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Objectives Module

1. Learn about two major issues in Enterprise-wide Optimization (EWO):
Integration and Uncertainty

2. Learn how to model EWO problems
Mathematical Programming Framework

3.  Learn about solution methods for:
Stochastic Programming
Bi-criterion Optimization
Lagrangean decomposition

For Background see following sites:
Mixed-integer programming: http://cepac.cheme.cmu.edu/pasilectures/grossmann.htm
Supply Chain Optimization: http://cepac.cheme.cmu.edu/pasilectures/pinto.htm
Enterprise-wide Optimization: http://egon.cheme.cmu.edu/ewocp/slides_seminars.html
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Enterprise-wide Optimization  (EWO)

• The supply chain is large, complex, and highly dynamic

• Optimization can have very large financial payout

WellheadWellhead PumpPumpTradingTrading Transfer of  
Crude 

Transfer of  
Crude 

Refinery 
Optimization

Refinery 
Optimization

Schedule 
Products
Schedule 
Products

Transfer of 
Products 

Transfer of 
Products 

Terminal
Loading
Terminal
Loading

Petroleum industry Dennis Houston (2003)

EWO involves optimizing the operations of R&D,
material supply, manufacturing, distribution of a 
company to reduce costs and inventories, and to 
maximize profits, asset utilization, responsiveness . 
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• Pharmaceutical process (Shah, 2003)

Primary production has five synthesis stages
Two secondary manufacturing sites
Global market

Lifecycle
Management

0.5 - 2 yrs 1 - 2 yrs 1.5 - 3.5 yrs 2.5 - 4 yrs 0.5-2 yrs

Discovery Market

2-5 yrs

Submission&
Approval

10-20 yrs

Phase 3Phase 2a/bPhase 1
Pre-

clinical
Development

Targets
Hits

Leads
Candidate

R&D Pharmaceutical industry

Pharmaceutical supply chain

(Gardner et al , 2003)
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I. Integration of  planning, scheduling and control

Key issues:

Planning

Scheduling

Control

LP/MILP

MI(N)LP

RTO, MPC

Mutiple models

Planning

Scheduling

Control

Economics

Feasibility 
Delivery

Dynamic  
Performance

months, years  

days, weeks

secs, mins

Mutiple
time scales
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Source: Source: TayurTayur, et al. [1999], et al. [1999]

Enterprise ResourceEnterprise Resource
Planning SystemPlanning System

Materials RequirementMaterials Requirement
Planning SystemsPlanning Systems

Distributions RequirementsDistributions Requirements
Planning SystemPlanning System

Transactional ITTransactional IT

External DataExternal Data
Management SystemsManagement Systems

Strategic Optimization
Modeling System

Tactical Optimization
Modeling System

Production Planning Optimization
Modeling Systems

Logistics OptimizationLogistics Optimization
Modeling SystemModeling System

Production Scheduling 
Optimization Modeling Systems

Distributions Scheduling Optimization Distributions Scheduling Optimization 
Modeling SystemsModeling Systems

Analytical Analytical 
ITIT

Demand Demand 
Forecasting and OrderForecasting and Order
Management SystemManagement System

Strategic AnalysisStrategic Analysis

LongLong--Term Tactical Term Tactical 
AnalysisAnalysis

ShortShort--Term Tactical Term Tactical 
AnalysisAnalysis

Operational Operational 
AnalysisAnalysis

ScopeScope

II. Integration of  information, modeling and solution methods
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-The modeling challenge: 
Planning, scheduling, control models for the various components of the supply 
chain, including nonlinear process models?

Research Challenges

- The multi-scale optimization challenge: 
Coordinated planning/scheduling  models over geographically distributed sites, and 
over the long-term (years), medium-term (months) and short-term (days, min) 
decisions?

- The uncertainty challenge:
How to effectively anticipate effect of uncertainties ?

- Algorithmic and computational challenges: 
How to effectively solve large-scale models including nonconvex problems in 
terms of efficient algorithms, decomposition methods and modern computer 
architectures? 
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Examples of EWO problems

Simultaneous Tactical Planning and Production Scheduling 
Large-scale mixed integer linear programming

Optimal Planning of Multisite Distribution Network
Lagrangean decomposition for nonlinear programming model

Multiperiod Supply Chain Design
Multiperiod mixed-integer linear programming model

Design of Responsive Process Supply Chains with Uncertain Demand
Bi-criterion mixed-integer nonlinear programming 

Supply Chain Operation under Uncertainty
Two-stage programming LP model

Supply Chain Design with Stochastic Inventory Management
Lagrangean decomposition for mixed-integer nonlinear programming model
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Technology 1

Technology I

Technology 1

Technology I

DMK
lpt

PUjpt

Q
PL jkpt

Q
WH klpt

Suppliers

Plants 
j=1,…,J

Warehouses 
k=1,…,K

Markets
l=1,…,L

Wijpt

INVkpt

CPL
ijt

CWH
kt

Model = Plant location problem (Current et al.,1990) plus 
Long range planning of chemical processes (Sahinidis et al., 1989)

• Three-echelon supply chain
• Different technologies available at plants
• Multi-period model

Multiperiod Supply Chain Design and Planning

Guillen, Grossmann (2008)
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Notation
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1. Mass balances

Plants

Warehouses

Markets

2. Capacity Expansion Plants

Plants

Binary variable (1 if technology i is expanded in plant j in period t)

Multiperiod MILP formulation (I)
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Transport 
links

Multiperiod MILP formulation (II)

Binary variable (1 if warehouse k is expanded in period t)

Warehouses

3. Capacity Expansion Warehouses

Binary variable (1 if there is a transport link between 
plant j and warehouse k in period t)

Binary variable (1 if there is a transport link between 
warehouse k and market l in period t)

4. Transportation links
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5. Objective function

Summation of discounted cash 
flows

Net Earnings

Fixed cost

Multiperiod MILP formulation (III)
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Case study (I)

