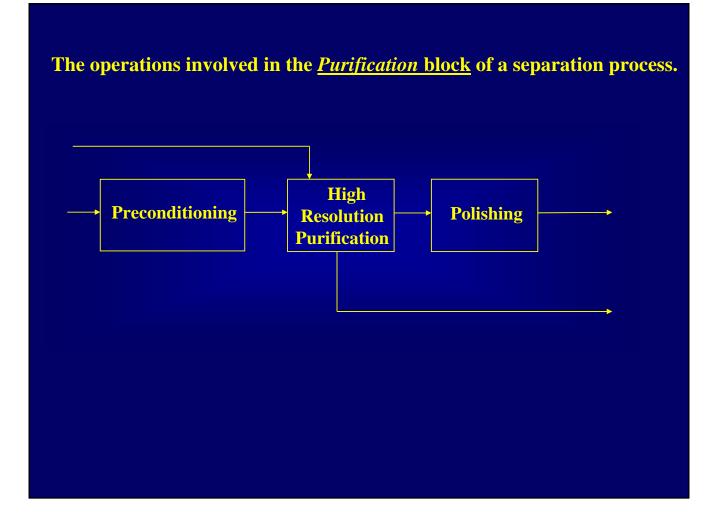
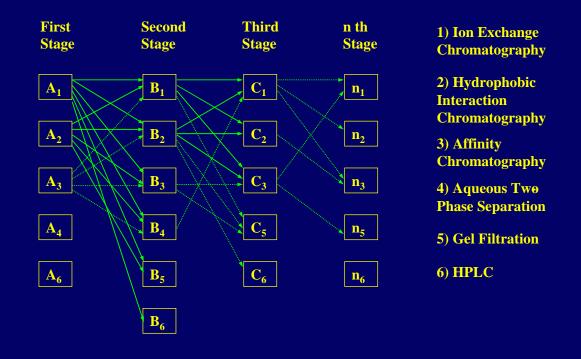

Is there a Rational Method to Purify Proteins? From Expert Systems to Proteomics


M.E.Lienqueo and J.A Asenjo Centre for Biochemical Engineering and Biotechnology University of Chile mlienque@ing.uchile.cl

> PASI 2008 Mar del Plata-Argentina



The operations involved in the *Recovery* block of a separation process.

The Combinatorial Characteristic of Choosing the Sequence of Operations for Protein Purification

Basic Information for Designing a Separation Process

1.- Defining Final Product - Final Utilization

- Final Purity level desired
- Level of production

2.- Characterisation of Starting Material

- Fermentation Source
- Cell Concentration
- Type of cultivation medium used
- Localization of the product

- Physicochemical properties

- 3.- Possible separation steps and constraints
- 4.- Evaluated possible process integration

Properties to be Exploited for the Separation and Purification of Different Proteins

- **1.** Charge (Titration Curve)
- 2. Surface Hydrophobicity
- 3. M. W. (Molecular Weight)
- 4. Biospecificity toward certain ligands (Affinity)
- 5. pI (Isoelectric Point)
- 6. Shape (Stokes Radius)

Properties of Main Protein Contaminants in fermentation source:

- Bacterial- E.coli
- Yeast S. cerevisiae
- Mammalian cell -CHO

Properties of Main Protein Contaminants in E.colia Lysate

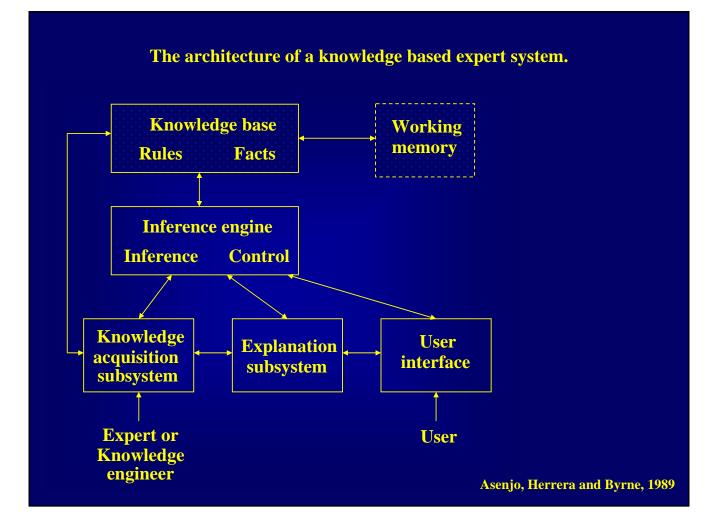
Band	Molecular	Hydrophobicity	Isoelectric
Number	Mass b	Φc	Point d
1	90,000	0.02 M	4.8
2	145,000	1.12 M	4.8
3	80,000	0.13M	4.9
4	200,000	1.02 M, 0.13 M	4.8
5	12,800	0.64 M	5.1
6	25,000	0.26 M	4.5
7	45,000	0.13 M	5.4
8	40,000	0.64 M	4.6
9	44,000	0.13 M	4.3
10	120,000	0.02 M	5.4
11	80,000	0.13 M	4.6

