
Computers and Chemical Engineering 28 (2004) 2109–2129

Review

Continuous-time versus discrete-time approaches for
scheduling of chemical processes: a review

Christodoulos A. Floudas∗, Xiaoxia Lin

Department of Chemical Engineering, School of Eng/Applied Science, The Engineering Quadrangle,
Princeton University, Princeton, NJ 08544-5263, USA

Received 11 September 2002; received in revised form 27 March 2003; accepted 25 March 2004

Available online 13 July 2004

Abstract

An overview of developments in the scheduling of multiproduct/multipurpose batch and continuous processes is presented. Existing
approaches are classified based on the time representation and important characteristics of chemical processes that pose challenges to the
scheduling problem are discussed. In contrast to the discrete-time approaches, various continuous-time models have been proposed in the
literature and their strengths and limitations are examined. Computational studies and applications are presented. The important issues of
incorporating scheduling at the design stage and scheduling under uncertainty are also reviewed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The research area of batch and continuous process
scheduling has received great attention from both the
academia and the industry in the past two decades. This is
motivated, on one hand, by the increasing pressure to im-
prove efficiency and reduce costs, and on the other hand, by
the significant advances in relevant modeling and solution
techniques and the rapidly growing computational power.

In multiproduct and multipurpose batch, semicontinuous
and continuous plants, different products are manufactured
via the same or different sequence of operations by sharing
available pieces of equipment, intermediate materials and
other production resources. They have long been accepted
for the manufacture of chemicals that are produced in small
quantities and for which the production process or the de-
mand pattern is likely to change. The inherent operational
flexibility of these plants provides the platform for great sav-
ings reflected in good production schedules.

In general, scheduling is a decision making process to de-
terminewhen, whereandhow to produce a set of products
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given requirements in a specific time horizon, a set of limited
resources, and processing recipes. Due to the discrete deci-
sions involved (e.g., equipment assignment, task allocation
over time) these problems are inherently combinatorial in
nature, and hence very challenging from the computational
complexity point of view (Pekny & Reklaitis, 1998). These
problems are known to belong to the set of NP-complete
problems (Garey & Johnson, 1979). As a result, all existing
algorithms scale exponentially in the worst case. Therefore,
a modest growth in problem size can lead to a significant
increase in the computational requirements. This has impor-
tant implications for the solution of scheduling problems.

Reklaitis (1992)reviewed the scheduling and planning
of batch process operations, focusing on the basic elements
of scheduling problems of chemical manufacturing systems
and the available solution methods.Rippin (1993)summa-
rized the development of batch process systems engineering
with particular reference to the areas of design, planning,
scheduling and uncertainty.Bassett, Dave, et al. (1996)pre-
sented an overview of existing strategies for implementing
integrated applications based on mathematical programming
models and examined four classes of integration including
scheduling, control, planning and scheduling across single
and multiple sites, and design under uncertainty.Applequist,
Samikoglu, Pekny, and Reklaitis (1997)discussed the
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Nomenclature

αij parameter, fixed processing time of task (i) in unit ( j)
αis parameter, processing time for state (s) by task (i)
βij parameter, linear coefficient of the variable term of the processing time of task (i) in unit ( j)
ρ

p
is, ρ

c
is parameters, fractions of state (s) produced and consumed by task (i), respectively

τii ′j parameter, duration of the cleaning operation required for unit (j) to switch from order (i) to (i′)
τjff′ parameter, duration of the cleaning operation required for unit (j) to switch from product family (f) to ( f ′)
τji ′i parameter, duration of the cleaning operation required for unit (j) to switch from task (i′) to (i)
τk continuous variable, durations of time slot (k)
Bijt continuous variable, amount of material which starts undergoing task (i) in unit ( j) at time interval (t)
B(i, j, n) continuous variable, amount of material which starts undergoing task (i) in unit ( j) at event point (n)
Cil continuous variable, completion time of order (i) at stage (l)
Cs parameter, storage capacity limit for state (s)
di parameter, due date of order (i)
Dst continuous variable, amount of state (s) delivered at time interval (t)
D(s, n) continuous variable, amounts of state (s) delivered at event point (n)
dasn parameter, amount of the demand for state (s) at event point (n)
ddsn parameter, due date of the demand for state (s) at event point (n)
f , f ′ indices, product families
f set of product families
H parameter, time horizon
i, i′ indices, tasks or orders
ijff′ index, cleaning task required for unit (j) to switch from product family (f ) to (f ′)
I set of all tasks or orders
Ij set of tasks or orders that can be performed in unit (j)

