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Uncertainities in chemical plants come from numerous sources: internal like fluctu-
ated ®alues of reaction constants and physical properties or external such as quality and
flow rates of feedstreams. Accounting for uncertainty in ®arious stages of plant opera-
tions was identified as one of the most important problems in chemical plant design and
operations. A new approach proposed describes process’s feasible region and a new
metric for e®aluating process flexibility based on the con®ex hull that is inscribed within
the feasible region and determines its ®olume based on Delaunay Triangulation. The
two steps in®ol®ed are: 1. a series of simple optimization problems are sol®ed to deter-
mine points at the boundary of the feasible region; 2. gi®en the set of points at the
boundary of the feasible region, the con®ex hull inscribed within the feasible region is
determined. This is achie®ed by implementing the Quickhull algorithm, an incremental
procedure for e®aluating the con®ex hull, and then by computing a Delaunay Triangula-
tion to determine the ®olume of the con®ex hull pro®iding a new metric for process
flexibility. This approach not only pro®ides another feasibility measure, but an accurate
description of the feasible space of the process. It was applied to 1-D con®ex problems,
and work is in progress to extend it to noncon®ex systems.

Introduction

Production systems typically involve significant uncertainty
in their operation. Variability of process parameters during

Žoperation and plant model mismatch both parametric and
.structural could give rise to suboptimality and even infeasi-

bility of the deterministic solutions. Consequently, plant flexi-
bility has been recognized to represent one of the important
components in the operability of the production processes.

A brief overview of the approaches that exist in the litera-
ture to deal with the problem of feasibility and flexibility
quantification follows in this section.

Ž .In a broad sense the area covers i a feasibility test that
requires constraint satisfaction over a specified space of un-

Ž .certain parameters, ii a flexibility index associated with a
given design that represents a quantitative measure of the
range of uncertainty space that satisfies the feasibility tem-

Ž .perature, and iii the integration of design and operations
where trade-offs between design cost and plant flexibility are
considered.

Ž .Halemane and Grossmann 1983 proposed a feasibility
measure for a given design based on the worst points for fea-

sible operation, which can be mathematically formulated as a
max-min-max optimization problem as follows

x d s max min maxŽ .
zu g T xjg , ig I

h d , z , x , u s0; g d , z , x , u F0 , 1Ž . Ž . Ž .� 4i j

Ž .where the function x d represents a feasibility measure, d
corresponds to the vector of design variables, z the vector of
control variables, x the vector of state variables, and u the

Ž .vector of uncertain parameters. If x d F0, design d is feasi-
Ž .ble for all u gT , whereas if x d )0, the design cannot op-

erate for at least some values of u gT.
The above mass-min-max problem defines a nondifferen-

tiable global optimization problem, which, however, can be
reformulated as the following two-level optimization problem
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x d s max c d , uŽ . Ž .
u g T

c d , u s min uŽ .
z ,u

s.t. h d , z , x , u s0; ig IŽ .i

g d , z , x , u Fu jg J , 2Ž . Ž .j

Ž .where the function c d, u s0 defines the boundary of the
feasible region in the space of the uncertain parameters u .

The design flexibility index problem as introduced by
Ž .Swaney and Grossmann 1985a can be reformulated to rep-

resent the determination of the largest hyperrectangle that
can be inscribed within the feasible region of the design. Fol-
lowing this idea, the mathematical formulation of the flexibil-
ity problem has the following form

F smin d

s.t. c d , u s0Ž .

c d , u s min uŽ .
z

h d , z , x , u s0, ig IŽ .i

g d , z , x , u Fu , jg JŽ .j

� N y N q 4T d s u Nu ydDu Fu Fu ydDuŽ .

d G0. 3Ž .

Other approaches that exist in the literature to quantify
the flexibility for a given design involve the deterministic

Ž .measures such as the Resilience Index RI , proposed by Sa-
Ž .boo et al. 1983 , the flexibility index proposed by Swaney

Ž .and Grossmann 1985a,b and the stochastic measures such
Ž .as the design reliability proposed by Kubic and Stein 1988 ,

the stochastic flexibility index proposed by Pistikopoulos and
Ž . Ž .Mazzuchi 1990 and Straub and Grossmann 1983 .

