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Complex Process Engineering Systems?



Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

General Motivation

Diverse complex systems spanning different scales

Liver metabolism (molecular level)

Combustion systems (process level)

Scheduling of multiproduct-multipurpose plants (plant 
level) 
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Motivation -1: Liver Support Devices 

Acute and chronic liver failure account for 30,000 
deaths each year in the US
A large number of liver diseases:

- Alagille Syndrome
- Alpha 1 - Antitrypsin Deficiency
- Autoimmune Hepatitis
- Biliary Atresia
- Chronic Hepatitis
- Cancer of the Liver 
- Cirrhosis 
- Cystic Disease of the Liver 
- Fatty Liver 
- Galactosemia
- Hepatitis A, B, C

Currently liver transplantation is primary therapeutic 
option. Scarcity of donor organs limits this treatment
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Solutions 

Adjunct Internal Liver Support With Implantable 
Devices

Hepatocyte Transplantation
Implantable Devices
Encapsulated Hepatocytes

Extracorporeal Temporary Liver Support
Nonbiological devices: hemodialysis, hemofiltration, 

plasma exchange units
Hepatocyte- and liver 

cell–based extracorporeal 
devices
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a) How to maximize long-term functional stability of 
hepatocytes in inhospitable environments

b) How to manufacture a liver functional unit that is 
scalable without creating transport limitations or 
excessive priming volume that must be filled by blood 
or plasma from the patient

c) How to procure the large number of cells that is 
needed for a clinically effective device

Challenges 
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… and the Reality  

Problem complexity:  System of large interconnectivity

Large number of adjustable variables

Uncertainty
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Accuracy depends on :
• Flow model
• Kinetic model

Fluid flows significantly affected by 
chemical reaction :
Combustion, Aerospace propulsion

Conversion of chemical energy to mechanical energy

Require alternate representation of complex kinetic 
mechanism, without sacrificing accuracy

Motivation – 2 : Combustion
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Challenges: Combine Flow and Chemistry 

How should these be combined ?

Composition map
Velocity map
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…and the Reality

Complex kinetics
(LLNL Report, 2000)

H2 mole fraction vs. time 

Uncertainty
in kinetic 

parameters
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Motivation-3: Large-Scale Process Operations

Crude Oil 
Marine 
Vessels

Storage
Tanks

Charging
Tanks

Crude
Distillation

Units

Other
Production

Units

Component
Stock 
Tanks

Blend
Header

Finished 
Product
Tanks

Lifting/
Shipping
Points

Product Blending & Distribution
Crude-oil Unloading and Blending Production

Max   Profit
Subject to: Material Balance Constraints

Allocation Constraints, Sequence Constraints
Duration Constraints, Demand Constraints …

Goal: Address the optimization of large-scale short-term scheduling problem,
specifically in the area of refinery operations

Add $100s of 
million/year profit by 
optimizing crude-oil-
marketing enterprise
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Challenges: Parameter Fluctuations



Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

10%

90%

Product 2

Product 1

Feed A Hot A

40%
60%

60%

Int
AB

80%

Feed B

50%

Feed C

Imp E

50%
20%

Int BC

Heating Reaction 2

Reaction 1 Reaction 3

Separatio
n

40%

 

TTiimmee  NNuummbbeerr  ooff  
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OObbjjeeccttiivvee  
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CCPPUU  ttiimmee  
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88  hhoouurrss  55  11449988..1199  00..4477  
1166hhoouurrss  99  33773377..1100  117777..9933  
2244  hhoouurrss  1133  66003344..9922  9922336677..9944  

As time horizon of scheduling problem 
increases, the solution requires 
exponential computational time which 
makes the problem intractable.