I
(f)
j , I

(f ′)
j sets of tasks for family (f ) and (f ′) that can be performed in unit (j), respectively

I
p
s , I

c
s sets of tasks that produce and consume state (s), respectively

j, j′ index, units
J set of all units
Ji set of units suitable for task or order (i)
Jl set of units for stage (l)
Jil set of units for stage (l) of order (i)
Jii ′l set of units for stage (l) of both orders (i) and (i′)
k, k′ indices, time slots or events
K set of events
Kj set of time slots of unit (j)
l index, stage
lli index, the last stage for order (i)
Li set of stages included in the processing of order (i)
Lj set of stages that can be performed in unit (j)
Lii ′ set of stages included in the processing of both orders (i) and (i′)
M parameter, a sufficiently large positive number
n index, event point
N set of event points
nlast index, the last event point
p index, time point
ptij parameter, processing time for order (i) in unit ( j)
Rst parameter, amount of state (s) received from external sources at time interval (t)
Rmin

ij , Rmax
ij parameters, minimum and maximum processing rates of unit (j) when performing task (i), respectively

roi parameter, earliest time at which order (i) can start
ruj parameter, earliest available time of unit (j)
s index, material state
S set of material states
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Sst continuous variable, amount of material state (s) during time interval (t)
SL(s, n) continuous variable, difference between the amount

of the demand for state (s) and the amount of state (s) delivered at event point (n)
suij parameter, setup time for order (i) in unit ( j)
ST(s, n) continuous variable, amount of state (s) stored at event point (n)
t, t′, t1, t2 indices, time intervals
tijk continuous variable, duration of task (i) which starts atTk in unit ( j)
T set of time intervals
Tk continuous variable, timing of event (k)
Ts(i, j, n), T f (i, j, n) continuous variables, starting and ending times of task (i) in unit ( j) at event point (n),

respectively
Tsjk continuous variable, the starting time of time slot (k) of unit ( j)
Tsiil, Teiil continuous variables, the starting and completion times of stage (l) of order (i)
Xii ′l binary variable, whether or not order (i) precedes order (i′) at stage (l)
Xijkk′ binary variable, whether or not task (i) starts atTk in unit ( j) and completes atTk′
y(s, p) binary variable, whether or not state (s) is used at time point (p)
Yij binary variable, whether or not to allocate order (i) to unit (j)
Yikk′ binary variable, whether or not task (i) starts at time (k) and is active over slot (k′) ≥ (k)
yv(j, n) binary variable, whether or not unit (j) starts being utilized at event point (n)
Vmin

ij , Vmax
ij parameters, minimum and maximum capacity of unit (j) for task (i), respectively

Wijkl binary variable, whether or not stage (l) of order (i) is assigned to time slot (k) of unit ( j)
Wijt binary variable, whether or not task (i) starts in unit (j) at the beginning of time interval (T )
Wijk binary variable, whether or not task (i) starts atTk in unit ( j)
wv(i, n) binary variable, whether or not task (i) starts at event point (n)

formulation and solution of process scheduling and planning
problems, as well as issues associated with the development
and use of scheduling software.Shah (1998)examined first
different techniques for optimizing production schedules at
individual sites, with an emphasis on formal mathematical
methods, and then focused on progress in the overall plan-
ning of production and distribution in multi-site flexible
manufacturing systems.

Pekny and Reklaitis (1998)discussed the nature and char-
acteristics of the scheduling/planning problems and pointed
out the key implications for the solution methodology
for these problems. They reviewed the available schedul-
ing technologies, including randomized search, rule-based
methods, constraint guided search, simulation-based strate-
gies, as well as mathematical programming formulation
based approaches using conventional and engineered so-
lution algorithms.Pinto and Grossmann (1998)presented
an overview of assignment and sequencing models used in
process scheduling with mathematical programming tech-
niques. They identified two major categories of scheduling
models—one for single-unit assignment and the other for
multiple-unit assignment—and discussed the critical issues
of time representation and network structure.

