \quad \forall l, p, t$$

$$Markets$$

$$Mijpt = \sum_{i} Q_{ijpt}^{WH} + INV_{kpt} \quad \forall k, p, t$$

$$Markets$$

#### 2. Capacity Expansion Plants

$$W_{ijpt} \leq C_{ijt}^{PL} \quad \forall i, j, t \quad \forall p \in MP(i)$$

$$C_{ijt}^{PL} = C_{ijt-1}^{PL} + CE_{ijt}^{PL} \quad \forall i, j, t$$

$$CE_{ijt}^{PL} X_{ijt}^{PL} \leq CE_{ijt}^{PL} \leq \overline{CE_{ijt}^{PL}} X_{ijt}^{PL} \quad \forall i, j, t$$

Binary variable (1 if technology i is expanded in plant j in period t)



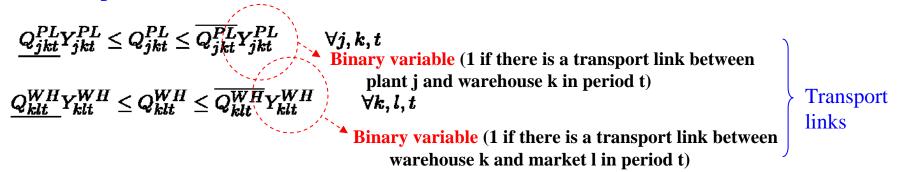
#### **Multiperiod MILP formulation (II)**



#### 3. Capacity Expansion Warehouses

$$\begin{split} \sum_{p} INV_{kpt} & \leq C_{kt}^{WH} \quad \forall k, t \\ C_{kt}^{WH} & = C_{kt-1}^{WH} + CE_{kt}^{WH} \quad \forall k, t \\ \underline{CE_{kt}^{WH}}X_{kt}^{WH} & \leq CE_{kt}^{WH}X_{kt}^{WH} \quad \forall k, t \\ \underline{Binary \ variable} \ (1 \ if \ warehouse \ k \ is \ expanded \ in \ period \ t) \end{split}$$

#### 4. Transportation links





#### **Multiperiod MILP formulation (III)**



#### 5. Objective function

$$NPV = \sum_{t} \frac{CF_t}{(1+ir)^{t-1}}$$
 Summation of discounted cash flows

$$CF_t = NE_t - FTDC_t$$
  $t = 1, ..., NT - 1$ 

$$CF_t = NE_t - FTDC_t + SVFCI$$
  $t = NT$ 

#### **Net Earnings**

$$\begin{aligned} NE_t &= (1 - \varphi) \left[ \sum_l \sum_p \gamma_{lpt}^{FP} SA_{lpt} - \sum_j \sum_p \gamma_{jpt}^{RM} PU_{jpt} \right. \\ &- \sum_i \sum_j \sum_{p \in MP(i)} \upsilon_{ijpt} W_{ijpt} - \sum_k \pi_{kt} IL_{kt} - \sum_j \sum_k \sum_p \psi_{jkpt}^{PL} Q_{jkpt}^{PL} \\ &- \sum_k \sum_l \sum_p \psi_{klpt}^{WH} Q_{klpt}^{WH} \right] + \varphi DEP_t \qquad \forall t \\ &DEP_t &= \frac{(1 - SV)FCI}{NT} \qquad \forall t \end{aligned}$$

#### **Fixed cost**

$$FCI = \sum_{i} \sum_{j} \sum_{t} \left( \alpha_{ijt}^{PL} C E_{ijt}^{PL} + \beta_{ijt}^{PL} X_{ijt}^{P} \right) + \sum_{k} \sum_{t} \left( \alpha_{kt}^{WH} C E_{kt}^{WH} + \beta_{kt}^{WH} X_{kt}^{WH} \right)$$
$$\sum_{i} \sum_{k} \sum_{t} \left( \beta_{jkt}^{TPL} Y_{jkt}^{PL} \right) + \sum_{k} \sum_{t} \sum_{t} \left( \beta_{klt}^{TWH} Y_{klt}^{WH} \right)$$

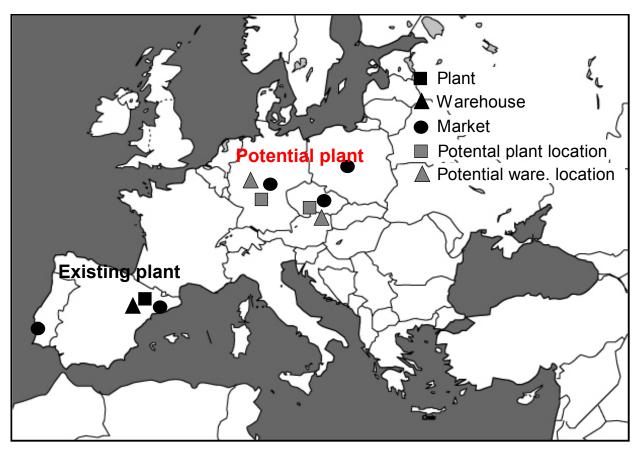


## **Case study**



#### **Problem:**

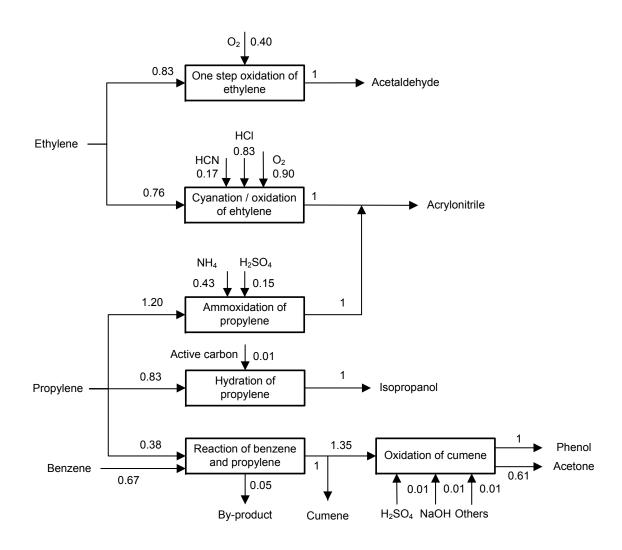
Redesign a petrochemical SC to fulfill future forecasted demand





### **Technologies in each Plant Site**



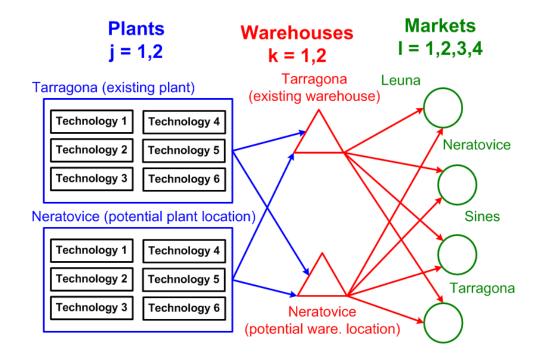




#### **Potential Supply Chain**



Horizon: 3 yrs



#### **Multiperiod MILP Models:**

• Number of 0-1 variables: 450

Number of continuous variables: 4801

• Number of equations: 4682

• **CPU**\* time: 0.33 seconds

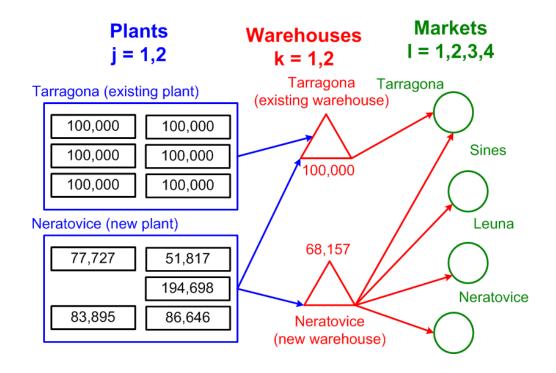
\*Solved with GAMS 21.4 / CPLEX 9.0 (Pentium 1.66GHz)



### **Optimal Solution**



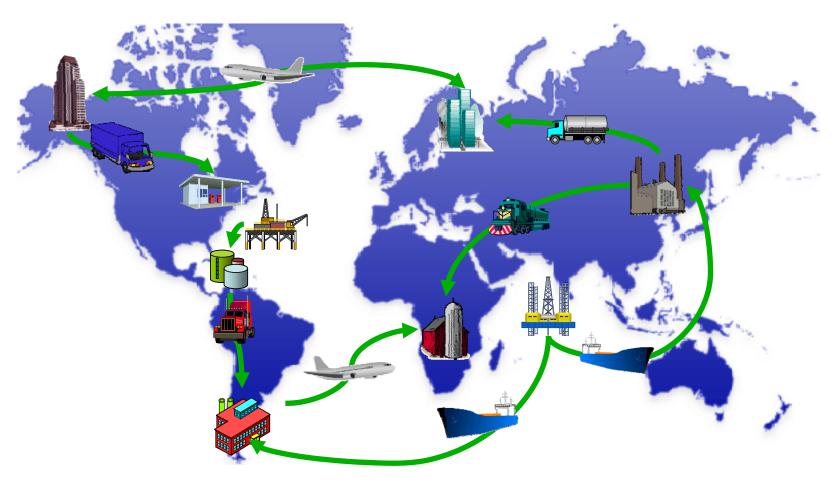
NPV = \$132 million



### **Supply Chain Operation under Uncertainty**



You, Grossmann, Wassick (2008)





Chemical Supply chain: an integrated network of business units for the supply, production, distribution and consumption of the products.



## Case Study

- Given
  - Minimum and initial inventory
  - Inventory holding cost and throughput cost
  - Transport times of all the transport links & modes
  - Uncertain customer demands and transport cost
- Determine
  - Transport amount, inventory and production levels



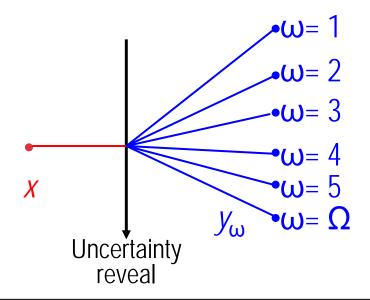






## **Stochastic Programming**

- Scenario Planning
  - A scenario is a future possible outcome of the uncertainty
  - Find a solution perform well for all the scenarios
- Two-stage Decisions
  - Here-and-now: Decisions (x) are taken before uncertainty  $\omega$  reveals
  - Wait-and-see: Decisions  $(y_{\omega})$  are taken after uncertainty  $\omega$  reveals as "<u>corrective action</u>" <u>recourse</u>

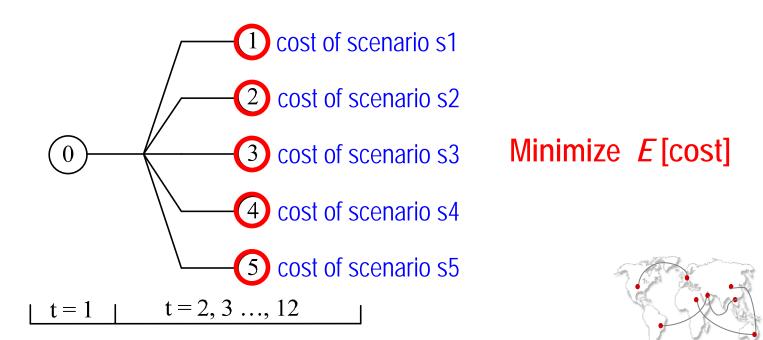






## **Stochastic Programming for Case Study**

- First stage decisions
  - Here-and-now: decisions for the first month (production, inventory, shipping)
- Second stage decisions
  - Wait-and-see: decisions for the remaining 11 months





### **Objective Function**



$$E[Cost] = Cost1 + \sum_{s} P_s \cdot Cost2_s$$



#### First stage cost

Probability of each scenario

#### Second stage cost

Cost1 =

$$\frac{\sum \sum \sum h_{k,j} I_{k,j,t}}{\sum h_{k,j} I_{k,j,t}}$$

**Inventory Costs** 

#### $Cost2_s =$ $(h_{k,j}I_{k,j,t,s})$

$$+\sum_{l}\sum_{j,l}\sum_{i}\sum_{j}\gamma_{k,k',j}F_{k,k',j,t}$$

 $\sum \sum \gamma_{k,k',j} F_{k,k',j,t}$ 

 $\sum \sum \gamma_{k,l,j} S_{k,l,j,t}$ 

,  $\sum_{j}\sum_{t}\delta_{k,j}F_{k,k',j,t}$ 

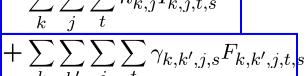
 $\sum \sum \delta_{k,j} S_{k,l,j,t}$ 



Freight Costs

Throughput Costs

**Demand Unsatisfied** 



$$+\sum_{k}\sum_{k'}\sum_{j}\sum_{l}\sum_{k'}\gamma_{k,l,j,s}S_{k,l,j,t,s}$$

$$+\sum_{k}\sum_{k'}\sum_{j}\sum_{t}\delta_{k,j}F_{k,k',j,t,s}$$

$$+\sum_{k}\sum_{l}\sum_{j}\sum_{t}\delta_{k,j}S_{k,l,j,t,s}$$

$$+\sum_{l}\sum_{j}\sum_{t}\eta_{l,j}SF_{l,j,t,s}$$





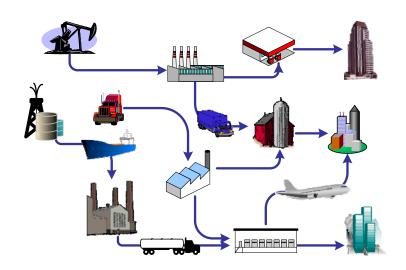
## Multiperiod Planning Model (Case Study)

- Objective Function:
  - Min: Total Expected Cost





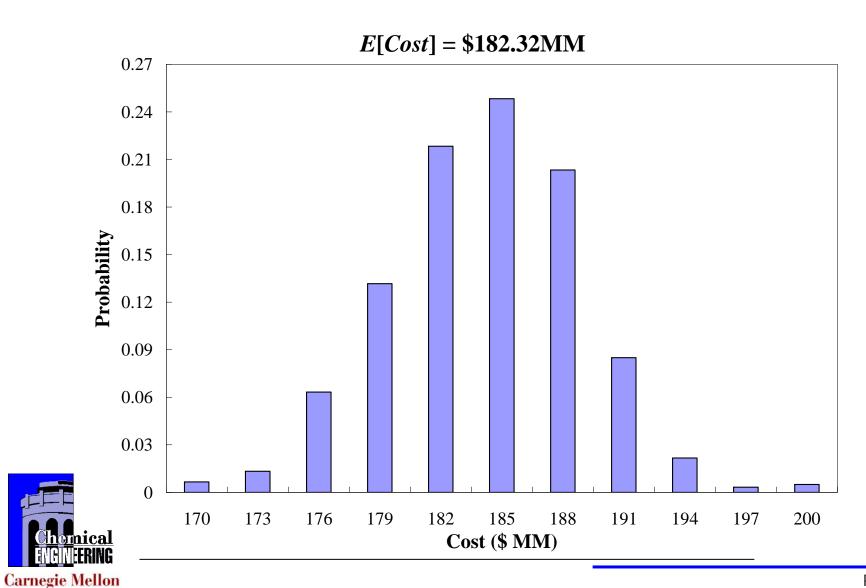
- Constraints:
  - Mass balance for plants
  - Mass balance for DCs
  - Mass balance for customers
  - Minimum inventory level constraint
  - Capacity constraints for plants







