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Abstract-It is shown in this paper that by exploiting properties of limiting constraints for flexibility in 
a design, problems for flexibility analysis can be formulated as mixed-integer optimization problems. 
Formulations are derived when control variables are present or not, and when equalities are eliminated 
or handled explicitly. These formulations do not rely on the assumption that critical parameter values are 
vertices, nor do they require exhaustive vertex searches. The case of linear constraints reduces to standard 
MILP problems, while for the nonlinear case a novel active constraint strategy is proposed and its 
theoretical properties are analyzed. Examples are presented for both rigorous and screening calculations. 

Scope--In the optimal design and synthesis of flexible chemical processes, one of the crucial problems 
that arises is the one of how to analyze the flexibility of a proposed design. As discussed in Grossmann 
and Morari [l], this problem can arise in 2 forms. In its simplest form the problem consists in testing the 
feasibility of operation in a design over a specified range for the uncertain parameters. In its more general 
form the problem consists in determining the actual parameter range that the design can tolerate for 
feasible operation. This range can be defined through a scalar, the flexibility index, by specifying expected 
deviations for each of the parameters [2]. 

There are several difficulties involved in the above flexibility analysis problems. Firstly, one must 
anticipate that during plant operation adjustments can be made through the control variables for the 
infinite number of parameter values that may arise. Secondly, the critical or limiting condition for 
flexibility is often not obvious. It can in principle occur at any extreme or vertex point of the parameter 
range, or it can occur at any intermediate point, Morari [3]. Lastly, the rigorous mathematical 
formulations for these problems involve non-conventional max-min-max optimization problems which 
cannot be readily solved with standard optimization techniques. 

This paper will present novel mathematical formulations that allow the explicit solution of the 
max-min-max problem that arises in flexibility analysis. The importance of these formulations is that they 
do not assume that critical points correspond to vertices, and they do not require the exhaustive 
enumeration of vertex points which can be very large when many uncertain parameters are considered. 
The main idea of these formulations is based upon the fact that the flexibility analysis can be performed 
in the space of constraints that can potentially be active in limiting the flexibility in a design. The 
formulations to be presented involve mixed-integer optimization problems, and 4 numerical examples are 
presented to illustrate their application. 

Conclusions and Significance-This paper has presented new mathematical formulations for the feasibility 
test and flexibility index problems. These formulations are based upon the property that the number of 
active or limiting constraints for flexibility is equal to the number of control variables plus one, provided 
there is linear independence in the active constraints. It has been shown that this property can be exploited 
so as to reformulate the max-min-max problems for flexibility analysis, as mixed-integer optimization 
problems. These formulations have the advantage of neither requiring the assumption of vertex critical 
points nor the exhaustive enumeration of all extreme points. The formulations are quite general since they 
can cover the following cases: zero or positive number of control variables; handling of reduced 
inequalities or of process equations and inequalities; treatment of correlated uncertain parameters. 

It has been shown that for linear constraints the formulations reduce to mixed-integer linear 
programming problems that can be solved with standard branch and bound enumeration methods. Also, 
nonlinear constraints can be linearized to provide approximations that are suitable for screening 
calculations. For the case when nonlinear constraints are treated explicitly, an active set strategy has been 
proposed than can identify a priori the potential active constraints that limit flexibility. This strategy has 
been shown to be rigorous for the case of constraints that are quasi-concave in the uncertain parameters. 
The numerical results that were presented clearly suggest that the new formulations are computationally 
efficient for the linear case, while for the nonlinear case they offer the possibility of finding non-vertex 
critical points with modest computational effort. 

INTRODUCI’ION to the capability of a process to achieve feasible 

Flexibility is clearly one of the important components 
operation over a given range of uncertain conditions 

in the operability of chemical plants, since it is related 
(e.g. feedstock variations, changes in process par- 
ameters). In order to incorporate flexibility in syn- 
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specified range of conditions; or more generally, 
establishing how flexible the design really is. 

Specifically, 2 types of problems can then be 
identified in the flexibility analysis of a process: 

(1) feasibility test, the objective here is to establish 
whether a given design is feasible to operate over 
the specified range of uncertain parameters 

nonlinear constraints. The former involve standard 
MILP techniques which can also be used for screen- 
ing calculations. For nonlinear constraints, an Active 
Set Strategy is presented together with theoretical 
properties that ensure a unique solution. The applica- 
tion of these formulations is illustrated with 4 exam- 
ple’ problems. 

fP<e <8” (I) 

where 0 is the vector of nP uncertain parameters 
and BL, 8” are fixed lower and upper bounds, 
respectively. The uncertain parameters B can in 
general, either vary independently, or otherwise 
be correlated in some specified manner. Figures 
1 and 2 illustrate the regions of operation of 2 
alternative designs which are feasible or in- 
feasible over a specified range of independent 
parameters. 

FLEXIBILITY ANALYSIS REVIEW 

As discussed in Swaney and Grossmann [2], the 
physical performance of a chemical process can be 
described by the following set of constraints 

h(d, z, x, e) = 0 

(2) flexibility index, the objective here is to deter- 
mine a measure of the flexibility of a design by 
establishing the maximum parameter range that 
a design can tolerate for feasible operation. This 
parameter range can be expressed as 

g(d, 2, x, fl) G 0 (3) 

where II is the vector of equations (e.g. mass and 
energy balances or equilibrium relations) which hold 
for steady-state operation of the process, and g is the 
vector of inequalities (e.g. design specifications or 

BN-FAB- re <8N+FAL\B+ (2) 

where BN is the nominal parameter value, A@-, 
A@+ are negative and positive expected par- 
ameter deviations, and F is the flexibility index 
(Swaney and Grossmann [2]). Figure 3 illustrates 
the actual parameter range for feasible operation 
that is associated with the flexibility index F for 
a given design. 

0” 

It is important to note that the regions of operation 
depicted in Figs 1, 2 and 3 must in general take into 
account the fact that the process can be adjusted for 
the different parameter realizations, This implies that, 
for the flexibility analysis to be meaningful, one must 
anticipate that duringplant operation control variables 
can be adjusted so as to try to maintain feasible 
operation for the prevailing conditions. Neglecting 
this fact can lead to serious underestimation of the 
inherent flexibility of a process. 

8, 
Fig. 1. Region of operation for design with feasible 

parameter set T. 

In this paper, a new approach is presented for 
tackling the 2 types of flexibility analysis problems 
cited above. A brief review of previous work will be 
presented first, followed by the derivation of new 
mathematical formulations for the feasibility test and 
the flexibility index. These formulations, which are 
based on mixed-integer programming problems, rely 
on identifying active constraints that limit the 
flexibility in a design. As will be shown, the formu- 
lations allow the handling of large number of uncer- 
tain parameters, while at the same time avoiding the 
assumption that critical points correspond to vertices 
or extreme values. The special cases when no control 
variables are present, and when state variables are 
not eliminated in the formulations are also discussed. 

*: 8; - 

8, 
Solution procedures of the new mathematical for- Fig. 2. Region of operation for design with infeasible 

mulations are presented for the cases of linear and parameter set T. 
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Fig. 3. Maximum feasible parameter set T(F) for flexibility index F. 

physical operating limits) which must be satisfied if 
operation is to be feasible. The variables are classified 
in the following way: d is the vector of design 
variables that define the structure of the process and 
equipment sizes. These variables are fixed at the 
design stage and remain constant during plant oper- 
ation. B is the vector of uncertain parameters. The 
vector z of control variables stands for the degrees of 
freedom that are available during operation, and 
which can be adjusted for different realizations of 
the uncertain parameters 0 during plant operation. 
Finally, x is the vector of state variables which is a 
subset of the remaining variables, and that has the 
same dimension as h. 

For a given plant design d, and for any realization 
of 0 during operation, the state variables can in 
general be expressed as an implicit function of the 
control z using the equalities h, 

h(d, Z,X,8)= 0=+.X = X(d,Z,e). 

This allows the elimination of the state variables, as 
the performance specifications of the process can be 

described as the following set of reduced inequality 
constraints: 

gj[dv z, x(d, z, 0). 01 =J(d, z, 0) G 0 i E J (4) 

where J is the index set for the inequalities. It should 
be noted that the elimination of the state variables in 
done at this point for the sake of simplicity in the 
presentation, The explicit handling of equalities for 
the flexibility analysis will be treated later in this 

paper. 
As shown in Fig. 4, the inequalities in (4) determine 

feasibility or infeasibility of operation for a given 
design d for which process adjustments z are available 
to compensate for the effect of the uncertainties 0. 
Therefore, since the control variables z are the de- 
grees of freedom which can be adjusted so as to 
handle prevailing conditions, feasibility for a given d 
and 8 requires that some z exist for which (4) is 
satisfied. 

