Analysis of complex reaction networks using mathematical programming approaches

Marianthi Ierapetritou

Department Chemical and Biochemical Engineering Piscataway, NJ 08854-8058

Complex Process Engineering Systems?

PASI: August 12-21, 2008, Mar del Plata, Argentina

- Diverse complex systems spanning different scales
- □ Liver metabolism (molecular level)
- Combustion systems (process level)
- Scheduling of multiproduct-multipurpose plants (plant level)

Motivation -1: Liver Support Devices

- Acute and chronic liver failure account for 30,000 deaths each year in the US
- □ A large number of liver diseases:
 - Alagille Syndrome
 - Alpha 1 Antitrypsin Deficiency
 - Autoimmune Hepatitis
 - Biliary Atresia
 - Chronic Hepatitis
 - Cancer of the Liver
 - Cirrhosis
 - Cystic Disease of the Liver
 - Fatty Liver
 - Galactosemia
 - Hepatitis A, B, C

Currently liver transplantation is primary therapeutic option. Scarcity of donor organs limits this treatment

Solutions

Adjunct Internal Liver Support With Implantable Devices <u>Vascularized Implant</u>

- Hepatocyte Transplantation
- > Implantable Devices
- Encapsulated Hepatocytes

Extracorporeal Temporary Liver Support

>Nonbiological devices: hemodialysis, hemofiltration,

plasma exchange units >Hepatocyte- and liver cell-based extracorporeal devices

PASI: August 12-21, 2008, Mar del Plata, Argentina

- a) How to maximize long-term functional stability of hepatocytes in inhospitable environments
- b) How to manufacture a liver functional unit that is scalable without creating transport limitations or excessive priming volume that must be filled by blood or plasma from the patient
- c) How to procure the large number of cells that is needed for a clinically effective device

□ Problem complexity: System of large interconnectivity

Large number of adjustable variables

Uncertainty

PASI: August 12-21, 2008, Mar del Plata, Argentina

Motivation – 2 : Combustion

Conversion of chemical energy to mechanical energy

Require alternate representation of complex kinetic mechanism, without sacrificing accuracy

PASI: August 12-21, 2008, Mar del Plata, Argentina

Challenges: Combine Flow and Chemistry

□ How should these be combined ?

Composition map

PASI: August 12-21, 2008, Mar del Plata, Argentina

... and the Reality

PASI: August 12-21, 2008, Mar del Plata, Argentina

Marianthi Ierapetritou

RUTGERS

Motivation-3: Large-Scale Process Operations

Goal: Address the optimization of large-scale short-term scheduling problem, specifically in the area of refinery operations

PASI: August 12-21, 2008, Mar del Plata, Argentina

Challenges: Parameter Fluctuations

Crude Oil Prices 2006 Dollars

PASI: August 12-21, 2008, Mar del Plata, Argentina

...and the Reality

PASI: August 12-21, 2008, Mar del Plata, Argentina

Systems Approaches

Mathematical programming

Systematic consideration of variable dependences

Continuous and discrete representation

Sensitivity - parametric analysis

Identification of important features and parameters

Feasibility evaluation

Conditions of acceptable operation

Optimization

Multiobjective since we have more than one objective to optimize

Uncertainty

Evaluation of solutions that are robust to highly fluctuating environment

Presentation Outline

Complexity reduction using mathematical programming approaches

> Optimization of hepatocyte functionality
> Reduction of complex chemistry

Uncertainty analysis & feasibility evaluation

□ Analysis of alternative solutions

Hepatic Metabolic Network

Main Assumptions

- 1) Gluconeogenic and fatty acid oxidation enzymes are active in plasma
- 2) Energy-requiring pathways are negligible
- 3) Metabolic pools are at pseudo-steady state.

Main Reactions

Glucose Metabolism (v₁-v₇)

Lactate Metabolites & TCA Cycle(v_8-v_{14})

Urea Cycle (v₁₅-v₂₀)

Amino acid uptake & metabolism $(v_{21}-v_{68}, v_{76})$ Lipid & Fatty Acid Metabolism $(v_{46}-v_{50}, v_{71}-v_{75})$

45 internal metabolites

76 reactions:

- 33 irreversible + 43 reversible
- 34 measured (red) + 42 unknown

PASI: August 12-21, 2008, Mar del Plata, Argentina

Rationale for Metabolic Modeling

- Interpretation and coupling to experimental data.
- Gain insights into how cells adapt to environmental changes.
- To identify key pathways for hepatocyte function.