ŽFor the case where the constraints are one-dimensional 1-
.D jointly quasi-convex in u and quasi-convex in z, it was

Ž .proven by Swaney and Grossmann 1985a that the point uc
that defines the solution to Eq. 2 lies at one of the vertices of
the parameter set T. Based on this assumption, the critical
uncertain parameter points correspond to the vertices and
the feasibility test problem is reformulated in the following
manner

x d s max c d , u k , 4Ž . Ž . Ž .
k g V

Ž k. Ž .where c d, u is the evaluation of the function c d, u at
the parameter vertex u k and V is the index set for the 2 np

vertices for the n uncertain parameters u . In a similar fash-p
ion for the flexibility index, problem 3 is reformulated in the
following way

F s min d k , 5Ž .
k g V

where d k is the maximum deviation along each vertex direc-

tion Du k, kgV and is determined by the following problem

d ks max d
d , z

s.t. g d , z , x , u F0, jg JŽ .j

h d , z , x , u s0, ig IŽ .i

u su NqDu k , d G0. 6Ž .

Based on the above problem reformulations, Halemane and
Ž .Grossmann 1983 proposed the direct search method that

explicitly enumerates all the parameter set vertices. To avoid
the explicit vertex enumeration, Swaney and Grossmann
Ž .1985a,b proposed two algorithms, a heuristic vertex search,
and an implicit enumeration scheme. These algorithms rely
on the assumption that the critical points correspond to the
vertices of the parameter set T which is valid if the con-
straints are jointly 1-D quasi-convex in u and quasi-convex in
z. To circumvent this limitation, Grossmann and Floudas
Ž .1987 proposed a solution approach based on the following
ideas:
Ž .a They replace the inner optimization problem by the

Ž .Karush Kuhn, Tucker optimality conditions KKT ;
Ž .b They utilize the discrete nature of the selection of the

active constraints by introducing a set of binary variables to
express if a specific constraint is active.

Based on these ideas, the feasibility test and flexibility in-
dex problems can be reformulated as mixed-integer optimiza-
tion problems either linear or nonlinear depending on the na-

Ž .ture of the constraints. Grossmann and Floudas 1987 pro-
posed the active set strategy for the solution of the above
reformulated problems based on the property that for any

Žcombination of n q1 binary variables that is selected thatz
.is, for a given set of active constraints , all the other variables

can be determined as a function of u . They proposed a pro-
cedure of systematically identifying the potential candidates
for the active sets based on the signs of the gradients

Ž . Ž .= g d, z, x, u . Ostrovky et al. 1994 proposed a branch andz j
bound approach based on the evaluation of the upper and

Ž .lower bound of function x d . Although the suggested
bounding problems are simpler than the original feasibility
test problem, they correspond to bilevel optimization prob-
lems where global optimality cannot be guaranteed using lo-

Ž .cal optimization methods Migdalas et al., 1998 . Finally, a
global optimization approach is proposed recently by Floudas

Ž .et al. 2000 to guarantee the determination of the global op-
timal solution for both the feasibility and the feasibility index
problem by generating a relaxationrenlargement of the feasi-
ble region based on the convexification of the original prob-
lem constraints.

Following this introduction, a small example is studied in
the next section to motivate the need of developing a new
approach for quantifying the range of feasibility for a given
process. The new approach and the detailed procedure that
we propose is introduced to determine the new metric that
describes the feasible region. The motivating example is used
to illustrate the basic steps of the proposed approach and the
results obtained. Several examples from the literature are
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covered and compared with the results of the previously used
approaches. The extension of the basic framework to cover
1-D convex regions is discussed and the basic advantages of
the proposed approach are summarized.