## Result of Two-stage SP Model





### **Problem Sizes**

| Small            | Deterministic | Two-stage Stochastic Programming Model |               |                 |  |
|------------------|---------------|----------------------------------------|---------------|-----------------|--|
| Problem          | Model         | 10 scenarios                           | 100 scenarios | 1,000 scenarios |  |
| # of Constraints | 1,369         | 13,080                                 | 130,170       | 1,301,070       |  |
| # of Variables   | 3,937         | 37,248                                 | 370,338       | 3,701,240       |  |
| # of Non-zeros   | 8,910         | 85,451                                 | 850,271       | 8,498,429       |  |

| Full Problem     | Deterministic | Two-stage Stochastic Programming Model |               |                 |  |
|------------------|---------------|----------------------------------------|---------------|-----------------|--|
| run Frobiem      | Model         | 10 scenarios                           | 100 scenarios | 1,000 scenarios |  |
| # of Constraints | 6,373         | 61,284                                 | 610,374       | 6,101,280       |  |
| # of Variables   | 19,225        | 182,496                                | 1,815,816     | 18,149,077      |  |
| # of Non-zeros   | 41,899        | 402,267                                | 4,004,697     | 40,028,872      |  |

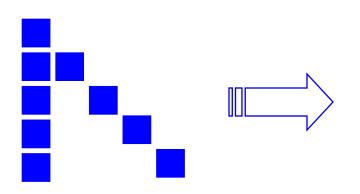


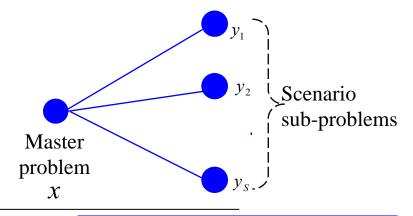


Note: Problems with red statistical data are not able to be solved by DWS



### Two-stage SP Model

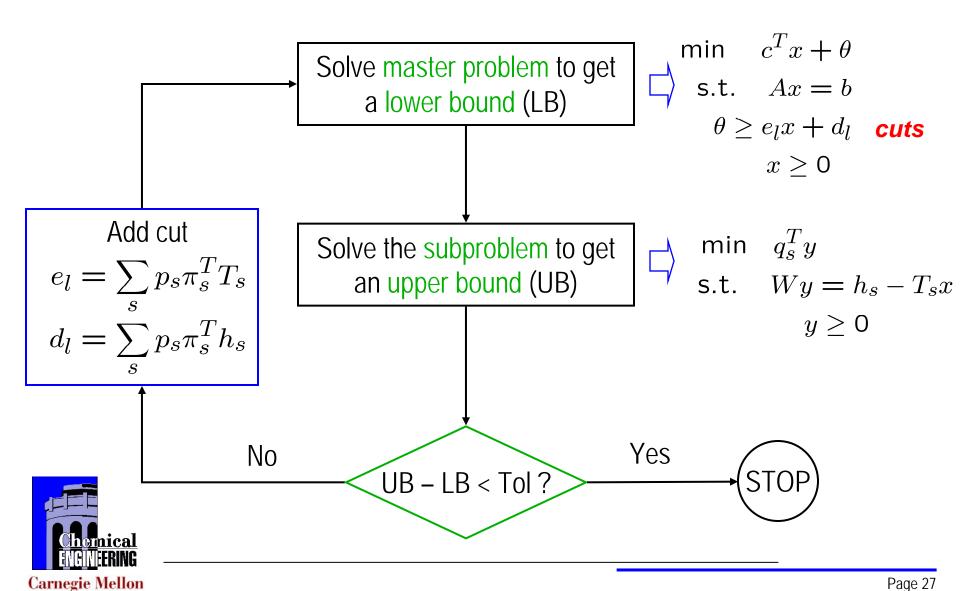






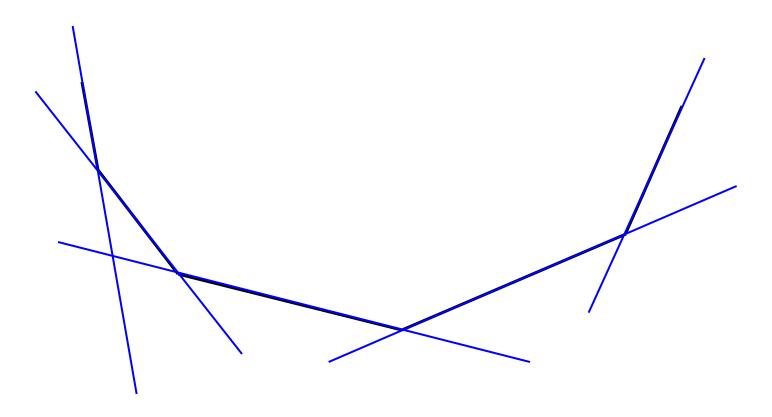


### Standard L-shaped Method





## **Expected Recourse Function**



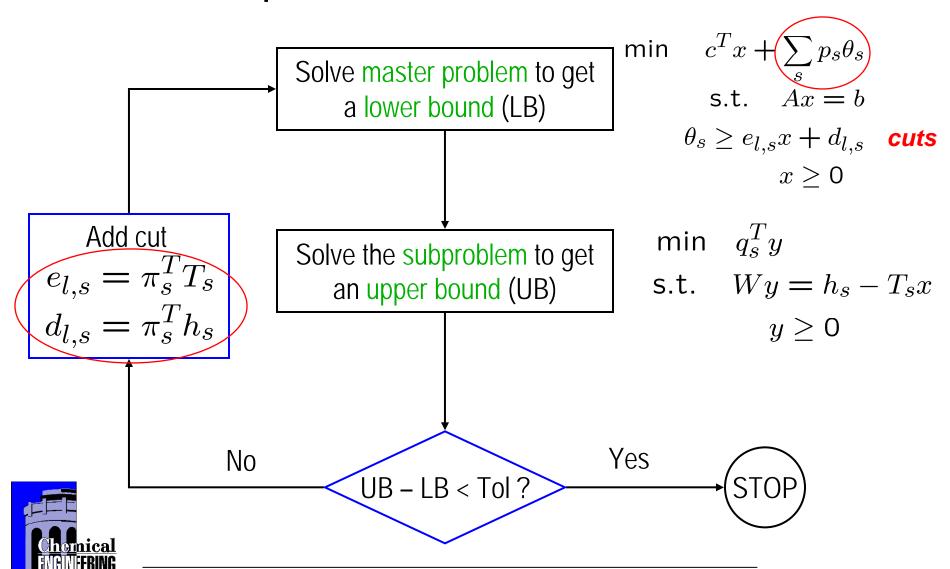


- The expected recourse function Q(x) is convex and piecewise linear
- Each optimality cut supports Q(x) from below

Carnegie Mellon

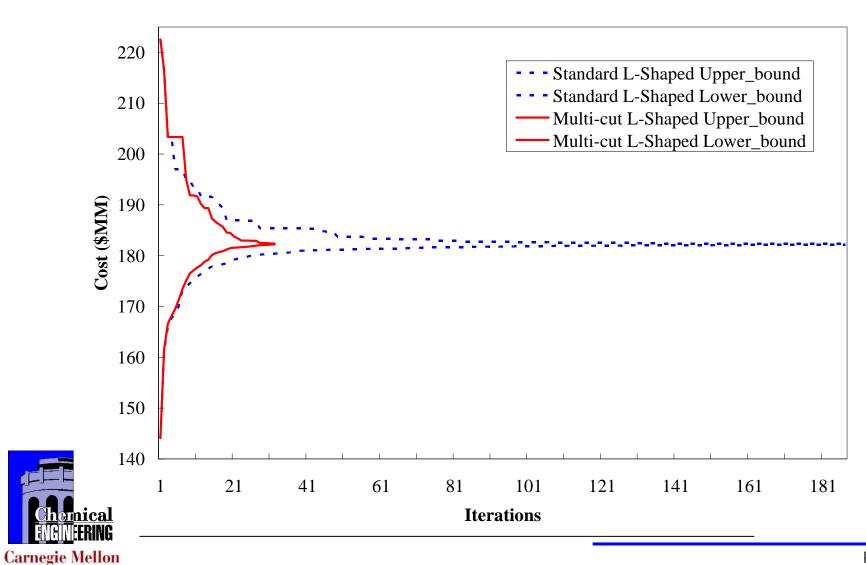


### Multi-cut L-shaped Method



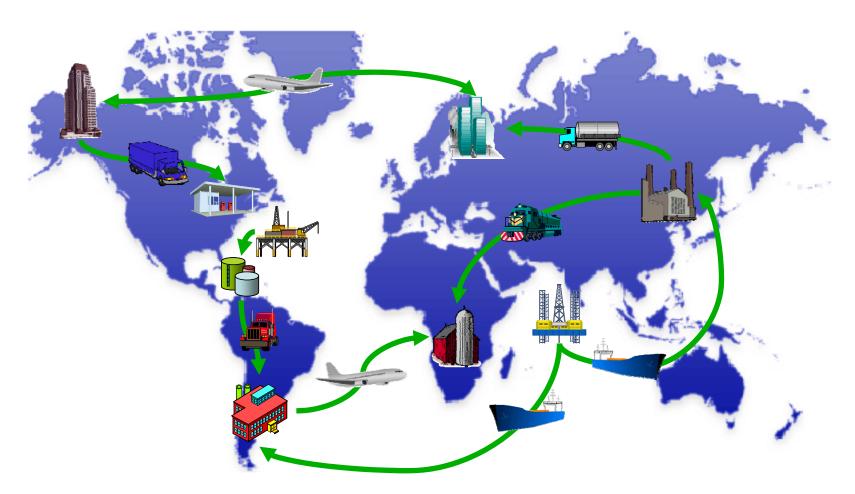


## **Example**





### Optimal Design of Responsive Process Supply Chains You, Grossmann (2008)





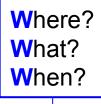
**Objective**: design supply chains under responsive and economic criteria with consideration of inventory management and demand uncertainty



### **Problem Statement**









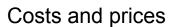


**Plants** 

**DCs** 

Customers







**Demand information** 











Max: Net present value

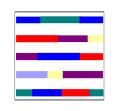
Max: Responsiveness



**Network Structure** 



**Operational Plan** 



**Production Schedule** 





## Production Network of Polystyrene Resins

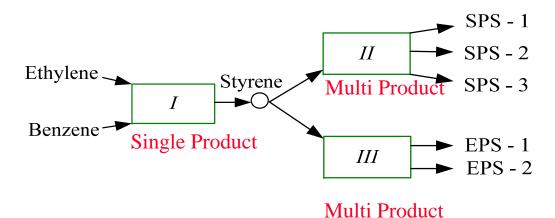
#### Three types of plants:

Plant I:  $Ethylene + Benzene \longrightarrow Styrene$  (1 products)

Plant *II*: Styrene  $\longrightarrow$  Solid Polystyrene (SPS) (3 products)

Plant III: Styrene ---- Expandable Polystyrene (EPS) (2 products)

#### **Basic Production Network**

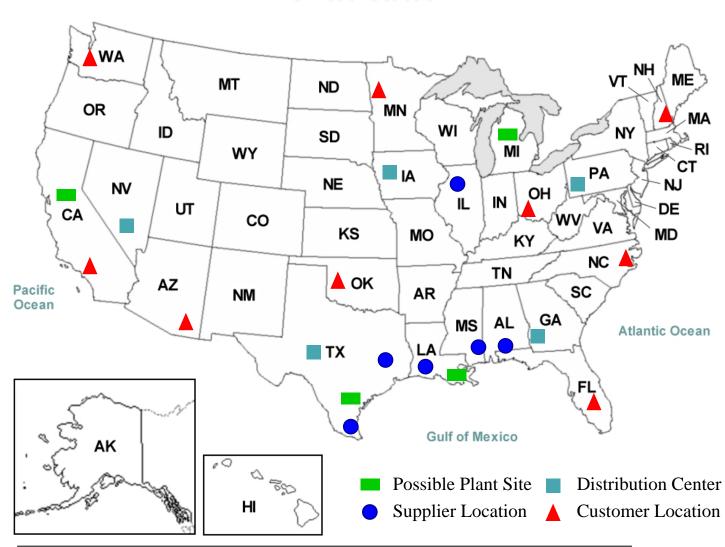




Source: Data Courtesy Nova Chemical Inc. http://www.novachem.com/



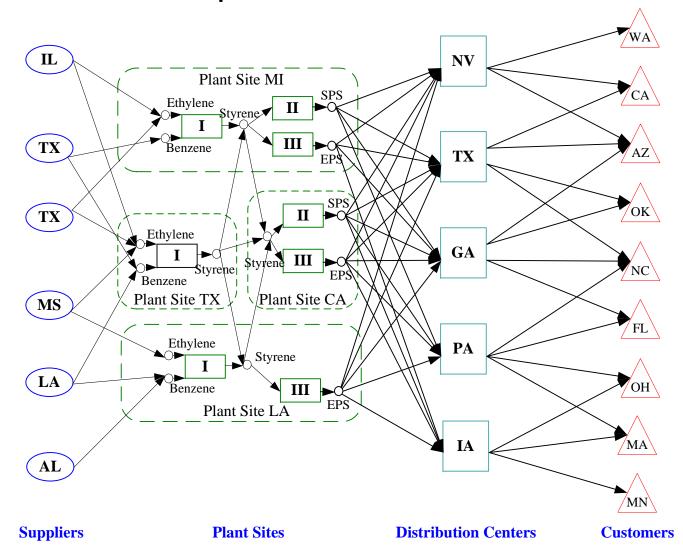
## **Location Map**







### Potential Network Superstructure

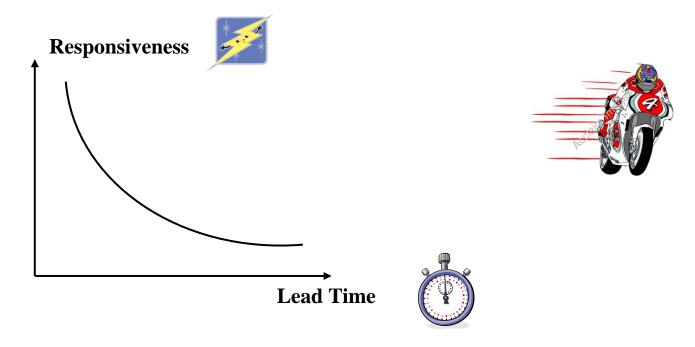






### Responsiveness - Lead Time

 Lead Time: The time of a supply chain network to respond to customer demands and preferences in the <u>worst case</u>





