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Abstrac t  

We consider linear programming (LP) models for metabolic networks in which alternate optima often arise, and need to be 
identified to allow for data interpretation or the effective design of follow-up experiments. A recursive mixed-integer linear 
programming (MILP) algorithm is proposed for rigorously finding all alternate optima. The carbon trafficking alternatives of an 
Escherichia coli mutant lacking pyruvate kinase are analyzed with the proposed algorithm. The results are discussed in terms of 
using them as an input to isotopomer mapping matrix calculations in order to design t3C NMR experiments for maximum 
contrast. © 2000 Elsevier Science Ltd. All rights reserved. 
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1. I n t r o d u c t i o n  

Metabolic networks consist of an array of numerous, 
connected reactions that are catalyzed by enzymes. 
Through the activity of these networks, raw materials 
can be converted to a myriad of products (e.g. amino 
acids, vitamins, sterols) with economic value. Modern 
genetic manipulation tools now allow one to alter the 
network structure and/or control mechanisms (e.g. feed 
back loops) in attempt to increase product yield. Such 
manipulation aimed at steering energetic and material 
resources toward target products and/or away from 
undesirable waste products is termed 'metabolic 
engineering'. 

Linear programming (LP) analysis has been proven 
to be a useful tool for elucidating carbon trafficking 
patterns in metabolic networks. For example, LP has 
been used to enumerate potential metabolic flux (reac- 
tion rate/mass cell) distributions in adipose tissue (Fell 
& Small, 1986), and microbial metabolic networks (Ma- 
jewski & Domach, 1990; Varma & Palsson, 1994; Lee, 
Goel, Ataai & Domach, 1997). In general, the analysis 
involves formulating a problem in terms of an objective 
function, constraints, and flux balance equations. The 
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objective function provides a physiological rationale or 
desired engineering endpoint, while the constraints ac- 
count for aggregate requirements (e.g. total energy pro- 
duction for biosynthesis) and the phenomenological 
impact of the mechanistic details. Linear programming 
then generates a flux distribution that optimizes the 
objective function, subject to satisfying flux balance 
equations and constraints. 

Flux distributions obtained from LP analysis can 
enhance basic understanding metabolism by, for exam- 
ple, indicating where conflicts or trade-offs occur when 
different objectives are to be considered. From a more 
pragmatic standpoint, these flux distributions yield up- 
per bounds of product yield calculations. Moreover, 
optimal flux distributions provide design targets for the 
metabolic engineer. A related use is the distributions, 
which can suggest what may occur within the cell when 
alternate metabolic engineering strategies are used. 

Mixed-integer linear programming (MILP) methods 
have been used to optimize control schemes in 
metabolic networks with the goal of maximizing the 
direction of resources to a desired product (Hatzi- 
manikatis, Floudas & Bailey, 1996a,b). To our knowl- 
edge, however, less work has been done on 
automatically enumerating the multiple flux distribu- 
tions that can satisfy material balances and constraints 
with the same value of the objective function. The 
alternate flux distributions will differ by the subset of 
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all the available reaction paths actually used, reaction 
directionalities, etc. Thus, different candidate 'flow- 
sheets' may exist that reflect alternate induction/repres- 
sion control options or responses to mutation, and the 
fluxes can indicate what the feedback control strategies 
should accomplish. The former is especially important 
because altering a biological system can change the set 
of reaction paths being used. Thus, how the 'flowsheet' 
may change needs to be considered along with the 
optimization of flux control. 

From another stand point, multiple solutions are 
important because they commonly arise in LP problems 
that have flexibility and excess capacity with respect to 
the constraints imposed. Moreover, for metabolic net- 
work problems, limited experimental observations are 
typically available relative to the number of unknowns. 
Therefore, multiple solutions will reveal the various 
ways in which the known biochemistry and physiology 
can account for the limited observations. As illustrated 
by Phalakornkule, Fry, Zhu, Kopesel, Ataai and Do- 
mach (2000), the multiple solutions can be used to 
scrutinize metabolic regulation hypotheses and design 
follow-up 13C NMR tracer experiments that are aimed 
at discriminating between the flux distribution options. 