Motivating Example
The example presented here is a modification of example 2

Ž .used by Pistikopoulos and Ierapetritou 1995 . The design is
Ž .described by two parameters d , d whereas z , z are the1 2 1 2

control variables and u , u are the uncertain parameters. The1 2
constraints of the problem are the following

f sy1.3q1.6=u y1.6= z q2.14 z F01 1 1 2

f su 2 y2.5u q12= z y2 z F02 1 2 1 2

f s2.61= z y d F03 1 1

f s3.14= z y d F04 2 2

f sy z F05 1

f sy z F06 2

0Fu F21

0Fu F8.2

The design examined first corresponds to d s3.5, d s0.0.1 2
For this problem, first the active sets are identified based on
the fact that three constraints should be active at a time since

Žthere are two control variables Grossmann and Floudas,
.1987

� 4Active Set 1s f , f , f1 2 3

� 4Active Set 2s f , f , f1 2 5

� 4Active Set 3s f , f , f1 2 6

� 4Active Set 4s f , f , f1 2 4

� 4Active Set 5s f , f , f1 3 6

� 4Active Set 6s f , f , f2 4 5

For each one of these active sets, the feasibility function is
determined and plotted in Figure 1. The flexibility index
problem is then solved using the active set strategy approach

Ž .proposed by Grossmann and Floudas 1987 that results in a
value of F s0.278. This value describes the rectangular which
is shown dark shaded in Figure 1.

Note that, although the actual feasible region of the design
is the light shaded region, the flexibility index identifies only
a small percentage of it and thus it largely underestimates
design’s feasibility. Moreover, the flexibility index does not
provide always accurate results for comparing different de-
signs. For example, we are considering next the design that
corresponds to d s2.5, d s3.5. For this design, the feasible1 2
region is evaluated based on the determination of the differ-
ent active sets. The results are illustrated in Figure 2. Note
that this design has a smaller feasible region since active set 5
constraint moved to the left and thus the design’s feasible
region is more restricted. However, the flexibility of this de-
sign is F s0.278, the same as for the design 1.

(Figure 1. Feasible region of Design 1 d s3.5, d s1 2
)0.0 .

The results presented for the specific example clearly moti-
vate the need of developing a new approach for determining
the feasibility range for a given process and a new metric for
evaluating its flexibility that can be used for comparison be-
tween designs.

Proposed Approach
To illustrate the basic concept of the proposed approach,

let’s assume that the specific design is described by a set of
Ž .inequality constraints f d, z, u F0 assuming that the equal-j

ity constraints have been eliminated for ease in the presenta-
tion. In these constraints d represents the set of design vari-
ables, and z the set of control variables that can be adjusted
to accommodate variations on the uncertain parameter vec-
tor u . Following the ideas of Grossmann and Halemane
Ž .1982 , one can map the feasible region into the uncertainty

(Figure 2. Feasible region of Design 2 d s2.5, d s1 2
)3.5 .
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space by evaluating the feasibility function

c d , u s min uŽ .
z ,u

f d , z , u Fu , ; jg J .Ž .j

Alternatively, the same result can be obtained by identify-
ing all the active constraint sets. The question that arises at
this stage in many different engineering problems is how to
describe and then quantify the feasible range.

The first case that we are going to address is the convex
case, the extension to the 1-D convex case will be discussed
later. The main idea in the proposed approach is first to de-
termine points at the boundary of the feasible region and
then to evaluate the convex hull defined by those points. For
the case of the convex feasible region, the convex hull deter-
mined in this way is guaranteed to be inscribed within the
feasible region. However, for the nonconvex case, there is no
guarantee that this would be always the case. To overcome
this difficulty, an extension of the basic proposed approach is
presented later whereas the general nonconvex case would
be the subject of future publication. For the convex case, the
following steps are considered:
Ž .1 Solve the problems of determining the maximum devia-

Ž .tion from the nominal point towards the vertices keK of
Ž .the expected range of uncertain parameter u variabilityi

max d k

s.t. f d , z , u F0, jg JŽ .j i

u su N"d kDu "
i i i

Ž .2 Solve the problems of determining the maximum devia-
tion from the nominal point by varying one uncertain param-

Ž .eter u at a timei

max di

s.t. f d , z , u , u F0, jg JŽ .j 1 2

u su N"dDu "
i i i

u su N; j/ ij j

Ž .3 Determine the convex hull based in the points ob-
Ž . Ž .tained from steps 1 and 2 applying the Quickhull algorithm

which is described below.
Ž .4 Determine the volume of the convex hull obtained from