^aCell lysate was prepared by bead milling. ^bmeasured by gel permeation. ^cmeasured by hydrophobic interaction chromatography (HIC) using a Phenyl-Superose gel in an FPLC and gradient elution from 2.0 M to 0.0 M (NH_4)₂SO₄ in 0.1 M KH₂PO₄. Units used are the concentration of (NH_4)₂SO₄ at which the protein eluted. ^dmeasured by isoelectric focusing using a Sephadex gel.

Properties of the 10 Main Protein Bands Present in S. cerevisiae Lysate^a

Band	Molecular	Hydrophobicity	Isoelectric
Number	Weigh	Φc	Point d
1	80,000	0.50 M	6.6
2	44,000	0.60 M, etOH	6.4
3	22,000	0.25 M	5.6
4	80,000	etOH	6.6, 8.8
5	49,000	ppt.	5.5
6	71,000	0.30 M	5.7
7	170,000	0.40 M	5.7, 6.9
8	12,000	ppt.	7.1
9	170,000	0.15 M	5.7
10	65,000	0.65 M	6.0, 7.7

^aCell lysate was prepared by bead milling. ^bmeasured by gel filtration.


^cmeasured by germitration. ^cmeasured by hydrophobic interaction chromatography (HIC) using a Octyl-Sepharose gel in an FPLC and a gradient elution from 1.5 M to 0.0 M $(NH_4)_2SO_4$ to avoid protein precipitation. Some protein bands still precipitated (ppt. in table) etOH means tightly bound band that needed to be eluted with 24% ethanol in deonized water. ^dmeasured by isoelectric focusing using a Sephadex gel.

Properties of the 10 of Main Protein Bands in CHO* Culture Supernatant

Band	Molecular	Hydrophobicity	Isoelectric
Number	Weight ^a	⊕ p	Point ^C
1	66,000	0.83 M	5.0
2	140,000-205,000	0.83 M, ppt.	5.4, 8.7
3	295,000	0.83 M	6.0
4	72,000	0.70 M	5.4
5	53,000	1.25 M	5.2
6	72,000	0.70 M	5.4
7	170,000	1.10 M	4.6
8	3,000	1.25 M	5.4
9	6,000	0.02 M	4.0
10	170,000	0.71 M	5.7

*Chinese Hamster Ovary Cells
^ameasured by gel filtration.
^bmeasured by hydrophobic interaction chromatography (HIC) using a Phenyl-Superose gel in an FPLC and a gradient elution from 1.7 M to 0.0 M (NH₄)₂SO₄ to avoid protein precipitation. Some protein bands still precipitated (ppt. in table).
^cmeasured by isoelectric focusing using a Sephadex gel.

Expert System for selection of protein purification process

Journal of Biotechnology, 11 (1989) 275-298 Elsevier 275

Development of an expert system for selection and synthesis of protein purification processes

J.A. Asenjo, L. Herrera * and B. Byrne Biochemical Engineering Laboratory, University of Reading, P.O. Box 226, Reading RG6 2AP, U.K. (Received 12 May 1989; accepted 30 May 1989)

Summary

BIOTEC 00422

A 'second generation' of protein purification rules has been developed and implemented into a prototype expert system (ES) using a 'shell'. The work has concentrated on developing a more precise and accurate knowledge base for selection of optimal large scale protein purification sequences. Expert knowledge was obtained partly from the literature but mainly from industrial experts working on the large scale separation of therapeutic, diagnostic and analytical proteins. The knowledge was expressed in ~ 65 rules, some of which carry a degree of uncertainty. The downstream process was divided into two distinct subprocesses: a first subprocess called recovery after which the total protein concentration is 60-70 g 1and a second subprocess called purification. A limiting factor in the development of ESs for protein purification at present is the acquisition, clarification, formalization and structuring of the domain of expert knowledge. The main deficiency of accurate information was found to be in that required for the selection of high resolution purification operations on a rational basis. An expert system for selection of optimal protein separation sequences will give the user a number of alternatives chosen on the basis of extensive data back-up on proteins and unit operations. This constitutes a clear case of 'expert amplification' and not of 'expert replacement'.