Problem :
• Redesign a petrochemical SC to fulfill future forecasted demand

Plant
Warehouse
Market
Potental plant location
Potential ware. location

Case study

Existing plant

Potential plant
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One step oxidation of 
ethylene

Cyanation / oxidation 
of ehtylene

Acetaldehyde

Acrylonitrile

Ethylene

Ammoxidation of 
propylene

Propylene

Phenol

HCN

HCl

H2SO4

O2

NH4

Hydration of 
propylene

Reaction of benzene 
and propylene

Isopropanol

Oxidation of cumene
Benzene

Cumene

Acetone
0.67

0.38 1.35 1

0.61

By-product

0.05

0.83

1.20

0.76

H2SO4 NaOH Others

0.010.010.01

1

Active carbon 0.01

1

0.43 0.15

1

1

0.900.17

0.83

0.83

0.40

1

O2

Technologies in each Plant Site
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Multiperiod MILP Models:
• Number of 0-1 variables: 450
• Number of continuous variables: 4801
• Number of equations: 4682
• CPU* time: 0.33 seconds

*Solved with GAMS 21.4 / CPLEX  9.0 (Pentium 1.66GHz)

Potential Supply Chain

Horizon: 3 yrs
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NPV = $132 million

Optimal Solution



Chemical Supply chain: an integrated network of business units for the 
supply, production, distribution and consumption of the products.

Supply Chain Operation under Uncertainty
You, Grossmann, Wassick (2008)
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• Given
Minimum and initial inventory
Inventory holding cost and throughput cost
Transport times of all the transport links & modes
Uncertain customer demands and transport cost

• Determine
Transport amount, inventory and production levels

• Objective: Minimize Cost & Risks

Case Study
Introduction
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Stochastic Programming
• Scenario Planning

A scenario is a future possible outcome of the uncertainty
Find a solution perform well for all the scenarios

• Two-stage Decisions
Here-and-now: Decisions (x) are taken before uncertainty ω reveals
Wait-and-see: Decisions (yω) are taken after uncertainty ω reveals as
“corrective action” - recourse

x
yω

Uncertainty 
reveal

ω= 1
ω= 2
ω= 3
ω= 4
ω= 5
ω= Ω

Decision-making under Uncertainty
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Stochastic Programming for Case Study

• First stage decisions 
Here-and-now: decisions for the first month (production, inventory, shipping)

• Second stage decisions 
Wait-and-see: decisions for the remaining 11 months 

Minimize  E [cost]

cost of scenario s1

cost of scenario s2

cost of scenario s3

cost of scenario s4

cost of scenario s5

Decision-making under Uncertainty
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Objective Function

Inventory Costs

Throughput Costs

Freight Costs

Demand Unsatisfied

First stage cost Second stage cost

Stochastic Programming Model

Probability of each scenario
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Multiperiod Planning Model (Case Study)

• Objective Function:
Min: Total Expected Cost

• Constraints:
Mass balance for plants
Mass balance for DCs
Mass balance for customers
Minimum inventory level constraint
Capacity constraints for plants

 

Stochastic Programming Model



Page 24

Result of Two-stage SP Model

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

170 173 176 179 182 185 188 191 194 197 200
Cost ($ MM)

Pr
ob

ab
ili

ty

E[Cost] = $182.32MM

Stochastic Programming Model
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Problem Sizes

8,498,429850,27185,4518,910# of Non-zeros

3,701,240370,33837,2483,937# of Variables

1,301,070130,17013,0801,369# of Constraints

1,000 scenarios100 scenarios10 scenarios

Two-stage Stochastic Programming ModelDeterministic 
Model

Small 
Problem

40,028,8724,004,697402,26741,899# of Non-zeros

18,149,0771,815,816182,49619,225# of Variables

6,101,280610,37461,2846,373# of Constraints

1,000 scenarios100 scenarios10 scenarios

Two-stage Stochastic Programming ModelDeterministic 
ModelFull Problem

Note: Problems with red statistical data are not able to be solved by DWS

Algorithm: Multi-cut L-shaped Method
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Two-stage SP Model

Scenario 
sub-problems

Master
problem

x

1y

Sy

2y

Master problem

Scenario sub-
problems

y

Algorithm: Multi-cut L-shaped Method
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Standard L-shaped Method

No

Add cut

Solve master problem to get 
a lower bound (LB)

Solve the subproblem to get 
an upper bound (UB)

UB – LB < Tol ?
Yes

STOP

Algorithm: Multi-cut L-shaped Method

cuts
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Expected Recourse Function

The expected recourse function Q(x) is convex and piecewise linear
Each optimality cut supports Q(x) from below

Algorithm: Multi-cut L-shaped Method
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Multi-cut L-shaped Method

YesNo

Solve master problem to get 
a lower bound (LB)

Solve the subproblem to get 
an upper bound (UB)

UB – LB < Tol ? STOP

Add cut

Algorithm: Multi-cut L-shaped Method

cuts



Page 30

Example

140

150

160

170

180

190

200

210

220

1 21 41 61 81 101 121 141 161 181
Iterations

C
os

t (
$M

M
)

Standard L-Shaped Upper_bound
Standard L-Shaped Lower_bound
Multi-cut L-Shaped Upper_bound
Multi-cut L-Shaped Lower_bound

Algorithm: Multi-cut L-shaped Method



Optimal Design of Responsive Process Supply Chains

Background

You, Grossmann (2008)

Objective: design supply chains under responsive and economic criteria
with consideration of inventory management and demand uncertainty



Problem Statement

Production Network

Costs and prices

Production and 
transportation time

Demand information

 

Suppliers Plants DCs Customers

Max: Net present value

Max: Responsiveness

Network Structure

Operational Plan

Production Schedule

Where? 
What? 
When?