Ž . Žstep 3 using Delaunay Triangulation the basics of the De-
.lanay Triangulation are explained in the sequel . At the same

step and using the vertices of the expected range of uncertain
parameter variability, the volume of the overall expected re-
gion is determined. The ratio between the feasible convex
hull and the expected region ‘‘ volumes’’ is then evaluated to
represent the new metric for comparing design’s feasibility

Feasible Convex Hull Ratio FCHRŽ .
Volume of the feasible convex hull

s 7Ž .
Volume of the overall expected range

Note that, at step 3, the linear functions describing the faces
of the convex hull are also determined. As will be illustrated
by different examples, this provides a very accurate descrip-
tion of the feasible space for a specific design or process which
is of great importance in many different engineering prob-
lems. An example is the determination of the range of valid-
ity of a reduced kinetic model as described by Androulakis et

Ž .al. 2000 .

Quickhull algorithm
The convex hull of a set of points is the smallest convex set

that contains the points. There exist a number of different
algorithms in the computational geometry literature that are
designed to compute the convex hull for a given set of points.

Ž .A review can be found in de Berg et al. 1997 . Recent work
on convex hull has been focused on variations of a random-
ized, incremental algorithm where points are considered one

Ž .at a time. Quickhull algorithm Barber et al., 1996 proceeds
using two geometric operations: oriented hyperplane through
Ž .n points and signed distance to hyperplane. In particulard
the following steps are followed for each processed point:
Ž .a Locate the visible facets for the point. A facet is visible

if the point is above the facet. The selection is made by eval-
uating the signed distance from the facet;
Ž .b Construct a cone of new facets from the point to the

visible facets;
Ž .c Delete the visible facets thus forming the convex hull

of the new point and the previous processed points.
The correctness of the algorithm has been proved by Bar-

Ž .ber et al. 1996 . They also provide empirical evidence that
the algorithm runs faster when the input set of points con-
tains no extreme points. The detailed description of the algo-
rithm, as well as the programming implementation, can be
found and downloaded from the Web site of the geometry
center in Minneapolis: http:rrwww.geom.umn.edursoft-
warerdownload.

Delaunay triangulation
The basic definition of the Delauany Triangulation is the

graph that has a node for every Voronoi cell and a straight
line connecting two nodes if the corresponding cells share an

Ž .edge. The Voronoi diagram of a set of points n is the subdi-
Ž .vision of the plate into n regions one for each site such that

the region of a specific site contains all the points in the plane
for which this site is the closest. The region of this site is
called the Voronoi cell. The computation of the Delaunay Tri-
angulation is based on the same iterative procedure as the
convex hull estimation. In particular, a Delaunay Triangula-
tion in Rd can be computed from a convex hull in Rdq1, as

Ž .described by Barber et al. 1996 . The same software de-
scribed above has the capability of evaluating Delaunay Tri-
angulation.

Example re©isited
The example presented in the previous section is used here

again to illustrate the basic steps of the proposed approach
and the results obtained. The problem involves convex con-
straints so there is no need for function convexification. The
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(Figure 3. Feasible region of Design 1 d s3.5, d s1 2
)0.0 .

active sets of the problem have been identified and the feasi-
ble region is described by the shaded region shown in Figure
3.

The steps of the proposed analysis are then followed.
Step 1. Solve the optimization problems of maximizing the

deviations from the nominal point towards the edges. The
problems solved have the following form

max d i

s.t. f d , z , u , u F0, js1, . . . , 6Ž .j 1 2

u su N"d iDu "
1 1 1

u su N"d iDu ".2 2 2

The solutions to the above optimization problems give rise to
the square point shown in Figure 4. Note that these problems

Žcorrespond to the vertex enumeration subproblems Swaney
.and Grossmann, 1985a proposed to evaluate the flexibility

index. Consequently, at this step, one can utilize the results
to evaluate the flexibility index that corresponds to the mini-

Ž i.mum of the results d , where i denotes different vertices.
For this example, it is found that F s0.278 limited by the
flexibility point, as shown in Figure 4.