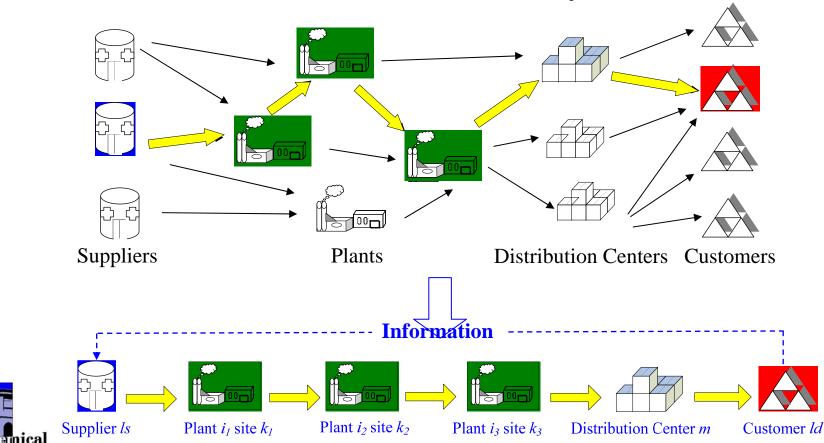
Lead Time is a measure of responsiveness in SCs

Carnegie Mellon



# Lead Time for A Linear Supply Chain

- A supply chain network =  $\sum$ Linear supply chains
  - Assume information transfer instantaneously

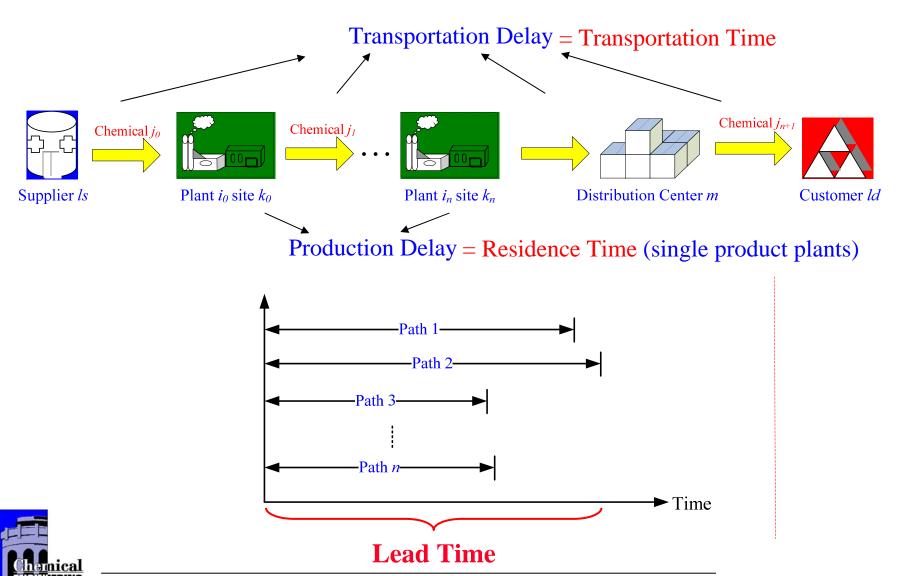


Carnegie Mellon





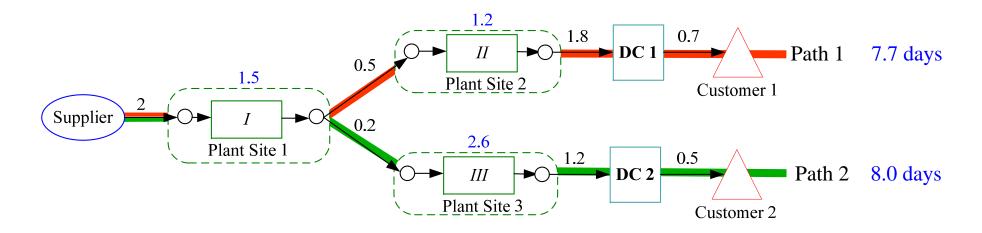
# Lead Time for Deterministic Demand





# Lead Time of SCN

- Lead time of a supply chain network (deterministic demand)
  - The longest lead time for all the paths in the network (<u>worst case</u>)
  - Example: A simple SC with all process are dedicated



**For Path 1:** 
$$2 + 1.5 + 0.5 + 1.2 + 1.8 + 0.7 = 7.7$$
 days

**For Path 2:** 
$$2 + 1.5 + 0.2 + 2.6 + 1.2 + 0.5 = 8.0$$
 days



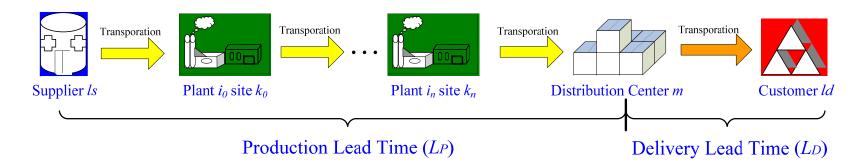
*Lead Time* =  $\max \{7.7, 8.0\} = 8.0 \text{ days}$ 







# Lead Time under Demand Uncertainty



Service Level

Service Level

Inventory (Safety Stock)

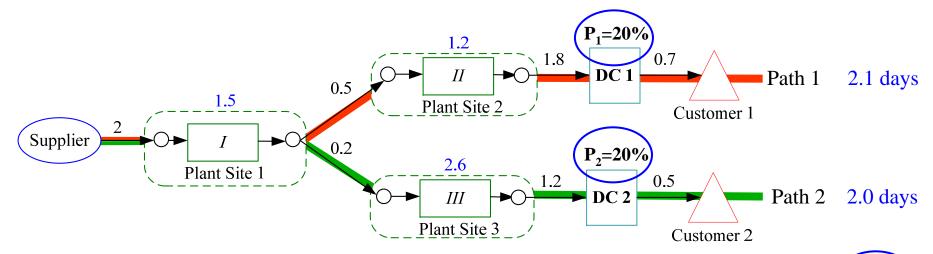


Expected Lead Time =  $L_D + P(Stockout) \cdot L_P$ 



# **Expected Lead Time of SCN**

- Expected Lead time of a supply chain network (uncertain demand)
  - The longest expected lead time for all the paths in the network (<u>worst case</u>)
  - Example: A simple SC with all process are dedicated

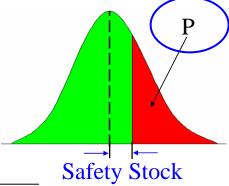


For Path 1:  $(2 + 1.5 + 0.5 + 1.2 + 1.8) \times 20\% + 0.7 = 2.1$  days

For Path 2:  $(2 + 1.5 + 0.2 + 2.6 + 1.2) \times 20\% + 0.5 = 2.0$  days



Expected Lead Time =  $\max \{2.1, 2.0\} = 2.1 \text{ days}$ 



Carnegie Mellon



# Stock-out Probability (P)



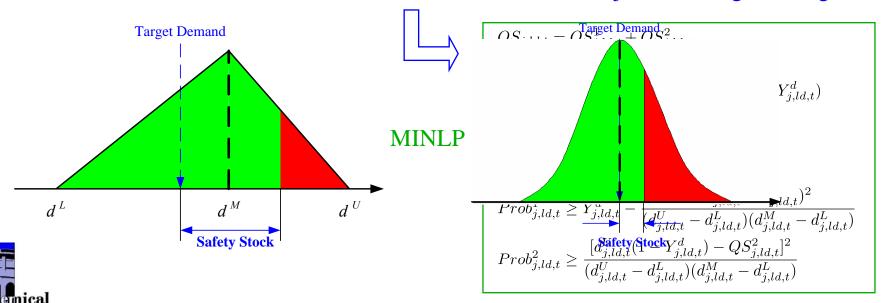


Integrate lead time, inventory management, demand

uncertainty

$$\begin{array}{c|c} \textbf{Unicertainty} & y & \exists y \\ \hline Prob_{j,ld,t} = \Pr(QS_{j,ld,t} \leq d_{j,ld,t}) & & \\ \hline \\ \textbf{Chance constraint} & & \\ \end{array}$$

## Generalized Disjunctive Programming



# **Objective Functions**









$$TP \geq Prob_{j,ld}Y_{k,ls}^{I}\lambda_{k,ls}^{I} + \sum_{x=1}^{n}Prob_{j,ld}Y_{k_{x},i_{x}}^{P} + \sum_{x=1}^{n-1}Prob_{j,ld}Y_{k_{x},i_{x+1}}^{N}\lambda_{k_{x},i_{x}}^{N} + Prob_{j,ld}Y_{k_{n},m}^{O}\lambda_{k_{n},m}^{O} + Y_{m,ld}^{S}\lambda_{m,ld}^{S}$$



Measured by net present value (NPV)



$$NPV = \sum_{j} \sum_{ld} \sum_{t} Sales_{j,ld,t} \cdot Price_{j,ld,t}$$

$$-\sum_{k}\sum_{j}\sum_{ls}\sum_{t}Purch_{j,ls,t}\cdot RMCost_{k,j,ls,t}$$

Sales income

Purchase cost



$$-\sum_{k}\sum_{i}\sum_{s}\sum_{j\in JP_{i,s}}\sum_{t}prod_{k,i,j,s,t}\cdot UCost_{i,ls,t} - \sum_{k}\sum_{i}\sum_{t}SchCost_{k,i,t}$$

$$-\sum_{k}\sum_{j}\sum_{ls}\sum_{t}tr_{k,j,ls,t}\cdot TCost_{k,j,ls,t} - \sum_{j}\sum_{m}\sum_{ld}\sum_{t}S_{j,m,ld,t}\cdot TCost_{j,m,ld,t}$$

$$-\sum_{k}\sum_{j}\sum_{ls}\sum_{t}tr_{k,j,ls,t}\cdot TCost_{k,j,ls,t} - \sum_{j}\sum_{m}\sum_{ld}\sum_{t}S_{j,m,ld,t}\cdot TCost_{j,m,ld,t}$$

$$-\sum_{k}\sum_{i}Y_{k,i}\cdot IPCost_{k,i} - \sum_{m}\sum_{ld}Y_{m,ld}\cdot IDCost_{m,ld} - \sum_{k}\sum_{k'}Y_{k,k'}\cdot ILCost_{m,ld}$$

$$-\sum_{j}\sum_{m}\sum_{ld}\sum_{t}Ss_{j,m,t}\cdot ICost_{j,m,ld,t} - \sum_{k}\sum_{j}\sum_{t}WI_{k,j,t}\cdot WICost_{k,j,t}$$

$$-\sum_{j}\sum_{m}\sum_{ld}\sum_{t}Ss_{j,m,t}\cdot ICost_{j,m,ld,t} - \sum_{k}\sum_{j}\sum_{t}WI_{k,j,t}\cdot WICost_{k,j,t}$$

Operating cost

Transport cost

Investment cost

Inventory cost



#### - Responsive Supply Chains



# Bi-criterion Multiperiod MINLP Formulation

Bi-criterion

Choose Discrete (0-1), continuous variables

- **Objective Function:** 
  - Max: Net Present Value
  - Min: Expected Lead time
- Constraints:
  - Network structure constraints

Suppliers – plant sites Relationship

Plant sites – Distribution Center

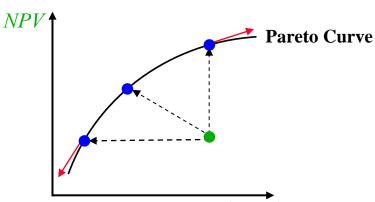
Input and output relationship of a plant

Distribution Center – Customers

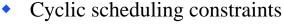
Cost constraint

Operation planning constraints

Production constraint Capacity constraint Demand constraint



Expected Lead Time



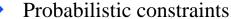
Assignment constraint

Sequence constraint

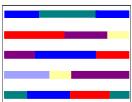
Demand constraint

Production constraint

Cost constraint



Chance constraint for stock out



Safety Stock

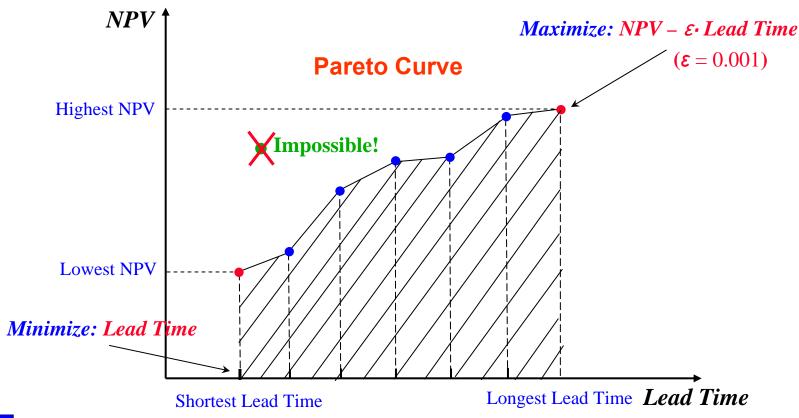








# Procedure for Pareto Optimal Curve

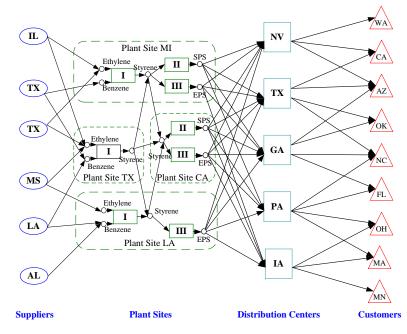






# Case Study





Problem Size:

Carnegie Mellon

- # of Discrete Variables: 215
- # of Continuous Variables: 8126
- # of Constraints: 14617

- Solution Time:
  - Solver: GAMS/BARON
  - Direct Solution: > 2 weeks
  - Proposed Algorithm: ~ 4 hours