To address the limitation noted above, we have 
developed a MILP method for finding all alternate 
optima in LP problems. Apart from having utility for 
hypothesis generation and data reconciliation, we have 
begun using this method as a driver for the design of 
13C NMR experiments. Such experiments entail in- 
putting a labeled precursor's history (i.e. relative rates 
through different reaction paths). Having scenarios de- 
veloped prior to the experiment in tandem with label 
trafficking models can enable one to choose a labeled 
precursor compound that will be the most sensitive 
indicator of how raw materials traffick through the 
network. 

In this study, we first describe a MILP method for 
finding all alternate optima of a given LP problem. 
After presenting the general methodology, the MILP- 
generated carbon trafficking alternatives of an Es-  

eherichia coli mutant lacking pyruvate kinase activity 
are presented. This mutation has been suggested as a 
potential metabolic engineering strategy for minimizing 
acetate production (Goel, Lee, Domach & Ataai, 1995). 
We will show that there are multiple flux distribution 
scenarios that can satisfy the same objective function 
(consistent with mutation), flux balances, and 
constraints. 

2. Alternate optimal solutions from finear programming 

A L P  problem can be posed as follows. 

rain Z = cXx 

s.t. A l x = b  1 

A 2 x  < b 2 

x L_<x_<xU; x 6 R  n (P) 

Provided the feasible region is non-empty and the 
optimal solution is bounded, Eq. (P) has a unique 
optimum objective function value. Furthermore, the 
optimal value of the vector x corresponds to an extreme 
point of the polyhedron that corresponds to the feasible 
region of Eq. (P) (Chvatal, 1983). However, this opti- 
mum value of x is not necessarily unique, as there 
might be multiple solutions to Eq. (P), which have the 
same objective function value. Our interest is to find all 
the extreme points in Eq. (P) that have identical objec- 
tive values. These are commonly known as alternate 
optima. Alternate optima can also be interpreted as the 
extreme points that lie at the intersection of the convex 
polytope given by the linear constraints and the hyper- 
plane of the optimal objective function value. A num- 
ber of special purpose algorithms have been reported in 
the literature for finding all the extreme points of the 
convex polytope of Eq. (P) (e.g. see Swart, 1985; 
Matheiss & Rubin, 1980). Aside from the fact that 
these algorithms have exponential complexity, they are 
not very easy to implement. Therefore, our goal in this 
study is to develop a recursive MILP method, which 
has the advantage that it can readily be implemented in 
a modeling language (e.g. GAMS, AMPL). The basic 
ideas of the proposed method are as follows. 

We first reformulate Eq. (P) in canonical form by 
introducing slack variables s to the inequalities, and by 
converting all variables into non-negative variables. 
This can be accomplished with the introduction of the 
slack variables S L, S U for the lower bound and upper 
bound of x, respectively. Here we assume a compact set 
(i.e. x L, x v are finite). By eliminating x using s L and s U, 
we obtain the final canonical form for LP. 

min Z = cTs L + cTx  L 

s.t. A I s L = b  1 - A l x  L 

A2s L + s = b  2 -  A2x  L 

sL ~- sU ~ xU -- x L 

s L ,s  v , s > O ;  s L ,sU~Rn;  s e R "  (PR) 

Since the last term eXx L in the objective function is 
constant, we can drop it. Note that in Eq. (PR) all 
variables are non-negative and all the constraints are 
equalities. Thus, Eq. (PR) when written in canonical 
leads to the LP, 

min Z =  o~Tz 

s.t. Bz = q 

z > 0 (CF) 
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In Eq. (CF), the following relations hold: 

2 - -  I:!l , ~ =  , B =  0 , 

I 

b I - - A l x  L 

q = b 2 _ A 2 x  L 

x U _ x L 

For the sake of  simplicity of the representation, we 
will explain the proposed algorithm in the context of  
Eq. (CF). 