Expert system; Selection; Protein purification; Purification process

Basic heuristic rules for the downstream processing design

- (1) Choose the separation based on the diferent physicochemical properties.
- (2) Eliminate those proteins and compounds that are found in greater percentage first.
- (3) Use a high resolution step, as soon as possible.
- (4) Do the most arduous purification step at the end of the process (ünal polishing).

Rules

1.- To select the initial harvesting equipment (H-EQUIPMENT).

~ ~ ~

Certainty factor

IF MICROORGANISM = FUNGI	
THEN H-EQUIPMENT = Microporous membrane system	0.4
H-EQUIPMENT = Rotary vacuum filter	0.3
H-EQUIPMENT = Filter press	0.3
IF MICROORGANISM = YEAST	
THEN H-EQUIPMENT = Disc centrifuge	0.6
H-EQUIPMENT = Microporous membrane system	0.4
IF MICROORGANISM = BACTERIA	
THEN H-EQUIPMENT = Microporous membrane system	
IF MICROORGANISM = MAMMALIAN	
THEN H-EQUIPMENT = Disc centrifuge	0.7
H-EQUIPMENT = Microporous membrane system	0.3
IF MICROORGANISM = UNDEFINED	
THEN H-EQUIPMENT = Disc centrifuge	0.5
H-EQUIPMENT = Microporous membrane system	0.5

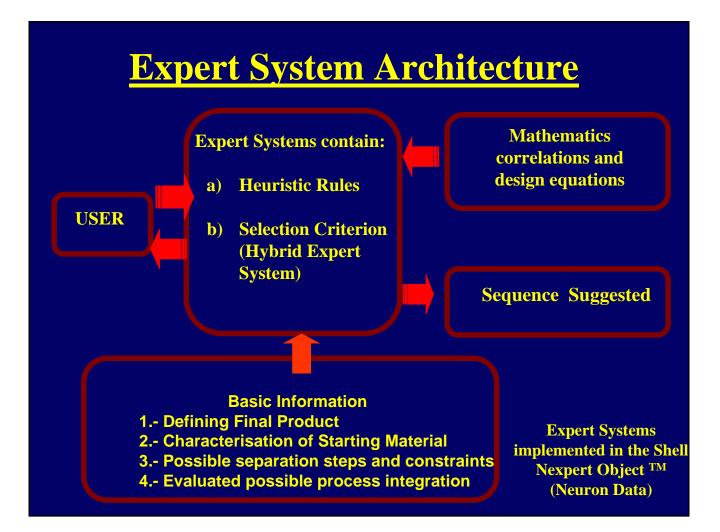
2.- To select the operation

IF MICROORGANISM = MAMMALIAN
 THEN PRODUCT IS EXTRACELLULAR
 IF PRODUCT IS INTRACELLULAR
 THEN DISRUPTION IS REQUIRED
 DEBRIS SEPARATION IS REQUIRED
 PRECIPITATION OF NUCLEIC ACIDS IS REQUIRED
 IF PRODUCT IS EXTRACELLULAR
 THEN DISRUPTION IS NOT REQUIRED
 DEBRIS SEPARATION IS NOT REQUIRED
 PRECIPITATION OF NUCLEIC ACIDS IS NOT REQUIRED

Design of Downstream Processing

-Rigorous solution using numerical methods

Use of Artificial Intelligence techniques, Expert System


- Use of Heuristic Rules from Human Expert or/and Literature
- Use of simple mathematical correlations and strict quantitative data (Hybrid Expert System)

Downstream Processing

Recovery Process

Prot_Ex Only Heuristic Rules **Purification Process**

Prot_Purification Hybrid Expert System

<u>Prot_Ex_Purification for Purification</u>

Process

Choose between several chromatographic steps (more than 20)

- Use Selection Criteria defined from basic heuristic rules for separation process:

- SSC Criterion	Consider the ability of the purification operation to
	separate two or more proteins
- Purity Criterion	Consider the purity level obtained after a
	purification operation has been applied

- Use mathematics correlation for predict ability and level of purity (Hybrid Expert System)

<u>Rational Selection Criteria</u> <u>Separation Selection Coefficient Criterion</u>

This criterion selects the best process using the SSC value calculated for each chromatographic technique and each contaminant protein.