…and the Reality 
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Systems Approaches  
Mathematical programming 

Systematic consideration of variable dependences

Continuous and discrete representation

Sensitivity – parametric analysis  

Identification of important features and parameters

Feasibility evaluation

Conditions of acceptable operation

Optimization 

Multiobjective since we have more than one objective to 
optimize

Uncertainty 

Evaluation of solutions that are robust to highly fluctuating 
environment
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Presentation Outline   

Complexity reduction using mathematical 
programming approaches

Optimization of hepatocyte functionality
Reduction of complex chemistry 

Uncertainty analysis & feasibility evaluation

Analysis of alternative solutions 



Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Hepatic Metabolic Network

45 internal metabolites

76 reactions: 

33 irreversible     +   43 reversible

34 measured (red) +   42 unknown 

Chan et al (2003) Biotechnol & Bioengineering

Main Assumptions

1) Gluconeogenic and fatty acid oxidation 
enzymes are active in plasma     

2) Energy-requiring pathways are negligible

3) Metabolic pools are at pseudo-steady state.        

Main Reactions
Glucose Metabolism (v1-v7)

Lactate Metabolites & TCA Cycle(v8-v14 )

Urea Cycle (v15-v20)

Amino acid uptake & metabolism (v21-v68, ,v76)

Lipid & Fatty Acid Metabolism (v46-v50,v71-v75)
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Measure 2 fluxes: Uniquely-determined system 
Measure 3 fluxes: Overdetermined System- Least Square method
Measure 1 flux: Underdetermined System- Linear Programming 

Pseudo-steady State = 0Sv
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Metabolic Flux Analysis (MFA)   is developed to calculate unknown intracellular 
fluxes based on the extracellular measured fluxes.                        

Rationale for Metabolic Modeling
Interpretation and coupling to experimental data.
Gain insights into how cells adapt to environmental changes.
To identify key pathways for hepatocyte function.
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Optimization in Metabolic Networks

Single-level Optimization: Optimize a single objective function 
(e.g. maximization of a single metabolic flux). 

Multi-Objective Optimization              Multi-level Optimization≠

Uygun et al., (2006) Ind. Eng. Chem. Res. Lee S.  et al (2000) Computer & Chem. Eng.
Schilling. et al., (2001) Biotechnol BioengEward & Palsson (2000) PNAS

Segre D. et al (2002) PNAS

Multi-level Optimization: Several objectives acting hierarchically to optimize 
their own objective function (e.g. Minimize the difference of predicted fluxes from 
experimentally observed values to optimize the cellular objective function).

Nolan R.P  et al (2005) Metabolic Engineering
Burgard & Maranas (2003) Biotechnol Bioeng

Uygun et al., (2007) Biotechnol Bioeng

Sharma N.P. et al., (2005) Biotechnol Bioeng

Multi-objective Optimization: Several objective functions are 
simultaneously optimized (e.g. minimizing the toxicity and maximizing metabolic 
production).  

Nagrath D.  et al. (2007) Annals of Biomedical Engineering
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Aim: Identify the flux distributions for optimal urea production 
that can fulfill metabolites balances and flux constraints

Unit: µmol/million cells/day

1

min max

:

: 0

urea
N

ij j
j

j j j

Max Z v

Subject to S v i M

v v v j K
=

=

= ∀ ∈

≤ ≤ ∀ ∈

∑

Single-level Optimization: Maximize Urea Secretion 

> 2 fold 2.35±0.52LPAA
> 15 fold0.17±0.24LIP
> 3 fold1.32±0.69HPAA
> 10 fold

6.81

0.23±0.43HIP
IncreaseOptimal ValueExperimental Data*

*Chan  & Yarmush et al (2003) Biotechnol Prog
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Results for Single-Level Optimization

Increased fluxes

Gluconeogenesis (R2-R6)     

TCA Cycle (R13,R14)         

Urea Cycle (R16,R17)

Amino Acid Catabolism 
(R21,R23,R27,R30,R36,R38,R43)  

Fatty Acid Metabolism (R47,R48) 

Pentose Phosphate Pathway (R54)  

Amino acid  uptake fluxes                  
(e.g: Arginine, Serine, Glycine.....)    