2.1. Algori thm f o r  f inding multiple solutions 

In order to find all the alternate optima, the pro- 
posed algorithm incorporates Eq. (CF) into a recursive 
MILP problem that has a set of  constraints for chang- 
ing the basis and identifying a new extreme point 
corresponding to one of the alternate optima. The 
search algorithm stops when no other solution with the 
same objective function can be found in the MILP. As 
is well known (Chvatal, 1983), non-basic variables in 
Eq. (CF) have a value of  0 since they are set to the 
lower bound of  z. The basic variables are normally 
non-zero, but may have the value of  0 when there is 
degeneracy in Eq. (CF). In order to force the selection 
of a new basis, we first define the 0-1 variable yi for 
each variable z; that is a non-zero basic variable, 
i e N Z  K -  1, at  the previous iteration K -  1. Ifye is set to 
l, z~ is selected to become non-basic. If  y~ is 0, zs 
remains in the basis. Since the change of basis is 
achieved with the selection of  at least one variable Ye, 
the following constraint holds. 

Yi >- 1 (1) 
i~NZ K -  1 

Eq. (1) means that at least one of  the non-zero basic 
variables in the ( K -  1)th solution is selected and is set 
to 0 (non-basic) in the current iteration, K. In order to 
ensure that all alternate bases are generated, we define 
the 0-1 variable w; which is 1 if variable zi is non-zero 
at the Kth iteration of the procedure. The two follow- 
ing constraints are imposed on we, 

we ~ INz*l- 1, k = 1, 2 .... K -  1 (2) 
i~NZ k 

O <_ z e <_ Uwi, i e I  (3) 

where Eq. (3) forces w~ = 1 if z i > 0. U is a valid upper 
bound for all z e. Eq. (2) eliminates from consideration 
at least one of  the non-zero variables of  the basis that 
were found at the previous iterations, k - - 1 ,  2 . . . . .  
K - 1 .  

Finally, the variables Yi and wi are related by the 
logical condition Yi =~-'We, meaning that if the ith 
non-zero variable is selected to be non-basic, then it 
cannot be non-zero (i.e. it must be 0). Thus, the logical 
condition can be written as a linear constraint for the 
current iteration K as, 

Yi + Wi <- l ,  i 6 N Z  K -  I (4) 

The proposed algorithm can then be stated as 
follows: 

Step 1. Set iteration counter K = 1. Solve Eq. (CF). 
Define the set N Z  1 and the optimal objective (Z1) * 

Step K, for K > 2. 
(a) Solve the master problem. 

rain Z K =  aVz 

s.t. Bz = q 

E Y i ~  1 
i~NZ K -  1 

w i < l N Z k ] - - l ,  k = l ,  2, ..., K - 1  
i~NZ k 

0 <_zi< Uwi, i ~ I  

Yi + W~ <- l,  i 6 N Z  k -  I 

z > 0 (MP) 

(b) Define set N Z  K and continue until Z K > (Z I )  *. 

The proposed algorithm is guaranteed to find all the 
alternate optima when there is degeneracy in the LP or 
not. It should also be noticed that the proposed al- 
gorithm may require an exponential number of steps 
since the number of extreme points is exponential. In 
practice, however, the number of  alternate optima is 
usually relatively small. The proposed method was im- 
plemented in the GAMS modeling system (Brooke, 
Kendrick, Meeraus & Raman, 1997). 

3. Application to metabolic engineering 

The algorithm is used to explore a metabolic engi- 
neering problem in the bacterium, E. coli. When an 
enzymatic step is eliminated, it has been proposed that 
the conversion of the raw material, glucose, to the 
waste product, acetate will cease. The aim of the analy- 
sis is to enumerate the different ways in which 
metabolic rates may respond to the mutation yet still 
fulfill the constraints that are associated with a func- 
tional cell. 

The metabolic network of  E. coli is shown in Fig. 1. 
In the network, the step that will be subjected to 
metabolic engineering is represented by rls. For  the 
network, the 30 molar balances and constraints for 33 
fluxes (rl) are as follows. 
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ri - r2 -- r3 -- rio = 0 (5a) 

rio-- rl2 -- ril + r 7 + r 8 = 0 (5b) 

r14 - r15 - r16 = 0 (5c) 

- rl + r 1 6  - -  r 1 8  - -  r 1 7  - -  r31 = 0 (5d )  

r I + r l 8  - -  r21 - -  r l 9  - -  r20  -I- r 3 2  = 0 (5e) 

- -  r31 -l- r 2 4  q -  r 3 0  - -  r33  = 0 (5f) 

rzl -- r24 -- r23 -- r22 = 0 (5g) 