Given the computational complexity of combinatorial
problems arising from process scheduling, it is of crucial
importance to develop effective mathematical formulations
to model the manufacturing processes and to explore ef-
ficient solution approaches for such problems. All of the

mathematical models in the literature can be classified into
two main groups based on the time representations. Early
attempts relied on the discretization of the time horizon
into a number of time intervals and inevitably has the main
limitations of model inaccuracy (i.e., discrete approxima-
tion of the time horizon which leads to suboptimal solution
by definition) and unnecessary increase of the overall size
of the resulting mathematical programming problems due
to the introduction of large number of binary variables
associated with each discrete time interval. To address
these limitations, methods based on continuous-time rep-
resentations have attracted a great amount of attention
and provide great potential for the development of more
accurate and efficient modeling and solution approaches.
The main objective of this review paper is to provide an
overview of the discrete-time and continuous-time models
for chemical process scheduling. The rest of this paper is
organized as follows. First, the mathematical models are
classified based on the time representation and we discuss
the major characteristics and challenges of the process
scheduling problems. Then, the discrete-time approach
is presented. Subsequently, the various continuous-time
models that have been proposed in the literature are pre-
sented along with their strengths and limitations. A sum-
mary of computational studies and applications follows.
Finally, two important issues of integrated design, synthe-
sis and scheduling, and scheduling under uncertainty are
presented.
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2. Classification of scheduling formulations

2.1. Time representation

The key issue for process scheduling problems concerns
the time representation. All existing scheduling formulations
can be classified into two main categories: discrete-time
models and continuous-time models.

Early attempts in modeling the process scheduling prob-
lems relied on the discrete-time approach, in which the time
horizon is divided into a number of time intervals of uni-
form durations and events such as the beginning and ending
of a task are associated with the boundaries of these time in-
tervals. To achieve a suitable approximation of the original
problem, it is usually needed to use a time interval that is
sufficiently small, for example, the greatest common factor
(GCF) of the processing times. This usually leads to very
large combinatorial problems of intractable size, especially
for real-world problems, and hence limits its applications.
The basic concept of the discrete-time approach is illustrated
in Fig. 1 and further discussion will be given inSection 3.

Due to the aforementioned limitations of the discrete-
time approach, researchers have started developing
continuous-time models in the past decade. In these mod-
els, events are potentially allowed to take place at any
point in the continuous domain of time. Modeling of this
flexibility is accomplished by introducing the concepts of
variable event times, which can be defined globally or for
each unit. Variables are required to determine the timings
of events. The basic idea of the continuous-time approach
is also illustrated inFig. 1. Because of the possibility of
eliminating a major fraction of the inactive event-time in-
terval assignments with the continuous-time approach, the
resulting mathematical programming problems are usually
of much smaller sizes and require less computational efforts
for their solution. However, due to the variable nature of the
timings of the events, it becomes more challenging to model
the scheduling process and the continuous-time approach
may lead to mathematical models with more complicated
structures compared to their discrete-time counterparts.
A detailed examination of the existing continuous-time

Fig. 1. Discrete and continuous representations of time.

formulations for various process scheduling problems will
be provided inSection 4.

2.2. Characteristics of process scheduling problems

There are a number of common components involved in
most process scheduling problems, such as equipment-task
assignment, sequencing and timing of activities. Neverthe-
less, different problems may also vary significantly in the
following aspects, which present different requirements or
degrees of difficulty for the modeling of these processes.

2.2.1. Processing sequences
Based on the complexity of processing sequences em-

ployed to produce products, we classify all the processes in
multiproduct/multipurpose plants into two different groups:

• Sequential processes: Different products follow the same
processing sequence. It is usually possible to define pro-
cessing stages, which can be single stage or multiple
stages. There can be only one unit per stage or parallel
units at each stage. For this type of process, batches are
used to represent production and it is thus not necessary
to consider mass balances explicitly.

• Network-represented processes: When production recipes
become more complex and/or different products have low
recipe similarities, processing networks are used to rep-
resent the production sequences. This corresponds to the
more general case in which batches can merge and/or split
and material balances are required to be taken into account
explicitly. Kondili, Pantelides, and Sargent (1993)pro-
posed a general framework of State-Task Network (STN)
for the ambiguity-free representation of such processes.
The STN representation of a chemical process is a directed
graph with two types of distinctive nodes: thestatenodes
denoted by a circle, representing raw materials, interme-
diate materials or final products, and thetasknodes de-
noted by a rectangle box, representing an operation. The
fraction of a state consumed or produced by a task, if not
equal to one, is given beside the arch linking the corre-
sponding state and task nodes. As an example,Fig. 2gives
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Fig. 2. Example of State-Task Network.

the STN representation of a process involving the merg-
ing/splitting of materials/batches and recycle that have
been widely studied in the literature.Pantelides (1993)
extended the STN to the Resource-Task Network (RTN)
framework, which describes processing equipment, stor-
age, material transfer and utilities as resources in a uni-
fied way. The RTN representation of the same process as
in the STN example is provided inFig. 3. In addition to
the resources of materials, denoted also by circles, the re-
lated four pieces of equipment, denoted by ellipses, are
also included. Tasks taking place in different units are now
treated as different tasks.