Given a nominal parameter value ON, and expected 
deviations A8 +, A& in the positive and negative 

Process adjustments 

Control variables 

2 

Changing 
conditions 

Uncertain B 
parameters 

1 

Fixed 

design 

d 

Specifications 
constmints 

- ffd,z,@)G 0 

Feasible 
operation ? 

Fig. 4. Representation of flexibility analysis problem. 
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directions, the specified set of uncertain parameters T 
will be given by 

where the lower bound 8‘ = ON - A@-, and the upper 
bound 0” = BN + A0 + . Here it is assumed that the 
uncertain parameters vary independently; the case of 
correlated parameters will be treated as a special case 
later in the paper. 

Given this parameter set T, the Feasibility Test for 
a design consists in ensuring that for every 0 E T, 
there exists a control z that can be selected during 
plant operation to satisfy each one of the constraint 
functions 1;) j E J. As has been shown by Halemane 
and Grossmann [4], this Feasibility Test can be 
formulated mathematically as the max-min-max 
problem 

where x(d) can be regarded as a feasibility measure 
for a given design d. If x(d) < 0, feasibility of oper- 
ation can be ensured for all 8 E T; if x(d) > 0 the 
design is infeasible for at least some values of 0 E T 
since in this case at least one of the constraints in (4) 
will be violated. Furthermore, the solution 0’ of 
problem (5) defines a critical point for feasible oper- 
ation; it is the one where the feasible region is the 
smallest if x (d) < 0 (see Fig. I), or it is the one where 
maximum constraint violations occur if x (d) > 0 (see 
Fig. 2). In qualitative terms, the critical points in the 
feasibility test correspond to the worst points for 
feasible operation. 

Alternatively, if it is assumed that ON is a feasible 
parameter value, a scalar Flexibility Index F, can be 
defined as the largest scaled deviation 6 of any of the 
expected deviations AB +, A8 -, that the design can 
handle for feasible operation. As has been shown by 
Swaney and Grossmann [2], this Flexibility Index can 
be formulated mathematically as the problem 

F=max6 

s.t. max min maxJ(d, z, 0) < 0 (6) 

z-(6)=(eleN--sAe- Ge (eN+ae+),d 20 

where T(6) is a variable parameter set that is defined 
through the scalar variable 6. This Flexibility Index 
F then defines the maximum parameter set T(F) that 
a given design can handle for feasible operation. As 
can be seen in Fig. 3, this set T(F) defines the actual 
parameter bounds in (2). 

Note that the Flexibility Index F can be regarded 
as a quantitative measure of flexibility that is relative 
to the target (F = 1) specified in the set T. For a value 
F > 1, (2) indicates that the flexibility target is clearly 
satisfied; for F < 1 the index indicates not only that 
the target is not achieved, but it also gives the 
maximum fractional deviation that can be allowed 
for any parameter. The critical prameter 0’ that limits 

the flexibility index in a design is defined through the 
max-min-max constraint in (6) and lies at the con- 
straint boundary as shown in Fig. 3. 

Clearly, the solution of problems (5) and (6) is 
greatly complicated by the max-min-max problem 
which in general defines a nondifferentiable global 
optimization problem Grossmann et al.) [S]. There- 
fore, the natural way to simplify the problem is to 
decompose it into a two-level optimization problem. 
In the case of problem (5) this can be done by 
reformulating it as 

s.t. + (d, e) = min yG5xf;(d, z, 0) 
z (7) 

where $ (d, 0) corresponds to the nonlinear program 

$(d,e)=minu 
2. ” 

s.t.J(d, Z, 6) < u j E J (8) 

in which u is a scalar variable. 
For the case when the constraint functions are 

jointly 1-D quasi-convex in 0 and quasi-convex in z 
(e.g. linear in z), it can be proved that the critical 
point 8’ that defines the solution to (7) must lie at one 
of the vertices of the parameter set T, Swaney and 
Grossmann [2]. Special types of non-convex func- 
tions, however, may lead to nonvertex solutions. 

Assuming that critical points correspond to verti- 
ces, problem (7) can be simplified as 

x(d) = y:; $ (d, ok) (9) 

where $ (d, ok) is the solution to problem (8) at the 
parameter vertex ek, and V is the index set for the 2”p 
vertices. In other words, 1 (d) can be determined from 
(8) by evaluating $ (d, 0) at each vertex so as to select 
the largest value. In this way, it can be noted that the 
explicit solution of the max-min-max problem in (5) 
can be circumvented. 

In a similar fashion for the flexibility index, by 
assuming that the critical points lie at vertices, prob- 
lem (6) can be simplified as [2]: 

F=minak 
ksV 

(10) 

where 6 k is the maximum deviation along each vertex 
direction ABk, k E V, and it is given by the nonlinear 
program 

Skll6 

s.t.J(d, z, 0) < 0 j E J (11) 

8 =eN+aek, 6 20. 

Problems (9) and (IO) constitute the basic for- 
mulations for flexibility analysis by Halemane and 
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Grossmann [4], and Swaney and Grossmann [2]. 
Although these problems lead to rigorous methods 
for the type of constraint functions assumed above, 
they have the difficulty that their computational 
effort is in general proportional to the number of 
vertices, 2”. Swaney and Grossmann [6], have 
proposed 2 algorithms, a heuristic vertex search and 
an implicit enumeration scheme, that avoid the 
exhaustive enumeration of all vertices. Nevertheless, 
these algorithms rely on the assumption that critical 
points correspond to vertices. Therefore, the main 
question that will be addressed in this paper is on how 
to solve explicitly the max-min-max problems 
without relying on the assumption that the solution 
lies at a vertex, as well as avoiding the exhaustive 
enumeration of vertices. It will be shown that the 
answer to this question requires the development of 
new mathematical formulations for the Feasibility 
Test and the Flexibility Index which will exploit 
effectively the candidate sets of active constraints that 
limit flexibility in a design. In the next sections the 
new mathematical formulation of the Feasibility Test 
will be presented, as well as the treatment of special 
cases. 

ACTIYE CONSTRAINTS IN FLEXIBILITY ANALYSIS 

As indicated previously, the mathematical fonnu- 
lation of the Feasibility Test given by the 
max-min-max problem (5) is equivalent to the 2-level 
optimization problem 

s.t. @ (d, 0) = min m!;f;‘d, z, 0). 
P (7) 

It will be shown in this section that this 2-level 
optimization problem can be simplified by exploiting 
the fact that limiting or active constraints character- 
ize the function $ (d, O), which in turn represents the 
feasibility of operation for a given 0. 

In order to gain some insight on the nature of the 
function $ (d, e), consider an example where the 
specifications of a given design are represented by the 
inequalities 

f,=z--8fO 

f2= -z-e/3+ 413~ 0 

f,=z+e-4so. (12) 

These inequalities involve a single control variable z 
and a single uncertain parameter 8 that is specified 
within the range 0 d 8 < 4. Figure Sa shows the 
feasible region of operation in the z - 8 space. As can 
be seen, by proper selection of the control variables 
z, the design is feasible for the range 1 < 8 < 4, while 
it is infeasible for the range 0 < B < 1. Solving for the 
function $ (d, 0) as given in (8) for the 3 constraints 

in (12), the following result is obtained: 

(1) for 0 < B < 2, fi and h are active constraints in 
(8), which then leads to $ (d, e) = 2(1 - 0)/3. 

(2) for 2 < 0 < 4, fi and h are active constraints in 
(8), which then leads to $ (d, e) = (e - 4)/3. 

By plotting the above function $ (d, e) in Fig. Sb, it 
can be seen that it reflects precisely the fact that the 
feasible range of operation is given by 
1 < 0 < 4[ti (d, t?) < 01, while the infeasible range is 
given by 0 < 0 < l[+ (d, e) > 01. Furthermore, 
$ (d, e) attains its maximum value at 8 = 0, which 
corresponds to the critical point with largest con- 
straint violations. 