1"24  - -  r25  ---- 0 (5h) 

r25 - -  r27  - r26  --- 0 ( 5 i )  

- r29  q -  r27  - -  r28  ---- 0 (5j) 

r 2  - -  r 4  - -  r5 = 0 (5k) 

- -  r 7 - t -  r 4 - -  r 6 ---- 0 ( 5 1 )  

- -  r7 - -  r8 + r5 = 0 ( 5 m )  

r 7 - -  r 8 - -  r 9 ----- 0 (5n) 

2r12 + r8 - r 1 4  - rl3 = 0 (50) 

r 2 9  - -  r33  - -  r32  ---- 0 (5p) 

The following equations Eqs. (6a), (6b), (6c), (6d), 
(6e), (6f), (6g), (6h), (6i) and (6j) were derived from 
biosynthetic loads (units are mmol g - i  cell h -  1) based 
on cellular mass composition (Mandelstam, McQuillen 
& Dawes, 1982; Ingraham, Maaloe & Neidhardt, 1983; 
Goel, Domach, Hanley, Lee & Ataai, 1996), and spe- 
cific growth rate equal to 0.4 h -  1. Note that these loads 
must be satisfied by all feasible candidate solutions. 

Glucose 

r 3 rl~,  r 2 
K ' - - ' - -  G6F ~ RibuimeSP 

rle, 
cell envelope rl0 ~ XyluloseSpV~N~4 r6 

W~ F 6 P ~  ~ p _ . . ~  nufleic acid 

rll 21 ~ I E 4  amino acid 
r~ p---.~ amino acid 

rts r9 
lipid -~ ~ p  

r14 amino acid rt s 
nucleic acid 

4" - -  PO orgardc acid lipid rt 6 
amino acid .,.--- pE D r r ¢ . . -  

peptmaglycm . .  . 

~ ,  L_____X r,, m "  
m i n o a e i d  , * - - - O ~  r 2 4 - " " ' ~ C l T  
nueleicacid r~e ~ r s ,  / ~  - )  

M ~ r 2 9  r ~ s /  m l u o a c i  d 

~ c l u a t e  q Succ • , KG ~ polymninea 
"27 s26 r~ 

Fig. l. The metabolic network of E. coli. The two-way arrows 
represent reversible fluxes with the bold heads showing the con- 
strained net directions. 

2.5r 3 = 0.205 (6a) 

2.5rll = 0.0709 (6b) 

2.5r13 = 0.129 (6c) 

2.5ri5 = 1.493 (6d) 

2.5r17 = 0.7191 (6e) 

2.5r6 = 0.897 (6f) 

2.5r9 = 0.361 (6g) 

2.5r2o = 2.833 (6h) 

2.5r22 = 2.928 (6i) 

2.5r26 = 1.078 (6j) 

2.5r3o = 1.786 (6k) 

There are also constraints that must be attained 
through the aggregate activity of  different subsets of 
metabolic reactions. Such constraints are shared loads 
and provide connectivity between individual rates. 
These constraints involve N A D P H  and ATP produc- 
tion. N A D P H  is the molecule responsible for reducing 
chemistry and ATP hydrolysis provides the energy for 
biosynthesis (i.e. free energy of  hydrolysis drives other- 
wise thermodynamically infeasible polymerization). The 
N A D P H  and minimum ATP requirements (Goel et al., 
1996) are represented by Eqs. (7a), (7b) and (7c). 
Again, the rate basis is a specific growth rate equal to 
0.4 h -1 

2r2 + r25 + r32 = 7.2 (7a) 

r A T P  -k- r l 2  - -  3 r i 4  - -  rib - -  r23  - -  3 r 2 7  - -  2r2~ - -  2 r 3 3  - -  r29  

- r a i  -{- 2 r 1 9  = 0 (7b) 

rATP > 13.3 (7C) 

In the above equation, rAT P denotes the rate of ATP 
production and Eq. (7b) is based on the assumption 
that N A D H  and F A D H  yield 2 and 1 mol of  ATP per 
mol oxidized, respectively. 