2.2.2. Intermediate storage policies
There exist four major categories of treating intermediate

storage.

Fig. 3. Example of Resource-Task Network.

• Unlimited intermediate storage (UIS): In this case, there
is no need to model inventory levels.

• No intermediate storage (NIS): There are no storage tanks
available for intermediate materials. However, the mate-
rials can be held in the processing unit after the task is
finished before they are transfered into the next unit.

• Zero-wait (ZW): Relevant intermediate materials are re-
quired to be consumed immediately after being produced.
Special timing constraints are required to be incorporated.

• Finite intermediate storage (FIS): This correspond to the
most general case.

2.2.3. Changeovers
There exist three main types of changeovers.

• Sequence dependent: When switched between tasks, a unit
may require clean-up or setup for safety or quality rea-
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sons. The requirement depends on the unit and the tasks
involved.

• Time or frequency dependent: A changeover may be
needed after a certain amount of time or a certain number
of batches (tasks).

• None: No changeover is needed between two tasks in a
unit.

2.2.4. Operation modes of processing tasks
The processing tasks can be classified into batch and con-

tinuous tasks.

• Batch task: Materials are fed at the start of the task; after
a certain period of time, products are produced at the end
of the task.

• Continuous task: Materials are fed and/or products are
produced continuously during the course of the task. The
processing rate can either be fixed or within a certain
range.

2.2.5. Demand patterns
There exist two main classes of demand patterns.

• Demands due at the end of horizon: Demands for products
are specified at the end of the horizon under consideration.

• Demands due at intermediate dates: Demands for prod-
ucts are specified at designated time instances within the
time horizon.

2.2.6. Resource considerations
There are two primary types of resource considerations.

• Renewable resources: The operations may require utili-
ties, such as steam, cooling water, electricity, and/or man-
power. These are regarded as renewable resources which
are completely recovered at the time a task finishes. These
resources can never exceed the maximum availability at
any time during the production.

• None: No restrictions on resources are considered.

2.2.7. Objectives
Typical examples of overall objectives in process schedul-

ing problems include:

• Minimize makespan: Given the production requirement,
the objective is to find the optimal schedule with the short-
est completion time of the whole process.

• Minimize earliness/tardiness/costs: Given the production
requirement, the optimal schedule is considered to be the
one with the lowest cost, which is measured by either
simple deviations from specified due dates or total costs
calculated in more sophisticated ways.

• Maximize profit: Given available equipment and other re-
sources, the objective is to find the optimal schedule with
the highest value of overall profit in a specified time hori-
zon.

The complexity of the scheduling problems necessitates
the development of effective schemes for organizing the
large amount of information required to describe most
scheduling applications. For instance,Zentner, Elkamel,
Pekny, and Reklaitis (1998)proposed a high level language
as a compact and context independent means of expressing
a wide variety of process scheduling problems. On the other
hand, as illustrated byHonkomp, Lombardo, Rosen, and
Pekny (2000), many of the features of the process schedul-
ing problems described above, such as resource sharing
and inventory constraints, make these scheduling problems
difficult to solve and present challenges to the regular use
of scheduling technologies.

Note that in the literature on process scheduling, a num-
ber of earlier work addressed the traditional campaign op-
erations, such as those presented byWellons and Reklaitis
(1991a,b)andTsirukis, Papageorgaki, and Reklaitis (1993).
As pointed out byApplequist et al. (1997), a key limitation
of these campaign-based approaches arises from the restric-
tion of the cyclic campaign operation which usually lead to
lower equipment utilization and higher levels of inventories.
In this review, we focus on the more general and flexible
operational mode.

3. Discrete-time approaches

In discrete-time approaches for scheduling problems, the
time horizon of interest is divided into a number of time
intervals of uniform durations. Events such as the begin-
ning and ending of a task are associated with the bound-
aries of these time intervals. Two of the earliest research
contributions that employed this type of discrete time rep-
resentation were presented byBowman (1959)andManne
(1960) for jobshop scheduling problems in the operations
research community literature. There have been notable sub-
sequent developments, for example, those byPritsker, Wat-
ters, and Wolfe (1969)for resource-limited multiproject and
jobshop scheduling. More recently, the same concept was
introduced to the chemical engineering literature for the gen-
eral scheduling problem of a wide variety of chemical pro-
cesses. Examples of work based on this approach include
those presented byKondili et al. (1993), Shah, Pantelides,
and Sargent (1993), Pantelides (1993), Dedopoulos and Shah
(1995), Pekny and Zentner (1993), Zentner, Pekny, Reklaitis,
and Gupta (1994), Bassett, Pekny, and Reklaitis (1996)and
Elkamel, Zentner, Pekny, and Reklaitis (1997).