Fluxes significantly altered 
through the pathways (more 
than 30 % change) 

Decreased fluxes
Amino Acid Catabolism (R33,34)
Fatty Acid Oxidation (R46)
Glycerol uptake and metabolism, glycogen storage  

(R70,R71,R73,R74)
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Multi-objective Optimization

Sharma NS, Ierapetritou MG,Yarmush ML.,Biotechnol Bioeng. 2005 Nov 5;92(3): 321-35.

albumin
N

ij j i
j 1

min max
j j j

urea

                 max  v

subject to : S v b,   i 1,...., M       

                 v  v v

                 v ε

=

= =

≤ ≤

≥

∑

•Pareto optimal set yields the feasible 
region for BAL operation
•Point A,D and B belong to the Pareto Set
•Both urea and albumin secretion can be 
improved at point C by moving towards 
the Pareto set 

Results
ε-Constraint Method

Different values of ε were used to
calculate the maximum albumin 
Production = Pareto set 
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Modulation by optimal AA. 
Supplementation

Optimal Amino Acid Supplementation
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Optimal Flux Distribution
Culture media supplementation to improve 

cellular function
Advantage is no direct genetic intervention

Assumption: Linear 
Relationship
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Bi-level Optimization

Leader Objective: Minimize the 
difference between the native type 
and the knockout condition after 
reaction deletion 

NA
jv : represents the flux distribution 

of native type determined from MILP 
model

Aim: Compare the flux distributions between the wild-type and 
knock out condition and identify the essential reactions for target 
cell functions

Segre D. et al (2002) PNAS; 99: 15112-15117
Burgard et al., (2003) Biotechnol Bioeng; 84: 647-657
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Follower Objective: Maximize the 
particular cell function (urea 
production)

Critical Pathways for Urea and Albumin Function
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Using Extended Kuhn-Tucker Approach
C. Shi. (2005) Applied Mathematics & Computation
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Comparison of Different Methodologies

II) AA supplements
Low Insulin (50 µU/ml) III) no supplements

IV) AA supplements

I) no supplementsHigh Insulin (0.5 U/ml)

Experiments:

Model:

Subject to:

Results:

Subject to:

6.80959.886Primal-Dual
2.2540.246KKT 
UreaErrorApproach

Case 2:
NA
jv - Measured fluxes from Experiment LPAA

6.809269.239Primal-Dual
0.1650.079KKT 
UreaErrorApproach

Case 1: NA
jv - Measured fluxes from Experiment LIP
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Hong, Roth, Ierapetritou, AIChE Annual Meeting, Nov 2007
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Critical Pathways for Urea and Albumin Function
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Logic based programming

λj is a binary variable corresponding to the presence or absence of
reaction (j) in the network.
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Critical pathways for urea and albumin function

UnsupplementedHigh InsulinHIP

Optimal Amino AcidsLow InsulinOptimal

Amino AcidsLow Insulin LIPAA

UnsupplementedLow InsulinLIP

Plasma 
Supplementation

Medium
Pre-Conditioning

Condition

Different Conditions

Elucidate 
Insulin 
Effects

Elucidate 
AA Effects
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Optimal Condition vs. LIPAA 
•Compensatory effects in 
TCA cycle fluxes 
•Lower gluconeogenic and 
lipid metabolism pathway 
fluxes.
•Higher urea cycle fluxes.
•Higher AA uptake rates

Thick red lines correspond to 
higher fluxes for optimal 
condition as compared to 
LIPAA. 
Thick blue lines correspond to 
lower fluxes for optimal 
condition as compared to 
LIPAA. 
Dotted red lines correspond to 
reactions not important in 
Optimal case for maximal urea 
and albumin function. 
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Complexity reduction using mathematical 
programming approaches

Optimization of hepatocyte functionality
Reduction of complex chemistry

Uncertainty analysis & feasibility evaluation

Analysis of alternative solutions
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H2 + O2 2OH  
OH + H2 H2O+H    
O + OH O2+H          
O + H2 OH+H                      
H + O2 HO2
OH + HO2 H2O+O2
H + HO2 2OH                      
O + HO2 O2+OH                    
2OH O+H2O
H + H  H2
H + H + H2 H2 + H2
H + H + H2O H2 + H2O                 
H + OH  H2O                   
H + O OH                     
O + O  O2
H + HO2 H2 + O2
HO2 + HO2 H2O2 + O2
H2O2 OH + OH                
H2O2 + H HO2 + H2
H2O2 + OH H2O + HO2