Step 2. Solve the problems of maximizing the deviations
from the nominal point by varying one uncertain parameter
at a time. The optimization problems solved at this step have
the following form

max d

s.t. f d , z , u , u F0, js1, . . . , 6Ž .j 1 2

u su N"dDu "
1 1 1

u su N
2 2

(Figure 4. Step 1: finding points at the boundary ver-
)tices .

and

max d

s.t.

f d , z , u , u F0, js1, . . . , 6Ž .j 1 2

u su N
1 1

u su N"dDu ".2 2 2

In this way the points illustrated with the circles in Figure
5 are determined.

Step 3. Quickhull algorithm is applied to identify the con-
vex hull based on the points obtained from steps 1 and 2. The
output of the algorithm is the set of linear constraints de-
scribing the convex hull. The constraints are given and illus-

(Figure 5. Step 2: Finding points at the boundary vary-
)ing one parameter at a time .
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Figure 6. Step 3: Determine the feasible convex hull.

trated in Figure 6

g su y8F01 2

g syu F02 1

g su y1.3=u F03 2 1

g su y7.5=u q7.0F04 2 1

g su y5.71=u q4.4F05 2 1

g su y5.88=u q4.63F06 2 1

ŽStep 4. The volume area in this case, since the problem
.involves two uncertain parameters is evaluated at this step

using the Quickhull algorithm that utilizes Delaunay Triangu-
lation to determine the volume of the convex hull. The vol-
ume of the overall expected range is also calculated. For this
example, it is found that the total volume is 16 units whereas
the feasible convex hull has a volume of 10.9 units. This re-
sults in a ratio of 0.68 that corresponds to the percentage of
design feasibility.

ŽThe same procedure is applied for Design 2 d s2.5, d1 2
.s3.5 . As pointed out in the previous section, the flexibility

index for this design has the same value as the flexibility for
Design 1 equals to F s0.278. This is due to the fact that the
limiting active set is the same in both cases. However, as
shown in Figure 7, Design 2 has a smaller feasible region
than Design 1. This is correctly identified by the proposed
approach which determines a ratio of feasibility equal to 0.64
for Design 2 compared to 0.68 for Design 1. It is important to
point out that the convex hull offers a very accurate descrip-
tion of the feasible region for both designs.

Remark 1. It should be pointed out that the proposed ra-
Ž .tio FCHR as defined by Eq. 7 corresponds to the percent-

age of feasibility based on the overall expected range of un-
certainty and not the true feasibility region. As can be ob-
served from Figures 6 and 7, the percentage that corresponds
to the feasible convex hull is much higher in terms of the
actual feasible region.

Figure 7. Design 2: Determination of feasible convex
hull.

Remark 2. It should be also noted that the proposed
methodology for feasible region evaluation and the proposed
feasibility metric is not a probabilistic measure and thus does
not take into account the probability of uncertainty realiza-
tions. Extensions of the proposed work along the lines pro-

Ž .posed by Straub and Grossmann 1993 and Pistikopoulos and
Ž .Mazzuchi 1990 is a subject of present research.

Remark 3. The computational requirements of the pro-
posed approach involve the solution of 2 n optimization prob-
lems at step 1, and 2= n optimization problems at step 2,
where n is the number of uncertain parameters involved.
However, it should be noted that one can choose to consider
a subset of these problems, identify the corresponding points
at the boundary of the feasible region and proceed in the
next step of evaluating the convex hull.

Examples
Example 1

The first example considered in this section also involves a
set of convex constraints that restrict the feasible region

f su qu 2 yu y40F01 2 1 1

f su 2 qu yu y2F02 1 1 2

f su y4=u y30F03 2 1

The feasible region is shown shaded in Figure 8. We as-
Ž . Ž .sume that the nominal point is u , u s 2.5, 20 with ex-1 2

pected deviations of Duys7.5, Duqs2.5, Duqs20 and1 1 2
Duys60.2

The steps of the proposed analysis are then applied to de-
termine first the points at the boundary of the feasible region
and then the feasible convex hull. At step 2 of the procedure,
the flexibility index is also evaluated to be equal to F s0.174.
The resulting feasible convex hull has a total volume of 148.7
units, while the expected region corresponds to a volume of
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Figure 8. Example 1: feasible convex hull.