The main advantage of the discrete-time representation
is that it provides a reference grid of time for all opera-
tions competing for shared resources, such as equipment
items. This renders the possibility of formulating the var-
ious constraints in the scheduling problem in a relatively
straightforward and simple manner, which will be illustrated
below with a general discrete-time formulation proposed
by Kondili et al. (1993)andShah et al. (1993)based on the
STN representation.
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One of the common components in scheduling problems
involves the allocation of units to tasks. To model these as-
signments, binary variablesWijt are introduced to determine
whether or not a task (i) starts in unit (j) at the beginning
of time interval (T ) and the following allocation constraints
are formulated:
∑

i∈Ij
Wijt ≤ 1, ∀j ∈ J, t ∈ T, (l)

∑

i′∈Ij

t+αij −1∑

t′=t
Wi′jt′ − 1 ≤ M(1 −Wijt ),

∀j ∈ J, i ∈ Ij, t ∈ T, (2)

where Ij is the set of tasks that can be performed in unit
( j), αij is the fixed processing time of task (i) in unit ( j)
andM is a sufficiently large positive number. Constraint (1)
states that at most one task can start in any unit at any time
interval. Constraint (2) further expresses the requirement that
if task (i) starts in unit (j) at time interval (T ) (i.e., Wijt =
1), then no other task can start in the same unit until task
(i) is finished after the duration ofαij. Note that the latter
constraint becomes trivially satisfied when task (i) does not
start at time (T ) (i.e., Wijt = 0).

To account for batch-sizes and mass balances, continuous
variablesBijt are used to represent the amount of material
which starts undergoing task (i) in unit ( j) at time interval
(T ), andSst is the amount of material state (s) during time
interval (T ). The following constraints are introduced to
represent the relations among them and the corresponding
binary variables:

WijtV
min
ij ≤ Bijt ≤ WijtV

min
ij , ∀i ∈ I, j ∈ Ji, t ∈ T, (3)

Sst = Ss,(t−1) +
∑

i∈Ip
s

ρ
p
is

∑

j∈Ji
Bi,j,(t−αis) −

∑

i∈Ic
s

ρc
is

∑

j∈Ji
Bi,j,t

+Rst −Dst, ∀s ∈ S, t ∈ T, (4)

0 ≤ Sst ≤ Cs, ∀s ∈ S, t ∈ T, (5)

whereVmin
ij andVmax

ij are the minimum and maximum ca-

pacity of unit (j) for task (i), respectively;Ip
s andIc

s the set
of tasks that produce and consume state (s), respectively;ρp

is
andρc

is the fractions of state (s) produced and consumed by
task (i), respectively;Ji the set of units suitable for task (i);
αis the processing time for state (s) by task (i); andCs is the
storage capacity limit for state (s). Rst is the amount of state
(s) received from external sources at time interval (T ). Vari-
ableDst represents the amount of state (s) delivered at time
interval (T ). Constraints (3) enforce that if task (i) starts in
unit ( j) at time interval (T ) (i.e.,Wijt = 1), the batch-size is
bounded by the minimum and maximum capacities of the
involved unit (Vmin

ij ≤ Bijt ≤ Vmax
ij ). When the task does not

take place (i.e.,Wijt = 0), the corresponding batch-size is
zero (i.e.,Bijt = 0). The mass balance is expressed by Con-
straint (4), which states that the amount of state (s) during

time interval (T ) is equal to that during the previous time
interval (T − 1) plus the amount produced by tasks that fin-
ish at the end of the previous time interval (T − 1) minus
the amount consumed by tasks that start at the beginning of
the current time interval (T ), further adjusted by the amount
received from or delivered to external systems at this time
interval (T ). The restriction on storage of a material state is
then represented by Constraint (5).

The sequence-dependent changeover is another impor-
tant element in many process scheduling problems. It can
be incorporated by introducing cleaning tasksijff′ to model
the changeover required for unit (j) to switch from family
(f ) to family (f ′). Then this task must take place if a task
for family (f ) and a second task for family (f ′) are per-
formed in unit (j) consecutively, which can be written as
the following constraint:

t2−1∑

t=t1+1

Wijff ′,j,t ≥
∑

i∈I(f)j

Wijt1 +
∑

i∈I(f ′)
j

Wijt2 −
t2−1∑

t=t1+1

∑

i∈Ij
Wijt−1,

∀j ∈ J, f �= f ′ ∈ F, t1 < t2 ∈ T, (6)

where f is the set of product families, andI(f)j and I(f
′)

j

are the set of tasks for family (f ) and (f ′), respectively.
The above constraint is only meaningful when the first two
sums on the right hand side are equal to one and the third
one is zero. An alternative way is to account for the case
that if a task for family (f ) starts processing in unitj, no
task for family (f ′) can start for a period of time required
for the related cleaning operation after the end of the first
task. This can be expressed as