Metabolic Flux Analysis (MFA) is developed to calculate unknown intracellular fluxes based on the extracellular measured fluxes.

- Measure 2 fluxes: Uniquely-determined system
- Measure 3 fluxes: Overdetermined System-Least Square method
- Measure 1 flux: Underdetermined System-Linear Programming

 v_1

 v_2

 v_3

 \mathcal{V}_{4} v_5

 b_1

 b_2

 b_3

 b_{Λ}

Optimization in Metabolic Networks

 Single-level Optimization: Optimize a single objective function (e.g. maximization of a single metabolic flux).

Eward & Palsson (2000) PNAS Uygun et al., (2006) Ind. Eng. Chem. Res.

Schilling. et al., (2001) Biotechnol Bioeng Lee S. et al (2000) Computer & Chem. Eng.

Multi-objective Optimization: Several objective functions are simultaneously optimized (e.g. minimizing the toxicity and maximizing metabolic production).

Sharma N.P. et al., (2005) Biotechnol Bioeng

Nagrath D. et al. (2007) Annals of Biomedical Engineering

> Multi-level Optimization: Several objectives acting hierarchically to optimize their own objective function (e.g. Minimize the difference of predicted fluxes from experimentally observed values to optimize the cellular objective function).

 \neq

Segre D. et al (2002) PNAS Nolan R.P. et al (2005) Metabolic Engineering Burgard & Maranas (2003) Biotechnol Bioeng Uygun et al., (2007) Biotechnol Bioeng

Multi-Objective Optimization

Multi-level Optimization

PASI: August 12-21, 2008, Mar del Plata, Argentina

Single-level Optimization: Maximize Urea Secretion

Aim: Identify the flux distributions for optimal urea production that can fulfill metabolites balances and flux constraints

$$\begin{aligned} Max : Z = v_{urea} \\ Subject \quad to : \sum_{j=1}^{N} S_{ij} v_j = 0 & \forall i \in M \\ v_j^{\min} \le v_j \le v_j^{\max} & \forall j \in K \end{aligned}$$

Experimental Data*		Optimal Value	Increase
HIP	0.23±0.43		> 10 fold
HPAA	1.32±0.69	(01	> 3 fold
LIP	0.17±0.24	6.81	> 15 fold
LPAA	2.35±0.52		> 2 fold

Unit: µmol/million cells/day

*Chan & Yarmush et al (2003) Biotechnol Prog

PASI: August 12-21, 2008, Mar del Plata, Argentina

Results for Single-Level Optimization

Fluxes significantly altered through the pathways (more than 30 % change)

Increased fluxes

- Gluconeogenesis (R2-R6)
- > TCA Cycle (R13,R14)
- > Urea Cycle (R16,R17)
- > Amino Acid Catabolism (R21,R23,R27,R30,R36,R38,R43)
- > Fatty Acid Metabolism (R47,R48)
- Pentose Phosphate Pathway (R54)
- > Amino acid uptake fluxes (e.g: Arginine, Serine, Glycine.....)

Decreased fluxes

Fatty Acid Oxidation (R46)

 Glycerol uptake and metabolism, glycogen storage¹⁹ (R70,R71,R73,R74)

PASI: August 12-21, 2008, Mar del Plata, Argentina

Multi-objective Optimization

Sharma NS, Ierapetritou MG, Yarmush ML., Biotechnol Bioeng. 2005 Nov 5;92(3): 321-35.