Background



Production Network of Polystyrene Resins

Source: Data Courtesy Nova Chemical Inc.   http://www.novachem.com/

Three types of plants:

Basic Production Network

Single Product

Multi Product

Multi Product

Plant I:    Ethylene + Benzene          Styrene (1 products)

Plant II:   Styrene          Solid Polystyrene (SPS)  (3 products)

Plant III:  Styrene          Expandable Polystyrene (EPS) (2 products)

Example



Possible Plant Site
Supplier Location

Distribution Center
Customer Location

Location Map

Example
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TX
I

II

III

III

II

I

CAEthylene

Ethylene

Benzene

Benzene

Styrene

Styrene Styrene

SPS

SPS

EPS

EPS

AZ

OK

Plant Site MI

Plant Site TX Plant Site CA

NV

I
Ethylene

Benzene

Styrene

Plant Site LA

TX

GA

PA

NC

FL

OH

MA

MN

WA

IA

TX

MS

LA

AL

III
EPS

Suppliers Plant Sites Distribution Centers Customers

Potential Network Superstructure

Example



Responsiveness - Lead Time

Lead Time: The time of a supply chain network to respond to customer 
demands and preferences in the worst case

Lead Time is a measure of responsiveness in SCs

Model & Algorithm

Responsiveness

Lead Time



• A supply chain network = ∑Linear supply chains
Assume information transfer instantaneously

Model & Algorithm

Lead Time for A Linear Supply Chain

 

 

Information

 

 

 

 

Suppliers

 

Plants Distribution Centers Customers

  

 

 



Lead Time for Deterministic Demand

Lead Time

Transportation Delay = Transportation Time

Production Delay = Residence Time (single product plants)

  

Model & Algorithm



Path 2    8.0 days

Path 1     7.7 days

• Lead time of a supply chain network (deterministic demand)

The longest lead time for all the paths in the network (worst case)

Example: A simple SC with all process are dedicated

Lead Time = max {7.7, 8.0} = 8.0 days

For Path 1: 2 + 1.5 + 0.5 + 1.2 + 1.8+ 0.7 = 7.7 days

For Path 2: 2 + 1.5 + 0.2 + 2.6 + 1.2 + 0.5 = 8.0 days

Lead Time of SCN

Example



Lead Time under Demand Uncertainty

Model & Algorithm

Inventory (Safety Stock)

  



Safety Stock

P

• Expected Lead time of a supply chain network (uncertain demand)

The longest expected lead time for all the paths in the network (worst case)

Example: A simple SC with all process are dedicated

Expected Lead Time = max {2.1, 2.0} = 2.1 days

For Path 1: (2 + 1.5 + 0.5 + 1.2 + 1.8)×20% + 0.7 = 2.1 days

For Path 2: (2 + 1.5 + 0.2 + 2.6 + 1.2)×20% + 0.5 = 2.0 days

Expected Lead Time of SCN

P1=20%

Path 2    2.0 days

Path 1     2.1 days

P2=20%

Example



• Chance constraint for stockout probability
Integrate lead time, inventory management, demand 
uncertainty

Stock-out Probability (P)

d Md L d U

Safety Stock

Target Demand

Chance constraint
Generalized Disjunctive Programming

MINLP

Model & Algorithm

Safety Stock

Target Demand



Objective Functions

• Responsiveness
Measured by expected lead time

• Economics
Measured by net present value (NPV)

Sales income

Purchase cost

Operating cost

Transport cost

Investment cost

Inventory cost

Model & Algorithm



Pareto Curve
• Objective Function:

Max: Net Present Value 

Min: Expected Lead time
• Constraints:

Network structure constraints
Suppliers – plant sites Relationship
Plant sites – Distribution Center
Input and output relationship of  a plant
Distribution Center – Customers 
Cost constraint

Bi-criterion

Choose Discrete (0-1), continuous variables

Cyclic scheduling constraints
Assignment constraint
Sequence constraint
Demand constraint
Production constraint
Cost constraint

Probabilistic constraints
Chance constraint for stock out
(reformulations)

Bi-criterion Multiperiod MINLP Formulation

Model & Algorithm

NPV

Expected Lead Time

Operation planning constraints
Production constraint
Capacity constraint
Mass balance constraint
Demand constraint
Upper bound constraint



Pareto Curve

NPV

Lead TimeShortest Lead Time

Lowest NPV

Longest Lead Time

Highest NPV

Maximize: NPV – ε· Lead Time
(ε = 0.001)

Minimize: Lead Time

Procedure for Pareto Optimal Curve

Model & Algorithm

Impossible! 



Possible Plant Site
Supplier Location

Distribution Center
Customer Location

Possible Plant Site
Supplier Location

Distribution Center
Customer Location

Possible Plant Site
Supplier Location

Distribution Center
Customer Location

IL

TX
I

II

III

III

II

I

CAEthylene

Ethylene

Benzene

Benzene

Styrene

Styrene Styrene

SPS

SPS

EPS

EPS

AZ

OK

Plant Site MI

Plant Site TX Plant Site CA

NV

I
Ethylene

Benzene

Styrene

Plant Site LA

TX

GA

PA

NC

FL

OH

MA

MN

WA

IA

TX

MS

LA

AL

III
EPS

Suppliers Plant Sites Distribution Centers Customers

Case Study

Example

• Problem Size:
# of Discrete Variables: 215
# of Continuous Variables: 8126
# of Constraints: 14617

• Solution Time:
Solver: GAMS/BARON
Direct Solution: > 2 weeks
Proposed Algorithm: ~ 4 hours
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Pareto Curves – with and without safety stock

Example

More Responsive

Best Choice
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Example

More inventory, 
more responsive

Responsiveness
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Pareto Curve



Shortest Expected Lead Time = 1.5 day    NPV = $489.39 
MM

Optimal Network Structure – (A)

Example
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Suppliers Plant Sites Distribution Centers Customers



Expected Lead Time = 2.96 days    NPV = $644.46 MM

Optimal Network Structure – (B)

Example
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Suppliers Plant Sites Distribution Centers Customers



Longest Expected Lead Time = 5.0 day    NPV = $690 MM

Optimal Network Structure – (C)

Example

IL

TX

II

III

III

II

I

CA

Ethylene

Benzene

Styrene

Styrene Styrene

SPS

SPS

EPS

EPS
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Plant Site MI

Plant Site TX Plant Site CA

NV

I
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Plant Site LA
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MN
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III
EPS

Suppliers Plant Sites Distribution Centers Customers



Enterprise Optimization
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Simultaneous Tactical Planning and 
Production Scheduling 

Goal: Improve the asset utilization of geographically distributed assets and reduce 
cost to serve by improving enterprise wide tactical production planning.