∑

i′∈I(f ′)
j

t+αij +τjff ′−1∑

t′=t+αij

Wi′jt′ ≤ M(1 −Wijt ),

∀j ∈ J, i ∈ I(f)j , t ∈ T, (7)

whereτjff ′ is the duration of the cleaning operation required
for unit ( j) to switch from family (f ) to family (f ′).

In a simple manner analogous to those shown above,
discrete-time formulations can also model other relation-
ships involved in various scheduling problems, such as
product delivery at intermediate due dates, renewable re-
source considerations and a variety of schedule perfor-
mance criteria. These resource constrained formulations are
straightforwardly formulated models which usually lead to
well-structured mathematical programming problems. How-
ever, they have two main limitations: the discrete approxima-
tion of time and the large size of resulting MILP problems.

Because of the continuous nature of time and the con-
cept of discretization, the discrete-time formulations are by
definition only approximations of the actual problem. Fur-
thermore, one of the key issues in these approaches is the
selection of the duration of the uniform time intervals, which
always presents a tradeoff between the accuracy or quality
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of solution and the required computational efforts. If the
chemical process of interest involves only fixed processing
times, it is possible to model the process accurately, but it is
required to use the greatest common factor of the processing
times as the duration of each time interval, which usually
leads to very large combinatorial problems for real-world
applications that are difficult or even impossible to solve.
If a coarser discretization scheme is used, the problem size
may become more tractable, but there is an inevitable loss of
model accuracy and it results by definition in suboptimal so-
lutions. Furthermore, for operations with variable processing
times such as continuous processes, which consume feeds
and produce products continuously and in general can poten-
tially run for a time period of any duration, the discrete-time
approaches provide approximate descriptions of the actual
processes, which can deviate substantially from the true
solutions.

To reduce the difficulty in solving the large MILP prob-
lems resulting from the discrete-time models, a number
of techniques have been proposed to improve the solution
efficiency by exploiting the characteristics of the problem.
These techniques include: (i) reformulation that reduce the
gap between the optimal solution and its LP relaxation
counterpart, for example,Sahinidis and Grossmann (1991b),
Shah et al. (1993)and Yee and Shah (1998)reformulated
the allocation and/or batch-sizing constraints based on vari-
able aggregation/disaggregation; (ii) adding cut constraints
which are redundant but reduce the region of integer infea-
sibility, such as those proposed byDedopoulos and Shah
(1995) and Yee and Shah (1998); (iii) intervening in the
branch and bound solution procedure, for instance,Shah
et al. (1993)developed ways to reduce the size of the relaxed
LP and perform post analysis of the LP solution at each node
of the branch and bound tree,Dedopoulos and Shah (1995)
proposed techniques to fix variables to values implied during
the branch and bound procedure; (iv) decomposition that di-
vides a large and complex problem to smaller subproblems,
for example,Bassett, Pekny, et al. (1996)proposed a num-
ber of time-based decomposition approaches andElkamel
et al. (1997)developed another algorithm consisting of both
spatial decomposition and temporal decomposition.

4. Continuous-time approaches

Due to the inherent limitations of the discrete-time ap-
proaches, there has been a significant amount of attention
on the development of continuous-time representations in
the past decade. We classify all continuous-time approaches
into two categories based on the type of processes. The
first category of approaches focuses on sequential processes
and the second category aims at the scheduling of gen-
eral network-represented processes. The critical differences
between these two types of processes is that sequential pro-
cesses are order or batch oriented and do not require the ex-
plicit consideration of mass balances, which has important

Fig. 4. Time slots defined for each unit.

implications for the modeling of related scheduling prob-
lems.

4.1. Sequential processes

One of the first approaches to formulate continuous-time
models for the scheduling of sequential processes, which
can be single or multi-stage, is based on the concept of
time slots. At each stage, there can be one or multiple par-
allel units. When multiple units are involved, time slots
are defined for each unit. The basic idea is illustrated in
Fig. 4. Research contributions following this direction in-
clude those presented byPinto and Grossmann (1994, 1995,
1996), Pinto, Ttirkay, Bolio, and Grossmann (1998), Karimi
and McDonald (1997), Lamba and Karimi (2002a,b), Bok
and Park (1998), Moon and Hrymak (1999).