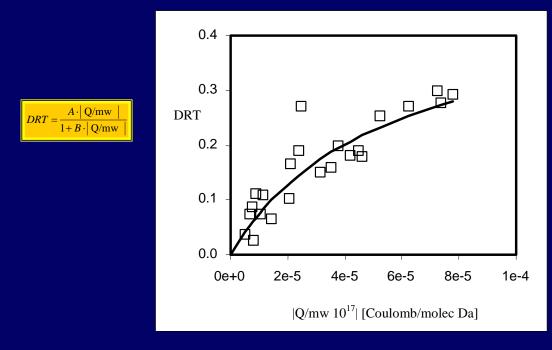
 $SSC_{i} = DF_{i} \cdot \eta \cdot \theta_{i}$

DF_i = | K_{D target protein} - K_{D contaminant i}

η: Efficiency

 θ_i : Concentration Factor


The best process will be the one with the highest SSC value

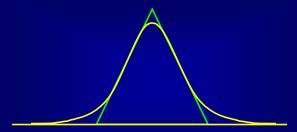

K_D : Dimensionless Retention Time

DF_i = | K_{D target protein} - K_{D contaminant i}

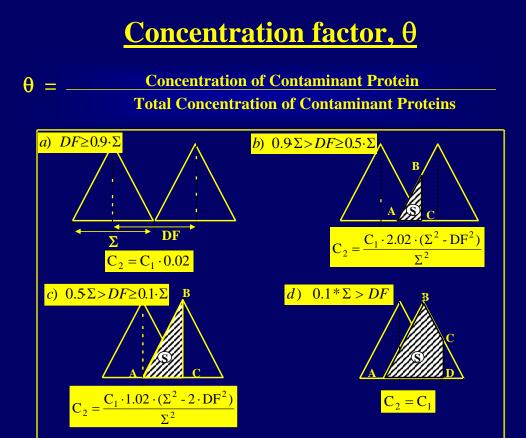
K_D = f(physicochemical properties)

Anion and Cation Exchange : f(Q,mw) Hydrophobic Interaction : f(φ) Gel Filtration : f(mw)

Charge density as a function of retention time for all pHs. Calculations were based on the results obtained for anion exchange chromatography.


Expressions and parameters used for SSC and Purity criteria

Chromatographic	Retention time	Efficiency	Peak width
Techniques	(Kd)	Factor(η)	(Σ)
Anion exchange	7383 (Q 10 ²⁵ /mw) 1 + 15844 (Q 10 ²⁵ /mw)	1.00	0.15
Cation exchange	5972 (Q 10 ²⁶ /mw) 1 + 17065 (Q 10 ²⁶ /mw)	1.00	0.15
Hydrophobic interaction	φ	0.86	0.22
Gel filtration	2.39–0.47 log mw	0.66	0.46

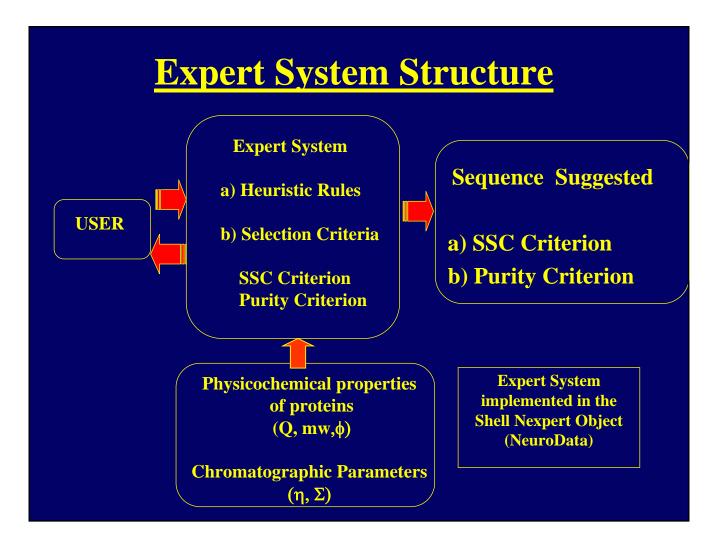

Where: *Q* represents absolute value of surface charge (coulomb molecule⁻¹), *mw* represents molecular weight (Da), and ϕ represents surface hydrophobicity.