Detailed kinetic models
are extremely complex
Detailed kinetic models
are extremely complex

Reduction of complex 
kinetic mechanism to 
enable detailed 
flame simulation

Model Reduction Using Mathematical Programming 
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Objective function : i
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i
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∑
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λmin

Constraint : δχ ≤

represents total number of species / reactionsi

NN

i

RS

∑
=

/

1

λ

where χ is an error measure representing 
deviation of full profile from reduced profile

iλ

Constraint : retain desired system behavior within prescribed accuracy 

: Binary variable corresponding to ith reaction/species

Optimization Based Reduction 
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Perform reaction reduction with
Nr binary variables

Two Step Solution Procedure

Binary variables for species reduction  (Ns) : 53 
Binary variables for reaction reduction (Nr)  : 325

Species reduction

Eliminate reactions associated 
with removed species

Generate initial reduced 
reaction set (Ns < Nr) 

Final reduced 
model

Mathematical Model: MINLP with embedded ODEs
Methane 

mechanism: GRI 3.0

(17 species,
113 reactions)

(17 species,59 reactions)Banerjee and Ierapetritou, Chem. Eng. Sci, 8, 4537, 2003. 
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Ns Nr       Sparsity Cummulative(CPU)
53    325     1227 (0.07)       190.3
29    126      461 (0.126)       29.57
22     81       291 (0.163        13.87
22     35       131 (0.17)          5.67
19     59       210 (0.187)        5.75
20   30     112(0.187)     3.9
20   25      95 (0.19)      2.34
20   22      84 (0.19)      1.83

Full 
Mechanism

Reduced 
Mechanisms

Computational Savings by Reduction

50%

96%
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Complexity reduction using mathematical 
programming approaches

Optimization of hepatocyte functionality
Reduction of complex chemistry 

Uncertainty analysis & feasibility evaluation

Analysis of alternative solutions
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Feasibility Quantification

Pressure 

Te
m
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Safe 
Operating 
Regime 

Determine the range operating conditions
for safe and productive operations 

Given a design/plant or process 

Design
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Feasible Range

Desired Range of Variability

Feasibility Quantification

Convex Hull Approach 
(Ierapetritou, AIChE J., 47, 1407, 2001)
Systematic Way of Boundary Approximation

Flexibility Range
(Grossmann and
coworkers)

Deviation of 
nominal conditions

Nominal Value of Product 1

Nominal Value 
of Product 2



Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

A powerful, approach available to identify the uncertainty ranges 
where the design, process or material is feasible to operate or 
function. 

Process Flexibility 

θ1θ1
N

θ2
N

θ2 0),( =θψ d

∆Θ1
+∆Θ1

-

∆Θ2
+

∆Θ2
-

+
+

Δ

−
=

j

N
jj

j θ
θθ

δ
−

−

Δ

−
=

j

j
N
j

j θ
θθ

δ pj ,..,1=

T

(Swaney & Grossmann 1985)
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δ1

δ2

F

Flexibility Index

+− Δ+≤≤Δ− θθθθθ FF NNFeasible operation can be guaranteed for

T

Flexibility Index F – one-half the length of the side of hypercube T



Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

δmin=FI
..ts 0),( =θψ d
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min),( =θψ

Iixzdhi ∈= ,0),,,( θ
( , , , ) ,jg d z x u j Jθ ≤ ∈

}|{)( +− Δ−≤≤Δ−= θδθθθδθθδ NNT

0≥δ

Mathematical Formulation 
(Swaney & Grossmann 1985)

( )
max min max

zT i Iθ δ∈ ∈
0),,( ≤θzdfi

}|{)( +− Δ−≤≤Δ−= θδθθθδθθδ NNT

..ts δmax=FI
Feasibility test 
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Active Set Strategy
δmin=FI
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Inner problem is 
replaced by KKT 

constraints

(Grossmann & Floudas 1987)



Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Simplicial Approximation

1

2

3

Find mid point of
largest tangent plane

Insert the largest hypersphere
in the convex hull

Find Convex hull with 
these points (1-2-3)

Choose m   n+1 points 
for n dimensions (points 

1,2,3) 1

2

3

≥

1

2

3

Find new boundary points 
by line search from the mid point

4
Inflate the 
convex hull 
using all the 
new points

After 4 iterations 
Approximate Feasible Region1-

2-3-4-5-6-7

Goyal and Ierapetritou, Comput. Chem. Engng. 28, 1771, 2004
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Noncovex Problems: Need for Alternative Methods

Failure of Existing 
Methods due to      
Convexity 
Assumptions

Assumption: The Non-
Convex Constraints 
can be identified a 
priori
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Alpha-shape method:
Eliminate maximum possible circles of radius α
without eliminating any data point

For            the α shape degenerates to the 
original point set 

For the α shape is the convex hull of 
the original point set 

(Ken Clarkson http://bell-labs.com/netlib/voronoi/hull.html)

Improved Feasibility Analysis: Shape Recosntruction

0α →

α → ∞

Given a set of points, determine the 
shape formed by these points

Analogous to problem of shape reconstruction

Problem definition : 
Given a set of points (sample feasible 
points), determine mathematical 
representation of occupied space
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Disjoint nonconvex object

Conventional techniques of 
inscribing hyper-rectangle or 
convex hull performs poorly

Inscribed convex hull

Boundary points 
identified by α
shape

Identify boundary points using α shape

Polygonal 
approximation

Connect boundary points to form a polygon

Improved Feasibility Analysis by α - Shapes

Banerjee and Ierapetritou, Ind. Eng. Chem. Res., 44, 3638, 2005. 
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Broad range of species concentration and 
temperature encountered in flow simulation

Different reduced models for different 
conditions encountered in flow simulation

Reduced 
Set # 1

Reduced 
Set # 2

Reduced 
Set # 3

Reduced 
Set # 4

Adaptive Reduction

Banerjee and Ierapetritou, Comb. Flame, 144, 219, 2006.
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Sample the feasible space

Construct α – shape with the 
sampled points

Determine points forming the 
boundary of the feasible region

Estimation of Feasible Region: α –shape

20 reduced sets
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Model 1    Species = 22, Reactions = 81     Information of feasible region
Model 2    Species = 19, Reactions = 59     Information of feasible region
Model 3    Species = 20, Reactions = 22     Information of feasible region

:                         
:                         

Model 20   Species = 53, Reactions = 325   Information of feasible region

Library of reduced models 
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(Checks for a 
feasible model)

Determine 
λ1, λ2, …, λns

Set 6

Set 7
Set 3

Set 1

Set 5

Set 4

Set 2
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t
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=
∂
∂
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Reactive flow model

Generate Library of Reduced Model
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Detailed model

Adaptive Reduced model

Single Reduced model

Detailed model

Adaptive Reduced model

Single Reduced model

Detailed model

Detailed modelSingle Reduced model

Single Reduced model

Adaptive Reduced model Adaptive Reduced model

Te
m
pe

ra
tu

re
 (
K 

)

Time (s) Time (s)

Time (s) Time (s)

CH
4
m
as

s 
fr

ac
.

H
 m

as
s 

fr
ac

.

H
2
m
as

s 
fr

ac
.

Single reduced model : 38% error Adaptive reduced model : 3% error

Adaptive Reduction Model in PMSR Simulation
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Uncertainty in kinetic parameters

Uncertainty inherent in kinetic parameter data

Commonly characterized by
Error bounds (Δlogkf,i, ΔEi etc.), confidence 
intervals/ranges.
Multiplicative Uncertainty Factor (UF ≥1) 

Upper bound = UF*kf,i,
Lower Bound = kf,i/UF

Objective: Development of an accurate, systematic and 
efficient framework of analysis, that characterizes 
uncertainty in kinetic mechanisms 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
= β

TR
E

TAk
g

ia
iif

i ,
, exp
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Representation of Uncertainty