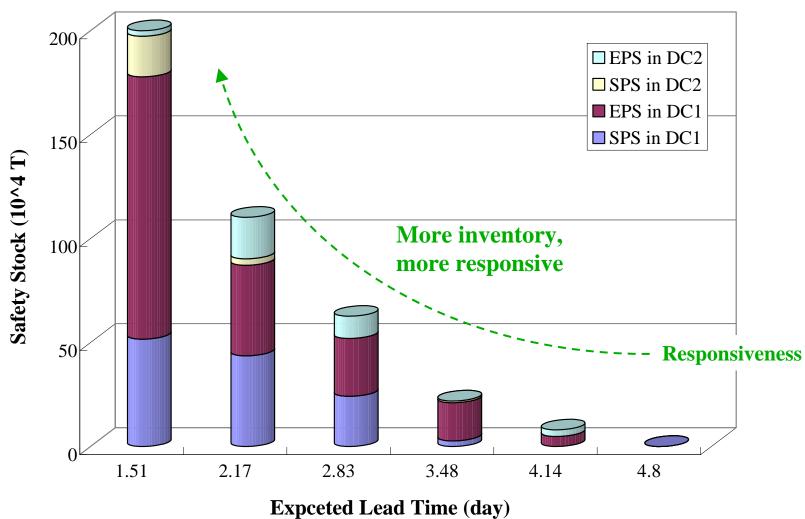
# Pareto Curves – with and without safety stock







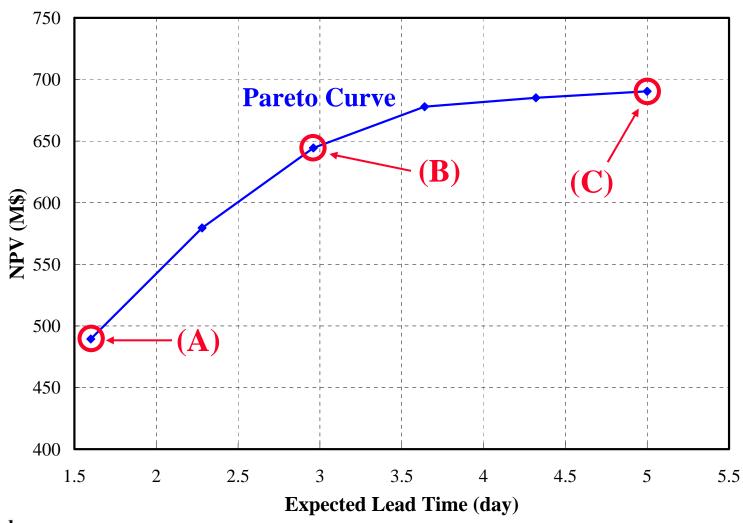
# Safety Stock Levels - Expected Lead Time







# Optimal Network Structure

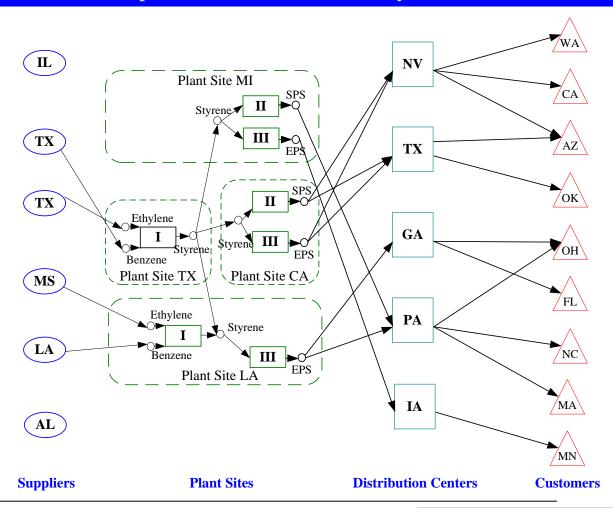






# Optimal Network Structure – (A)

## Shortest Expected Lead Time = 1.5 day NPV = \$489.39

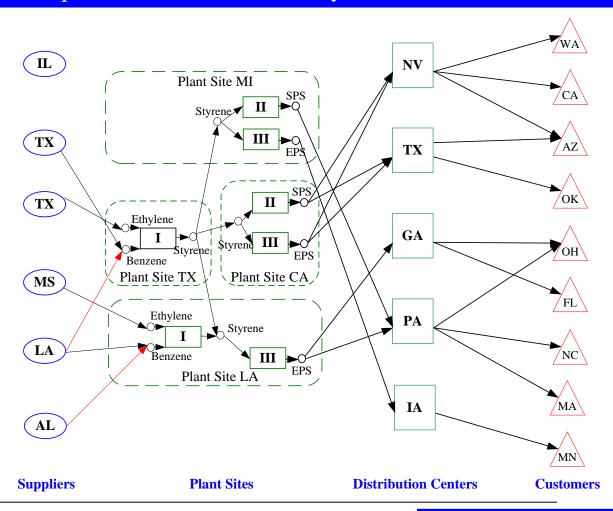






# Optimal Network Structure – (B)

## Expected Lead Time = 2.96 days NPV = \$644.46 MM

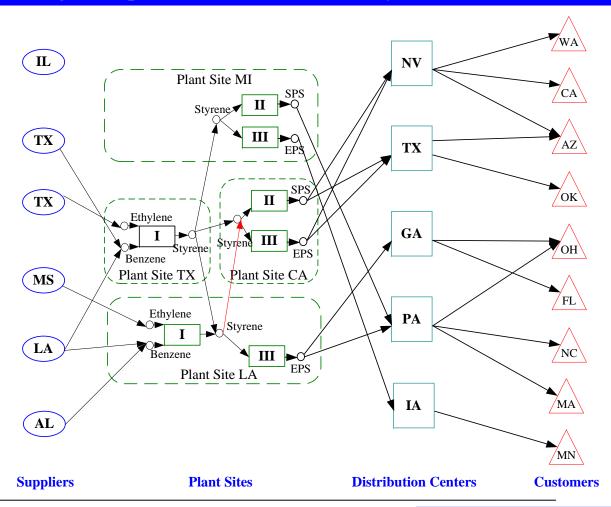






# Optimal Network Structure – (C)

## Longest Expected Lead Time = 5.0 day NPV = \$690 MM



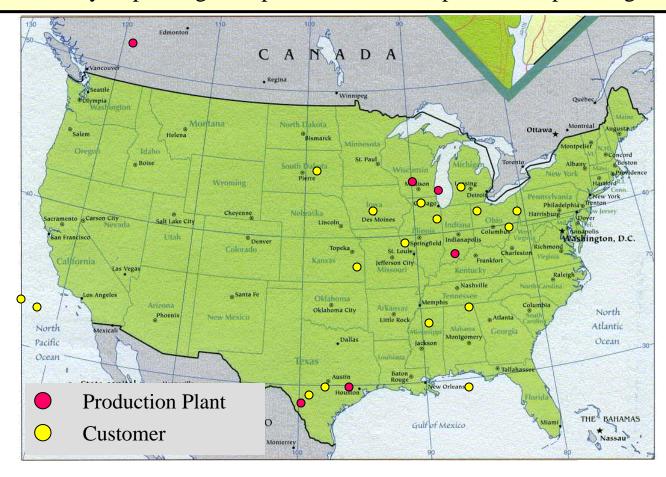




# Simultaneous Tactical Planning and Production Scheduling



<u>Goal:</u> Improve the asset utilization of geographically distributed assets and reduce cost to serve by improving enterprise wide tactical production planning.



**Multi-scale optimization:** temporal and spatial integration



# **Production Planning for Parallel Batch Reactors**

Erdirik, Grossmann (2006)

#### **Materials:**

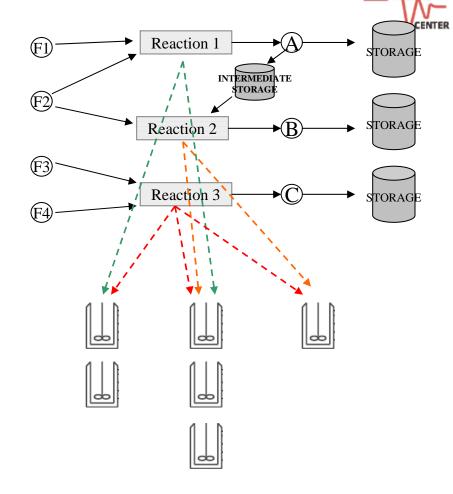
- Raw materials, Intermediates, Finished products
- ➤ Unit ratios (lbs of needed material per lb of material produced)

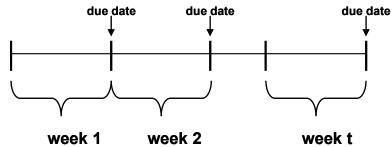
#### **Production Site:**

- ✓ Reactors:
  - ✓ Products it can produce
  - ✓ Batch sizes for each product
  - ✓ Batch process time for each product (hr)
  - ✓ Operating costs (\$/hr) for each material
  - ✓ Sequence dependent change-over times /costs
  - (hrs per transition for each material pair)
  - ✓ Time the reactor is available during a given month (hrs)

#### **Customers:**

- ➤ Monthly forecasted demands for desired products
- ➤ Price paid for each product







## **Problem Statement**



## **DETERMINE THE PRODUCTION PLAN:**

- ✓ Production quantities
- ✓ Inventory levels
- √ Number of batches of each product
- ✓ Assignments of products to available processing equipment
- ✓ Sequence of production in each processing equipment

## **OBJECTIVE:**

To Maximize **Profit**.

Profit = Sales - Costs

**Costs**=Operating Costs + Inventory Costs + Transition Costs

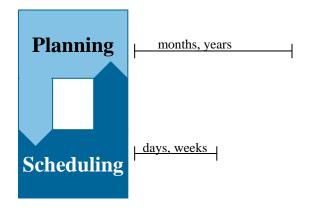


# **Approaches to Planning and Scheduling**



## **Decomposition**

#### **Sequential Hierarchical Approach**

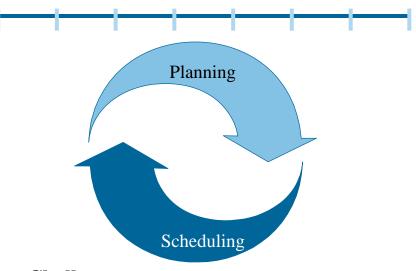


### **Challenges:**

- ✓ Different models / different time scales
- **✓** Mismatches between the levels

## **Simultaneous Planning and Scheduling**

Detailed scheduling over the entire horizon



## **Challenges:**

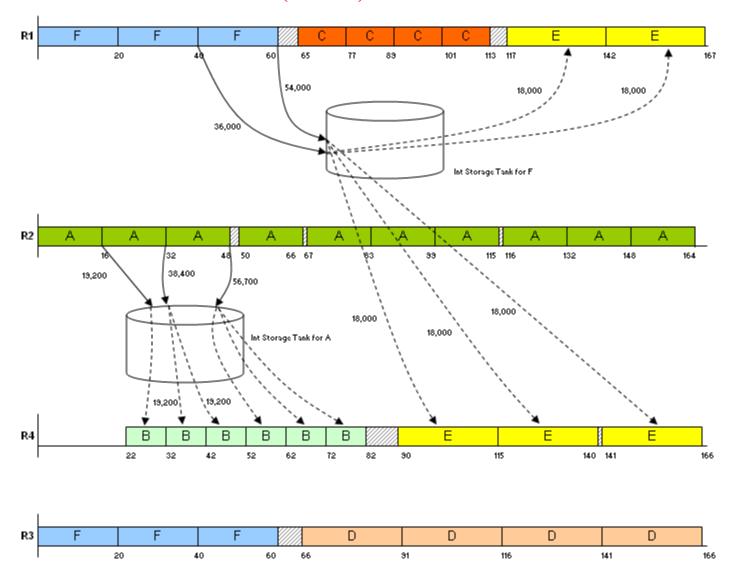
- ✓ Very Large Scale Problem
- **✓** Solution times quickly intractable

**Goal:** Planning model that integrates major aspects of scheduling



# Results for Detailed MILP Scheduling Model: 4 reactors,6 products (1 week)





# **MILP Detailed Scheduling Model**

#### **Objective Function:**

$$\Pr{\overline{ofit} = \sum_{i} \sum_{t} CP_{i,t} \cdot S_{i,t} - \sum_{i} \sum_{t} \sum_{t} COP_{i,t} \cdot XB_{i,m,l,t} - \sum_{i} \sum_{t} CINV_{i,t} \cdot (INV_{i,t} + INVFIN_{i,t} + INVINT_{i,t}) - \sum_{i} \sum_{k} \sum_{m} \sum_{t} \sum_{t} CTRA_{i,k} \cdot \left(Z_{i,k,m,l,t} + \tilde{Z}_{i,k,m,l,t} + \hat{Z}_{i,k,m,l,t} +$$

#### **Assignment constraints and Processing times:**

$$\sum_{i} W_{i,m,l,t} \leq 1 \quad i \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t$$

$$\sum_{i \in IM(m)} W_{i,m,l,t} \geq \sum_{i \in IM(m)} W_{i,m,l,t} \quad \forall l \in (L(m) \cap L(t)), l \neq N(t), \forall m, \forall t$$

$$PT_{i,m,l,t} = BT_{i,m} \cdot W_{i,m,l,t} \quad \forall i \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t$$

$$X_{i,m,l,t} = R_{i,m} \cdot BT_{i,m} \cdot W_{i,m,l,t} \quad \forall i \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall l \in (L(m) \cap L(t)), \forall m, \forall t \in IM(m), \forall m, \forall m \in IM(m), \forall m, \forall m \in IM(m), \forall$$