PASI: August 12-21, 2008, Mar del Plata, Argentina

Optimal Amino Acid Supplementation

- Culture media supplementation to improve cellular function
- > Advantage is no direct genetic intervention

Critical Pathways for Urea and Albumin Function

Aim: Compare the flux distributions between the wild-type and knock out condition and identify the essential reactions for target cell functions

Bi-level Optimization

Leader Objective: Minimize the difference between the native type and the knockout condition after reaction deletion

Follower Objective: Maximize the particular cell function (urea production)

 v_j^{NA} : represents the flux distribution of native type determined from MILP model

Burgard et al., (2003) Biotechnol Bioeng; 84: 647-657 Segre D. et al (2002) PNAS: 99: 15112-15117

PASI: August 12-21, 2008, Mar del Plata, Argentina

$Min: \sum_{j \in N} v_j - v_j^{NA} $
s.t. Max: V _{urea}
s.t. $\sum_{j=1}^{N} S_{ij} v_j = 0, i = 1, 2 \dots M$
$v_j^{\min} \le v_j \le v_j^{\max}$
$v_d = 0$

Important Pathways

PASI: August 12-21, 2008, Mar del Plata, Argentina

Comparison of Different Methodologies

Experiments:

Results:

Case 1: v_j^{NA} - Measured fluxes from Experiment LIP

Approach	Error	Urea
ККТ	0.079	0,165
Primal-Dual	269.239	6.809

Model:

Min :	$\sum_{j \in Measured \cdot fluxes} v_j - v_j^{NA} \mid$	
Subject to:Max:	V _{urea}	
Subject to:	$\sum_{J=1}^{N} S_{ij} v_{j} = 0, i = 1, 2 \cdots M$	
	$v_j^{\min} \leq v_j \leq v_j^{\max}, \forall j \in k$	

Case 2:
$$v_j^{NA}$$
 - Measured fluxes from Experiment LPAA

Approach	Error	Urea
ККТ	0.246	2.254
Primal-Dual	59.886	6.809

Hong, Roth, Ierapetritou, AIChE Annual Meeting, Nov 2007

PASI: August 12-21, 2008, Mar del Plata, Argentina

Critical Pathways for Urea and Albumin Function

Logic based programming

$$\begin{split} & \underset{\lambda_{j}}{\text{min}} \Phi \ = \ \sum_{j=1}^{N} \ \lambda_{j} \\ & \text{subject to:} \ \sum_{j=1}^{N} \ S_{ij} v_{j} \ = \ b_{i} \ , \quad i = 1, \dots, M \\ & v_{j}^{\min} \lambda_{j} \le v_{j} \ \le \ v_{j}^{\max} \lambda_{j}, \quad j = 1, \dots, N \end{split}$$

 λ_j is a binary variable corresponding to the presence or absence of reaction (j) in the network.

PASI: August 12-21, 2008, Mar del Plata, Argentina

Critical pathways for urea and albumin function

Different Conditions

PASI: August 12-21, 2008, Mar del Plata, Argentina

Optimal Condition vs. LIPAA

•Compensatory effects in TCA cycle fluxes

•Lower gluconeogenic and lipid metabolism pathway fluxes.

- •Higher urea cycle fluxes.
- •Higher AA uptake rates

Thick red lines correspond to higher fluxes for optimal condition as compared to LIPAA.

Thick blue lines correspond to lower fluxes for optimal condition as compared to LIPAA.

Dotted red lines correspond to reactions not important in Optimal case for maximal urea and albumin function.

PASI: August 12-21, 2008, Mar del Plata, Argentina

Complexity reduction using mathematical programming approaches

> Optimization of hepatocyte functionality
> Reduction of complex chemistry

□ Uncertainty analysis & feasibility evaluation

□ Analysis of alternative solutions

Model Reduction Using Mathematical Programming

 $H_2 + O_2 \Leftrightarrow 2OH$ $OH + H_2 \Leftrightarrow H_2O+H$ $O + OH \Leftrightarrow O_2 + H$ $O + H_2 \Leftrightarrow OH + H$ $H + O_2 \Leftrightarrow HO_2$ $OH + HO_2 \Leftrightarrow H_2O+O_2$ $H + HO_2 \Leftrightarrow 2OH$ $O + HO_2 \Leftrightarrow O_2 + OH$ 20H ⇔ 0+H₂O $H + H \Leftrightarrow H_2$ $H + H + H_2 \Leftrightarrow H2 + H_2$ $H + H + H_2O \Leftrightarrow H_2 + H_2O$ $H + OH \Leftrightarrow H_2O$ $H + O \Leftrightarrow OH$ $0 + 0 \Leftrightarrow 0_2$ $H + HO_2 \Leftrightarrow H_2 + O_2$ $HO_2 + HO_2 \Leftrightarrow H_2O_2 + O_2$ $H_2O_2 \Leftrightarrow OH + OH$ $H2O_2 + H \Leftrightarrow HO_2 + H_2$ $H_2O_2 + OH \Leftrightarrow H_2O + HO_2$ Reduction of complex kinetic mechanism to enable detailed flame simulation