Production Plant
Customer

Multi-scale optimization: temporal and spatial integration
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Production Site:
Reactors:

Products it can produce
Batch sizes for each product
Batch process time for each product (hr)
Operating costs ($/hr) for each material
Sequence dependent change-over times 
/costs

=> Lost capacity
(hrs per transition for each material pair)
Time the reactor is available during a given 
month (hrs)

Customers:
Monthly forecasted demands for desired products
Price paid for each product

Materials:
Raw materials, Intermediates, Finished products
Unit ratios (lbs of needed material per lb of material 

produced)

F1

F2

F3

F4

Reaction 1 A

Reaction 2 B

Reaction 3 C

INTERMEDIATE
STORAGE

STORAGE

STORAGE

STORAGE

week 1 week 2 week t

due date due date due date

week 1 week 2 week t

due date due date due date

Erdirik, Grossmann (2006)

Production Planning for Parallel Batch Reactors
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Problem StatementProblem Statement

Production quantities 
Inventory levels 
Number of batches of each product 
Assignments of products to available processing equipment
Sequence of production in each processing equipment

OBJECTIVE:OBJECTIVE:

To Maximize Profit.
Profit = Sales – Costs
Costs=Operating Costs + Inventory Costs +Transition Costs            

DETERMINE THE PRODUCTION PLAN:DETERMINE THE PRODUCTION PLAN:
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Different models / different time 
scales
Mismatches between the levels

DecompositionDecomposition

Challenges:

Planning months, years

Scheduling
days, weeks

Sequential Hierarchical Approach
Simultaneous Planning and SchedulingSimultaneous Planning and Scheduling

Challenges:

Very Large Scale Problem
Solution times quickly intractable

Planning

Scheduling

Detailed scheduling over the entire horizon

Approaches to Planning and Scheduling

Goal: Planning model that integrates major aspects of scheduling
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Results for Detailed MILP Scheduling Model: 4 reactors,6 products
(1 week)



MILP Detailed Scheduling ModelMILP Detailed Scheduling Model
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Assignment constraints and Processing times:

Detailed timing constraints and sequence dependent change : 

Objective Function:
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', ', , , , , , , ', , ', ( ( ) ( )), ' ( ( ') ( )), , ' ,( )m l t m l t i m l t t l l m m t
i

l L m L t l L m L t m m m tTs Ts PT BigW YY ∀ ∈ ∩ ∀ ∈ ∩ ∀ ∀ ≠ ∀≤ + + ⋅∑

, , , ', ', , ', , ', , ( ( ) ( )), ' ( ( ') ( )), , ' ,( )i m l m l t i l l m m t i IFINT l L m L t l L m L t m m m tiAA UBOUND YY ∈ ∀ ∈ ∩ ∀ ∈ ∩ ∀ ∀ ≠ ∀≤ ⋅
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m m l L m L t
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∈ ∀ ∈ ∩ ∀ ∀≤ ⋅∑ ∑

, , , ', ', , , ,
' ( ( ) ( ))

, ( ( ) ( )), ,( )i m l m l t i i m l t
l L m L t

i IFINT l L m L t m tiAA UBOUND W
∈ ∩

∈ ∀ ∈ ∩ ∀ ∀≤ ⋅∑

, , , ', ', , ', , , ', ',
' ( ', )

, ( ( ) ( )), ' ( ( ') ( )), , ' ,( )i m l m l t i m i m l m l t
i ENDINT i i

i IFINT l L m L t l L m L t m m m tiAA UPBOUND W
∈

∈ ∀ ∈ ∩ ∀ ∈ ∩ ∀ ∀ ≠ ∀≤ ⋅ ∑

, 1 , , , , , , ,
( ( ) ( )) ( ( ) ( ))

,
INT INT INT

i t i m l t i m l t i t
m l L m L t m l L m L t

i IFINT tiINV INVP INVC INV−
∈ ∩ ∈ ∩

∈ ∀+ = +∑ ∑ ∑ ∑

, 1 , , , , ,
( ( ) ( ))

,
FIN FIN FIN

i t i m l t i t i t
m l L m L t

i IFINT tiINV INVP S INV−
∈ ∩

∈ ∀+ = +∑ ∑

, 1 , , , , ,
( ( ) ( ))

( ),
FIN FIN

i t i m l t i t i t
m l L m L t

i IE IF ti iINV X S INV−
∈ ∩

∈ ∪ ∀+ = +∑ ∑

Mass and Inventory Balances:

MILP Detailed Scheduling ModelMILP Detailed Scheduling Model
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Replace the detailed timing constraints by:

Model A. (Relaxed Planning Model)
Constraints that underestimate the sequence dependent changeover times
Weak upper bounds (Optimistic Profit)

Model B. (Detailed Planning Model)
Sequencing constraints for accounting for transitions rigorously

(Traveling salesman constraints)
Tight upper bounds (Realistic estimate Profit)

Proposed MILP Planning Models
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Mass Balances on State Nodes

Time Balance Constraints on Equipment

Objective Function

PSFPFPSETI∈I∈

Reactor RReactor R

Available time for R

Product 1 Changeover
timeProduct 2

Changeover
time ……………………..