Classical/Rough Set Theory, Fuzzy Measure/Set Theory, 
Interval Mathematics and
Probabilistic/Statistical Analysis

Sensitivity Testing Methods
Analytical Methods

– Differential Analysis e.g. Perturbation Methods
– Green’s Function Method
– Spectral Based Stochastic Finite Element Method 

forms the basis of the Stochastic Response Surface 
Method (SRSM) 

Sampling Based Methods e.g.
– Monte Carlo Methods 
– Latin Hypercube Methods
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Stochastic Response Surface Method

Extension of classical deterministic Response Surface 
Method and newer Deterministic Equivalent Modeling 
Method 
The outputs are represented as a polynomial chaos 
expansion in terms of Hermite polynomials:

Allows for direct and probabilistic evaluation of statistical 
parameters of the outputs e.g., for the second order 
output U2: Mean = α0,2 Variance = 

∑
=

ξ+=
n

i
iiaaU

1
1,1,01
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= >==
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Stochastic Response Surface Method

Method Outline: 
Choice of order of expansion and transformation of the 
set of parametric input uncertainties in terms of a set of 
standard random variables (srv’s) ξ’s - Gaussian (N(0,1)). 
Commonly encountered transformations include :

Exponential

Lognormal (μ,σ)

Normal (μ,σ)

Uniform (a,b)

TransformationDistribution Type

⎟
⎠
⎞

⎜
⎝
⎛ ξ+

λ
− )2/(

2
1

2
1log1 erf

( )σξ+μexp

σξ+μ
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⎞

⎜
⎝
⎛ ξ+−+ )2/(

2
1

2
1)( erfaba
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Stochastic Response Surface Method

Generation of input points following the Efficient 
Collocation Method (ECM) 

Points are selected from the roots of Hermite
polynomials of higher order than the expansion 
Borrows from Gaussian quadrature

Application of the model to these input points and 
computation of relevant model outputs

Estimation of the unknown coefficients of the expansion 
via regression using singular value decomposition (SVD)

Statistical and direct analysis of the series expression 
of the outputs
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SRSM - Algorithm

Input Distributions

Select a set of srv’s
and transform inputs

in terms of these

Express outputs as a
series (of chosen order)

in srv’s with
unknown coefficients 

Generate a set of 
regression points

Model

Estimate the
coefficients of the 

output approximation

Output Distributions
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Implementation

Discretization of time interval
2nd order SRSM expansion fit for each output 
species at each time point

MODEL
y = f(k1, k2, …, k19)

A19

P(A19)

.

.

.

P(y)

yA1

P(A1)

Initial 
Conditions

} P(y)

y

y

t

t=t1

t=t2
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Uncertainty Propagation: Results

Concentration profiles display time varying distributions 
Number of model simulations required by SRSM is orders of 
magnitude less than Monte Carlo (723 vs. 15,000)

Distributions of 
H2 at t=1, 2 and 5 
seconds generated 
by Monte Carlo 
(MC) simulation 
and SRSM

Nominal H2 mole fraction vs. time plot
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Uncertainty Propagation: Results 

Output distributions at 
each time point very well 
approximated by second 
order SRSM

Sensitivity information 
easily obtained via 
expansion coefficients -
aids understanding  how 
the reaction sequence 
progresses

Means for successfully 
preprocessing the 
reduction of the kinetic 
model taking into account 
uncertainty
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Presentation Outline   

Complexity reduction using mathematical 
programming approaches

Optimization of hepatocyte functionality
Reduction of complex chemistry 

Uncertainty analysis & feasibility evaluation

Analysis of alternative solutions 
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Uncertainty with 
Unknown Behavior 
Uncertainty with 
Unknown Behavior 

Alternative 
solutions that 

spans the range 
of uncertainty

Alternative 
solutions that 

spans the range 
of uncertainty

MILP 
parametric

optimization

MILP 
parametric

optimization

model 
robustness

model 
robustness

solution 
robustness

solution 
robustness

Determine a Set of Alternative Solutions 

Known Behavior 
of Uncertainty
Known Behavior 
of Uncertainty

Robust 
optimization

method

Robust 
optimization

method

A set of solutions 
represent trade-

off between 
various objectives

A set of solutions 
represent trade-

off between 
various objectives

Li and Ierapetritou, Comp. Chem. Eng. in press, 2007 (doi:10.1016/j.compchemeng.2007.03.001).
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Multiparametric MILP (mpMILP) Approach

min   ( )
. .    