800 units, that results in a feasible ratio of FCHRs0.19. Note
that the inscribed convex hull describes the feasible region
much more accurately than the flexibility index that corre-
sponds to only 3% of the expected range of variability com-
pared to 19% of the feasible convex hull, as shown in Figure
8. Note that the percentage in terms of the actual feasible

Žregion is much higher since only the light shaded areas Fig-
.ure 8 are excluded from the feasible convex hull. The value

of FCHR is, however, still small because it reflects the ratio
of the feasible convex hull region when compared not to the
actual feasible region that is unknown, but the expected range
of uncertainty which can be much larger.

The exact linear constraints describing the convex hull are

g su q9.98=u q4.94s0.01 2 1

g su y3.22=u q1.31s0.02 2 1

g su y4.0=u y30.0s0.03 2 1

g su y2.75=u y29.38s0.04 2 1

g su q20.1=u y104.74s0.05 2 1

g su q5.23=u y49.32 s0.06 2 1

g su y8.4=u q15.42 s0.07 2 1

g su y5.92=u q8.06s0.08 2 1

Example 2
The second example corresponds to the pump and pipe

Ž .example described by Swaney and Grossmann 1985a . The
set of constraints represent the energy balance, the outlet
pressure tolerance, the pump driver power limit, and the con-
straint valve range. By eliminating the outlet pressure P us-2
ing the energy balance, the reduced set of inequalities is the

following

m2
U1.84 y5.16f sP qr=Hy yk= m = D yP ye F0.01 1 22r=c®

m2
U1.84 y5.16f syP yr=Hq qk=m = D qP ye F0.02 1 22r=c®

ˆf s m= Hyh=W F0.03

f sc ycmax F0.04 ® ®

f syc q r =cmax F0.0.5 ® ®

ˆThe design variables are the driver power W, the pump
head H, the pipe diameter D, and the control valve size cmax,®
the control variable is the valve coefficient c , and the uncer-®
tain parameters are the desired pressure u s PU, and the1 2
flow rate u s m. The expected deviations considered in this2
example are

Duqs2, Duys6, Duqs200, Duys550.1 1 2 2

Two designs are examined and evaluated in terms of their
feasibility Design 1 that corresponds to the following set of
design variables

ˆ maxW s31.2, Hs1.3, Ds0.0762, c s0.0577®

and Design 2 that corresponds to the following design values,

ˆ maxW s33.74, Hs1.406, Ds0.0764, c s0.093408.®

The proposed approach is applied to both designs in order to
evaluate the feasible convex hull. Figures 9 and 10 show the
results.

It is found that the feasibility ratio is FCHRs0.97 for de-
sign 1 and 0.92 for design 2 compared to flexibility index that

Figure 9. Example 2: feasible convex hull for design 1.
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Figure 10. Example 2: feasible convex hull for design 2.

is 0.618 for design 1 and 0.863 for design 2. Consequently, by
evaluating the feasible convex hull, we can better compare
the feasibility of different designs since, as shown in Figures
9 and 10, design 1 has actually larger feasible region than
design 2 which could not be captured by the flexibility index.
The major advantage of the proposed approach compared to
the flexibility index is that it is not limited by one direction,
but can capture the overall design behavior under parameter
variability. However, it should be pointed out that since the
feasible region is 1-DQC and not jointly convex on u , u ,1 2
there is no guarantee that the convex hull defined by the
points found through steps 1 and 2 would be inscribed within
the feasible region. To overcome this difficulty the approach
described in the following section is modified as suggested.