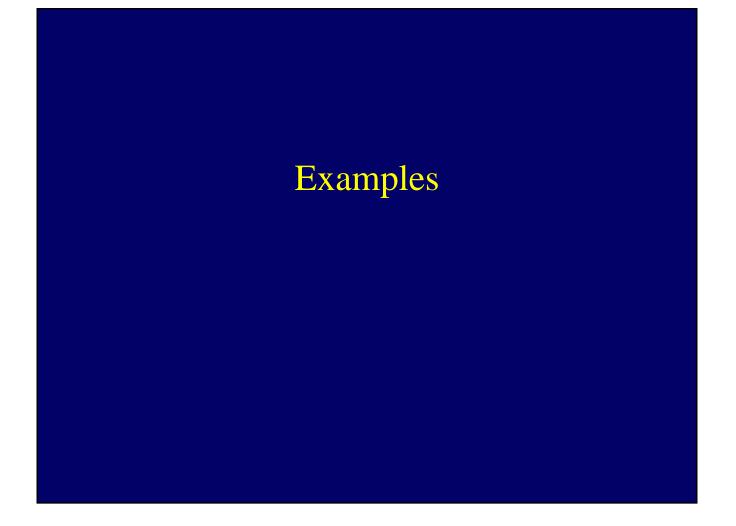
Values of Process Efficiency

Chromatographyc Process	Efficiency (η)
Ion-exchange	1.00
Hydrophobic interaction	0.86
Size exclusion	0.66

Peaks as Triangles

Criteria to determine the percentage of contaminant eliminated after a chromatographic step for different values of DF. Left triangle: protein product, Right triangle: protein contaminant, Σ : peak width, shaded area: contaminant left with protein after purification step


Rational Selection Criteria


Purity Criterion

This criterion compares the final purity level obtained after a particular chromatographic technique has been applied.

 $Purity Level = [Target Protein] \\ \Sigma[All Proteins]$

The best process will be the one with the highest purity level.

An Expert System for the selection and synthesis of multistep protein separation processes

M.E.Lienqueo, E.W. Leser and J.A. Asenjo

Computers & Chemical Engineering ,24: 2339 – 2350, 2000.

Validation : Recovery of Somatotropin from E.coli

Computers chem. Engng Vol. 20, Suppl., pp. 5189–5194, 1996 Copyright © 1996 Elsevier Science Ltd S0098-1354(96)00042-7 Printed in Great Britain. All rights reserved 0098-1354/96 515.00+0.00

AN EXPERT SYSTEM FOR THE SELECTION AND SYNTHESIS OF MULTISTEP PROTEIN SEPARATION PROCESSES

M.E. LIENQUEO, E.W. LESER* AND J.A. ASENJO

Centre for Biochemical Engineering and Biotechnology Department of Chemical Engineering, Universidad de Chile Beauchef 861, Santiago, Chile *Instituto Oswaldo Cruz, Rio de Janeiro, Brazil

Abstract - A hybrid Expert System that combines expert rules and mathematical correlations to manipulate databases for selecting the sequence of operations for the downstream purification of proteins was built. This paper describes how the physicochemical data on the protein product and the other proteins present (contaminants) was used to select a sequence of operations with a minimum number of steps to achieve a defined level of purity. An algorithm was developed to model the amount of each protein contaminat eliminated after each step. The system was tested in a practical example and it was found that process synthesis was sufficiently sensitive to important changes in the physicochemical parameters (c.g. 10%).