It can also be seen in Fig. 5b, that + (d, e) is a 
piecewise linear function. The reason for this is that 
each segment is characterized by different active or 
“limiting” constraints. In particular, as was found 
previously, the segment on the left (0 ( 0 < 2) is 
characterized by constraints f, and f2 which are 
precisely the constraints that limit the flexibility as 
8 + 0. The segment on the right (2 < 0 < 4) is charac- 
terized by constraints fr and X which are the con- 
straints that limit the flexibility as 0 + 4. This obser- 
vation would suggest that the 2-level optimization 
problem in (7) could be simplified by expressing the 
feasibility function $ (d, e) in terms of those active 
constraints that limit flexibility in a design. 

In order to show how this simplification can be 

N 2- 

1 2 3 4 

t 

9 

(b) 

Fig. 5. (a) Region of feasible operation in z - 0 space; (b) 
Feasibility function + (d, 0). 
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achieved, consider the following property of the 
function $ (d, 0) when expressed as 

$ (d, 0) = min u 
I, ” 

s.t.&(d,z,O)<u ~EJ. (8) 

Property I-If each square submatrix of dimen- 
sion (n, x n,) of the partial derivatives of the con- 
straints 4 j E J with respect to the control z, 

is of full rank, then the number of active constraints 
(f/(d, z, 0) = .,j E JA) is equal to n, + 1, where n, is 
the number of control variables z. 

The proof of this property can be found in Madsen 
and Schjaer-Jacobsen [7l, and in Swaney and 
Grossman [2]. Notice also that this property is consis- 
tent with the example given by constraints (12) which 
involve one control variable, and where 2 active 
constraints were found for the function $ (d, 0). Also, 
from a qualitative standpoint, property 1 can be 
expected to hold since limits of feasible operation are 
often given by intersection of constraints (e.g. see Fig. 
Sa). However, exceptions may be found especially 
with nonlinear constraints. 

There are 2 important implications that follow 
from the property of having n, + 1 active constraints. 
Firstly, for a given 8 the optimal solution u’, z’ of 
$ (d, 0) in (8) can be determined from a square system 
of equations. This follows from the fact that the 
active constraints (A(d, z, 0) = u,j E JA) define n, + 1 
equations in n, + 1 unknowns (u, z). With this, the 
feasibility function is determined directly by these 
equations; namely $ (d, t9) = u’. The second impli- 
cation is that the 2-level optimization problem in (7) 
reduces then to the problem 

x(d)=rnea;u’ (13) 

where u’ is determined from the system of equations 
for the corresponding active set at the given 0. 

Although (13) leads to a simplification of the 
2-level optimization problem, the remaining 
difficulty, however, is that the active set of constraints 
can change with different 8. Therefore, it is necessary 
to develop a system of equations in which $ (d, 0) = u 
is expressed parametrically in terms of 0. 

MIXED-INTEGER FORMULATION FOR 
THE FEASIBILITY TEST 

The required system of equations that can deter- 
mine the optimal value u in (13) for different values 
of 8 (and hence different possible active sets), can be 
expressed in terms of the Kuhn-Tucker conditions [8] 

of problem (8) as follows: 

(a) CAjcl, 

jeJ 

@) ,glj$=O, 

CC) sj = u -A:<& z, 6) 

(d) Ljsj=O > 

i B J 
9 

(e) s&O, s,aO jEJ, (14) 

where sj and ,l, are the slack variables and the 
Kuhn-Tucker multipliers for constraint j. Equations 
(14a) and (14b) represent the stationary conditions of 
the lagrangian with respect to u and z, respectively; 
(14~) defines the slack variables, and (14d), (14e) 
represent the complementarity conditions. 

For the case when n, + 1 constraints are active, 
such as when the conditions of Property 1 are 
satisfied, the equations in (14) can be shown to be 
necessary and sufficient for a local minimum in (8) 
(see Madsen and Schjaer-Jacobsen [7]). This applies 
to both convex and nonconvex constraints. Further- 
more, for the case when the constraints are quasi- 
convex in z (e.g. linear in z). the equations in (14) will 
define the global minimum solution. Also, note that 
for a given set of n, + 1 active constraints 
(Sj = 0,j E JA; 1, = 0,j 4 JA), (14) leads to a system of 
2 + 2n, unknowns (u, z, Aj, j E JA) and 2 + 2n, equa- 
tions (stationary conditions (14a) (14b) and 
&(a, z, 0) = u,j e JA). 

The advantage of the equations in (14) is that they 
provide a way to determine the value of u for the set 
of active constraints that result for every parameter 
value 8. However, it should be noted that in the 
above Kuhn-Tucker conditions discrete decisions are 
involved in the complementarity conditions (14d), 
(14e), since they define the selection of active sets of 
constraints. To express explicitly these discrete deci- 
sions, a set of binary variables yj, j E J, will be defined 
which are equal to one when constraint j is active, and 
zero otherwise (Clark [9]). Thus, the complementarity 
conditions (14d), (14e) can be replaced by: 

(b) sj- U(1 -y,)<O jeJ 

(c) jsYj=nz+l 

(15) 

(d) y,=O, 1; Lj,sjaO jEJ 

where U represents an upper bound for the slacks, 
and where equation (1%) has been included to reflect 
the property that n, + 1 constraints must be active 
under the assumption that each square submatrix in 
the Jacobian of the constraints with respect to the 
control variables is of full rank. From (15) it is 
apparent that the following relations hold: 

, 
(i) if y, = 1, then lj > 0, sj = 0, which indicates that 

constraint j is active. 
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(ii) if y, = 0, then A, = 0, sj 2 0, which indicates that 
constraint j is inactive. 

Since $ (d, fZ) = u’ can be determined through the 
Kuhn-Tucker conditions (14) with the com- 
plementarity conditions expressed in discrete form as 
in (15), these equations can be introduced as con- 
straints in the 2-level optimization problem (13). This 
then leads to the following mixed-integer max- 
imization problem, 

x(d)= max u 
09 % u, 8,. 11, v, 

s.t. sj +&(a, z, 0) - u = 0 j E J 

Cd,=1 
IGJ 

j;lj$=o (Pl) 

5 - yj < 0 

s,-U(1 -yj)<o > 
jEJ 

Yj=O,l; Aj,Sj>O jEJ. 

In this way, for any combination of n, + 1 binary 
variables that is selected in this formulation (i.e. for 
a given set of n, + 1 active constraints), all the other 
variables II, z, aj, sj can be determined as a function 
of 0. However, a feasible selection of n, + 1 binaries 
is the one where 2, and 3 satisfy the nonnegativity 
constraints in (Pl). It should also be noted that 
although z appears as a variable for maximization of 
the objective function u, it will actually be selected to 
minimize u. This follows from the fact that the 
equations in (14), which are included as constraints 
in (PI), define the minimization of u with respect to 
2. 

The mathematical formulation of the Feasibility 
Test in (Pl) is a mixed-integer optimization problem 
since it contains continuous and integer variables. If 
the constraints &(d, z, 6) are linear in z and 19, then 
since the partial derivatives for the control variables 
are constant, (Pl) reduces to a mixed-integer linear 
programming (MILP) problem. If the constraints 
$ (d, z,, 0) are nonlinear then (Pl) results in a mixed- 
integer nonlinear programming (MINLP) problem. 

A very important feature of the formulation in (Pl) 
is that it does not assume the critical points to be 
vertices since the max-min-max problem in (5) is 
solved explicitly. Also, for the case when critical 
points do correspond to vertices due to the nature of 
the constraint functions, the formulation in (Pl) 
avoids the combinatorial problem of having to ana- 
lyze 2” vertices. The combinatorial problem is only 
dependent on the number of possible active sets in 
(8). Actually, the maximum number of assignments 

of n, + 1 active constraints is given by: 

m! 

(n, + l)! (m - n, - l)! (16) 

where m (m 2 n, + 1) is the number of inequalities. 
However, the nonnegativity constraints on dj, sj in 
problem (Pl), severely restrict the number of feasible 
assignments of active sets. This observation has been 
confirmed by many problems (see Grossmann and 
Floudas [lo]). 

Finally, it should also be noted that in the formu- 
lation (PI) it is straightforward to handle correlated 
uncertain parameters that can be expressed through 
algebraic equations, r (8) = 0. These equations would 
simply be included as constraints in (Pl). 

SPECIAL CASES FOR THE FEASIBILITY 
TEST 

The formulation (Pl) for the Feusibility Test that 
was presented above assumes that there is at least one 
control variable, and that the reduced set of in- 
equalitiesJ(d, z, e), j E J, is given by eliminating the 
state variables x. These 2 restrictions can easily be 
relaxed in the new formulation as will be shown in 
this section. 