Reaction mee molecular co	chanism mplexity	is grow r:	with		
Fuel	H ₂ (hydrogen)	CH ₄ (methane)	C ₃ H ₈ (propane)	C ₆ H ₁₄ (hexane)	C ₁₆ H ₃₄ (cetane)
Number of species	7	30	100	450	1,200
			100	4 500	7 000

Detailed kinetic models are extremely complex

PASI: August 12-21, 2008, Mar del Plata, Argentina

Optimization Based Reduction

 λ_i : Binary variable corresponding to ith reaction/species $\sum_{i=1}^{N_s/N_R} \lambda_i$ represents total number of species / reactions

Constraint : retain desired system behavior within prescribed accuracy

Evaluation of Constraint Function

PASI: August 12-21, 2008, Mar del Plata, Argentina

Two Step Solution Procedure

Mathematical Model: MINLP with embedded ODEs

PASI: August 12-21, 2008, Mar del Plata, Argentina

Performance of Reduced Models

Reduced Model : 17 species, 59 reactions, δ = 0.085 CH₄=0.26, O₂=0.086 T=1200 K

PASI: August 12-21, 2008, Mar del Plata, Argentina

Computational Savings by Reduction

PASI: August 12-21, 2008, Mar del Plata, Argentina

Reduced Model has Limited Range of Validity

PASI: August 12-21, 2008, Mar del Plata, Argentina

Complexity reduction using mathematical programming approaches

> Optimization of hepatocyte functionality
> Reduction of complex chemistry

Uncertainty analysis & feasibility evaluation

□ Analysis of alternative solutions

Feasibility Quantification

Given a design/plant or process

Determine the range operating conditions for safe and productive operations

Feasibility Quantification

Process Flexibility

A powerful, approach available to identify the uncertainty ranges where the design, process or material is feasible to operate or function. (Swaney & Grossmann 1985)

PASI: August 12-21, 2008, Mar del Plata, Argentina

Flexibility Index

Flexibility Index F - one-half the length of the side of hypercube T Feasible operation can be guaranteed for $\theta^N - F\Delta\theta^- \le \theta \le \theta^N + F\Delta\theta^+$

PASI: August 12-21, 2008, Mar del Plata, Argentina

Mathematical Formulation

Active Set Strategy

PASI: August 12-21, 2008, Mar del Plata, Argentina

Simplicial Approximation

Noncovex Problems: Need for Alternative Methods

PASI: August 12-21, 2008, Mar del Plata, Argentina

Improved Feasibility Analysis: Shape Recosntruction

ion

Problem definition :

Given a set of points (sample feasible points), determine mathematical representation of occupied space shape formed by these points 400 350 300 250 200 150 100 50 -50 -40 -30 -20 -100 10 20 30 40

Alpha-shape method: Eliminate maximum possible circles of radius α without eliminating any data point

For $\alpha \to 0$ the α shape degenerates to the original point set

For $\alpha \to \infty \;$ the α shape is the convex hull of the original point set

(Ken Clarkson http://bell-labs.com/netlib/voronoi/hull.html)

PASI: August 12-21, 2008, Mar del Plata, Argentina

Improved Feasibility Analysis by α - Shapes

Disjoint nonconvex object

Conventional techniques of inscribing hyper-rectangle or convex hull performs poorly

Identify boundary points using α shape

Connect boundary points to form a polygon

Banerjee and Ierapetritou, Ind. Eng. Chem. Res., 44, 3638, 2005.