4.  R e s u l t s  

4.1. Trafficking alternatives with E. coli mutant lacking 
pyruvate kinase 

The minimization of r18 was the objective to analyze 
the flux distributions in an E. coli mutant lacking 
pyruvate kinase. The size of  the MILP (MP) is 81 
continuous variables, 63 binary variables and 141 con- 
straints, and the algorithm found nine alternate optima 
requiring a CPU-time of  7.78 s using GAMS/CPLEX 
6.5.2. Nine solutions are shown in Table 1. In the 
model, all the fluxes were constrained to be unidirec- 
tional except for rio and r33 , which were allowed to be 
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Table 1 
Nine flux ~ distributions found by the MILP method, only selected 
fluxes b, carbon and ATP yields (Yc and YATP) are shown 

Alternate solutions Selected fluxes (mmol g-1 cell h - i )  

r I r2 rio r18 r19 

1 4.01 2.75 1.18 0 0 
2 4.22 3.38 0.76 0 1.49 
3 4.22 3.38 0.76 0 0 
4 4.94 0.65 4.21 0 0 
5 8.21 0.65 7.48 0 0 
6 8.78 0.65 8.05 0 11.5 
7 8.78 0.65 8.05 0 0 
8 8.78 0.65 8.05 0 0.57 
9 8.78 0.65 8.05 0 0 

r23 r27 r32 Yc YATP 
1 0 1.27 0 0.69 13.4 
2 0 0 0 0.66 22.9 
3 1.49 0 0 0.66 16.1 
4 0 3.84 1.63 0.56 7.3 
5 0 5.47 0 0.34 5.6 
6 0 0 5.47 0.32 24.2 
7 11.5 0 5.47 0.32 5.4 
8 0 5.47 0 0.32 5.2 
9 0.57 5.47 0 0.32 5.0 

"All  fluxes are bound between 0 and 20 mmol g -  l cell h -  1 except 
rl0 and r33 which are between - 2 0  and 20 mmol g-~ cell h -1. 

b rl, glucose uptake rate; r2, glucose-6-phosphate dehydrogenase 
flux; r,o, phosphoglucose isomerase flux; r~s, pyruvate kinase flux; r19, 
lactate dehydrogenase flux; r23 , phosphotransacetylase+acetate ki- 
nase fluxes; r27 , 0t-ketoglutarate dehydrogenase flux; r32 , malic enzyme 
flux. 

reversible (i.e. assigned lower bounds less than 0). These 
reactions are reported to have free energy changes 
nearly equal to 0. 

Selected fluxes from each scenario, carbon yield (Y¢), 
and ATP yield (YATP), which are calculated from Eqs. 
(8) and (9), are reported in Table 1. These two yields 
are a measure of carbon and energy utilization 
efficiency. 

500 # 
Y~ = (8) 

(72rl) 

YA.rP = ( 100----O-O'~/t (9) 
\ FATP / 

To obtain Eq. (8), cells are assumed to consist of 50% 
carbon and # denotes the specific growth rate (assigned 
as 0.4 h-~). 

All scenarios have the same objective function value 
of 0, but reveal different ways for carbon to traffic 
through an E. coli network lacking pyruvate kinase. 
For example, alternative 1 has nil acid production and 
the minimum glucose uptake rate and consequently the 
maximum carbon yield. Scenarios 2 and 3 suggest that 
organic acid and acetate formations are possible with 
higher glucose consumption rate and thus smaller car- 
bon yield (see Fig. 2). Scenarios 1 and 3 have also been 
previously reported by Lee et al. (1997). They manually 
relaxed constraints whereas the MILP algorithm auto- 
matically found these and other solutions. In scenario 
4, some malate is transformed to pyruvate via malic 
enzyme (see Fig. 3). This scenario thus suggests that 
malic enzyme may be activated; hence, the algorithm 
provides a potential input on the scope of subsequent 
experimental designs. 