,j tP
,j tS

, ,i m tFP , ,i m tFP
SETOI∈

jI CS∈

Generic Form of Proposed MILP Planning Models
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, ,i m tYP :the assignment of products to units at each time period 

imtNB :number of each batches of each product on each unit at each period 

imtFP :amount of material processed by each task 

Reactor 1 or Reactor 2 or Reactor 3Products: A, B, C, D, E, F

T1 T2 T3

F B F C DR3 E

R2 F B F C DB B

D B BR1 AA A B E

, 1, 1

, 1, 1

1

3
A reactor time

A reactor time

YP

NB

=

=
, 2, 2

, 2, 2

1

2
B reactor time

B reactor time

YP

NB

=

=

Key Variables for Model 
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Sequence dependent changeovers (traveling salesman constraints):

Changeovers within each time period:
1. Generate a cyclic schedule where total transition time is minimized.

KEY VARIABLE:

mtiiZP ' :becomes 1 if product i is after product i’ on unit m at time period t, zero otherwise 

P1, P2, P3, P4, P5 P1

P2

P3

ZP P1, P2, M, T = 1

ZP P2, P3, M, T = 1

mtiiZZP ' :becomes 1 if the link between products i and i’ is to be broken, zero otherwise 
KEY VARIABLE:

2. Break the cycle at the pair with the maximum transition time to obtain the sequence.

P1

P2

P3P4

P5

?
ZZP P4, P3, M, T

P4

P4P5

Proposed Model B (Detailed Planning)

=> P4→P5→P1→P2→P3
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P1

P2

P3P4

P4

P2, P3, P4, P5, P1 ZZP P1, P2, M, T = 1

P3, P4, P5, P1, P2 ZZP P2, P3, M, T = 1

P4, P5, P1, P2, P3 ZZP P3, P4, M, T = 1

P5, P1, P2, P3, P4 ZZP P4, P5, M, T = 1

P1, P2, P3, P4, P5 ZZP P5, P1, M, T = 1

P1

P2

P3P4

P4

P2, P3, P4, P5, P1 ZZP P1, P2, M, T = 1

P3, P4, P5, P1, P2 ZZP P2, P3, M, T = 1

P4, P5, P1, P2, P3 ZZP P3, P4, M, T = 1

P5, P1, P2, P3, P4 ZZP P4, P5, M, T = 1

P1, P2, P3, P4, P5 ZZP P5, P1, M, T = 1

According to the location of the link to be broken:

The sequence with the minimum total transition time is the 
optimal sequence within time period t. 

'
'

, ,imt ii mt
i

YP ZP i m t= ∀∑
' ' ', ,i mt ii mt

i

YP ZP i m t= ∀∑

'
'

1 ,ii mt
i i

ZZP m t= ∀∑∑
' ' , ', ,ii mt ii mtZZP ZP i i m t≤ ∀

Generate the cycle and break the cycle to find the
optimum sequence where transition times are minimized.

Having determining the sequence, we can determine the total transition time within each week. 

' ' , ,[ ]
i iimt i mt iimtYP YP ZP i m t
≠
¬ ∀∧ ∧ ⇔

, , , , ,imt i i m tYP ZP i m t≥ ∀

, , , ', , 1 , ' , ,i i m t i m tZP YP i i i m t+ ≤ ∀ ≠

, , , , , ', ,
'

, ,i i m t i m t i m t
i i

ZP YP YP i m t
≠

≥ − ∀∑

' ' , ,[ ]
i iimt i mt iimtYP YP ZP i m t
≠
¬ ∀∧ ∧ ⇔

, , , , ,imt i i m tYP ZP i m t≥ ∀

, , , ', , 1 , ' , ,i i m t i m tZP YP i i i m t+ ≤ ∀ ≠

, , , , , ', ,
'

, ,i i m t i m t i m t
i i

ZP YP YP i m t
≠

≥ − ∀∑

MILP Model
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The proposed planning models may be expensive to solve for long term horizons. 

The detailed planning period (Model B) moves as 
the model is solved in time.
Future planning periods include only 
underestimations for transition times.

Problem 2Problem 2
Model B

Week 2

Fixed Model A Model A Model A

ROLLING HORIZON APPROACH :ROLLING HORIZON APPROACH :

Week 1

Model B

Problem 1Problem 1
Model A Model A Model AModel A

Problem 3Problem 3
Model B

Week 3

Fixed Fixed Model A Model A

*Ref. Dimitriadis et al, 1997

Limitation: Large Problems
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Method Number of Number of Number of Time Solution
binary continuous Equations (CPUs) ($)

 variables variables
Relaxed Planning 20 49 67 0.046 1,680,960.0
Detailed Planning 140 207 335 0.296 1,571,960.0
Scheduling 594 2961 2537 150 1,571,960.0

Obj Function Items ($) Relaxed Planning Detailed Planning Scheduling
Sales 2,652,800 2,440,000 2,440,000
Operating Costs 971,840 868,000 868,000
Transition Costs 0 40 40
Inventory Costs 0 0 0

% 6.484 Difference

EXAMPLE: 5 Products, 2 Reactors, 1 Week

Detailed Planning and
Scheduling are Identical!

Gantt Chart:

A
B
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R2

Reaction 1 A

Reaction 2 B

Reaction 3 C

Reaction 4 D

Reaction 5 E

Reaction 6 F

Reaction 7 G

Reaction 8 H

R1

R3

Reaction 9 J

Reaction 10 K

Reaction 11 L

Reaction 12 M

Reaction 13 N

Reaction 14 O

Reaction 15 P

R4

R5

R6

• 15 Products, A,B,C,D,E,F,G,H,J,K,L,M,N,O,P
• B, G and N are produced in 2 stages.
• 6 Reactors, R1,R2,R3,R4,R5,R6
• End time of the week is defined as due dates
• Demands are lower bounds

Determine the plan for 15 products, 6 reactors plant so as to maximize profit.