#### Detailed timing constraints and sequence dependent change :

$$Z_{i,i',m,l,t} \geq W_{i,m,l,t} + W_{i',m,l+1,t} - 1 \ \forall i \in \mathit{IM}(m), \forall i' \in \mathit{IM}(m), i' \neq i, \forall l \in (\mathit{L}(m) \cap \mathit{L}(t)), l \neq \mathit{Nt}, \forall m, \forall t \in \mathit{Nt}, \forall m, \forall t \in \mathit{L}(m), \forall i' \in \mathit{L}(m), \forall i$$

$$TR_{m,l,t} = \sum_{i} \sum_{i'} \tau_{i,i'} \cdot Z_{i,i',m,l,t} \quad \forall l \in (L(m) \cap L(t)), l \neq Nt, \forall m, \forall t$$

$$\tilde{Z}_{i,i',m,l,t} \geq W_{i,m,l,t} + W_{i',m,'l',t+1} - 1 \quad \forall i,i' \in \mathit{IM}(m), i' \neq i, \forall l \in (\mathit{L}(m) \cap \mathit{L}(t)), \forall m, \forall t,t \neq \mathit{H}_t$$

$$Te_{m,l,t} = Ts_{m,l,t} + \sum_{i} PT_{i,m,l,t} + \sum_{i} \sum_{k} \tau_{i,k} \cdot Z_{i,k,m,l,t} + TRT_{m,l,t} - TX_{m,l,t} + (\sum_{i} \sum_{i'} \tau_{i,i'} \cdot \hat{Z}_{i,i',m,l,t}) \quad \forall m, l, l \in \mathbb{N}$$

$$TRT_{m,l,t} = TRT1_{m,l,t} + TRT2_{m,l,t} \qquad \forall m, l, t$$

$$TX_{m,l,t} = TRT1_{m,l,t} \qquad \forall m, l, t$$

$$TRT1_{m,l,t} \le UPPER \cdot Y_{m,l+1,t}$$
  $\forall m,l,t$ 

$$TRT2_{m,l,t} \le UPPER \cdot (1 - Y_{m,l+1,t}) \qquad \forall m,l,t$$

# **MILP Detailed Scheduling Model**

#### **Mass and Inventory Balances:**

$$\begin{split} X_{i,m,l,d} &= INVP_{i,m,l,d}^{FIN} + INVINT_{i,m,l,d}^{TRA} \quad i \in IFINT_i, \forall l \in (L(m) \cap L(l)), \forall m, \forall t \\ INVINT_{i,m,l,d}^{TRA} &= INVP_{i,m,l,d}^{INT} + \sum_{l > l,l' \in L(m)} AA_{i,m,l,m,l',d} + \sum_{m \neq m} \sum_{l' \in L(m')} AA_{i,m,l,m,l',d'} \quad i \in IFINT_i, \forall l \in (L(m) \cap L(l)), \forall l' \in L(l), \forall m, \forall m' \neq m, \forall t \\ X_{i,m,l,d} &= INVP_{i,m,l,d}^{FIN} + INVP_{i,m,l,d}^{INT} + \sum_{l > l,l' \in L(m)} AA_{i,m,l,m,l',d} + \sum_{m \neq m} \sum_{l' \in L(m')} AA_{i,m,l,m,l',d'} \quad i \in IFINT_i, \forall l \in (L(m) \cap L(l)), \forall l' \in L(l), \forall m, \forall m' \neq m, \forall t \\ TS_{m,l,d} + \sum_{i} PT_{i,m,l,d} \leq TS_{m,l',d} + BigW_i \cdot (1 - YI_{l,l',m,m',d}) \quad \forall l \in (L(m) \cap L(l)), \forall l' \in (L(m) \cap L(l)), \forall m, \forall m' \neq m, \forall t \\ TS_{m',l',l'} \leq TS_{m,l,d} + \sum_{i} PT_{i,m,l,d} + BigW_i \cdot (YI_{l,l',m,m',d}) \quad \forall l \in (L(m) \cap L(l)), \forall l' \in (L(m) \cap L(l)), \forall m, \forall m' \neq m, \forall t \\ AA_{i,m,l,m',l',l'} \leq UBOUND_i \cdot (YY_{l,l',m,m',d}) \quad i \in IFINT_i, \forall l \in (L(m) \cap L(l)), \forall l' \in (L(m') \cap L(l)), \forall m, \forall m' \neq m, \forall t \\ \sum_{m \neq m} \sum_{l' \in (L(m) \cap L(l))} AA_{i,m,l,m',l',l'} \leq UBOUND_i \cdot (W_{i,m,l,d}) \quad i \in IFINT_i, \forall l \in (L(m) \cap L(l)), \forall m' \in (L(m') \cap L(l)), \forall m, \forall t \\ AA_{i,m,l,m',l',d} \leq UBOUND_i \cdot (W_{i,m,l,d}) \quad i \in IFINT_i, \forall l \in (L(m) \cap L(l)), \forall l' \in (L(m') \cap L(l)), \forall m, \forall t \\ AA_{i,m,l,m',l',d} \leq UBOUND_i \cdot (W_{i,m,l,d}) \quad i \in IFINT_i, \forall l \in (L(m) \cap L(l)), \forall l' \in (L(m') \cap L(l)), \forall m, \forall t \\ AA_{i,m,l,m',l',d} \leq UPBOUND_i \cdot (W_{i,m,l,d}) \quad i \in IFINT_i, \forall l \in (L(m) \cap L(l)), \forall l' \in (L(m') \cap L(l)), \forall m, \forall m' \neq m, \forall l \\ INV_{i,l-1}^{FIN} + \sum_{m} \sum_{l \in (L(m) \cap L(l))} INVP_{i,m,l,d}^{FIN} = \sum_{l' \in l} \sum_{m \neq m} \sum_{l' \in (L(m) \cap L(l))} AA_{i,m',l',d} \quad i \in IFINT_i, \forall l \in (L(m) \cap L(l)), \forall m, \forall l \in (L(m) \cap L(l)), \forall m, \forall l' \in (L($$



# **Proposed MILP Planning Models**



## Replace the detailed timing constraints by:

### **Model A. (Relaxed Planning Model)**

- ✓ Constraints that **underestimate the sequence dependent** changeover times
- ✓ Weak upper bounds (Optimistic Profit)

## **Model B. (Detailed Planning Model)**

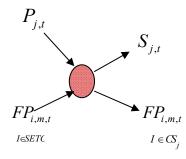
- ✓ **Sequencing constraints** for accounting for transitions rigorously (*Traveling salesman constraints*)
- ✓ **Tight** upper bounds (**Realistic estimate Profit**)



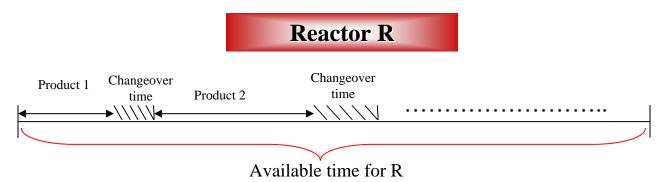
# **Generic Form of Proposed MILP Planning Models**



✓ Mass Balances on State Nodes



✓ Time Balance Constraints on Equipment



✓ Objective Function



## **Key Variables for Model**

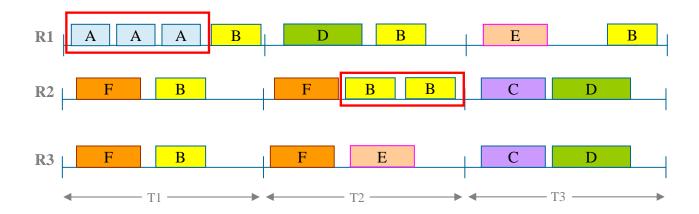


 $YP_{i,m,t}$ : the assignment of products to units at each time period

 $NB_{imt}$  :number of each batches of each product on each unit at each period

 $FP_{imt}$  : amount of material processed by each task

**Products:** A, B, C, D, E, F Reactor 1 or Reactor 2 or Reactor 3



$$YP_{A,reactor1,time1} = 1$$
 $NR = -3$ 

$$YP_{B,reactor2,time2} = 1$$
  
 $NB_{B,reactor2,time2} = 2$ 



## **Proposed Model B (Detailed Planning)**



## Sequence dependent changeovers (traveling salesman constraints):

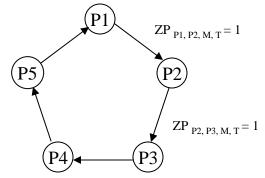
## **✓** Changeovers within each time period:

1. Generate a cyclic schedule where total transition time is minimized.

#### **KEY VARIABLE:**

 $ZP_{ii'mt}$ : becomes 1 if product i is after product i' on unit m at time period t, zero otherwise

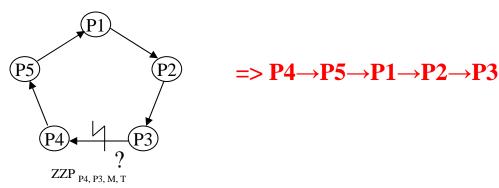
P1, P2, P3, P4, P5



## 2. Break the cycle at the pair with the maximum transition time to obtain the sequence.

#### **KEY VARIABLE:**

ZZP ii 'mt :becomes 1 if the link between products i and i' is to be broken, zero otherwise

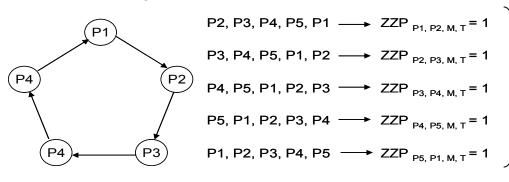




## **MILP Model**



According to the location of the link to be broken:



The sequence with the <u>minimum total</u> transition time is the **optimal sequence** within time period t.

$$\begin{split} YP_{imt} &= \sum_{i} ZP_{ii'mt} & \forall i, m, t \\ YP_{i'mt} &= \sum_{i} ZP_{ii'mt} & \forall i', m, t \\ YP_{imt} \land \left[ \bigwedge_{i \neq i} \neg YP_{i'mt} \right] & \iff ZP_{iimt} \forall i, m, t \\ YP_{imt} \geq ZP_{i,i,m,t} & \forall i, m, t \\ ZP_{i,i,m,t} + YP_{i',m,t} \leq 1 & \forall i, i' \neq i, m, t \\ ZP_{i,i,m,t} \geq YP_{i,m,t} - \sum_{i' \neq i} YP_{i',m,t} & \forall i, m, t \\ \sum_{i} \sum_{j} ZZP_{ii'mt} = 1 & \forall m, t \\ ZZP_{ii'mt} \leq ZP_{ii'mt} & \forall i, i', m, t \end{split}$$

Generate the cycle and break the cycle to find the optimum sequence where transition times are minimized.

Having determining the sequence, we can determine the total transition time within each week.



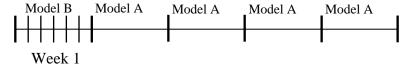
## **Limitation: Large Problems**



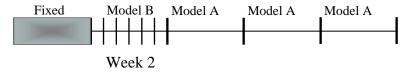
The **proposed planning models** may be expensive to solve for long term horizons.

#### **ROLLING HORIZON APPROACH:**

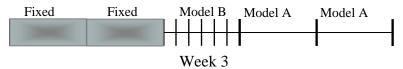
#### **Problem 1**



#### **Problem 2**



#### **Problem 3**



- ✓ The detailed planning period (Model B) moves as the model is solved in time.
- ✓ Future planning periods include only underestimations for transition times.

<sup>\*</sup>Ref. Dimitriadis et al, 1997



# **EXAMPLE: 5 Products, 2 Reactors, 1 Week**



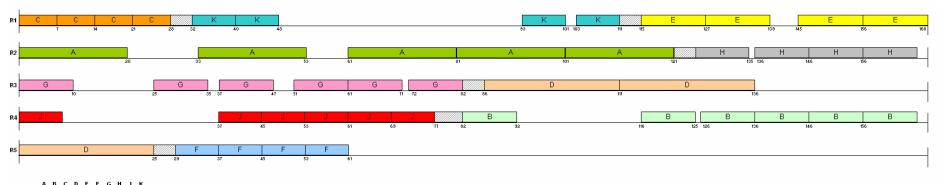
|   | Method                   | Number of<br>binary<br>variables | Number of continuous variables |      | Time<br>(CPUs) | Solution (\$) | _ |
|---|--------------------------|----------------------------------|--------------------------------|------|----------------|---------------|---|
| A | <b>Relaxed Planning</b>  | 20                               | 49                             | 67   | 0.046          | 1,680,960.0   | _ |
| В | <b>Detailed Planning</b> | 140                              | 207                            | 335  | 0.296          | 1,571,960.0   | _ |
|   | Scheduling               | 594                              | 2961                           | 2537 | 150            | 1,571,960.0   |   |

> % 6.484 Difference

| <b>Obj Function Item</b> | s (\$) Relaxed Planning | <b>Detailed Planning</b> | Scheduling |
|--------------------------|-------------------------|--------------------------|------------|
| Sales                    | 2,652,800               | 2,440,000                | 2,440,000  |
| <b>Operating Costs</b>   | 971,840                 | 868,000                  | 868,000    |
| <b>Transition Costs</b>  | 0                       | 40                       | 40         |
| <b>Inventory Costs</b>   | 0                       | 0                        | 0          |

Detailed Planning and Scheduling are Identical!

## **Gantt Chart:**

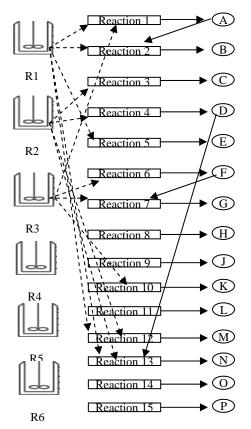




## **EXAMPLE 2 - 15 Products, 6 Reactors, 48 Weeks**



Determine the plan for 15 products, 6 reactors plant so as to maximize profit.



- 15 Products, A,B,C,D,E,F,G,H,J,K,L,M,N,O,P
- B, G and N are produced in 2 stages.
- 6 Reactors, R1,R2,R3,R4,R5,R6
- End time of the week is defined as due dates
- Demands are lower bounds

## Relaxed planning yields 21% overestimation of profit

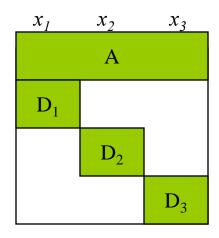
|                      | number of<br>binary | number of continuous | number of | time    | solution    |
|----------------------|---------------------|----------------------|-----------|---------|-------------|
| method               | variables           | variables            | equations | (CPU s) | (\$)        |
| relaxed planning (A) | 2,592               | 5,905                | 9,361     | 362     | 224,731,683 |
| rolling horizon (RH) | 10,092              | 25,798               | 28,171    | 11,656  | 184,765,965 |



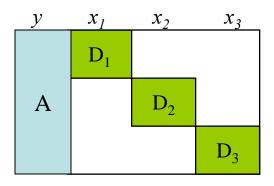


# **Decomposable MILP Problems**

## **Complicating Constraints**



## Complicating Variables



complicating max 
$$c^T x$$

st  $Ax = b$ 

$$D_i x_i = d_i \ i = 1, ..n$$

$$x \in X = \{x \mid x_i, i = 1, ..n, | x_i \ge 0\}$$

## **Lagrangean decomposition**

## **Benders decomposition**

Note: can reformulate by defining  $y_i = y_{i+1}$  Complicating constraints and apply Lagrangean decomposition



# Lagrangean Relaxation (Fisher, 1985)

- > MILP optimization problems can often be modeled as problems with complicating constraints.
- The complicating constraints are added to the objective function (i.e. dualized) with a penalty term (Lagrangean multiplier) proportional to the amount of violation of the dualized constraints.
- ➤ The Lagrangean problem is easier to solve (eg. can be decomposed) than the original problem and provides an upper bound to a maximization problem.

# **Lagrangean Relaxation**



$$Z = \max cx$$

$$s.t. Ax \le b$$

$$Dx \le e$$

$$x \in Z_{+}^{n}$$
Assume integers only Easily extended cont. vars.