For the case when it is desired to handle explicitly 
the equalities and inequalities in (3), the function 
$ (d, 0) in (8) can be redefined as follows: 

$(d,e)=minu 
I 

s.t. h,(d, Z, X, 0) = 0 ie Z 

gj(d,z,x,8)<u jeJ (17) 

where Z is the index set for the equalities. 
By defining for the equalities h,, i E Z, the multi- 

pliers pi which are unrestricted in sign, and the 
nonnegative multipliers Aj for the inequalities gj, j E J, 
then by applying the Kuhn-Tucker conditions to 
(17), it is easy to show that the corresponding mixed- 
integer programming formulation for the Feasibility 
Test is given by: 

x Cd) = max u 
0. x. r. u. 8,s r,. +,v, 

s.t. hi(d, x, z, e) = 0 i E z, 

sj + gj (a, X, Z, 0) - u = 0 j E J, 

En,=1 
jsJ 

~,Pi$+,F,Aj~=O 

a, - Yj 6 0 

sj- U(1 -yj)<O > 
jeJ 
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yj=O,l; S,sj30 jcJ; pisR’ ieI. 

Note that although the advantage in (p2) is that the 
elimination of state variables is not required, it 
involves as additional variables x and pi i E Z, and as 
additional constraints the system of equations 
hi(d, x, z, e), i E Z, as well as the stationary conditions 
with respect to the state variables. 

For the particular case when there are no control 
variables (n, = 0), or alternatively when these are 
assumed to remain constant during operation, it 
follows that the constraints J are independent of the 
controls, i.e. 

ah 
%=O ~EJ. 

This implies that the stationary conditions and the 
multipliers A,, j E J, can be eliminated from (PI), 
which then leads to the formulation: 

s.t. sj +f,(d, 0) - u = 0 

> 
jsJ 

sj- U(1 -y,)<O 
(P3) 

yj=O, I,sj>O jeJ, 

Since in this formulation only one constraint is 
allowed to be active, (P3) can be decomposed in terms 
of each individual constraint j E J by solving: 

with which 

(18) 

x (d) = max 12. 
jsJ 

(19) 

Finally, if equality constraints are explicitly han- 
dled for the case n, = 0, the corresponding formu- 
lation for the Feasibility Test is given by: 

x (d) = o FMasx yl u, 
. 3 .,’ 

s.t. h,(d, x, 0) = 0 i E I, 

(P4) 

2 Yj' l, 
jeJ 

eLGt3 fe”, 

y, = 0, 1 sj 2 0 j E J, 

where this problem can be similarly decomposed by 
maximizing individual constraints as in (P3). Obvi- 
ously, the formulations that have been presented for 
special cases in this section can also easily handle the 
case of correlated parameters. 

MIXED-INTEGER FORMULATION FOR THE 
FLEXIBILITY INDEX 

Using a similar approach for the active sets of 
constraints as for the Feasibility Test, the problem of 
the Flexibility Index in (6) can also be formulated as 
a mixed-integer optimization problem as will be 
shown in this section. 

As has been shown by Swaney and Grossmann [2], 
the condition $ (d, W) = 0 holds at the solution of 
problem (6). Furthermore, equation (10) implies that 
F is given by the smallest 6 that lies on the boundary 
of the parameter region of feasible operation 
($ (d, 0) = u = 0). Therefore, the problem for deter- 
mining the Flexibility Index F can be formulated as 
the mixed-integer minimization problem: 

F = min b, 
B.Z.&Sj,~j>Yj 

s.t.sj+J;.(d,z,8)-u=O jeJ, 

u = 0, 

,zAj$=O? 

Aj - Yj < 0 

> 
ieJ, 

Sj-U(l-_Yj)<O 

m 

630; yj=O,l; Aj,sj>O jeJ, 

where the constraint u = 0 is strictly redundant as it 
can be substituted in the first equation, but it has 
been included for comparison with (Pl). In a similar 
fashion as in problem (Pl), the mathematical formu- 
lation in (PS) does not require the examination of all 
possible vertices, nor does it assume that critical 
points must correspond to vertices. Correlated uncer- 
tain parameters can also be handled easily. The 
special cases of handling explicitly the equalities, and 
of no control variables are essentially similar to 
problems (P2), (P3), (P4) of the Feasibility Test. The 
corresponding formulations [(P6), (P7), (PS)] can be 
found in Floudas [ 111. 

LINEAR CONSTRAINT FUNCTIONS 

The new formulations for the Feasibility Test 
(Pl)-(P4) and for the Flexibility Index (PS)-(PS), cor- 
respond to mixed-integer optimization problems that 
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involve the integer variables y, with the remaining 
variables being continuous. For the case when the 
constraint functions (hi(d, x, z, 0) i ~1, g, (d, x, Z, O)j d) 
are linear in x, z and 0, problems (Pl)-(P8) lead to 
mixed-integer linear programming MILP problems 
for which the global optimum solution can be ob- 
tained with standard branch and bound enumeration 
procedures. Alternatively, the active set strategy 
presented in the section of nonlinear constraints can 
also be used, in which case the problem reduces to a 
sequence of linear programs. It should be recalled 
that in the linear case the critical points 8’ will 
correspond to vertices due to the convexity of the 
linear functions. Also, in the linear case the constraint 
on the sum of the integer variables vj can be relaxed 
to an inequality less or equal than n, + 1 since the 
Kuhn-Tucker conditions in (14) are necessary and 
sufficient for linear constraints. In this way the 
assumption of linear independence of the active 
constraints can be relaxed. 

For process synthesis applications, where approxi- 
mate solutions would be suitable for screening pur- 
poses, a quicker way to solve the nonlinear versions 
of problems (Pl)-(PI) is to linearize the constraint 
functions. For example, the constraints &(d, z, 0) 
could be approximated by 

&(d, Z, 6) =A(& zN, ON) 

+($$(e -eN)+(z)16-zN) (20) 

Hl, l.SkW/K H2, lkW/K 

where (zN, ON) corresponds to the nominal point. In 
this way, problems (Pl)-(PS) can also be solved as 
MILP problems. As discussed by Grossmann and 
Floudas [lo], these linearizations can often yield good 
approximations. To illustrate the application of the 
new formulations to linear constraints, the 2 follow- 
ing examples are considered. 

Example I 

In the heat exchanger network shown in Fig. 6, the 
inlet temperatures of the 2 hot and two cold process 
streams are regarded as uncertain parameters. Given 
the nominal values of the temperatures and the 
flowrates shown in Fig. 6 and assuming expected 
deviations of the temperatures of f 10 K, the objec- 
tive is to determine if the network is feasible for the 
specified range of inlet temperatures. 

Applying the energy balances in the heat exchanger 
units yields the following set of linear equations: 

1.5 (Z-1 - T2) = 2(T, - TJ 

T,-T,=2(563-T,) 

T,-T,=3(393-T,) 

Qc = 1.5 (T, - 350) (21) 

Assuming a minimum temperature approach, 
AT,, = 0 K, the 5 following linear inequalities are 

300 K 

Cl Ts 
2kW/K 

T;=388 K 

T-4 563K 
* 

/ 

I 

393 K 
* 

350K 

Fig. 6. Network of Example 1 with uncertain temperatures T, , T,, T,, Ts. 
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considered for feasible operation of this heat ex- and at the lower bounds of T, , T,, Ts (615 K, 383 K, 
changer network. 578 K). 

T2 - T, 2 0 To illustrate the case of correlated uncertain 
parameters, suppose that the inlet temperatures T,, 

T, - T, 2 0 

T, - Ts 2 0 

T6 - 393 > 0 

T, of cold &dam Cl and cold 
spectively, are correlated according 
relationships: 

T, = T$’ + 0, 

stream C2, re- 
to the following 

T7 G 323 (22) 

The first 4 inequalities ensure feasible heat exchange 
in units HI-Cl, H2-C1, H2-C2, while the last in- 
equality is a specification on the outlet temperature of 
H2, as shown in Fig. 6. 