EXAMPLE 2 - 15 Products, 6 Reactors, 48 Weeks

method

number of 
binary 

variables

number of 
continuous 
variables

number of 
equations

time
(CPU s)

solution 
($)

relaxed planning (A) 2,592 5,905 9,361 362 224,731,683
rolling horizon (RH) 10,092 25,798 28,171 11,656 184,765,965
rolling horizon (RH**) 1,950 25,798 28,171 4,554 182,169,267

Relaxed planning yields 21% overestimation of profit 
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Decomposable MILP Problems

A

D1

D3

D2

Complicating Constraints

max

1,..
{ , 1,.. , 0}

T

i i i

i i

c x
st Ax b

D x d i n
x X x x i n x

=
= =

∈ = = ≥

x1 x2 x3

Lagrangean decomposition

complicating
constraints

D1

D3

D2

Complicating Variables

A

x1 x2 x3y

1,..

max

1,..
0, 0, 1,..

T T
i i

i n

i i i

i

a y c x

st Ay D x d i n
y x i n

=

+

+ = =

≥ ≥ =

∑

Benders decomposition

complicating
variables

Note: can reformulate by defining
1i iy y +=

and apply Lagrangean decomposition
Complicating constraints
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MILP optimization problems can often be modeled as problems with

complicating constraints. 

The complicating constraints are added to the objective function (i.e. 

dualized) with a penalty term (Lagrangean multiplier) proportional to the 

amount of violation of the dualized constraints.

The Lagrangean problem is easier to solve (eg. can be decomposed) than the 

original problem and provides an upper bound to a maximization problem.

Lagrangean Relaxation (Fisher, 1985)
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max
. .

n

Z cx
s t Ax b

Dx e
x Z+

=
≤
≤

∈

bAx ≤Assume that                 is complicating constraint

n

LR

Zx
eDx

AxbucxuZ

+∈

≤

−+= )(max)(

0where u Lagrange multipliers≥

(IP)

Assume integers only
Easily extended cont. vars.

Lagrangean Relaxation
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0≥uwhere

( )LRZ u Z≥

nZx
eDx
bAx
cxZ

+∈

≤
≤

= max

n

LR

Zx
eDx

AxbucxuZ

+∈

≤

−+= )(max)(

bAx ≤
ZuZ LR ≥)( 0)( ≥− Axb

0≥u

This is a relaxation of original problem because:

i) removing the constraint                   relaxes the original feasible space,

ii) always holds as in the original space since                   

and Lagrange multiplier is always .

Lagrangean Relaxation Yields Upper Bound

Complicating Constraint

⇒

Lagrangean Relaxation



72

n

LR

Zx
eDx

AxbucxuZ

+∈

≤

−+= )(max)(Relaxed problem:

min ( )
0

D LRZ Z u
u

=
≥

Lagrangean dual:

)( 1uZLR

)( 2uZLR

)( 3uZLR

Z

max
. .

n

Z cx
s t Ax b

Dx e
x Z+

=
≤
≤

∈

Original problem:

DZdual
gap

Lagrangean Relaxation
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{ }
n

xuD

Zx
eDx

AxbucxZ

+

≥≥

∈

≤

−+= )(maxmin
00

min ( )
0

D LRZ Z u
u

=
≥

n

LR

Zx
eDx

AxbucxuZ

+∈

≤

−+= )(max)(Relaxed problem:

Lagrangean dual:

Combine Relaxed and 
Lagrangean Dual Problems:

Graphical Interpretation
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{ }
n

xuD

Zx
eDx

AxbucxZ

+

≥≥

∈

≤

−+= )(maxmin
00

{ }nZxeDxx +∈≤ ,

{ }nZxbxAx +∈≤ ,

Optimization of Lagrange multipliers (dual) can be interpreted as optimizing 

the primal objective function on the intersection of the convex hull of non-

complicating constraints set and the LP relaxation of the 

relaxed constraints set                             .

0
),(

max

≥
∈≤∈

≤
=′

+

x
ZxeDxConvx

bAx
cxZ

n

D

Nice Proof 
Frangioni (2005)

Graphical Interpretation
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{ }eDxx ≤

Conv{ }nZxeDxx +∈≤ ,

{ }bAxx ≤

cx

ZLP

ZD

Z

0
),(

max

≥
∈≤∈

≤
=′

+

x
ZxeDxConvx

bAx
cxZ

n

D

dual
gap

Graphical Interpretation
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Lagrangean relaxation yields a bound at least as tight as LP relaxation

{ }eDxx ≤

Conv { }nZxeDxx +∈≤ ,

{ }bAxx ≤

cx

ZLP

ZD

Z

( ) ( )D LR LPZ P Z Z u Z≤ ≤ ≤

Theorem
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Lagrangean Decomposition is a special case of Lagrangean Relaxation.

Define variables for each set of constrain, add constraints equating different variables 

(new complicating constraints) to the objective function with some penalty terms. 

max
. .

n

Z cx
s t Ax b

Dx e
x Z+

=
≤
≤

∈

n

n

Zy

Zx
yx

eDy
bAx
cxZ

+

+

∈

∈

=
≤
≤

=′ max

New complicating 
constraints n

n

LD

Zy

Zx
eDy
bAx

xyvcxvZ

+

+

∈

∈

≤
≤

−+= )(max)(

Dualize x = y 

Lagrangean Decomposition (Guignard & Kim, 1987)
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n

n

LD

Zy

Zx
eDy
bAx

xyvcxvZ

+

+

∈

∈

≤
≤

−+= )(max)(

n

LD

Zx
bAx

xvcvZ

+∈

≤
−= )(max)(1

n

LD

Zy
eDy

vyvZ

+∈

≤
= max)(2

Subproblem 1 Subproblem 2

( ))()(min 210
vZvZZ LDLDvLD +=

≥

Lagrangean
dual

Lagrangean Decomposition
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Lagrangean decomposition is different from other possible relaxations 

because every constraint in the original problem appears in one of the 

subproblems. 