Assume that  $Ax \le b$  is complicating constraint

$$Z_{LR}(u) = \max \quad cx + u(b - Ax)$$
$$Dx \le e$$
$$x \in Z_+^n$$

where  $u \ge 0$  Lagrange multipliers

# **Lagrangean Relaxation**



$$Z = \max \quad cx \qquad \qquad Z_{LR}(u) = \max \quad cx + u(b - Ax)$$

$$Complicating Constraint \longrightarrow Ax \le b \qquad \qquad Dx \le e$$

$$Dx \le e \qquad \qquad x \in Z_+^n \qquad \qquad where \qquad u \ge 0$$

This is a relaxation of original problem because:

- i) removing the constraint  $Ax \le b$  relaxes the original feasible space,
- ii)  $Z_{LR}(u) \ge Z$  always holds as in the original space since  $(b Ax) \ge 0$  and Lagrange multiplier is always  $u \ge 0$ .

Lagrangean Relaxation Yields Upper Bound  $\Rightarrow Z_{IR}(u) \geq Z$ 

## Carnegie Mellon

# **Lagrangean Relaxation**



$$Z = \max cx$$

$$s.t. Ax \leq b$$

$$Dx \le e$$

$$x \in Z_+^n$$

## **Relaxed problem:**

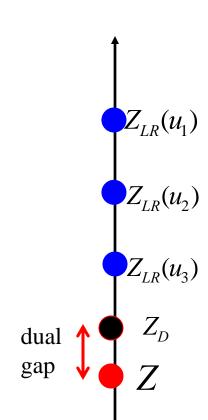
$$Z_{LR}(u) = \max cx + u(b - Ax)$$

$$Dx \le e$$

$$x \in \mathbb{Z}_{+}^{n}$$

## Lagrangean dual:

$$Z_D = \min Z_{LR}(u)$$
$$u \ge 0$$



#### Carnegie Mellon

## **Graphical Interpretation**



#### **Relaxed problem:**

$$Z_{LR}(u) = \max \quad cx + u(b - Ax)$$

$$Dx \le e$$

$$x \in \mathbb{Z}_{+}^{n}$$

#### Lagrangean dual:

$$Z_D = \min Z_{LR}(u)$$

$$u \ge 0$$

# Combine Relaxed and Lagrangean Dual Problems:

$$Z_{D} = \min_{u \ge 0} \left\{ \max_{x \ge 0} \quad cx + u(b - Ax) \right\}$$

$$Dx \le e$$

$$x \in Z_{+}^{n}$$

## **Graphical Interpretation**



$$Z_{D} = \min_{u \geq 0} \left\{ \max_{x \geq 0} cx + u(b - Ax) \right\}$$

$$Dx \leq e$$

$$x \in Z_{+}^{n}$$

$$Z_{D} = \max cx$$

$$Ax \leq b$$

$$x \in Conv(Dx \leq e, x \in Z_{+}^{n})$$

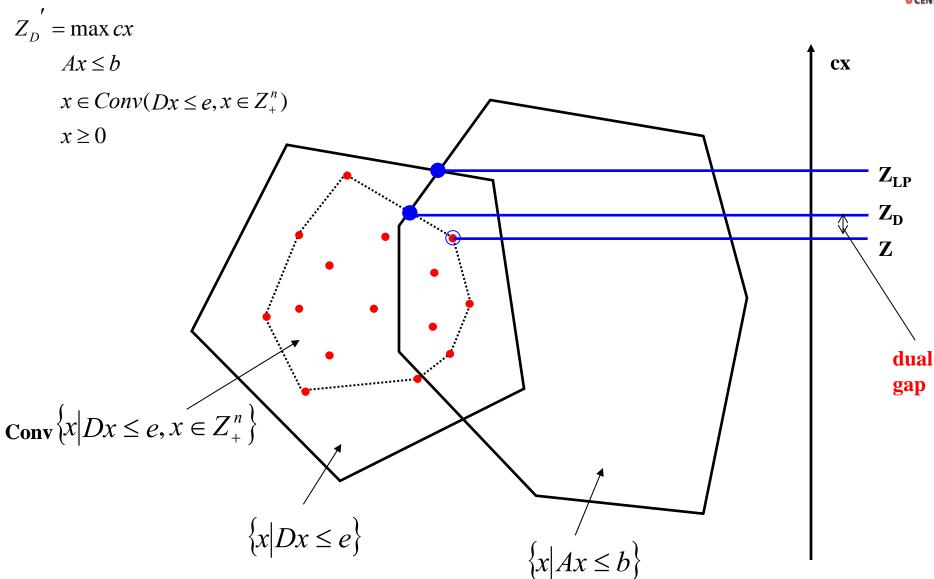
$$x \geq 0$$

Optimization of Lagrange multipliers (dual) can be interpreted as optimizing the primal objective function on the intersection of the convex hull of non-complicating constraints set  $\{x|Dx \le e, x \in Z_+^n\}$  and the LP relaxation of the relaxed constraints set  $\{x|Ax \le b, x \in Z_+^n\}$ .

#### **Carnegie Mellon**

## **Graphical Interpretation**





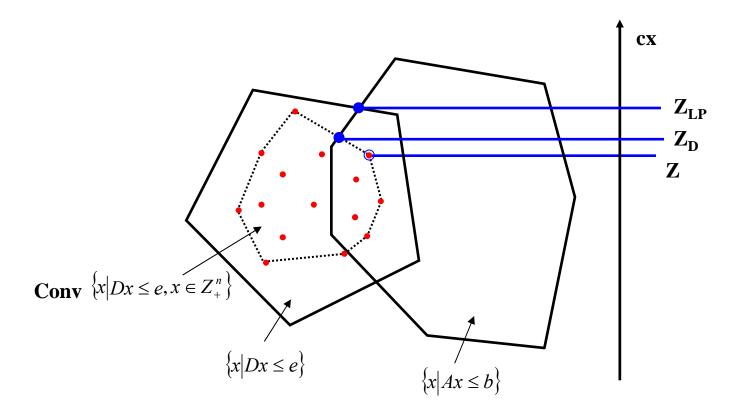
#### **Carnegie Mellon**



## Theorem

#### Lagrangean relaxation yields a bound at least as tight as LP relaxation

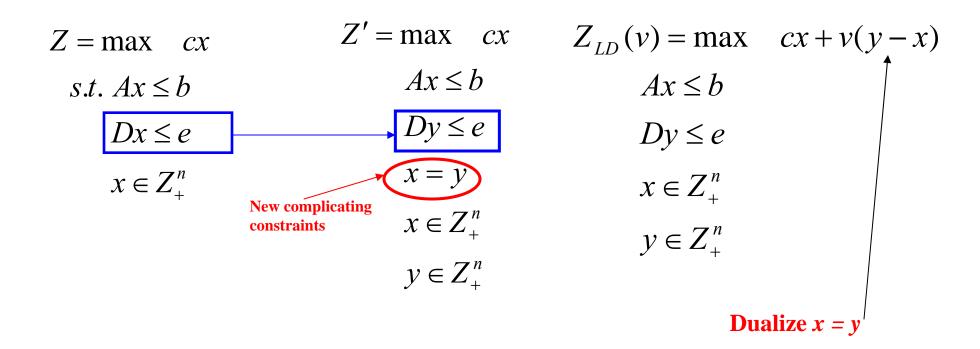
$$Z(P) \le Z_D \le Z_{LR}(u) \le Z_{LP}$$





## Lagrangean Decomposition (Guignard & Kim, 1987)

- Lagrangean Decomposition is a special case of Lagrangean Relaxation.
- ➤ Define variables for each set of constrain, add constraints equating different variables (new complicating constraints) to the objective function with some penalty terms.



#### Carnegie Mellon

## Lagrangean Decomposition



$$Z_{LD}(v) = \max \quad cx + v(y - x)$$

$$Ax \le b$$

$$Dy \le e$$

$$x \in \mathbb{Z}_{+}^{n}$$

$$y \in \mathbb{Z}_{+}^{n}$$

#### Subproblem 1

# $Z_{LD1}(v) = \max \quad (c - v)x$

 $Ax \leq b$ 

$$x \in \mathbb{Z}_+^n$$

#### **Subproblem 2**

$$Z_{LD2}(v) = \max vy$$

$$Dy \le e$$

$$y \in Z_+^n$$

$$Z_{LD} = \min_{v \ge 0} \quad \left( Z_{LD1}(v) + Z_{LD2}(v) \right)$$

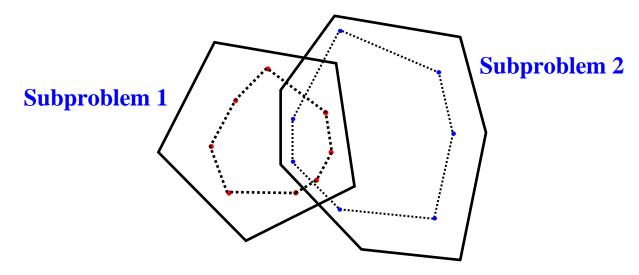
Lagrangean dual



#### **Notes**

Lagrangean decomposition is different from other possible relaxations because every constraint in the original problem appears in one of the subproblems.

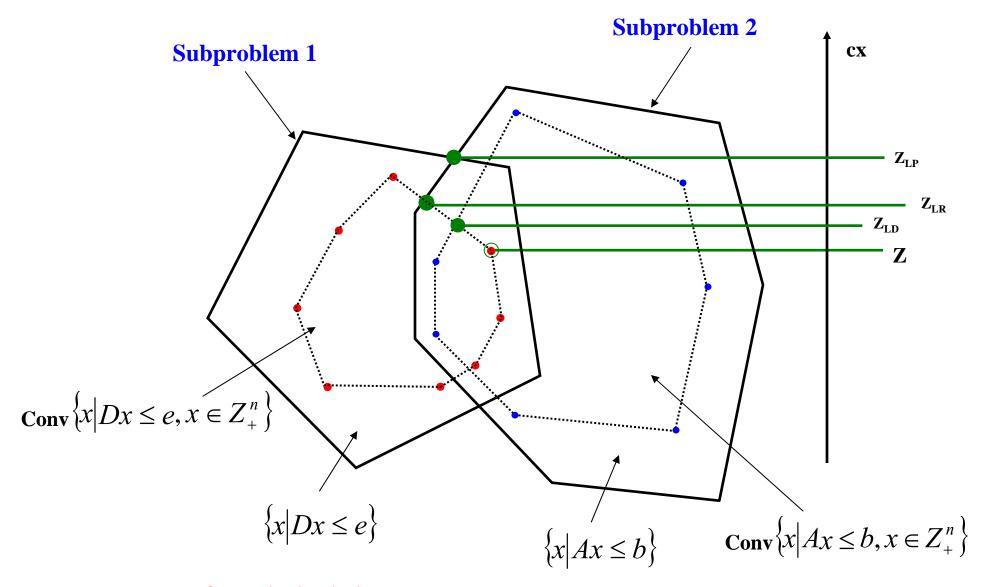
<u>Graphically:</u> The optimization of Lagrangean multipliers can be interpreted as optimizing the primal objective function on the intersection of the convex hulls of constraint sets.



#### **Carnegie Mellon**

# CAPD

# **Graphical Interpretation?**



Note:  $Z_{LR}$ ,  $Z_{LD}$  refer to dual solutions

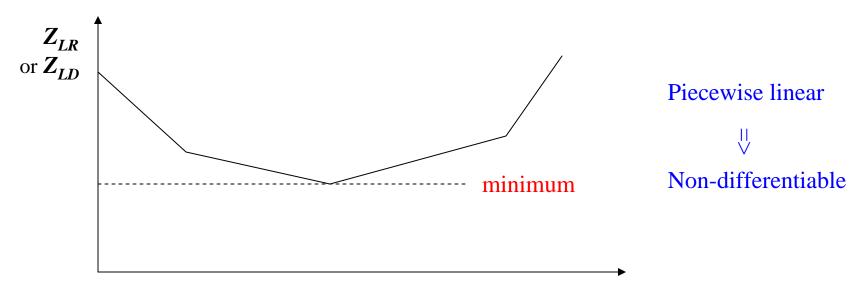
#### Theorem



- The bound predicted by "Lagrangean decomposition" is at least as tight as the one provided by "Lagrangean relaxation" (Guignard and Kim, 1987)
- > For a maximization problem

$$Z(P) \le Z_{LD} \le Z_{LR} \le Z_{LP}$$

#### **Solution of Dual Problem**



## How to iterate on multipliers u?



#### Assuming $Dx \le d$ is a bounded polyhedron (polytope) with extreme points

$$x^{k} k = 1, 2...K$$
, then

$$\max_{x} \{ cx + u(b - Ax) \middle| Dx \le d, x \in X \} = \max_{k=1,\dots K} \{ cx^{k} + u(b - Ax^{k}) \}$$

## $\mathbf{V}^{\mathsf{II}}$ **Dual problem**

$$\min_{u \ge 0} \max_{k=1,..K} \{ cx^k + u(b - Ax^k) \} = \min_{u \ge 0} \{ \eta | \eta \ge cx^k + u(b - Ax^k), k = 1,..K \}$$

### **Cutting plane approach**

min 
$$\eta$$
  
 $s.t. \ \eta \ge cx^k + u(b-Ax^k)$ ,  $k = 1, ...K_n$  subgradient  
 $u \ge 0, \ \eta \in R^1$   $K_n = \text{no. extreme points}$  iteration n

#### **Carnegie Mellon**

## **Subgradient Optimization Approach**



Subgradient 
$$s^k = (b - Ax^k)$$

Steepest descent search  $u^{k+1} = u^k + \mu s^k$ 

#### **Update formula for multipliers** (Fisher, 1985)

$$u^{k+1} = u^{k} + \alpha_{k} (Z^{LB} - Z_{LD}^{k})(b - Ax^{k}) / \|b - Ax^{k}\|^{2}$$
where  $\alpha_{k} \in [0, 2]$ 

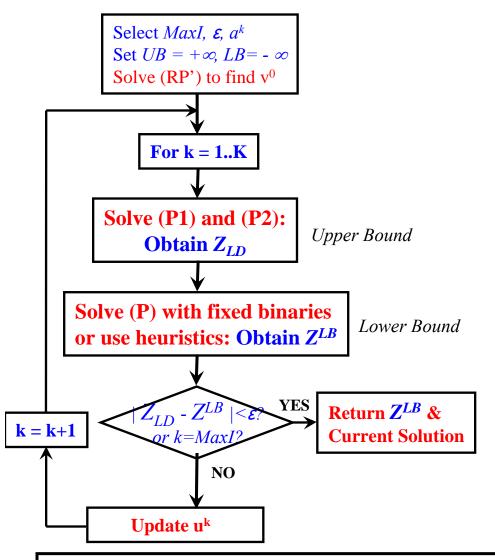
Note: Can also use bundle methods for nondifferentiable optimization Lemarechal, Nemirovski, Nesterov (1995)

#### Carnegie Mellon

### **Solution of Langrangean Decomposition**



1. Iterative search in multilpliers of dual



- 2. Perform branch and bound search where LP relaxation is replaced by Lagrangean relaxation/decomposition to
  - a) Obtain tighter bound
  - b) Decompose MILP

Typically in Stochastic Programming
Caroe and Schultz (1999)
Goel and Grossmann (2006)
Tarhan and Grossmann (2008)

#### Remarks

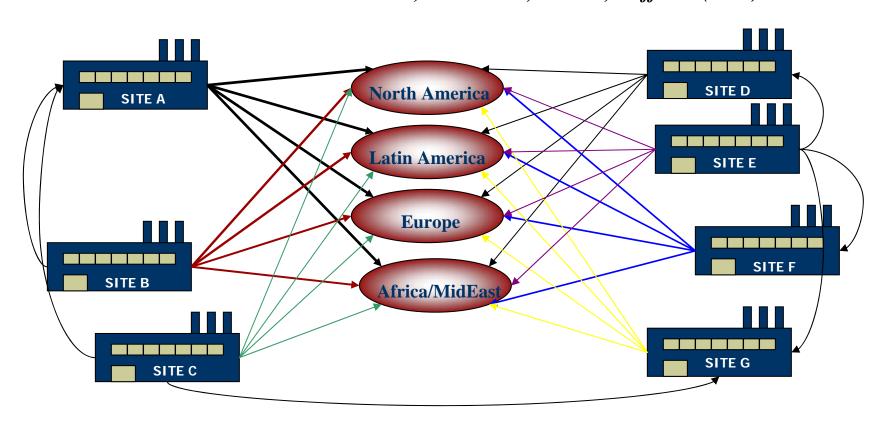
- 1. Methods can be extended to NLP, MINLP
- 2. Size of dual gap depends greatly on how problems are decomposed
- 3. From experience gap often decreases with problem size.