        0
        
       {0,1}, 1,...,

T

l u

j

z c D x
s t Ax b E

x

x j k
θ θ

θ

θ

θ= +
≥ +

≥

≤ ≤
∈ =

BASIC IDEA

∗ One critical region with one starting point

∗ Complete solution is retrieved with different 
starting points (parallelization)

mpMILP problem generalized from 
scheduling under uncertainty

∗ same integer solution
∗ same parametric objective: z*=f(θ)  
∗ same parametric solution (continuous variable): x*= f(θ)

In any Critical Region of an mpMILP 

Li and Ierapetritou, AIChE Jl. 53, 3183, 2007; Ind. Eng. Chem. Res. 46, 5141, 2007.
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Illustrating Example

Ierapetritou MG, Floudas CA, 1998

Determine:
Task Sequence
Exact Amounts of material processed

Given:
Raw Materials
Required Products
Production Recipe
Unit Capacity

Objective:
Maximize Profit

S1 S2 S3 S4
mixing reaction purification



Demand and Price Only Demand, Price, Processing Time Uncertainty

2 2
1 2 1 1 2 2Profit 88.55 49.07 0.25 20 1.2 0.01θ θ θ θ θ θ= + − + − +

2
1 2 1Profit 88.55 44 25.16 20θ θ θ= + − −
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minimize H   or  maximize ∑price(s)d(s,n)

subject to ∑wv(i,j,n) ≤ 1

st(s,n) = st(s,n-1) – d(s,n) + ∑ρP∑b(i,j,n-1) + ∑ρc∑b(i,j,n)

st(s,n) ≤ stmax(s) 

Vmin(i,j)wv(i,j,n) ≤ b(i,j,n) ≤ Vmax(i,j)wv(i,j,n)

∑d(s,n) ≥ r(s) 
Tf(i,j,n) = Ts(i,j,n) + α(i,j)wv(i,j,n) + β(i,j)b(i,j,n)

Ts(i,j,n+1) ≥ Tf(i,j,n) – U(1-wv(i,j,n))
Ts(i,j,n+1) ≥ Tf(i’,j,n) – U(1-wv(i’,j,n))
Ts(i,j,n+1) ≥ Tf(i’,j’,n) – U(1-wv(i’,j’,n))

Ts(i,j,n) ≤ H, Tf(i,j,n) ≤ H

Duration 
Constraints

Demand Constraints

Allocation Constraints

Capacity Constraints

Material 
Balances

Objective Function

Ierapetritou MG, and Floudas CA, Ind. 
& Eng. Chem. Res., 37, 11, 4341, 1998

Uncertainty with Known Behavior: Robust Optimization

Scenario-based Robust Stochastic Programming
Requires some statistic knowledge of the input data
Optimization of expectations is a practice of questionable validity
Problem size will increase exponentially with the number of uncertain  parameters
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Robust Counterpart Optimization

Soyster’s, Soyster (1973)

Soyster’s Ben-Tal and Nemirovski’s Bertsimas and Sim’s

- Linear
- No flexibility 
- Most pessimistic

- Nonlinear
- Flexibility
- Relative smaller number of 
variables and constraints

- Linear
- Higher flexibility 
- Relative larger number of
variables and constraints

Ben-Tal and Nemirovski’s, Ben-Tal and Nemirovski (2000); Lin, Janak et al. (2004)

Bertsimas and Sim’s, Bertsimas and Sim, 2003
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Efficient alternative to scenario based robust stochastic programming
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Find solution which copes best with the various realizations of uncertain data
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700625625625Continuous variable