Subproblem 1
Subproblem 2

Graphically: The optimization of Lagrangean multipliers can be interpreted as 

optimizing the primal objective function on the intersection of the convex hulls of 

constraint sets.

Notes
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Z

Graphical Interpretation?

Subproblem 1

{ }eDxx ≤ { }bAxx ≤

cx

ZLP

ZLR

Conv{ }nZxeDxx +∈≤ ,

Conv{ }nZxbxAx +∈≤ ,

ZLD

Subproblem 2

Note: ZLR, ZLD refer to dual solutions



81

The bound predicted by “Lagrangean decomposition” is at least as tight as

the one provided by “Lagrangean relaxation” (Guignard and Kim, 1987)

For a maximization problem

LPLRLD ZZZPZ ≤≤≤)(

Solution of Dual Problem
ZLR

or ZLD

u or  ν

minimum

Piecewise linear

=>

Non-differentiable

Theorem
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1,...
max{ ( ) , } max { ( )}k k

x k K
cx u b Ax Dx d x X cx u b Ax

=
+ − ≤ ∈ = + −

Assuming Dx ≤ d is a bounded polyhedron (polytope) with extreme points

1,2...kx k K= , then

How to iterate on multipliers u?

0 01,..
min max{ ( )} min{ ( ), 1,.. }k k k k

u uk K
cx u b Ax cx u b Ax k Kη η

≥ ≥=
+ − = ≥ + − =

=> Dual problem

Cutting plane approach

1

min

. . ( ), 1,..

0,

k k
ns t cx u b Ax k K

u R

η

η

η

≥ + − =

≥ ∈

Kn = no. extreme points
iteration n

subgradient

Note: xk generated from  max{cx + uk(b-Ax) subproblems
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Update formula for multipliers (Fisher, 1985)

21 ( )( ) /

[0,2]

k k LB k k k
k LD

k

u u Z Z b Ax b Ax

where

α

α

+ = + − − −

∈

Subgradient ( )k ks b Ax= −

Steepest descent search 1k k ku u sμ+ = +

Subgradient Optimization Approach

Note: Can also use bundle methods for nondifferentiable optimization
Lemarechal, Nemirovski, Nesterov (1995)
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Solution of Langrangean Decomposition

2.   Perform branch and bound search
where LP relaxation is replaced by
Lagrangean relaxation/decomposition to
a) Obtain tighter bound 
b) Decompose MILP

Typically in Stochastic Programming
Caroe and Schultz (1999)
Goel and Grossmann (2006)
Tarhan and Grossmann (2008)

Select MaxI, ε, ak

Set UB = +∞, LB= - ∞
Solve (RP’) to find v0

| ZLD - ZLB |<ε?
or k=MaxI?

Solve (P) with fixed binaries 
or use heuristics: Obtain ZLB

Solve (P1) and (P2):
Obtain ZLD

k = k+1

Update uk

For k = 1..K

Return ZLB &
Current Solution

YES

NO

1. Iterative search in multilpliers of dual

Notes:   Heuristic due to dual gap
Obtaining Lower Bound might be tricky

Remarks
1. Methods can be extended to NLP, MINLP
2. Size of dual gap depends greatly on

how problems are decomposed
3. From experience gap often decreases with

problem size.

Upper Bound

Lower Bound



Multisite Distribution Network

Objective: Develop model and effective solution strategy for large-scale 
multiperiod planning with Nonlinear Process Models

SITE A

SITE B
SITE F

SITE D

SITE C

North America

Latin America

Europe

Africa/MidEast

SITE E

SITE G

Jackson, Grossmann,Wassick, Hoffman (2002)



Multisite Distribution Model

•Develop Multisite Model to determine:
1)What products to manufacture in each site
2)What sites will supply the  products  for each market
3)Production and inventory plan for each site

Objective:  Maximize Net Present Value

•Challenges/Optimization Bottlenecks: Large-Scale NLP
–Interconnections between time periods & sites/markets

Apply Lagrangean Decompostion Method



Spatial Decomposition

SITE S Market M

( )MPR
S

MPR
S

MPR
S

MPR
S

MPR
S

MPR
S

MPR
S

SALESPROD

PRODPCostSALESSCostPROFIT
,,,

,,,,

                         

**max

−+

−=

λ

( )
( )MPR

S
MPR

S
MPR

S
MPR

S

MPR
S

PRODPRODPCost

PRODf
S

,,,,

,

max

0
:SCONSTRAINT  SITE

λ+−

≤ ( )
( )MPR

S
MPR

S
MPR

S
MPR

S

MPR
S

SALESSALESSCost

SALESf
M

,,,,

,

max

0
:SCONSTRAINT Market 

λ−

≤

Site SUBPROBLEM for all S (NLP) Market SUBPROBLEM for all M (LP)



Temporal Decomposition

PR
tSINV ,

SITE S

Market M

PR
tSINV 1, +

PR
tSINV 1, −

SITE S

Market M

•Decompose at each time 
period

•Duplicate variables for 
Inventories for each time 
period

•Apply Langrangean
Decomposition Algorithm



Multisite Distribution Model - Spatial

13377/11398

10033 /8548

6689 / 5698

3345 / 2848

Variables/
Constraints

9%55023506668

9%27916054976

11%1274783264

10%10521642

% Within Full 
Optimal 
Solution

Lagrangean
Solution Time
(CPU sec)

Full Space 
Solution Time
(CPU sec)

Optimal Solution
Profit (million-$)

# Time 
Periods
(months)

•3 Multi-Plant Sites, 3 Geographic Markets
•Solved with GAMS/Conopt2



Multisite Distribution Model - Temporal

• 3 Multi-Plant Sites, 3 Geographic Markets
• Solved with GAMS/Conopt2

19945 /17101

9973 / 8551

5230 / 5005

Variables/
Constraints

2.227810254474.1812

2.31382013236.536

2.297395116.053

% Within Full 
Optimal Solution

Lagrangean
Solution Time
(CPU sec)

Full Space 
Solution Time
(CPU sec)

Optimal Solution
Profit (million-$)

# Time 
Periods
(months)

Temporal much smaller gap!