To illustrate this type of models, let us consider the mul-
tistage flowshop problem with parallel units at each stage.
The following key variables are defined:Wijkl: binary, deter-
mines whether or not stage (l) of order (i) is assigned to the
time slot (k) of unit ( j); Tsiil ,Teiil : continuous, the starting
and completion times of stage (l) of order (i); Tsjk: contin-
uous, the starting time of time slot (k) of unit ( j).

The allocation constraints are written as
∑

j∈(Ji∩Jl)

∑

k∈Kj
Wijkl = 1, ∀i ∈ I, l ∈ Li, (8)

∑

i∈Ij

∑

l∈(Li∩Lj)
Wijkl ≤ 1, ∀j ∈ J, k ∈ Kj. (9)

In terms of timing, the following constraints are formu-
lated to match the starting time of batches to the time slots
and to correlate the starting time of an order at a stage with
the ending time for the same order at the previous stage:

−M(1 −Wijkl ) ≤ (Tsiil − Tsjk) ≤ M(1 −Wijkl ),

∀i ∈ I, J ∈ (Ji ∩ Jl), k ∈ Kj, l ∈ Li, (10)

Teiil ≤ Tsii,(l+1), ∀i ∈ I, l ∈ Li − {lli}. (11)

It should be noted that this type of model generally re-
quires a large number of binary variables resulting from the
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introduction of variablesWijkl, which are defined on four di-
mensions (i.e., the number of variables is equal to (i× j ×
k× l). Furthermore, in all the time-slot based models, a pre-
defined number of time slots is used and hence optimality
cannot be guaranteed.

Because of the batch or order oriented characteristics of
the sequential processes, it is possible to define continuous
variables directly to represent the timings of the batches
without the use of time slots. This alternative direction has
also been pursued to formulate continuous-time scheduling
models for sequential processes, as reported in the work
presented byKu and Karimi (1988), Cerdá, Henning, and
Grossmann (1997), Méndez et al. (2000b, 2001), Moon,
Park, and Lee (1996), Hui, Gupta, and van der Meulen
(2000), Hui and Gupta (2001), Orçun, Altinel, and Hortasu
(2001), andLee, Heo, Lee, and Lee (2002).

For comparison with the slot-based approaches, let us
consider the formulation ofMéndez, Henning, and Cerdá
(2001)for scheduling of multistage flowshop problems with
parallel units, which was based on the notion of order pre-
decessor. The key variables are defined as follows:

Yij: binary, to allocate order (i) to unit (j); Xii ′l: binary,
defined only once for every pair of orders (i) and (i′), =1, if
(i) precedes (i′) at stage (l), = 0 otherwise;Cil: completion
time of order (i) at stage (l).

The allocation constraints now take the form of
∑

j∈Jil

Yij = 1, ∀i ∈ I, l ∈ Li, (12)

which ensures that exactly one unit is assigned to each order
at a related stage.

For sequencing and timing purposes, the timings of dif-
ferent orders processed consecutively in the same unit are
maintained through the following constraints:

Ci′l − pti′j ≥Cil + sui′j + τii ′j −M(1 −Xii ′l)

−M(2 − Yij − Yi′j),
∀i, i′ ∈ I, i′ > i, l ∈ Lii ′ , j ∈ Jii ′l, (13)

Cil − ptij ≥ Ci′l + suij + τi′ij − MXii ′l −M(2 − Yij − Yi′j),
∀i, i′ ∈ I, i′ > i, l ∈ Lii ′ , j ∈ Jii ′l. (14)

For each order, the timing variables for different stages and
delivery are connected as follows:

Cil ≥
∑

j∈Jil

Yij (Max[ruj, roi])+ suij + ptij , ∀i ∈ I, l ∈ Li,

(15)

Cil ≤ Ci,l+1 −
∑

j∈Ji,l+1

Yij ptij , ∀i ∈ I, l ∈ Li − {lli}, (16)

Cil li
≤ di, ∀i ∈ I, (17)

where ruj is the earliest available time of unit (j); roi the
earliest time at which order (i) can start; suij and ptij the

Table 1
Comparison between slot based and non-slot based formulations

Formulation Slot based,Pinto and
Grossmann (1995)

Non-slot based,
Méndez, Henning,
and Cerd́a (2001)

Binary variable 161 155
Continuous variable 365 25
Constraints 449 477
Objective (maximize) 6151 6269
Nodes 851 201
CPU time (s) 58.87a 1.53b

a HP 9000-730.
b Pentium H PC (400 MHz).

setup time and processing time for order (i) in unit ( j),
respectively;di is the due date of order (i).