Notes: Heuristic due to dual gap
Obtaining Lower Bound might be tricky

## **Multisite Distribution Network**



Jackson, Grossmann, Wassick, Hoffman (2002)



• Objective: Develop model and effective solution strategy for large-scale multiperiod planning with *Nonlinear Process Models* 

## **Multisite Distribution Model**



## •Develop Multisite Model to determine:

- 1)What products to manufacture in each site
- 2) What sites will supply the products for each market
- 3)Production and inventory plan for each site
- ➤ Objective: Maximize Net Present Value

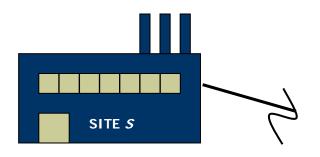
## •Challenges/Optimization Bottlenecks: Large-Scale NLP

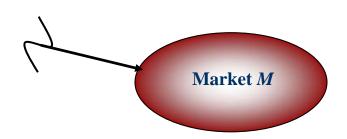
- -Interconnections between time periods & sites/markets
- >Apply Lagrangean Decomposition Method

# **Spatial Decomposition**



$$\max PROFIT = SCost S^{PR,M} * SALES S^{PR,M} - PCost S^{PR,M} * PROD S^{PR,M} + \lambda_S^{PR,M} \left(PROD S^{PR,M} - SALES S^{PR,M}\right)$$





#### SITE S CONSTRAINTS:

$$f(PROD_S^{PR,M}) \le 0$$

$$\max(-PCost_S^{PR,M}PROD_S^{PR,M} + \lambda_S^{PR,M}PROD_S^{PR,M})$$

Market *M* CONSTRAINTS:

$$f(SALES_{S}^{PR,M}) \leq 0$$

$$\max(SCost_{S}^{PR,M}SALES_{S}^{PR,M} - \lambda_{S}^{PR,M}SALES_{S}^{PR,M})$$

Site SUBPROBLEM for all S (NLP)

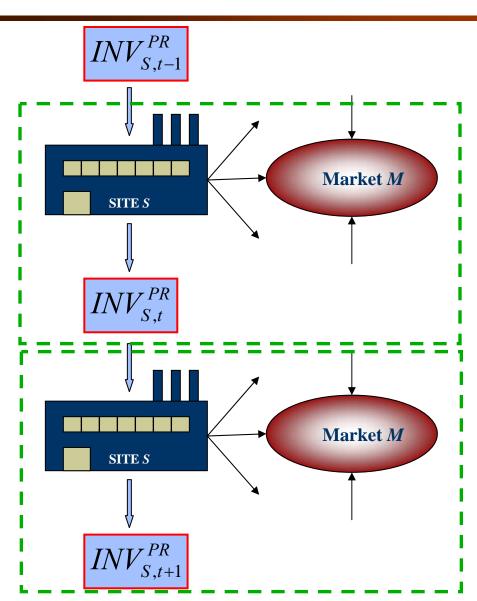
Market SUBPROBLEM for all M (LP)

Carnegie Mellon

# **Temporal Decomposition**



- •<u>Decompose at each time</u> <u>period</u>
- •Duplicate variables for Inventories for each time period
- Apply LangrangeanDecomposition Algorithm



# **Multisite Distribution Model - Spatial**



- •3 Multi-Plant Sites, 3 Geographic Markets
- •Solved with GAMS/Conopt2

| # Time<br>Periods<br>(months) | Variables/<br>Constraints | Optimal Solution Profit (million-\$) | Full Space<br>Solution Time<br>(CPU sec) | Lagrangean<br>Solution Time<br>(CPU sec) | % Within Full Optimal Solution |  |
|-------------------------------|---------------------------|--------------------------------------|------------------------------------------|------------------------------------------|--------------------------------|--|
| 2                             | 3345 / 2848               | 164                                  | 52                                       | 10                                       |                                |  |
| 4                             | 6689 / 5698               | 326                                  | 478                                      | 127                                      | 11%                            |  |
| 6                             | 10033 /8548               | 497                                  | 1605                                     | 279                                      | 9%                             |  |
| 8                             | 13377/11398               | 666                                  | 2350                                     | 550                                      | 9%                             |  |

# **Multisite Distribution Model - Temporal**



- 3 Multi-Plant Sites, 3 Geographic Markets
- Solved with GAMS/Conopt2

| # Time<br>Periods<br>(months) | Variables/<br>Constraints | Optimal Solution Profit (million-\$) | Full Space<br>Solution Time<br>(CPU sec) | Lagrangean<br>Solution Time<br>(CPU sec) | % Within Full Optimal Solution |
|-------------------------------|---------------------------|--------------------------------------|------------------------------------------|------------------------------------------|--------------------------------|
| 3                             | 5230 / 5005               | 116.05                               | 395                                      | 97                                       | 2.2                            |
| 6                             | 9973 / 8551               | 236.53                               | 2013                                     | 138                                      | 2.3                            |
| 12                            | 19945 /17101              | 474.18                               | 10254                                    | 278                                      | 2.2                            |

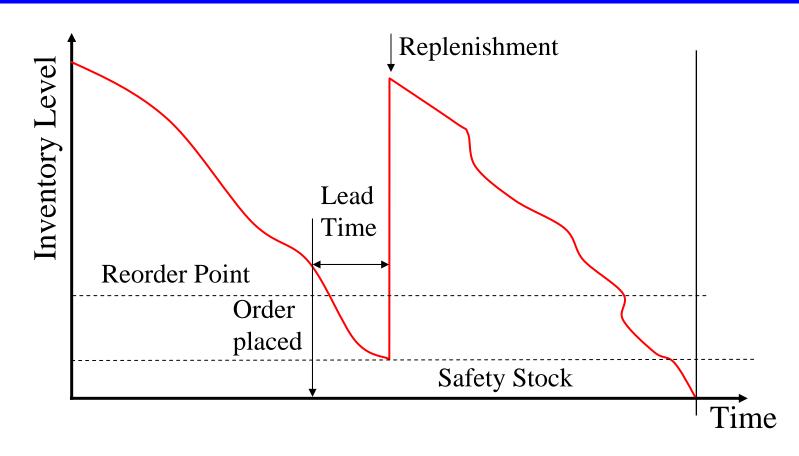
Temporal much smaller gap!

Reason: material balances not violated at each time period

**Carnegie Mellon** 

# **Stochastic Inventory System**



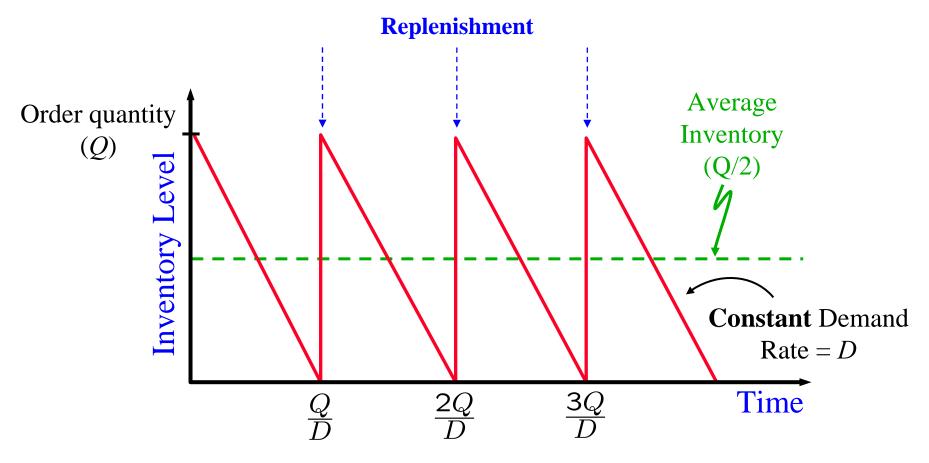


- Inventory System under Demand Uncertainty
  - Total Inventory = Working Inventory (WI) + Safety Stock (SS)
  - Estimate WI with Economic Order Quantity (EOQ) model



# **Economic Order Quantity Model**







- F = Fixed ordering cost for each replenishment
- h = Unit inventory holding cost

# **Economic Order Quantity Model**

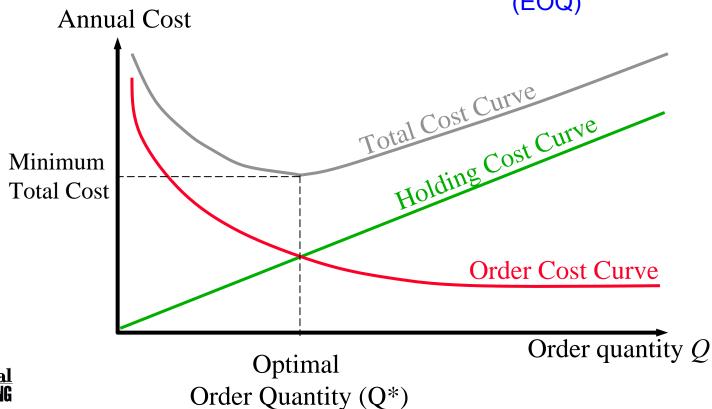


Total Cost = 
$$F \cdot \frac{D}{Q} + h \cdot \frac{Q}{2}$$
  $\Rightarrow$   $Q^* = \sqrt{\frac{2FD}{h}}$ 

Order cost Holding cost



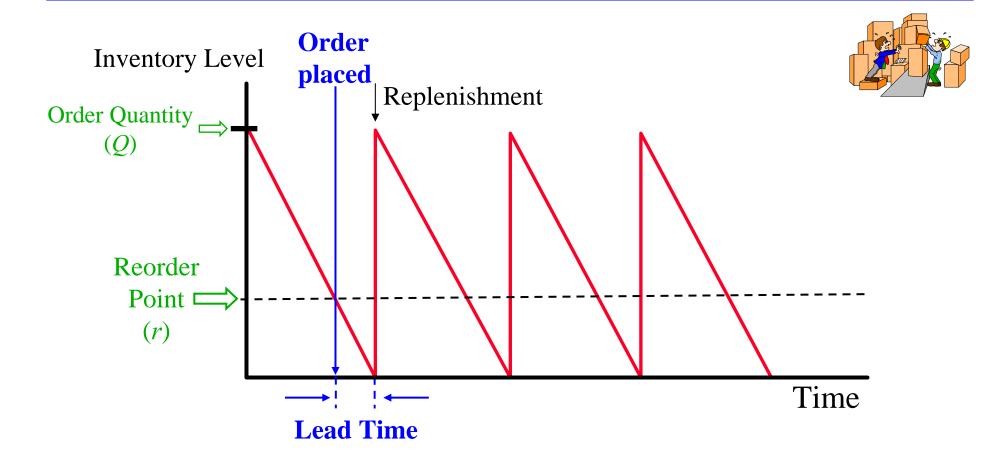
Economic Order Quantity (EOQ)



Carnegie Mellon

# (*Q*,*r*) Inventory Policy





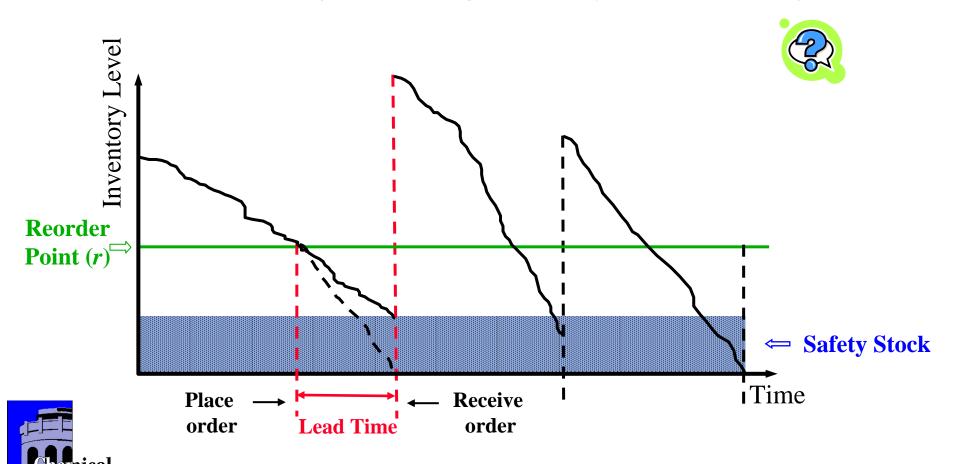


- When inventory level falls to r, order a quantity of Q
- Reorder Point (r) = Demand over Lead Time