Concentration, molecular weight, hydrophobicity and charge at different pHs, for the main proteins ("contaminants" of the product) in *Escherichia coli*. Data from Woolston (1994)

		Charge ⁴ (Coulomb per molecule x 1E25)												
		g/litre	Da	*	pH 4	pH 4,5	pH 5	pH 5,5	pH 6	pH 6,5	pH 7	pH 7,5	pH 8	pH 8,5
Contaminant	pl 1	weight	Mol wt ²	hydroph	³ q A	q B	q C	q D	qE	q F	q G	qН	ql	Ч
Cont_1	4.67	11.29	18,370	0.71	1.94	0.25	-0.80	-1.41	-1.76	-1.97	-2.15	-2.33	-2.45	-2.67
Cont_2	4.72	7.06	85,570	0.48	2.35	0.29	-1.17	-2.17	-2.83	-3.24	-3.50	-3.63	-3.68	-3.64
Cont_3	4.85	4.63	53,660	0.76	1.83	0.67	0.04	-0.30	-0.49	-0.65	-0.85	-1.90	-1.34	-1.50
Cont_4	4.92	5.58	120,000	1.50	3.29	1.38	-0.03	-0.69	-1.07	-1.34	-1.73	-2.30	-2.85	-2.75
Cont_5	5.01	4.83	203,000	0.36	4.08	1.83	0.04	-1.17	-1.92	-2.46	-3.07	-3.90	-4.98	-5.65
Cont_6	5.16	2.48	69,380	0.36	5.22	3.17	1.02	-0.72	-1.90	-2.60	-3.05	-3.46	-3.90	-4.24
Cont_7	5.29	7.70	48,320	0.48	3.96	3.16	1.12	-0.58	-1.36	-1.34	-1.00	-0.95	-1.59	-2.84
Cont_8	5.57	6.80	93,380	0.93	10.90	5.81	2.78	0.77	-0.81	-2.18	-3.32	-4.12	-4.45	-4.31
Cont_9	5.65	7.53	69,380		1.09	0.55	0.26	0.10	-0.03	-0.12	-0.21	-0.28	-0.32	-0.32
Cont_10	6.02	6.05	114,450	0.63	10.40	5.94	3.15	1.51	0.56	-0.05	-0.53	-0.99	-1.43	-1.72
Cont_11	7.57	3.89	198,000	0.06	0.33	0.03	0.05	0.05	0.05	0.05	0.05	-0.69	-0.97	-1.57
Cont_12	8.29	1.48	30,400		5.17	4.22	3.20	2.25	1.46	0.87	0.50	0.30	0.20	0.08
Cont_13	8.83	0.83	94,670		11.70	7.94	5.39	3.73	2.66	1.97	1.50	1.13	0.80	0.51

* Hydrophobicity expressed as the concentration (M) of ammonium sulphate at which the protein eluted.

Hydrophobicity expressed as the concentration (M) of ammonium suppate at which the protein eluted.
(Higher values represent lower hydrophobicity).
¹ Measured by isoelectric focusing using homogeneous poolyacrylamide gel in Phast System.
²Molecular weight was measured by SDS-PAGE with PhastGel media in Phast System.
³Hydrophobicity was measured by hydrophobic interaction chromatography using a phenyl-superose gel in an FPLC and a gradient elution from 2.0 M to 0.0 M (NH₄)₂SO₄ in 20 mM Tris buffer.
⁴Charge was measured by electrophoretic titration curve analysis with PhastGel IEF 3-9 in a Phast System.

The downstream purification process of Somatotropin (Bovine Growth Hormone)

Published Process (98% purity)	PROT_EX (98,2% purity)
Centrifugation	Crossflow microfiltration
High-pressure homogenization	High-pressure homogenization
Pellet wash	Disk centrifugation
Solubilization	Solubilization
Renaturation	Renaturation
Microfiltration	Ultrafiltration
Concentration and diafiltration	
Anion exchange chromatography	Anion exchange chromatography
Hydrophobic interaction chromatography	Hydrophobic interaction chromatography

An Expert System for selection of protein purification processes: <u>experimental</u> <u>validation</u>

M.E.Lienqueo, J.C. Salgado and J.A. Asenjo

J Chem Technol Biotechnol, 74: 293-299 (1999)

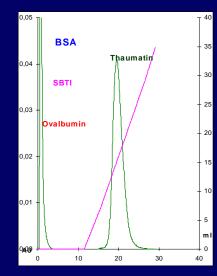
Journal of Chemical Technology and Biotechnology

J Chem Technol Biotechnol 74:293–299 (1999)