Reason: material balances not violated at each time period



Time
Safety Stock

Reorder Point
Order 
placed

Lead 
Time

In
ve

nt
or

y 
Le

ve
l Replenishment

• Inventory System under Demand Uncertainty
Total Inventory = Working Inventory (WI) + Safety Stock (SS)

Estimate WI with Economic Order Quantity (EOQ) model

Stochastic Inventory System



Time

In
ve

nt
or

y 
Le

ve
l

Average
Inventory 

(Q/2)

Order quantity 
(Q)

F = Fixed ordering cost for each replenishment
h = Unit inventory holding cost

Replenishment

Constant Demand 
Rate = D

Economic Order Quantity Model



Total Cost 2   * 
2

⋅= ⋅+ ⇒ =
Qh QDF

Q
FD
h

Holding Cost Curve
Total Cost Curve

Order Cost Curve

Order quantity Q

Annual Cost

Optimal 
Order Quantity (Q*)

Minimum 
Total Cost

Economic Order Quantity 
(EOQ)

Order cost Holding cost

Economic Order Quantity Model



Time

Inventory Level

Lead Time

Order Quantity 
(Q)

Reorder 
Point 

(r)

When inventory level falls to r, order a quantity of Q
Reorder Point (r) = Demand over Lead Time

Order 
placed

Replenishment

(Q,r) Inventory Policy



Reorder 
Point (r)

Time

In
ve

nt
or

y 
Le

ve
l

Lead Time
Place 
order

Receive 
order

Safety Stock

Reorder Point = Expected Demand over Lead Time + Safety Stock

Stochastic Inventory = Working Inventory (EOQ) + Safety Stock

Stochastic Inventory Model



Safety Stock

(Service Level)

Lead time = L

Safety Stock Level



* GD Eppen, “Effect of centralization in a multi-location newsboy problem”, Management Science, 1979, 25(5), 498

• Single retailer:

• Centralized system:
All retailers share common inventory

Integrated demand 

• Decentralized system:
Each retailer maintains its own inventory

Demand at each retailer is 

Risk-Pooling Effect*



• Given: A potential supply chain
Including fixed suppliers, retailers and potential DC locations

Each retailer has uncertain demand, using (Q, r) policy

Assume all DCs have identical lead time L (lumped to one supplier)

Suppliers RetailersDistribution 
Centers

Supply Chain Design with Stochastic Inventory Management

You, Grossmann (2008)



• Objective: (Minimize Cost)
Total cost = DC installation cost + transportation cost + fixed order cost

+ working inventory cost + safety stock cost

• Major Decisions (Network + Inventory)
Network: number of DCs and their locations, assignments between

retailers and DCs (single sourcing), shipping amounts

Inventory: number of replenishment, reorder point, order quantity, 
neglect inventories in retailers

retailer
supplier

DC

Supplier RetailersDistribution Centers

Problem Statement



Annual EOQ cost at a DC:

ordering cost transportation cost Working inventory cost

v(x)= g + ax

EOQ cost



The optimal number of orders is:

The optimal annual EOQ cost:

Annual working inventory cost at a DC:

ordering cost transportation cost inventory cost

Convex Function of n

Working Inventory Cost



• Demand at retailer i ~ N(μi, σ2
i)

• Centralized system (risk-pooling)

• Expected annual cost of safety stock at a DC is:

where za is the standard normal deviate for which

Reorder 
Point
(ROP)

Time

In
ve

nt
or

y 
Le

ve
l

Lead Time

Safety Stock Cost for DCs



retailer
supplier

DC

Other Parameters and Variables



retailer
supplier

DC

DC – retailer transportation

Safety Stock

EOQ

DC installation cost

Supplier RetailersDistribution Centers

A
ssignm

ents

Nonconvex INLP

INLP Model Formulation



β = 0.01, θ = 0.01 β = 0.1, θ = 0.01 β = 0.01, θ = 0.1

• Model Size for Large Scale Problem 
INLP model for 150 potential DCs and 150 retailers has 22,650 binary 
variables and 22,650 constraints – need effective algorithm to solve it …

Illustrative Example

•Small Scale Example 
A supply chain includes 3 potential DCs and 6 retailers (pervious slide)
Different weights for transportation (β) and inventory (θ)



Non-convex MINLP

Avoid unbounded gradient

• Variables Yij can be relaxed as continuous variables (MINLP)
Local or global optimal solution always have all Yij at integer

If h=0, it reduces to an “uncapacitated facility location” problem

NLP relaxation is very effective (usually return integer solutions)

Z1j Z2j

Model Properties



Supplier RetailersDistribution Centers

• Lagrangean Relaxation (LR) and Decomposition
LR: dualizing the single sourcing constraint:
Spatial Decomposition: decompose the problem for each 
potential DC j
Implicit constraint: at least one DC should be installed, 

Use a special case of LR subproblem that  Xj=1

decompose by DC j

Lagrangean Relaxation
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Retailers

• 88 ~150 retailers 
Each instance has the same number of potential DCs as 
the retailers

* Suboptimal solution obtained with BARON for 10 hour limit.

Computational Results
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Conclusions

1. Enterprise-wide Optimization area of great industrial interest
Great economic impact for effectively managing complex supply chains

3. Computational challenges lie in:
a) Large-scale optimization models (decomposition, grid computing )
b) Handling uncertainty (stochastic programming) 

2. Two key components: Planning and Scheduling
Modeling challenge:
Multi-scale modeling (temporal and spatial integration )