PASI: August 12-21, 2008, Mar del Plata, Argentina

Adaptive Reduction

Broad range of species concentration and temperature encountered in flow simulation

Different reduced models for different conditions encountered in flow simulation

Banerjee and Ierapetritou, Comb. Flame, 144, 219, 2006.

PASI: August 12-21, 2008, Mar del Plata, Argentina

Estimation of Feasible Region: α -shape

PASI: August 12-21, 2008, Mar del Plata, Argentina

Generate Library of Reduced Model

Library of reduced models

PASI: August 12-21, 2008, Mar del Plata, Argentina

Adaptive Reduction Model in PMSR Simulation

PASI: August 12-21, 2008, Mar del Plata, Argentina

Uncertainty in kinetic parameters

□ Uncertainty inherent in kinetic parameter data

$$k_{f,i} = A_i T^{\beta_i} \exp\left(\frac{-E_{a,i}}{R_g T}\right)$$

- Commonly characterized by
 - > Error bounds ($\Delta logk_{f,i}$, ΔE_i etc.), confidence intervals/ranges.
 - > Multiplicative Uncertainty Factor (UF \geq 1) Upper bound = UF*k_{f,i}, Lower Bound = k_{f,i}/UF

Objective: Development of an accurate, systematic and efficient framework of analysis, that characterizes uncertainty in kinetic mechanisms

Representation of Uncertainty

- Classical/Rough Set Theory, Fuzzy Measure/Set Theory, Interval Mathematics and
- Probabilistic/Statistical Analysis
 - Sensitivity Testing Methods
 - > Analytical Methods
 - Differential Analysis e.g. Perturbation Methods
 - Green's Function Method
 - Spectral Based Stochastic Finite Element Method forms the basis of the Stochastic Response Surface Method (SRSM)
 - > Sampling Based Methods e.g.
 - Monte Carlo Methods
 - Latin Hypercube Methods

Stochastic Response Surface Method

- Extension of classical deterministic Response Surface Method and newer Deterministic Equivalent Modeling Method
- The outputs are represented as a polynomial chaos expansion in terms of Hermite polynomials:

$$U_{1} = a_{0,1} + \sum_{i=1}^{n} a_{i,1}\xi_{i} \qquad 1^{\text{st order}}$$
$$U_{2} = a_{0,2} + \sum_{i=1}^{n} a_{i,2}\xi_{i} + \sum_{i=1}^{n} a_{ii,2}(\xi_{i}^{2} - 1) + \sum_{i=1}^{n-1} \sum_{j>i}^{n} a_{ij,2}\xi_{i}\xi_{j} \qquad 2^{\text{nd order}}$$

□ Allows for direct and probabilistic evaluation of statistical parameters of the outputs e.g., for the second order output U₂: Mean = $\alpha_{0,2}$ Variance = $a_{1,2}^2 + 2a_{11,2}^2$

Stochastic Response Surface Method

- Method Outline:
- Choice of order of expansion and transformation of the set of parametric input uncertainties in terms of a set of standard random variables (srv's) ξ's Gaussian (N(0,1)). Commonly encountered transformations include :

Distribution Type	Transformation
Uniform (a,b)	$a + (b-a)\left(\frac{1}{2} + \frac{1}{2}erf(\xi/2)\right)$
Normal (μ,σ)	μ + σξ
Lognormal (μ,σ)	$\exp(\mu + \sigma\xi)$
Exponential	$-\frac{1}{\lambda}\log\left(\frac{1}{2}+\frac{1}{2}erf(\xi/2)\right)$

Stochastic Response Surface Method

- Generation of input points following the Efficient Collocation Method (ECM)
 - Points are selected from the roots of Hermite polynomials of higher order than the expansion
 - Borrows from Gaussian quadrature
- Application of the model to these input points and computation of relevant model outputs
- Estimation of the unknown coefficients of the expansion via regression using singular value decomposition (SVD)
- Statistical and direct analysis of the series expression of the outputs

SRSM - Algorithm

PASI: August 12-21, 2008, Mar del Plata, Argentina

Implementation

- Discretization of time interval
- 2nd order SRSM expansion fit for each output species at each time point