Example 3
The example considered here is a modification of the ex-

Ž .ample of Pistikopoulos and Ierapetritou 1995 with three un-
certain parameters. The constraints described the feasible re-

Ž .gion of the design d , d have the following form1 2

f sy zyu q0.5=u 2 q2.0=u 2 q d y3= d y8F01 1 2 3 1 2

f sy zyu r3yu yu r3q d q8r3F02 1 2 3 2

f s zqu =u yu y d qu y4F03 1 1 2 1 3

where z is the control variable, u , u , u are the uncertain1 2 3
parameters with nominal value of u Nsu Nsu Ns2 and ex-1 2 3
pected deviations Du "s Du "s Du "s 2. All the con-1 1 1

Ž . Ž .straints are jointly convex on u and z . The design exam-
Ž . Ž .ined here corresponds to d , d s 3,1 . The proposed ap-1 2

proach is applied for this design and the following points are
first identified at the boundary of the feasible region.

Step 1. At the first step, the points towards the vertices of

Figure 11. Example 3: feasible convex hull for 3-D fea-
sible region.

the expected uncertainty range:

p1: u , u , u s 2.218, 2.218, 2.218Ž .Ž .1 2 3

p2: u , u , u s 3.000, 3.000, 1.000Ž .Ž .1 2 3

p3: u , u , u s 2.252, 1.748, 2.252Ž .Ž .1 2 3

p4: u , u , u s 1.637, 2.363, 2.363Ž .Ž .1 2 3

p5: u , u , u s 2.486, 1.514, 1.514Ž .Ž .1 2 3

p6: u , u , u s 1.514, 1.514, 2.455Ž .Ž .1 2 3

p7: u , u , u s 0.000, 4.000, 0.000Ž .Ž .1 2 3

p8: u , u , u s 0.000, 0.000, 0.000 .Ž .Ž .1 2 3

Step 2. Varying only one uncertain parameter at the time
we got the following points:

p9: u , u , u s 2.622, 2.000, 2.000Ž .Ž .1 2 3

p10: u , u , u s 0.000, 2.000, 2.000Ž .Ž .1 2 3

p11: u , u , u s 2.000, 2.000, 2.312Ž .Ž .1 2 3

p12: u , u , u s 2.000, 2.000, 0.000Ž .Ž .1 2 3

p13: u , u , u s 2.000, 3.646, 2.000Ž .Ž .1 2 3

p14: u , u , u s 2.000, 0.667, 2.000 .Ž .Ž .1 2 3

Step 3. Then the quickhull algorithm is applied to deter-
mine the feasible convex hull of the points obtained at steps
1 and 2. The resulting convex hull is illustrated in Figure 11.

Step 4. Using Delaunay Triangulation the volume of the
convex hull is determined to be equal to 12.26 that corre-
sponds to 19% of the total expected range of uncertainty.

To compare with the results of the flexibility analysis the
flexibility of the design is also determined F s0.109. The vol-
ume of the corresponding rectangular is approximately 0.083
that corresponds to only 0.12% of the expected uncertainty

Ž .range see Figure 12 .
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Figure 12. Example 3: Flexibility range and overall ex-
pected range of uncertainty.

1DQC Convex Feasible Region
First, it should be pointed out that only 1-D convex regions

are examined here and not general nonconvex regions which
is the subject of the second part of this work. For the case of
the 1-D convex region, the proposed approach is similar to
the approach for the convex case with the difference that af-
ter evaluating the points at the boundary towards the vertices
as described at step 1, the nonconvex constraints are lin-
earized at these points. It should be noted that only the non-
convex constraints that are active at these points are lin-
earized and not all of the nonlinear constraints in the prob-

Figure 13. Example 4: feasibility convex hull for 1DQC
feasible region.

lem. Since then constraints considered here are jointly quasi-
Ž .convex in z and 1-D quasi-convex in u , it is proven that the

linearization would always result in underestimation of the
Ž .feasible region see Appendix A . In the following section an

example involving 1-D quasi-convex functions is considered
to illustrate the results of the proposed approach for this case.