TB = Tf + 0.88, (24) 

where 0 in an independent parameter. 
The above 2 equations can be simplified into one 
equation that correlates T, and TB as follows 

The system of equations in (21) involves one degree 
of freedom since there are 4 equations and 5 un- 
knowns. Therefore, the temperatures T2, T,, T,, T, 
can be regarded as state variables, while the heat load 
in the cooler (Q,) can be regarded as a control 
variable. Using equations (21), the state variables can 
be expressed as linear functions of the uncertain 
parameters (temperatures T,, T,, T,, T,) and the 
nonnegative control variable (Q,). Then, the in- 
equality constraints take the following form: 

0.8 T, - TB = -2.6. (25) 

Applying formulation (P6) with the additional con- 
straint (25) that correlates T, and T,, results in a 
flexibility index F = 0.58824, which as expected is a 
higher value than the case when the 4 inlet tem- 
peratures vary independently. It can therefore be seen 
that the case of correlated parameters can be handled 
very easily in the proposed formulations. 

Example 2 
fi = -0.67Q, + T, - 350 ,( 0 

ft = - Ts - 0.75T, + 0.5Qc - T, + 1388.5 Q 0 

h= -T,- 1.5T,+Q,-2T,+2044<0 

f4= -T,-1.5T,+Q,-2T,-2T,+2830<0 

h=T,+1.5T,-Qc+2T,+3T,-3153GO. (23) 

To test if this network is feasible for specified 
variations of + 10 K in the inlet temperatures, the 
MILP versions of the Feasibility Test (Pl) (elimi- 
nation of equations) and (P2) (without elimination of 
equations), were applied. The resulting formulation 
of (Pl) has 5 integer variables, 16 continuous vari- 
ables and 27 rows, and required 4.5 s of CPU- 
time(DEC-20) with the computer code LINDO 
(Schrage [12]). The resulting formulation of (P2) has 
5 integer variables, 24 continuous variables and 35 
rows, and required 4.9 s of CPU-time. The solution 
found in both problems was u = + 8.7425 indicating 
therefore, that the network is infeasible to tolerate 
simultaneous variations of up to + 10 K in the tem- 
peratures of the inlet streams. The critical point was 
located at the upper bound of T, and the lower 
bounds of T, , T,, T5. 

The heat exchanger network of Fig. 7 is shown 
with nominal conditions for the heat capacity 
flowrates and temperatures. If uncertainties are con- 
sidered for the 7 inlet temperatures, then the in- 
equalities for feasible heat exchange in every ex- 
changer can be shown to be linear (see Saboo et al. 
[I 31). Given the expected deviations of _+ 10 K for 
each inlet stream, and specifying fixed values for the 
outlet temperatures given in Fig. 7, it is desired to 
determine the flexibility index for this network. Tem- 
perature z, will be treated as a control variable, and 
19 inequalities for temperature differences (AT,, = 0) 
and positive heat loads are considered for feasible 
heat exchange. 

The MILP version of (P5) for the Flexibility Index 
involves 19 binary variables, 48 continuous variables 
and 83 rows. The flexibility index obtained with this 
formulation is F = 0.75, which implies that the net- 
work of Fig. 7 can tolerate simultaneous variations in 
the inlet temperatures up to f 7.5 K. The solution to 
this problem required 31 s of CPU-time (DEC-20) 
with the computer code LINDO, Schrage [12]. 

The formulations (P5), (P6) for the Ffexibility 
Index were also applied to this network. The MILP 
for (P5) involved 5 binary variables, 16 continuous 
variables, 27 rows and required 7.18 s of CPU-time; 
problem (P6) involved 5 binary variables, 24 con- 
tinuous variables, 34 rows and required 7.6 s of CPU- 
time. With both formulations it was found that the 
flexibility index is F = 0.5, which means that the 
network of Fig 6 can tolerate simultaneous variations 
in the inlet temperatures up to + 5 K. The critical 
point was located at the upper bound of Ts (318 K), 

This problem was also solved with the direct search 
over all vertex directions as given by equation (10). 
This required the solution of 2’ = 128 linear pro- 
gramming problems as given by (1 1), yielding also a 
flexibility index of F = 0.75. The computer time 
required with this approach, however, was 227 s, 
which clearly shows the advantage of not having to 
analyze the parameter vertices with the new formu- 
lation. 

It is also interesting to compare the result obtained 
for the Flexibility Index with the case when the 
control variable z is assumed to remain constant 
during operation. In this case, formulation (P7) in- 
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Hi 4kW/K 

400 K 

H2 PkW/K 

450K 

-380K 

350K 

1325K r,,, ’ 

H3 H4 2.5kW/K 
2kW/K 

1 I 
400 K 

2k$--~~---- 340 K 

2i8K 360K 

Fig. 7. Network of Example 2 with uncertain inlet temperatures. 

volves 19 binary variables, 29 continuous variables 
and 62 rows. Table 1 shows values of the flexibility 
index for several fixed values of the control variable 
z,. As can be seen, very conservative results can be 
obtained when the flexibility analysis does not ac- 
count for the adjustment of the control variables (e.g. 
F = 0.114 for z, = 390 K). 

NONLINEAR CONSTRAINT FUNCTIONS 

In the case when the constraint functions are 
nonlinear in z and 6, problems (Pl)-(PS) become 
mixed-integer nonlinear programming MINLP prob- 
lems. A major difficulty, however, that arises in these 
formulations is that they involve as constraints the 
stationary conditions with respect to the control 
variables [e.g. equation (14b) in problem (Pl)]. These 
stationary conditions involve partial derivatives, 
which unlike the linear case, are not constant since 
they are in general a function of the uncertain 
parameters and the control variables. Handling the 
derivatives for the control variables in (14b) as con- 
straints in a general purpose MINLP algorith (see 

Table 1. Flexibility index for fixed z, in Example 2 

21 W 310 334 350 390 
F 0.167 0.265 0.532 0.114 

Geoffrion [ 141; Duran and Grossman [IS]), can be a 
very difficult task, apart from the fact that rigorous 
solutions with these methods can only be guaranteed 
for restricted types of constraint functions Floudas 
[1 11. Therefore, this section will present an Actiue Set 
Strategy that decomposes the solution of the MINLP 
problem into NLP subproblems that avoid the ex- 
plicit handling of the stationary conditions. As will be 
shown, the proposed active set strategy is rigorous for 
special types of constraints that are monotonic in the 
control variables, and it has the capability of finding 
nonvertex critical points. 

The basic idea in the proposed active set strategy 
consists in identifying from the stationary conditions 
in (14b), the potential candidates for the active sets 
that can lead to the correct solution of the corre- 
sponding flexibility analysis problem. Assuming that 
the constraint functionsh(d, z, 0),j E J are monotone 
in z (in the sense that every component of the 
gradients V, h (d, z, 0) remains one-signed for all 0), 
the potential active sets can easily be determined from 
(14b) and (15a, 15~): 

1 ljg=o; 
jsJ 

lj-yj<O jEJ; (154 

CYj=&+ 1. 
jGJ 
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Since Jj 3 0 must hold for each constraint j E J, then 
if the components of 

3 
az 

are one-signed, equation (14b) will indicate the 
different combinations of n, + 1 active constraints 
that can satisfy this equation. As an example, assume 
the case of one control variable and three constraints 
for which 

afi,, dfi>o &-J 
az ’ az ’ az . 

It is then clear that for (14b) to be satisfied for two 
nonzero multipliers, either 1, > 0, 1, > 0, 1, = 0, or 
LZ > 0, 1, > 0, 1, = 0. In other words, the only 
candidates for the active sets are (I, 3) and (2,3) 
respectively. 

It is important to note, that special consideration 
must be provided for the case when in a given 
candidate active set constraints are present that are 
lower and upper bounds on the same function. For 
example, assume that a and b (a < b) are the lower 
and upper bound of the function g, that is: 

a <g(d,z,@)<b. (2’3 

Then, the constraints for the Feasibility Test take the 
following form: 

f, = a - g (d, z, 0) G u; 

fi = g (d, z, 0) - b G II. (27) 

Assuming that both fi and f2 are active, it can be 
easily shown that u = (a - b)/2, which is always 
negative. This result can be generalized for any 
combination of active constraints, that contains con- 
straints which are lower and upper bounds on the 
same function. As shown in Appendix A, the value u k 
for an active set k of this type is given by the 
following equation: 

1 
Ilk,--- cr, ,,Z& %0 - C 

( 
bjCu) 

> 
(28) 

i(u) E AW 

where the indices j (I), j (u) correspond to those pairs 
of constraints representing lower and upper bounds 
on the same function, and ak is the total number of 
this type of constraints. Therefore, by using the 
expression uk in (28) the solution of the NLP problem 
that corresponds to that active set can be obtained 
analytically. It should also be noted that since uk is 
always negative here, then for the Flexibility Index 
those active sets containing lower and upper bound 
constraints can be excluded a priori. This follows 
from the fact that the Flexibility Index requires a 
solution with uk = 0 for a given active set as can be 
seen in (PS). 