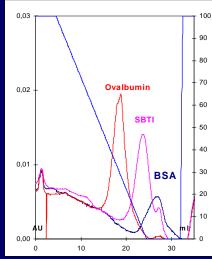
An Expert System for selection of protein purification processes: experimental validation[†]

M Elena Lienqueo,* J Cristian Salgado and Juan A Asenjo Centre for Biochemical Engineering and Biotechnology, Department of Chemical Engineering, University of Chile, Beauchef & 1, Santiago, Chile

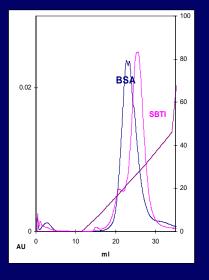
Abstract: A hybrid Expert System has been implemented for selecting the optimum sequence of operations for purification of proteins. Two criteria were implemented to select the optimum sequence of purification. One of these uses the selection separation coefficient (SSC criterion) and the other uses the final level of purity (Purity criterion). The sequences suggested by the Expert System have been tested experimentally in two cases: with a model protein mixture and with the purification of p-1,3glucanase from recombinant *Bacillus subtilis* culture. In both cases the sequences suggested were tested experimentally and gave very good agreement with the predicted purification. With the model protein mixture it was shown that the sequences suggested by the Purity criterion have fewer steps than those suggested by the SSC criterion. 0 1999 Society of Chemical Industry


Keywords: Expert System; protein purification; 8-1,3-glucanase; bioseparation

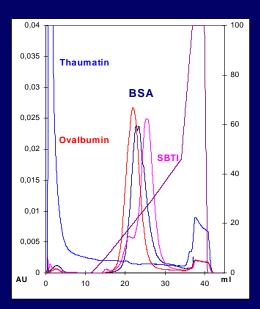
Purification of BSA


Physicochemical properties of protein mixture

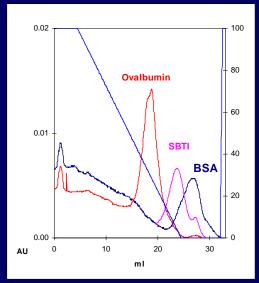
Proteins	Initial Concentration	Molecular weight	Hydrophobici	ty Cl	harge [Co	ulomb/ mo	lecule] 10	-25
	(mg/ cm ⁻³)	(Da)	[(NH ₄) ₂ SO ₄]	рН 4,0	рН 5,0	pH 6,0	рН 7,0	pH 8,0
BSA	2	67,000	0.86	1.03	-0.14	-1.16	-1.68	-2.05
Ovalbumin	2	43,800	0.54	1.40	-0.76	-1.65	-2.20	-2.36
SBTI	2	24,500	0.90	1.22	-0.76	-1.54	-2.17	-2.13
Thaumatin	2	22,200	0.89	1.94	1.90	1.98	1.87	0.91


Sequence Suggested by SSC Criterion

First step: CationExchange Chromatography at pH 6.0



Second step : Hydrophobic Interaction Chromatography



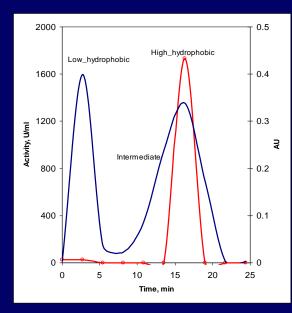
Third step : Anion Exchange Chromatography at pH 7.0

Sequence Suggested by Purity Criterion

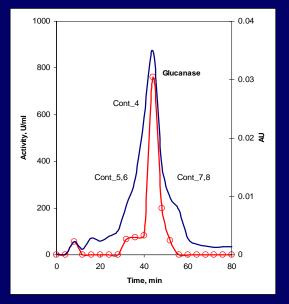
First step : Anion Exchange Chromatography at pH 7.0

Second step : Hydrophobic Interaction Chromatography

Sequence Suggested by Expert System to Obtain a Purity Superior to 94% in the Purification


SSC Criterion Chromatography steps	Purity	Purity Criterion Chromatography steps	Purity
Cation Exchange at pH 6.0	33.1 %	Anion Exchange at pH 7.0	63.7 %
Hydrophobic Interaction	49.5 %	Hydrophobic Interaction	94.5 %
Anion Exchange at pH 7.0	97.0 %		