# Stochastic Inventory Model



## **Stochastic Inventory = Working Inventory (EOQ) + Safety Stock**



**Reorder Point** = Expected Demand over Lead Time + Safety Stock

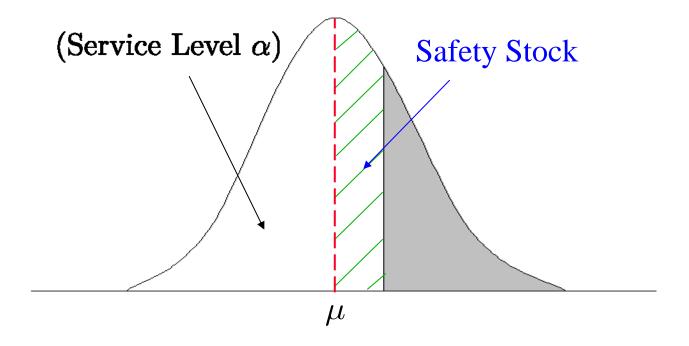
Carnegie Mellon

# Safety Stock Level



$$D \sim N(\mu, \sigma^2)$$
 Safety Stock =  $z_{\alpha}\sigma$  ,  $P(z \leq z_{\alpha}) = \alpha$  (Service Level)

**Lead time** = 
$$L \implies D \sim N(L \cdot \mu, L \cdot \sigma^2) \implies$$
 Safety Stock=  $z_{\alpha} \sigma \sqrt{L}$ 





# **Risk-Pooling Effect\***



Single retailer:

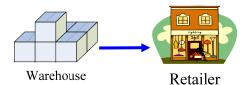
safety stock = 
$$z_{\alpha}\sigma$$

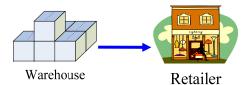


Retailer

- Decentralized system:
  - Each retailer maintains its own inventory
  - Demand at each retailer is  $D_i \sim N(\mu_i, \sigma_i^2)$

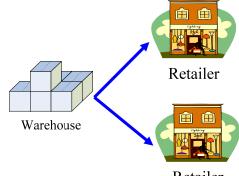
safety stock = 
$$z_{\alpha} \sum_{i=1}^{N} \sigma_i$$





- Centralized system:
  - All retailers share common inventory
  - Integrated demand  $\sum_i D_i \sim N(\sum_i \mu_i, \sum_i \sigma_i^2)$

safety stock = 
$$z_{\alpha} \sqrt{\sum_{i=1}^{N} \sigma_i^2}$$

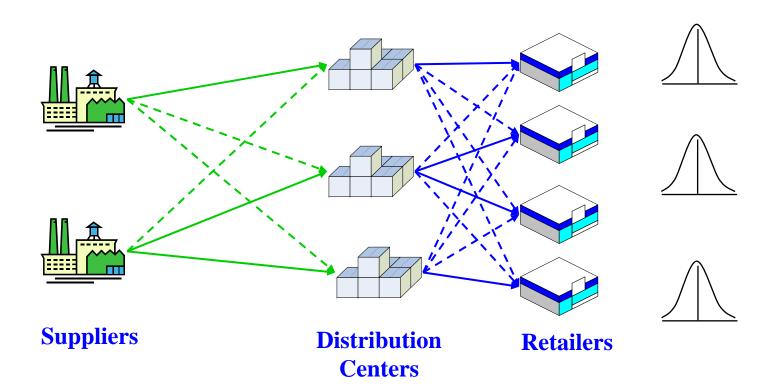


## **Supply Chain Design with Stochastic Inventory Management**



• Given: A potential supply chain

- You, Grossmann (2008)
- Including fixed suppliers, retailers and potential DC locations
- Each retailer has uncertain demand, using (Q, r) policy
- Assume all DCs have identical lead time L (lumped to one supplier)

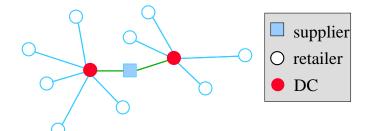




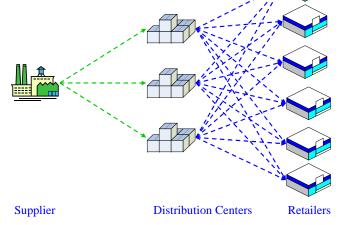
### **Problem Statement**



- Objective: (Minimize Cost)
  - Total cost = DC installation cost + transportation cost + fixed order cost
     + working inventory cost + safety stock cost
- Major Decisions (Network + Inventory)
  - Network: number of DCs and their locations, assignments between retailers and DCs (single sourcing), shipping amounts
  - Inventory: number of replenishment, reorder point, order quantity,
     neglect inventories in retailers







# **EOQ** cost



 $D = \text{expected annual demand} = \sum \chi \mu_i Y_{ij}$ 

 $v(x) = \cos t$  for shipping a order of size x from supplier

h = unit inventory holding cost

F =fixed cost for place an order

n = number of orders per year

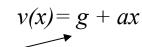
 $\chi = \text{days per year}$ 

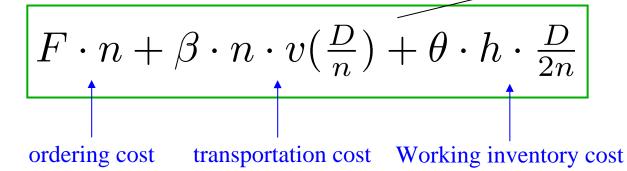
L = order lead time

 $\beta$  = weighted factor associated with the transportation cost

 $\theta$  = weighted factor associated with the inventory cost

# Annual EOQ cost at a DC:







# **Working Inventory Cost**



# Annual working inventory cost at a DC:



$$F \cdot n + \beta \cdot n \cdot (g + \frac{aD}{n}) + \theta \frac{h \cdot D}{2n}$$
 ordering cost transportation cost inventory cost

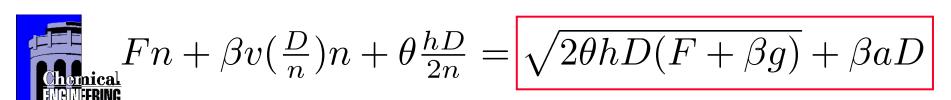
Convex Function of *n* 

The optimal number of orders is:

$$n^* = \sqrt{((\theta h D)/2(F + \beta g))}$$

The optimal annual EOQ cost:

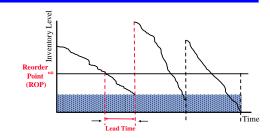
Carnegie Mellon



# **Safety Stock Cost for DCs**







- Centralized system (risk-pooling)
- Expected annual cost of safety stock at a DC is:

safety stock cost = 
$$h \cdot z_{\alpha} \sqrt{L \sum_{i \in I} \sigma_i^2}$$

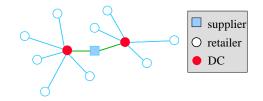
where  $z_a$  is the standard normal deviate for which  $P(z \le z_\alpha) = \alpha$ 





## **Other Parameters and Variables**





- I set of retailers (DC) indexed by i
- $f_j$  fixed (annual)cost of locating a DC at retailer  $j, j \in I$
- $d_{ij}$  cost per unit to ship from DC j to retailer i

$$X_j = \begin{cases} 1 & \text{if retailer } j \text{ is selected as a DC} \\ 0 & \text{if not} \end{cases}$$

$$Y_{i,j} = \begin{cases} 1 & \text{if retailer } i \text{ is served by DC based on retailer } j \\ 0 & \text{if not} \end{cases}$$



#### **INLP Model Formulation**

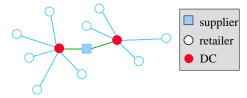




Carnegie Mellon

$$\sum_{j\in J} f_j X_j$$

min  $\sum f_j X_j$  DC installation cost

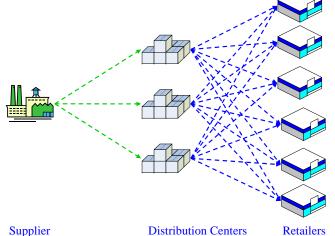


+ 
$$\beta \sum_{j \in J} \sum_{i \in I} d_{ij} \chi \mu_i Y_{ij}$$
 DC – retailer transportation

+ 
$$\sum_{j \in J} \sqrt{2\theta h(F_j + \beta g_j)} \sum_{i \in I} \chi \mu_i Y_{ij} + \beta \sum_{i \in I} \sum_{j \in J} (a_j \chi \mu_i Y_{ij})$$
 EOQ

$$+ \sum_{j \in J} (\theta h z_{\alpha} \sqrt{\sum_{i \in I} \sigma_i^2 L_i Y_{ij}})$$
 Safety Stock

s.t. 
$$\sum_{j \in J} Y_{ij} = 1$$
 ,  $\forall i \in I$   $Y_{ij} \leq X_j$  ,  $\forall i \in I, j \in J$   $X_j, Y_{ij} \in \{0,1\}$  ,  $\forall i \in I, j \in J$ 



**Nonconvex INLP** 

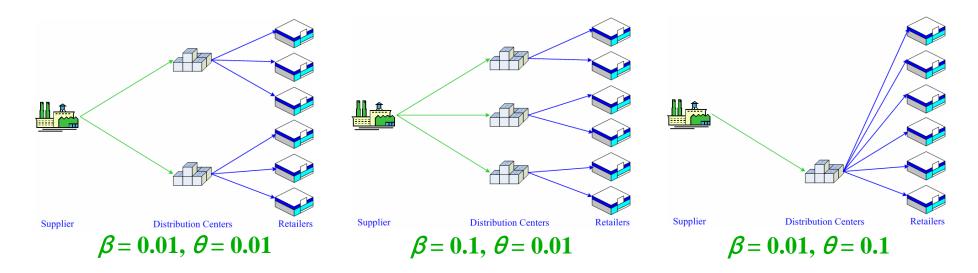
# **Illustrative Example**



## •Small Scale Example

Carnegie Mellon

- •A supply chain includes 3 potential DCs and 6 retailers (pervious slide)
- Different weights for transportation ( $\beta$ ) and inventory ( $\theta$ )



Model Size for Large Scale Problem

• INLP model for 150 potential DCs and 150 retailers has 22,650 binary variables and 22,650 constraints – need effective algorithm to solve it ...

# **Model Properties**



- Variables  $Y_{ij}$  can be relaxed as continuous variables (MINLP)
  - Local or global optimal solution always have all  $Y_{ij}$  at integer
  - If h=0, it reduces to an "uncapacitated facility location" problem
  - NLP relaxation is very effective (usually return integer solutions)

min 
$$\sum_{\boldsymbol{j} \in J} f_{\boldsymbol{j}} X_{\boldsymbol{j}} + \sum_{\boldsymbol{i} \in I} \sum_{\boldsymbol{j} \in J} \hat{d}_{\boldsymbol{i}\boldsymbol{j}} Y_{\boldsymbol{i}\boldsymbol{j}} + \sum_{\boldsymbol{j} \in J} K_{\boldsymbol{j}} \sqrt{\sum_{\boldsymbol{i} \in I} \mu_{\boldsymbol{i}} Y_{\boldsymbol{i}\boldsymbol{j}}} + \sum_{\boldsymbol{j} \in J} q \sqrt{\sum_{\boldsymbol{i} \in I} \hat{\sigma}_{\boldsymbol{i}}^2 Y_{\boldsymbol{i}\boldsymbol{j}}}$$
s.t. 
$$\sum_{j \in J} Y_{ij} = 1 \quad , \quad \forall i \in I$$

$$Y_{ij} \leq X_{j} \quad , \quad \forall i \in I, j \in J$$

$$Y_{ij} \geq 0 \quad , \quad \forall i \in I, j \in J$$

$$X_{j}, \in \{0, 1\} \quad , \quad \forall j \in J$$
Non-convex MINLP

where  $\hat{d_{ij}}=eta\mu_i(d_{ij}+a_j),\;\hat{\sigma_i}^2=L\sigma_i^2\;K_j=\sqrt{2 heta h(F_j+eta g_j)},\;q= heta hz_lpha$ 

Carnegie Mellon

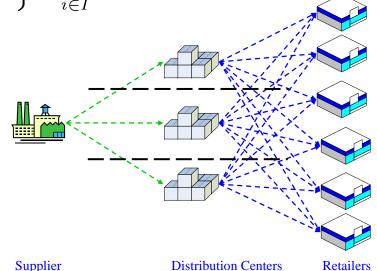
# **Lagrangean Relaxation**



- Lagrangean Relaxation (LR) and Decomposition
  - LR: dualizing the single sourcing constraint:  $= 1, \forall i \in I$
  - Spatial Decomposition: decompose the problem for each potential DC j
  - Implicit constraint: at least one DC should be installed,

$$\min \sum_{j \in j} \left\{ f_j X_j + \text{Use (alspecial) sase of } I_j \text{ subproblem} \right\} \text{ that } \sum_{i \in I} x_i \text$$

Carnegie Mellon



decompose by DC *j* 

# **Computational Results**



- 88 ~150 retailers
  - Each instance has the same number of potential DCs as the retailers

| No.<br>Retailers | β     | $\theta$ | Lagrangean Relaxation (Algorithm 2) |                |         |       |          | BARON (global optimum) |                |          |
|------------------|-------|----------|-------------------------------------|----------------|---------|-------|----------|------------------------|----------------|----------|
|                  |       |          | Upper<br>Bound                      | Lower<br>Bound | Gap     | Iter. | Time (s) | Upper<br>Bound         | Lower<br>Bound | Gap      |
| 88               | 0.001 | 0.1      | 867.55                              | 867.54         | 0.001 % | 21    | 356.1    | 867.55*                | 837.68         | 3.566 %  |
| 88               | 0.001 | 0.5      | 1230.99                             | 1223.46        | 0.615 % | 24    | 322.54   | 1295.02*               | 1165.15        | 11.146 % |
| 88               | 0.005 | 0.1      | 2284.06                             | 2280.74        | 0.146 % | 55    | 840.28   | 2297.80*               | 2075.51        | 10.710 % |
| 88               | 0.005 | 0.5      | 2918.3                              | 2903.38        | 0.514 % | 51    | 934.85   | 3022.67*               | 2417.06        | 25.056 % |
| 150              | 0.001 | 0.5      | 1847.93                             | 1847.25        | 0.037 % | 13    | 659.1    | 1847.93*               | 1674.08        | 10.385 % |
| 150              | 0.005 | 0.1      | 3689.71                             | 3648.4         | 1.132 % | 53    | 3061.2   | 3689.71*               | 3290.18        | 12.143 % |

<sup>\*</sup> Suboptimal solution obtained with BARON for 10 hour limit.





#### **Conclusions**



- 1. Enterprise-wide Optimization area of great industrial interest Great economic impact for effectively managing complex supply chains
- 2. Two key components: Planning and Scheduling
  Modeling challenge:

  Multi-scale modeling (temporal and spatial integration)
- 3. Computational challenges lie in:
  - a) Large-scale optimization models (decomposition, grid computing)
  - b) Handling uncertainty (stochastic programming)