Having identified the combinations of different 
potential active sets of constraints, the corresponding 
NLP that arises for a fixed choice of an active set k 
in the MINLP formulation, can be solved to deter- 

mine its corresponding maximum uk (Feasibility 
Test) or its corresponding minimum 6’ (Flexibility 
Index). The final solution is then just simply given by 
the largest value of uk, or the smallest value of ak that 
is obtained among the candidate active sets. 

As an example, for the Feasibility Test in (Pl), the 
steps of the algorithm are as follows: 

1. Identification of the possible active sets 

(a) For every j E J compute V&d, z, 0) and 
determine the signs of each component of 
the gradients. 

(b) Identify the nAS combinations of active sets 
of constraints from equation (14b) based on 
the signs of the gradients V,J(d, z, 0) and 
considering (15a) and (1 SC). Also, identify 
lower and upper bound constraints that 
might be present. 

(c) For each combination k = 1,2, . . . nAS, 
define the set AS(k) = (j 1 j E J, and j is one 
of the n,+ 1 active constraints) 

2. Determine the value of uk for each candidate 
activesetk=l,2,...n,,. 

(a) If AS(k) involves lower and upper bound 
constraints, then uk is given by: 

(b) Otherwise, solve the nonlinear programming 
(NLP) problem: 

uk = max II, 
e.r,u 

s.t.fi(d, z, 9) - u = 0 j E AS(k) (NP’), 

eL<e Geu, 

(3) The solution of the Feasibility Test problem is 
given by: 

x (d) = kr=nkj a k. 

Similar algorithms can be developed for the formu- 
lations (P2)-(P4) of the Feasibility Test, and for the 
formulations (PS)-(PS) of the Flexibility Index. In the 
case of (P2) and (P6) where equalities are explicitly 
handled and n, 3 I, step 1 requires the elimination of 
the multipliers pi from the stationary conditions in 
order to obtain equation (14b). In the case of (P3), 
(P4), (P7), (P8) where n, = 0, step 1 is replaced by 
setting AS(j) = j, j E J, since in this case each con- 
straint becomes a candidate active set. For example, 
for problem (P3), the algorithm just simply reduces 
to equations (18) and (19). 

It should be noted that the above algorithm is 
equivalent to an enumeration of all feasible candidate 
active sets. As was indicated before, when control 
variables are involved, this number can be expected 
to be relatively small, especially when compared to 
the number of vertices involved in problems with 
many uncertain parameters. Also, it should be noted 
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Table 2. Sufficient conditions for global optimality in the NLP 
suburoblems of active constraint strateav 

Feasibilitv Test 

(Pl) (n: a 1) 
Quasi-concave in B 

(Theorem 1) 
Jointly quasi-concave 

in I WICI 8. and 
strictly quasi-convex 

in z for fixed B. 
(Theorem 2) 

Flexibility Index 

(PS) (4 3 1) 
Quasi-concave in 0 

(Theorem 3) 
Jointly quasi-concave 

in a and 8, and 
strictly quasi-convex 

in a for fixed 19. 

/;(d, 81 
(P3) (% = 0) 

Ouasi-concave in e 
(P7) (k = 0) 

Ouasi-concave in 0 

that the above algorithm does not assume vertex 
solution, and that for the linear case it can be used 
instead of a direct MILP solution. 

An important question in the proposed algorithm 
for active sets is what assumptions are required for 
the constraint functions so as to guarantee the global 
optimal solution of the NLP corresponding to each 
active set of constraints. Table 2 presents sufficient 
conditions that are required for the feasibility func- 
tion $k(d, 19) and for the constraint functions 
&cd, z, e), j E AS(K), corresponding to the kth active 
set in the formulations (PI), (P3), (PS), (P7). The 
theorems are presented in Appendix B. 

The geometrical interpretation of the sufficient 
conditions for a unique global solution for uk in the 
Feasibility Test are illustrated in Figs 8a-c in which 
1-D plots of z vs 8 and t,bk(d, 0) vs 8 are depicted. In 
Fig. 8a, the constraint functions fi, f2 are jointly 
quasi-concave in z and 8, and strictly quasi-convex in 
z for fixed 8. Therefore, $ k (d, 0) is quasi-concave (see 
theorem 2) and, hence, uk corresponds to a unique 
global solution (see theorem 1). To show that the 
conditions in Table 2 are sufficient, consider in Fig. 
8b the constraint functions fi, f2 which are jointly 
quasi-convex in z and 8, and therefore do not satisfy 
the conditions of theorem 2. However, as can be seen 
in Fig. 8b, tik(d, tl) is quasi-concave in 8, and uk is a 
unique solution. On the other hand, in Fig. 8c, f, and 
fr are also quasi-convex in z and 8, but these result 
in tjk(d, 0) which is quasi-convex, leading to 2 local 
maxima for uk = 0 as shown in this figure. 

The geometrical interpretation of the sufficient 
conditions for a unique global solution for the Flex- 
ibility Index are similar to the above cases. An 
example where these conditions are satisfied is illus- 
trated in Fig. 9, in which 1-D plots of zvs 8 and 
I(lk(d, 0) vs 8 are presented. In this figure, h, f2 are 
jointly quasi-concave in z and 8, and therefore, 
$‘(d, e) is quasi-concave in 0 (see theorem 2). AS 

shown in theorem 3, if the NLP subproblem for the 
Flexibility Index is solved by relaxing the constraint 
on the boundary as JI” (d, 0) > 0, it will have a unique 
solution (point F, in Fig. 9.) It is interesting to note 
that if the constraint on ILk(d, 0) is not relaxed, then 
as seen in Fig. 9, there are 2 local solutions, F, and 
F2, which correspond to the intersection points 
$‘(a, 0) = 0. 

It should be pointed out that even though for 
practical design problems it might be difficult to 
establish whether the active constraints belong to the 
class of functions described above, the theoretical 
results presented here describe precisely the sufficient 
conditions for which a unique global solution can be 
guaranteed for the problem formulations (Pl), (P3), 
(P5), (P7). An example where the knowledge of the 
theoretical properties has been useful is in the 
flexibility analysis of heat exchanger networks with 
uncertain flowrates and temperatures, a problem that 
has been shown to satisfy the conditions in Table 2 
(see Floudas and Grossmann 1161). 

Example 3 

A slightly modified version of the heat exchanger 
network given in Grossmann and Morari [l], is 
shown in Fig. 10; in this network the outlet tem- 
perature of stream Hl is specified to be cooled down 
to at least 323 K. The uncertain parameter is the heat 
capacity flowrate of stream HI which has a nominal 
value of 1 kW/K and an expected deviation of 
+0.8 kW/K. This network is feasible for the extreme 
values (1, 1.8) but it is infeasible for some inter- 
mediate values. It will be shown that the Active Set 
Strategy used in the formulation for the Feasibility 
Test (Pl) can identify the nonvertex critical point. 

The 4 following inequalities are considered for 
feasible operation of this network. 

Feasibility in exchanger 2: t, - t, > 0 

Feasibility in exchanger 3: t, - 393 3 0 

Feasibility in exchanger 3: t3 - 313 b 0 (29) 

Specification in outlet temperature: t3 6 323. 

By eliminating the state variables, these 4 inequalities 
can be written as a function of the control variable 
Q, (cooling load) and the uncertain parameter Fur as 
follows: 

fi= -25+Q,[(l/F,,)-0.5l+(l0/F,,)~O 

fi = -190 + (lO/Fm) + (Qch,) G 0 

A = -270 + (250&,) + (Q,/Fm) d 0 

f4 = 260 - (250/Fm) -(Q, /F,.n) < 0. (30) 

The feasible region for these constraints is shown in 
Fig. 11. 