Uncertainty Propagation: Results

- Concentration profiles display time varying distributions
- Number of model simulations required by SRSM is orders of magnitude less than Monte Carlo (723 vs. 15,000)

Uncertainty Propagation: Results

- Output distributions at each time point very well approximated by second order SRSM
- Sensitivity information easily obtained via expansion coefficients aids understanding how the reaction sequence progresses
- Means for successfully preprocessing the reduction of the kinetic model taking into account uncertainty

Presentation Outline

Complexity reduction using mathematical programming approaches

> Optimization of hepatocyte functionality
> Reduction of complex chemistry

Uncertainty analysis & feasibility evaluation

Analysis of alternative solutions

Determine a Set of Alternative Solutions

Li and Ierapetritou, Comp. Chem. Eng. in press, 2007 (doi:10.1016/j.compchemeng.2007.03.001).

PASI: August 12-21, 2008, Mar del Plata, Argentina

Multiparametric MILP (mpMILP) Approach

mpMILP problem generalized from scheduling under uncertainty

$$\begin{array}{ll} \min & z = (c + \boldsymbol{\theta}^T D) x \\ s.t. & Ax \ge b + E \boldsymbol{\theta} \\ & x \ge 0 \\ & \boldsymbol{\theta}^l \le \boldsymbol{\theta} \le \boldsymbol{\theta}^u \\ & x_j \in \{0,1\}, \, j = 1, ..., k \end{array}$$

In any Critical Region of an mpMILP

- * same integer solution
- * same parametric objective: $z^*=f(\theta)$

* same parametric solution (continuous variable): $x^* = f(\theta)$

BASIC IDEA

- * One critical region with one starting point
- * Complete solution is retrieved with different starting points (parallelization)

Li and Ierapetritou, AIChE Jl. 53, 3183, 2007; Ind. Eng. Chem. Res. 46, 5141, 2007.

Illustrating Example

Ierapetritou MG, Floudas CA, 1998

PASI: August 12-21, 2008, Mar del Plata, Argentina

Uncertainty with Known Behavior: Robust Optimization

& Eng. Chem. Res., 37, 11, 4341, 1998

Scenario-based Robust Stochastic Programming

- $\boldsymbol{\ast}$ Requires some statistic knowledge of the input data
- * Optimization of expectations is a practice of questionable validity
- $\boldsymbol{\ast}$ Problem size will increase exponentially with the number of uncertain parameters

Robust Counterpart Optimization

Find solution which copes best with the various realizations of uncertain data $\widetilde{a}_{lm} \in [a_{lm} - \hat{a}_{lm}, a_{lm} + \hat{a}_{lm}]$ Soyster's, Soyster (1973) $\sum a_{lm} x_m + \sum (a_{lm} + \hat{a}_{lm}) u_m \le p_l - \hat{p}_l$ m∈M Soyster's Ben-Tal and Nemirovski's Bertsimas and Sim's > Ben-Tal and Nemirovski's, Ben-Tal and Nemirovski (2000); Lin, Janak et al. (2004) - $\operatorname{Linpar}\left\{\sum_{k} a_{lm} x_{m} + \sum_{k} b_{lk} y_{k} \right\}$ Some $\max[1, |p_{l}|] \le \kappa, \kappa = e^{-\Omega^{2}/2}$ - Linear - No flexibility - Flexibility - Higher - Higher flexibility - Most pessimistic - Relative smaller number of - Relative larger number of variables and constraints variables and constraints > Bertsimas and Sim's, Bertsimas and Sim, 2003 $\sum_{m} a_{lm} x_m + \max_{\{S_l \cup \{t_l\} | S_l \subseteq M_l, |S_l| = \lfloor \Gamma_l \rfloor, t_l \in M_l \setminus S_l\}} \left\{ \sum_{m \in S_l} \hat{a}_{lm} \mid x_m \mid + (\Gamma_l - \lfloor \Gamma_l \rfloor) \hat{a}_{lt_l} \mid x_{t_l} \mid \right\} \le p_l$

Efficient alternative to scenario based robust stochastic programming

Illustration

Comparison for the robust courterpart formulations for processing time uncertainty