Example 4
The example presented in this section corresponds to an

example that exhibits a 1-D convex feasible region. To illus-
trate the proposed ideas, the example is simple and de-
scribed by the following constraints

f syu qu =u q2=u F01 2 1 1 1

f su = 6qu y350F0Ž .2 2 1

f su qu =u y60F03 2 1 1

f su y10=u y50F0.4 2 1

Ž . Ž .Note that the constraints satisfy properties 2 and 3 proved
Ž .by Swaney and Grossmann 1985a to be sufficient in result-

Ž .ing in the 1DQC feasible region as also shown in Figure 13.
The proposed approach is applied for this example and the

Ž .feasible convex hull is determined Figure 13 . Note that, for
comparison purposes, the approach is applied for both the
original nonconvex constraints, as well as the convexified
ones. As suggested in the previous section, the convexifica-
tion is obtained after the determination of the points at the
boundary. For this example, the point used to convexify the

Ž .nonconvex constraint f is the point P1 shown in Figure 142
identified from the optimization problem of maximizing the
deviation from the nominal point towards the vertex that cor-
responds to the maximum positive deviations of u , u . The1 2
convexification results in the following linear constraint shown
in Figure 14 with a dashed line

f̂ su y51.385q4.17=u F0.02 2 1

Figure 14. Example 4: convexification of constraint f .2
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Figure 15. Example 4: feasible convex hull for 1DQC
feasible region using convexified constraint.

Using this constraint instead of constraint f results in the2
Ž .determination of point P2n to be used on feasible convex

Ž .hull evaluation instead of point P Figure 14 .2
Since the difference is very small in this example, we illus-

Ž .trate the result by focusing Figure 15 at the area of point P2
which is the only difference between the feasible convex hull
of the original problem and the feasible convex hull of the
convexified problem.

Discussion and Future Directions
A novel approach for evaluating the range of feasibility of

a given process is proposed in this article. The basic idea is to
determine the convex hull that can be inscribed within the
feasible region. The convex hulls were computed using the
Quickhull Algorithm which is an incremental algorithm for
evaluating the convex hull given a set of points. The points
used to determine the feasible convex hull are points at the
boundary of the feasible region that are obtained from the
solution of a series of small optimization subproblems. The
outcome of the application of the Quickhull Algorithm is not
only the computation of the convex hull described by a set of
linear constraints but also its volume. This is achieved based
on the ideas of Delaunay Triangulation. A new metric was
introduced that corresponds to the ratio of the feasible con-
vex hull volume divided by the overall expected range of un-
certainty. In all examples considered we found that the pro-
posed approach results in much better description of the fea-
sible space. Moreover, the new metric introduced to repre-
sent the feasibility of a given process was found to describe
accurately the feasible space and thus results in correct com-
parison between different designs andror processes.

Although the examples addressed in this work are of small
scale, the results obtained are very promising regarding the
applicability of the proposed work in large-scale problems.
Different extensions are currently under investigation regard-

Ž .ing a the applicability of the work to nonconvex case, and
Ž .b the development of efficient implementation scheme ex-

ploiting the inherent distributed nature of the initial steps of
Ž .the proposed approach, and c the extension of the pro-

posed work to incorporate the probability of occurrence of
uncertain parameter realizations.
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Appendix: Proof of Feasible Region
Underestimation
Proposition

Ž .If f d, z, u are jointly quasi-convex in z and 1-D quasi-j
convex in u , then the linearization around and extreme point
underestimates the feasible region.

Proof
As illustrated in Figure A1, we need to basically to prove

that the point u 1 belongs in the feasible region, that is,
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Figure A1. Underestimation of feasible region.

Ž 1. U 2 Ž U.c d, u F0. Since u and u are at the boundary c d,u
Ž 2. Ž .sc d, u s0 as proved by Swaney and Grossmann 1985a .

Also, we assume that the nominal point is a feasible point
Ž N . 1and thus c d, u F0. Since u belongs to the line with slope

Ž .Ž U. 1 N=f d, z, u u there exist a scalar a such that u s au qj
Ž . 21y a u . Based on theorem proved by Swaney and Gross-

Ž . Ž .mann 1985a , if the constraint functions f d, z,u are jointlyj
quasi-convex in z and one-dimensional quasi-convex in u ,

Ž .then the feasibility function c d, u is 1-D quasi-convex in u ,

c d , u 1 Fmax c d , u 2 , c d , u N .� 4Ž . Ž . Ž .

� Ž 2. Ž N .4 Ž 1.Since max c d, u , c d, u s 0, c d, u F 0 and the
proposition has been proved.
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