Glucose 

rJ 4.22 
r2l=~._~ P ~ Ribulose 5P 

cellenvelope ~v.vez r~076 vl a~ r~.cu~, r¢1.42 
n ~ F 6 P ~  ~ - ~  nucleic acid 

0.028 r I ~ ~ t ~ J r  0-36 amino acid 

r, 2.7120 I/ ~,9! I ' ~ F ' A P  ~r ,  . i . a c i d  

lipid ~ ~ 0.14 

amino acid I rt4 6.25 
nucleic acid rts.~-- 3PG 
lipid 0.60 rl~ ~ 5.65 organic acid 

r 
aminoacid 4---pE p r t Ot.~ aminoacid r2el.13 
cellenvelope r t~^ ~ ' - , ~ 2 2  / ~wpeptidoglyca • . 

u.z, ~ r,~"'..a//ff, r I ~ .  lipid synmems 
r O0 - ~  AcCo,~. mnmo area at ~ " PYIh~09 • 

~1 MA~ 0"0"/ 0'.0- r~ / , 3  
sar,,cinate ¢ Succ•  KG ---~ polymnines 

r~ r~ 
r2t 0.0 0.0 0.43 

Glucose 

r114.94 
r~ 0.082 G~P r? 0.65 Ribulose 5P 

i • 
cellenvelope r *4.21 0.14 ~ v~ r40.50 

~, t0 ~6P Xylulose,SP "4 r e • nucleic acid 

r ,  0.028 r, 2 T ~ R 5 P  0.36 min°  acid 

4 . 3 2 ~ /  0".0 r7 ~E4P p aminoacid 
0.14 r9 r 

lipid ~ TP 0.14 

r141 8.61 
emino acid 
nucleic acid ~ 3 G " " 0.60 ~ rl6 8 01 organic acid 

lipid . ~ " ? mninoacid t 1 13 
amino acid ~ PEP r t /r19 ~ . 20 • 
cell envelope ro ~ ~ . 9 4  / ~0" peptld°glycan 

0.29 ~V,. " ~ / /  r " lipid synthesis 
r ~'~ PYU ;2t ~AcCoA r'~a"ULz~ amino acid 

- - h o e - -  .- o H C  / ,,, ClT 
nucleic,cid r.  * r /?h k% " o.n ~ ~!1"63 ,.~v / 

MAL r2s / 
4.21 

" ~  3.84 amino acid 
auccinate • Succ • KG ~ polyamines 

r~ r27 1"26 
0.0 3.84 0.43 

Fig. 2. Two detailed routings of  glucose through E. coli networks Fig. 3. Two detailed routings of  glucose through E. coli networks 
with minimized pyruvate kinase flux (scenario 3 from Table 1). with minimized pyruvate kinase flux (scenario 4 from Table 1). 
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In scenarios 6 and 7, net fluxes from oxaloacetate to 
malate ( r 3 3  , not shown in Table 1), and from malate to 
p y r u v a t e  (r32) are obtained with 0 TCA fluxes (r27 and 
r29 ). These scenarios thus suggest that the TCA cycle 
only provide the glutamate precursor, ~-ketoglutarate. 

Also, note that six scenarios can be grouped into 
three pairs (2, 3; 6, 7; 8, 9) where for a pair the only 
difference is whether organic acid or acetate is pro- 
duced. The scenario with acetate production has a 
lower ATP yield because one mole of ATP is generated 
for each mol of acetate produced. The pairs define 
boundaries to valid solutions where all fluxes other 
than r19 and r23 are fixed. All linear combinations of r19 
and r23 that sum to a constant (e.g. for scenarios 2 and 
3, r19-b r23 = 1.49) constitute feasible solutions that fall 
within the boundaries. Thus, the multiple solutions can 
be reduced to scenario categories with defined bounds. 

5. Conclusion 

We have developed a search algorithm that solves 
MILP problem recursively to generate automatically 
multiple flux distribution alternatives that have the 
same objective function value and satisfy constraints. 
This formulation can be used to generate potential flux 
distribution scenarios that (1) may arise from imple- 
menting a metabolic engineering strategy or (2) provide 
the underlying fluxes that can account for a limited 
number of experimental observations. Additionally, us- 
ing the MILP method in combination with 13C NMR 
spectra simulation allows for the prediction of the 
NMR spectra associated with a particular flux distribu- 
tion and labeled precursor compound. These spectra, in 
turn, can enable the design of 13C NMR experiments. 
Based on the spectra, the labeled glucose can be chosen 
such that the resulting spectrum will significantly differ 
for a subset of flux distribution candidates. 
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