	Deterministic	Soyster	Ben-Tal	Bertsimas and Sim		
				Г=0	Г=0.5	Γ=1
objective	1052.50	939112	-	1052.50	1005.5	939.12
Probability of constraint violation	-	-	k=75%	p≤0.75	p≤0.625	p≤0.5
CPU time	4.2	150	infeasible	4.8	43.4	254
Continuous variable	625	625	625		700	
Binary variable	216	216	216		216	
constraints	1167	1167	1167		1239	

•15% variability for all the processing time

• 72 hours horizon, 24 event points

Parametric and Robust Solution

> Parametric Solution

*Study the effect of the different uncertainties

* Provide an efficient way to look up the reactive schedule with the realization of uncertainty (e.g., rush order, machine breakdown)

> Robust Counterpart Solution

* Provide an effective way to generate robust preventive schedule with boundary information on uncertainty (e.g., processing time variability)

Marianthi Ierapetritou

0.5

0 n

t2

1.5

t1

0.5

Uncertainty in Hepatocyte Functionality

- How can we use these techniques to deal with experimental variability?
 - > In many cases experimental error is more than 100%
- How can we analyze the results?
 > Is the results an artifact of uncertainty?
- How can we move beyond experimental error?
 Can we determine which parameters are more important and what experiment to do next?

Single-level Optimization: Maximize Urea Secretion

Experimental Data*		Optimal Value	Increase	
HIP	0.23±0.43		> 10 fold	
HPAA	1.32±0.69	(01	> 3 fold	
LIP	0.17±0.24	6.81	> 15 fold	
LPAA	2.35±0.52		> 2 fold	

Unit: µmol/million cells/day

*Chan & Yarmush et al (2003) Biotechnol Prog

PASI: August 12-21, 2008, Mar del Plata, Argentina

Example of Multiple Solution in 2-D

PASI: August 12-21, 2008, Mar del Plata, Argentina

Finding all Solutions

Nathan D, Price et al., 2004, Nature Review: Microbiology

Question: How can you determine all solutions?

A recursive MILP problem that has a set of constrains for changing the basis and identifying a new extreme point

min $Z^{K} = \alpha^{T} z$
s.t.Bz = q
$\sum_{i \in NZ^{K-1}} y_i \geq 1$
$\sum_{i \in NZ^{k}} w_{i} \leq NZ^{k} - 1, k = 1, 2,, K - 1$
$0 \leq z_i \leq Uw_i, i \in I$
$y_i + w_i \le 1, i \in NZ^{K-1}$
$z \ge 0$ (MILP)

Lee et al., 2000, Computer and Chemical Engineering

MILP Model: Application to Hepatocytes

Enumerate Eight different flux distributions flux distributions that satisfy mass balance and all constraints with the same value of maximal urea production.

Flux distributions including glucose production (left) & without glucose production (right)

	D1	D2	D3	D4	D5	D6	D7	D8
R(1,72)	0.509	0.509	0.327	0.327	0	0	0	0
R6-R7	3.76	3.76	3.76	3.76	3.76	3.76	3.76	3.76
R(7,6)	0.178	0.178	0.806	0.806	0.178	0.178	0.806	0.806

 $R(7,6) = \frac{v_7}{v_6 - v_7}$ $R(1,72) = \frac{v_1}{v_1 + v_{72}}$

Marianthi Ierapetritou

Rutgers

PASI: August 12-21, 2008, Mar del Plata, Argentina

Develop Patient Specific Treatment

LINEAR VARIABILITY IN EXTRACELLULAR FLUXES

ROBUST SOLUTION CONSIDERING

VARIABILITY

•All 19 amino acids are indispensable for maximum function

•Valine and Isoleucine are required at higher concentrations

* All fluxes are in µmol/million cells/day

PASI: August 12-21, 2008, Mar del Plata, Argentina

Marianthi Ierapetritou

Acknowledgements

Financial Support: NSF, ONR, PRF, ExxonMobil Our Web Page: http://sol.rutgers.edu/staff/marianth

PASI: August 12-21, 2008, Mar del Plata, Argentina

Marianthi Ierapetritou

PASI: August 12-21, 2008, Mar del Plata, Argentina

Marianthi Ierapetritou