To test for feasibility of operation in this network 
for the parameter range F,, E (1, 1.8), the Active Set 
Strategy will be applied to the formulation (Pl). 
From the constraint on the Lagrange multipliers &, 
AZ, &, 1, of the Kuhn-Tucker conditions we have: 

[(l/F,,) - 0.511, + (l/F,,)& 

+(lIF,.n)& - (l/Fr-,,)& =O. (31) 

Since (l-O.5 F,,) is greater than zero for the par- 
ameter range of FHlr and there exists one control 
variable (i.e. 2 active constraints), there are 3 active 
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Fig. 8. (a) $ (d, 0) quasi-concave in 0; (b) @ (d, 8) quasi-concave in B; (c) $ (d, 8) quasi-convex in 0. 
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sets satisfying I 2 0; Active set 1: constraints 1 and 
4; Active set 2: constraints 2 and 4; and Active set 3: 
constraints 3 and 4. All active sets will be examined 
below. 

Active set 2 implies that solving the system of 
fi = u,fq = u; the following expression is found for u: 

u = 35 - (120/Fu,). (32) 

Since u is monotone in the uncertain parameter, a 
unique global solution exists for u in Active set 2 (see 
theorem 1). This solution is FH1 = 1.8, Q, = 275, and 
u2 = - 31.667, thus indicating that these 2 constraints 
are feasible at the upper limit of Fu,. It should be 
noted, however, that constraint fs is violated for this 
active set. 

Active set 3 involves the lower and upper bounds 
on t, (313 K, 323 K respectively). Thus, from (28) it 
follows that u’ = (313 - 323)/2 = - 5, which indi- 
cates that f3 and f4 are feasible constraints. 

Finally, solving the system of equalities fi = u, 
f4 = u for Active set 1, it is found that: 

Fig. 9. Example of concave $ (d, 0) for the flexibility index. 

520 - 570 F,, 
f.4 = 260 - (25O/Fu, ) + F,, (4 _ F,,) . (33) 

The above expression for u attains a maximum at the 
nonvertex value F,, = 1.37228 13 with u * = + 5.10875 
(infeasible), Q, =99.7825. It should be noted that 

H2,2kW/K Hi. F,, 

723K 

_ I, 

583 K 

c2 ?PP Y l 

2kW/K 

t t,d323K 

Fig. 10. Network of Example 3 with uncertain flowrate F,, . 
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Fig. 11. Feasible region for constraints for Example 3. 

since $ (d, 0) = u is quasi-concave a unique maximum 
solution exists for u at this active set (see theorem 1). 

Since the value u ’ for the Active set 1, is the largest, 
it then follows that x (d) = + 5.10875, which defines 
the global solution of problem (Pl) at the nonvertex 
critical point F,, = 1.37228 13. This corresponds pre- 
cisely to the point of largest constraint violations in 
the range (1,1.8). Specifically, at this point the tem- 
peratures are t, = 508.11 K, t2 = 503 K and t, = 
328.11 K, which clearly violate the first and fourth 
feasibility constraint (f,&). Thus, as shown in this 
example, the formulation (Pl) has the capability of 
predicting critical points that do not correspond to 
vertices or extreme values. 

To illustrate the application of the Flexibility Zn- 
dex, formulation (P5) was applied to this problem. 
The nominal value for F,, was taken as 1 kW/K with 
a positive expected deviation of 0.8 kW/K. It should 
be noted that the calculation of the Flexibility Index 
for Active set 3 is excluded, since constraints 3 and 4 
can not be simultaneously active with u’ = 0. Also, 
when applying problem formulation (P5) to the 
different active sets, the constraint u = 0 is re- 
formulated as u > as implied by theorem 3 to ensure 
uniqueness of the solution. 

Testing for Active set 2, it was found that 
h2 = 3.0357, which implies a maximum value of 
F,, = 3.428 for feasible operation of constraints 2 
and 4. This solution of (PS) is unique global solution 
since ti2(d, 0) is quasi-concave in 8. 

Testing for Active set 1 in problem formulation 
(PS), the solution is 6’ = 0.1476825 for 
F,, = 1.118146. By similar arguments as above, this 
is also a unique solution. 

Since the flexibility index F = min ak, the flexibility 
index for this heat exchanger network is 
F = 0.1476825, k oAS(R) which implies that this 
network remains feasible only for the range 
Fui E [I, 1.1181461. 

Finally, the quality of the approximation of the 
nonlinear constraints with the linearized ones at the 
nominal point (F,, = 1, Q, = 10) for the Flexibility 
Index will be illustrated in this example problem. 
Using the MILP version of (P5), it was found that 
F = 0.125 which implies a range for the flowrate F,, 
of [l, 1. l] in which feasible operation is guaranteed. 
Therefore, it is apparent that the quality of the linear 
approximation is very good in this case. 

Example 4 

This example problem, which is an extended 
version of the problem in Swaney and Grossmann [2], 
will illustrate the application of the formulation 
(p8) for the Flexibility Index. In this example, a 
centrifugal pump (see Fig. 12) must transport liquid 
at a flowrate m from its source at pressure P, through 
a pipe run to its destination at pressure Pi. The 
flowrate m, the pressure P;, the pump efficiency r~, the 
pressure drop constant in the pipe k, and the liquid 
density p are treated as uncertain parameters. The 
design variables d, are the pipe diameter D, the pump 
head H, the driver power W, and the control valve 
size Cc”“. The control variable is the valve 
coefficient C,, while P2 is a state variable. Nominal 
values and expected deviations for the uncertain 
parameters are shown in Table 3. P, is fixed at 
100 kPa. The problem then consists of determining 
the Flexibility Index for the design for which 
W=31.2kW, H=1.3k.I/kg, D=O.O762m and 
CyAx = 0.039673. 

The corresponding inequalities that apply for this 
problem in terms of the control variable C, and the 
uncertain parameters Pi, m, q, k, p are given by 
Swaney and Grossmann [12]: 

/,=P,+pH--r-~-kml”D-“‘-P;CO. 
” 

fi= -P, -pH -6 +-$+km1~MD-5~‘6+P;<0 
” 

f,=mH-VW<0 

f4=Cv--C~~<0 

A= -Cv+rC,MM<O (34) 

where r is the control valve range (r = 0.05) and 
L = 20 kPa is a tolerance for the delivery pressure. 

To identify the possible active sets, equation (14b) 
is used in conjunction with the number of active 
constraints (2 active constraints for this example, 
since there is one control variable). Equation (14b) 
takes the following form for the above set of in- 
equalities: 

$l,-q2+&-15=0. (35) 
” PC” 

From (35), the active sets of constraints can be 
identified easily since the partial derivatives of the 
constraints with respect to the control variable C, do 
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Fig. 12. Pump and pipe run of Example 4 with Pi. m, q. k, p uncertain parameters. 

not change sign because of the nonnegativity of the 
uncertain parameters and the control variable. Then, 
the possible active sets of constraints identified from 
equation (35) are: 

Active set 1: Constraints fi , fs; 

Active set 2: Constraints fi, f4; 

Active set 3: Constraints f,, fi; 

Active set 4: Constraints f4, fs. 

Since active sets 3 and 4 are lower and upper 
bounds on the same function, they can be excluded 
from the calculation of the Flexibility Index as was 
indicated previously in the paper. Therefore, only 
active sets 1 and 2 have to be considered, which 
implies the solution of 2 NLP problems in formu- 
lation (PS). In contrast, the vertex enumeration 
would require the solution of 32 NLP’s since there are 
5 uncertain parameters, and therefore 32 vertices. 

Solving the NLP for active set 2, leads to 
6’ = 0.40765 at P; = 881.5297, m = 10.8153, 
q = 0.479618, k = 9.2865 x 10m6, and p = 979.6175. 
Solving the NLP for active set 1, it was found that 
6’ = 1.50437 at Pi = 0, m = 2.4781, q = 0.4247, 
k = 8.4164 x 10e6, and p = 1075.22. Notice that the 
solutions of the NLP’s for each active set are unique 
global solutions since the constraint functions are 
monotone and satisfy the conditions of theorem 2. 
Since the Flexibility Index is given by the minimum 
of 6’, a2, the flexibility index for this example prob- 
lem is F = 0.40765 which implies that the uncertain 
parameters can vary in the ranges Pi E [596.17,88 1.531, 
m E [7.962, 10.8151, q E [0.4796,0.5204], k E [8.9155, 
9.28651 x 10-6, p E [979.62, 1020.381. The solution of 
the 2 NLP’s required a total of 4.7 s of CPU- 
time(DEC-20) with the computer code MINOS/ 
AUGMENTED Murtagh and Saunders [17]. 

Finally, equation (20) was utilized for the linear- 
ization of the nonlinear constraints to yield the MILP 
formulation of (PS) for the Flexibility Index. The 
result obtained is F = 0.4656, which is the nonlinear 
solution F = 0.40765. The CPU-time (DEC-20) re- 

quired for the MILP with the LINDO code (Schrage 
[12]) was 1.57 s. 