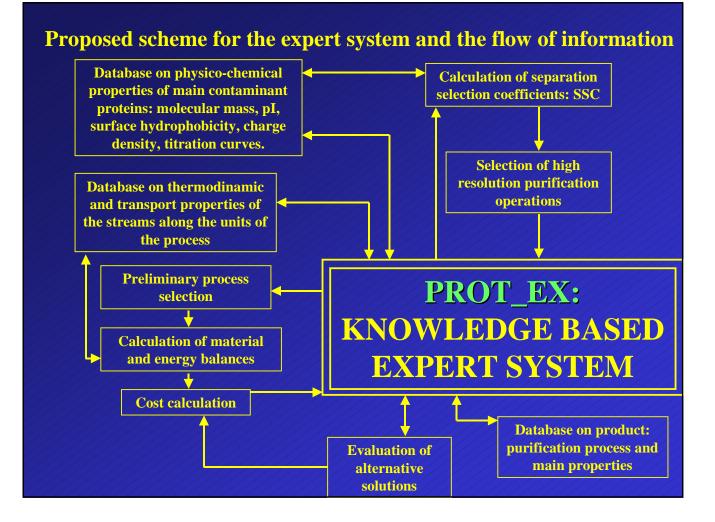
Purification of a recombinant betaglucanase from a supernatant of *Bacillus subtilis*


Physicochemical Properties and Concentration for the main proteins in *B.subtilis* ToC46 (pFF1) Culture

	Initial Concentration	Molecular weight	• •	ty C	harge [Co					
	(mg/ ml)	(Da)	[(NH ₄) ₂ SO ₄]	pH 4,0	рН 5,0	pH 6,0	pH 7,0	pH 8,0		
-1,3-glucanase	0.60	31000	0.00	1.46	-0.62	-1.02	-2.33	-2.52		
Contaminants										
Low hydrophobic	:									
Contaminant_1	2.74	41000	1.50		0.26	-0.87	-1.65	-2.04		
Contaminant_2	2.74	32900	1.50		0.00	-2.70	-3.51	-3.51		
Medium hydroph	obic									
Contaminant_3	0.25	35500	0.20		-0.55	-0.22	-0.73	-1.82		
High Hydrophobi	ic									
Contaminant_4	0.42	62500	0.00		-1.06	-1.17	-2.79	-3.32		
Contaminant_5	0.25	40600	0.00		-0.55	-0.22	-0.73	-1.82		
Contaminant 6	0.25	69600	0.00		-0.55	-0.22	-0.73	-1.82		
Contaminant 7	0.09	40600	0.00		1.46	-0.47	-1.06	-1.04		
Contaminant 8	0.09	69600	0.00		1.46	-0.47	-1.06	-1.04		

Sequence suggested for purifying glucanase

First step : Hydrophobic InteractionChromatography



Second step :AnionExchange Chromatography at pH 6.5

Sequence Suggested by Expert System for SSC Criterion and for Purity Criterion

SSC and Purity Criterion Chromatography steps	Purity	Experimental Validation Chromatography steps	Purity
Hydrophobic Interaction	32.7 %	Hydrophobic Interaction	33 - 38 %
Anion Exchange at pH 6.5	70.3 %	Anion Exchange at pH 6.5	65 - 70 %

Reference

• J.A Asenjo, L. Herrera and Byrne, "Development of an expert system for selection and synthesis of protein purification processes "J. Biotechnol., 11,275-298 (1989).

• J.A. Asenjo, B. A. Andrews "Is there a rational method to purify proteins? From expert systems to proteomics" J. Mol. Recognit. 2004; 17: 236–247

• E.W Leser, M.E.Lienqueo, J.A Asenjo, "Implementation in an Expert System of Selection Rationale for Purification Processes for Recombinant Proteins.", Ann. N.Y.Acad of Sci., 782: 441-455, 1996.

• E.W Leser, J.A Asenjo "The rational selection of purification processes for proteins: an expert system for downstream processing design" Ann N Y Acad Sci. 1994 May 2;721:337-47.

• M.E. Lienqueo, J.A. Asenjo "Use of expert systems for the synthesis of downstream protein processes" Computers & Chemical Engineering ,24: 2339 – 2350, 2000.

• M.E Lienqueo, J.C. Salgado, J.A. Asenjo "An Expert System for selection of protein purification processes: Experimental Validation", J.Chem.Technol Biotechnol, 74: 293-299, 1999