1239116711671167constraints

216216216216Binary variable

25443.44.8infeasible1504.2CPU time

p≤0.5p≤0.625p≤0.75k=75%--Probability of constraint 
violation

939.121005.51052.50-939.121052.50objective

Г=1Г=0.5Г=0

Bertsimas and SimBen-TalSoysterDeterministic

Comparison for the robust courterpart formulations for processing time uncertainty

•15% variability for all the processing time
• 72 hours horizon, 24 event points

S1 S2 S3 S4
mixing reaction purification

Illustration
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∗Study the effect of the different uncertainties

∗ Provide an efficient way to look up the reactive 
schedule with the realization of uncertainty (e.g., 
rush order, machine breakdown)

Parametric and Robust Solution

Parametric Solution

Robust Counterpart Solution

∗ Provide an effective way to generate robust 
preventive schedule with boundary 
information on uncertainty (e.g., processing 
time variability)
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Uncertainty in Hepatocyte Functionality

How can we use these techniques to deal with 
experimental variability?

In many cases experimental error is more than 100%

How can we analyze the results?
Is the results an artifact of uncertainty?

How can we move beyond experimental error?
Can we determine which parameters are more important 
and what experiment to do next?
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Aim: Identify the flux distributions for optimal urea production 
that can fulfill metabolites balances and flux constraints

Unit: µmol/million cells/day

1

min max

:

: 0

urea
N

ij j
j

j j j

Max Z v

Subject to S v i M

v v v j K
=

=

= ∀ ∈

≤ ≤ ∀ ∈

∑

Single-level Optimization: Maximize Urea Secretion 

> 2 fold 2.35±0.52LPAA
> 15 fold0.17±0.24LIP
> 3 fold1.32±0.69HPAA
> 10 fold

6.81

0.23±0.43HIP
IncreaseOptimal ValueExperimental Data*

*Chan  & Yarmush et al (2003) Biotechnol Prog
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Example of Multiple Solution in 2-D

Feasible 
Region

x ≥ 0 y ≥ 0

-2 x + 2 y ≤ 4

x ≤ 3

Subject to:

Minimize  x - y

Multiple 
Optimal 
Solutions!

4

1

x31 2

y

0

2

0

3
1/3 x + y ≤ 4
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Finding all Solutions

Nathan D, Price et al., 2004,
Nature Review: Microbiology

A recursive MILP problem that has a set 
of constrains for changing the basis and 
identifying a new extreme point

A recursive MILP problem that has a set 
of constrains for changing the basis and 
identifying a new extreme point

Lee et al., 2000, Computer and Chemical Engineering 

TZ z
s t B z q
z 0

=

=

≥

m in
. .

α

α

−∈

∈

−

=

=

≥

≤ − = −

≤ ≤ ∈

+ ≤ ∈

≥

∑

∑
K 1

k

K T

i
i NZ

k
i

i NZ

i i
K 1

i i

Z z
s t Bz q

y 1

w NZ 1 k 1 2 K 1

0 z Uw i I
y w 1 i NZ
z 0

min
. .

, , ,...,

,
,

(MILP)

Question: How can you determine all solutions?Question: How can you determine all solutions?
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Flux distributions including glucose production (left) & without glucose production (right)

MILP Model: Application to Hepatocytes  

00000.3270.3270.5090.509R(1,72)

0.8060.8060.1780.1780.8060.8060.1780.178R(7,6)

3.763.763.763.763.763.763.763.76R6-R7

D8D7D6D5D4D3D2D1

1

1 7 2

(1, 7 2 ) vR
v v

=
+

76

7)6,7(
vv

vR
−

=

Enumerate Eight different flux distributions flux distributions that 
satisfy mass balance and all constraints with the same value of 
maximal urea production. 
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Develop Patient Specific Treatment
ROBUST SOLUTION CONSIDERING

VARIABILITY

* All fluxes are in µmol/million cells/day

LINEAR VARIABILITY IN 
EXTRACELLULAR FLUXES 

•All 19 amino acids are indispensable for 
maximum function 

•Valine and Isoleucine are required at higher 
concentrations

0
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Point D of Pareto Set
Two Stage Approach
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