DISCUSSION 

As has been illustrated with example problems 1 
and 2, when the constraints are linear the formu- 
lations (Pl)-(P8) become mixed-integer linear pro- 
gramming (MILP) problems which can be readily 
implemented in computer software and solved with 
standard branch and bound enumeration techniques. 
(MILP) formulations also result from linearizations 
performed on nonlinear functions which can be used 
to obtain estimates of flexibility for screening pur- 
poses. These linear estimates are of course not guar- 
anteed to be always very accurate. However, they 
would seem to be particularly suitable for estimating 
the flexibility index since quite often the actual par- 
ameter deviations will be rather small. It is interesting 
to note that since measures of controllability or 
dynamic resiliency rely on function linearizations of 
the process, Grossmann and Morari [1], one can use 
this common information to characterize both the 
flexibility and controllability of chemical processes. 

For the case, when the constraints are nonlinear, 
an Active Set Strategy has been presented for the 
solution of the mixed-integer nonlinear programming 
(MINLP) problems. In this strategy, the potential 
active sets of constraints are identified, and a non- 
linear programming NLP problem is solved for each 
active set of constraints. Automating this strategy 
should in general not be too difficult given a suitable 
NLP routine. As was shown with Examples 3 and 4, 
the proposed strategy offers the possibility of identi- 
fying nonvertex critical points if they exist, and 
furthermore the number of NLP’s that have to he 
solved is very often much smaller than the number of 
vertices. Sufficient conditions that guarantee global 
solutions for this strategy have been investigated. For 
processes not satisfying these conditions rigorous 
guarantees are not possible. However, results of the 
examples, the study on heat exchanger networks by 
the authors Floudas and Grossmann [6], and pre- 

Table 3. Nominal values and deviations of the uncertain parameters in Example 4 

Parameter Nominal value Positive deviation Negative deviation 

P; (kPa) 800 200 500 
m (kg/s) 10 2 5 

(kPa)(kg&‘.“(m’ 
0.5 0.05 0.05 

k 16) 9.101 x 10-e 0.45505 x 10-b 0.45505 x 10-6 
P (kg/m’) loo0 50 50 
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liminary experience on process flowsheets by the first 
author have been very encouraging. 

Finally, it is interesting to note the differences and 
similarities of this work with the one by Swaney and 
Grossmann, [2, 61. In their work, the solution of the 
max-min-max problem is simplified by the assump- 
tion that the critical points for feasible operation 
correspond to vertices or extreme values of the 
uncertain parameters. In this paper, however, the 
max-min-max problem is solved explicitly, without 
making any assumptions on the critical points, except 
for the linear independence of the constraint gra- 
dients. In the work of Swaney and Grossmann, 
sufficient conditions for a global solution are that the 
constraint functions must. be jointly quasi-convex in 
z and one dimensional quasi-convex in 8, which 
guarantees that the critical points lie at the vertices. 
In this work, however, the main sufficient conditions 
for a global solution are that the constraint functions 
must be jointly quasi-concave in z and 8, and strictly 
quasi-convex in z for fixed 8 (see Table 2). Therefore, 
it can be seen that the 2 works are complementary to 
each other in terms of the type of nonlinear functions 
that can be handled. There is, however, also an 
overlap on the type of functions that can be handled, 
as for instance the case of linear functions. 
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APPENDIX A 

Proposition: Let problem 

ut = 7:; (u &(d, z, 0) = u,j E AS(k)) 

be such that a subset of the constraints AS’(k) is given by 
g cu.,) (d, 5 6) d bjcuj 9 
A 

a,(,) Gggl(4tj(d, 5 @I, i(l), i(u) gAS’(k). 
en uk is given by: 

where ak = (AS’(k) 1 

Prooft The constraints in the active set can be written as: 

gj(,,j(d* a, 6) - bj,, = u, j(u) a AS’(k), 

a,~,,-gi(“,,)(d,z,8)=u, j(j)oAS’(k), 

f;(d, Z, 0) = Y, j e AS’(k). 

By adding the above equations, it follows that: 

ulAS’(k)l+ C u = 2 a,,) 
~*AS’U) A0 eAS(kC) 

- c ‘bm +,ezk)4. 
j(u) E AS (4 

But, since u =&(d, z, 0), j e AS’(k), 

1 

’ = IAS’ol 
Since u is a constant, its maximum has the same value; that 
is 

* 
uk=- 

a c %, - 
k j(l) E AS(k) j(u)&(k) ‘(‘))’ 

APPENDIX B 

Definitions, theorems and proofs of theorems 

Definition 1: $ ‘(d, 6) for the k’th active set is given by: 

(I k(d, 6) = min [U V;(d, z, 6) = u, j E AS(k)]. 
Y. I 
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Theorem 1: If $‘(d, e) is quasi-concave in 6, then the 
subproblem for active set k in (pl), 

has a unique global solution. 

Proof: It is well known [l] that if tik(d, 0) is quasi-concave 
function of 8, then every strict local maximum problem over 
the convex set T will also be a strict global maximum. 

Theorem 2: If the constraint functions J;(d, z, @), 
j E AS(k), are jointly quasi-concave in z and 8, and strictly 
quasi-convex in z for any fixed 6, then the function $“(d, 0) 
is quasi-concave in e. 
ProoE (a) It will be proved first that $“(d, 0) is uniquely 
defined for the given active set. 

Let IJ (d, 8) = min 4 (d, z, 6) 
I 

where 

4 (4 z, 0) = jy, [f;@, z, wi. 

Since f;(d, z, 0) is strictly quasi-convex in z 

f;(d,z3, 6) < max[f;(d, ~1, e), &(d, t, e)i 

where z3 = az’ + (1 - a)$, a E (0,l). It then follows that 

For the case when z’ # z3, $ (d, e3) is not identical to 
f;(d, z’, 0’) for all j o&(k). Hence, there will exist a 
constraint j’ such that &(d, z3, 0)) i IJ (d, 0’). Applying 
(A2) to j’ it follows that 

~(d,e3)>~(d,eI)=minr~(d,el),$(d,e2)i 

which then proves that $ (d, 0) is quasi-concave in 8. 
Theorem 3: If the function tik(d, 0) is quasi-concave in 0, 

then the subproblem for active set k in (P5) 

6’=min6 

s.t. +k(d, fl) = 0 

do (4 z3, 6) = jn$& [f;(d, z3, WI eN--Ae-~egeN+6Ae++,8,0 
has a unique global solution. 
Proof: Since. by definition of the Flexibility Index, S = 0 
implies that + (d, 0) d 0, the above problem for 6’ is equiv- 
alent to: 

Hence, 

4 d, ~3~6) < maxM (4 zr, 0 4 (4 22, e)]. 

Therefore, since 4 (d, z, 0) is also strictly quasi-convex in z 
it implies that $ (d, 6) has a unique solution [8]. 

(b) In the second part it will be proved that $ (d, 0) is 
quasi-concave. I 

Consider any 2 points Or, 0*, such that 
$ (d, 0’) Q $ (d, fl*). From definition 1, 

(I(d,B’)=f;(d,z’,B’) jEAS(k), 

* (d, e2) =f;(d, z*, 0*) j l AS(k), 

From the above this implies that 

+ (d, 0’) = min[&(d, z’, @‘),&(d, z*, 0’)] j E AS(k). (Al) 

Furthermore, since &(d, z, 0) is jointly quasi-concave in z 
and 0 

+ (4 el) ,<h(d, z’, ev j E AS(k) l.42) 
where 

z’=az’+(l-a)z*, e3=ae1+(1-aje*, aE(o,l). 

If the solution z’ to +(d,B’) =f;(d,z’,e3), jc AS(k), 
is given by z3, then it clearly follows from (A2) that 
$ (d, 0) is quasi-concave since $ (d, @) 3 $ (d, 8’) = 
minW (a, e’), $ (4 e*)l. 

6’=mind 

s.t. $‘(d, 0) 2 0 

eN-ae-geCeN+ae+,a 20. 
Since Sk(d, 8) is quasi-concave in 6, the constraint 

ek(d, 6) 2 0 and the linear constraints for 6 define a convex 
feasible region. Hence, this problem has a unique global 
solution [8]. 

The proofs of the rest of the properties listed in Table 2, 
are similar to those presented in this Appendix. 