Compared to the slot-based formulations, since this ap-
proach features continuous variables directly representing
the task timings, it does not rely on time slots for task-unit
allocation and hence can be more accurate and lead to bet-
ter solutions. However, to model the sequencing of compet-
ing tasks in shared units, binary variables, such asXii ′l de-
scribed above, and corresponding constraints are introduced
to determine the relative order of tasks. Consequently, the
size and complexity of the resulting model of this approach
is usually comparable to that of the slot-based approach,
both leading to large scale mathematical programming prob-
lems for real-world applications. As an illustrative example,
Table 1compares a slot based formulation and a non-slot
based formulation applied to the scheduling of a multiprod-
uct batch plant with 5 stages and 25 units that manufactures
dyes. The formulations resulted in MILP models of similar
sizes in terms of the number of binary variables, however,
the formulation proposed byMéndez et al. (2001)led to
better solution than the one found byPinto and Grossmann
(1995).

The continuous-time models that have been developed
for sequential processes can be applied to scheduling prob-
lems with various features, including different intermediate
storage policies, sequence-dependent change-overs, batch
and continuous processes, intermediate due dates, renew-
able resource restrictions, and different objective functions
such as minimization of order earliness and minimization of
makespan.

4.2. General network-represented processes

For general network-represented processes that allow
batches to merge/split and thus require explicit considera-
tion of mass balance, two types of approaches have been
developed to build continuous-time scheduling formula-
tions. The first approach introduces a set of events or time
slots that are used for all tasks and all units. We denote the
formulations applying this approach as “global event based
models.” The second approach defines event points on a
unit basis, allowing tasks corresponding to the same event



2118 C.A. Floudas, X. Lin / Computers and Chemical Engineering 28 (2004) 2109–2129

point but in different units to take place at different times.
This is the most general and most rigorous representation
and we denote it as “unit-specific event based models.”

4.2.1. Global event based models
There have been an increasing number of research con-

tributions on continuous-time formulations for scheduling
of general processes. The earliest efforts were presented by
Zhang and Sargent (1996, 1998), Zhang (1995), Mockus
and Reklaitis (1997, 1999a,b), andSchilling and Pantelides
(1996, 1999). Recent developments include the work pre-
sented byCastro, Barbosa-Póvoa, and Matos (2001), Majozi
and Zhu (2001), Lee, Park, and Lee (2001), Burkard, For-
tuna, and Hurkens (2002)andWang and Guignard (2002).
Most of these formulations have been based on either the
STN or RTN process representations.

The basic idea of the continuous-time scheduling models
based on global events is to introduce continuous variables
to determine the timings of events or variable time slots and
use binary variables to assign important state changes of
the system, for example, the start or end of a task, to these
events or time slots.

Zhang and Sargent (1996, 1998)and Zhang (1995)de-
veloped the first such continuous-time model based on both
STN and RTN for mixed production facilities involving both
batch and continuous processes. We discuss the key com-
ponents of their RTN formulation to illustrate this type of
model.

The most important variables in this formulation include:
Tk: continuous, timing of event (k); Wijk: binary, whether

or not task (i) starts atTk in unit ( j); Xijkk′ : binary, activated
if task (i) starts atTk in unit ( j) and completes atTk′ .

The timings of events are required to be monotonically
increasing.

0 = T1 < T2 < · · · < TK ≤ H, (18)

whereH is the time Horizon.
The following allocation constraints are written to ensure

that if task (i) starts in unit (j) at event time (k), it finishes
at exactly one later event time:

Wijk =
∑

k′≥k
Xijkk′ , ∀i ∈ I, j ∈ Ji, k ∈ K. (19)

The duration of a task, represented by variabletijk, is
determined by the following timing constraint:

tijk =
∑

k′>k
Xijkk′(Tk′ − Tk), ∀i ∈ I, j ∈ Ji, k ∈ K. (20)

Note that the above equation involves bilinear products of
binary and continuous variables. Exact linearization tech-
niques (Glover, 1975; Floudas, 1995) can be applied to trans-
form them into linear forms at the expense of introducing
additional variables and constraints.

This formulation leads to large scale MINLP problems.
For certain classes of problems, for example, in the case of
batch processes with simple objective function, the model

can be linearized, but introduces a large number of additional
variables and constraints.

Mockus and Reklaitis (1997,1999a,b)(also seeMockus,
Eddy, Mockus, Mockus, & Reklaitis, 1997, part V) pro-
posed a similar approach based on the STN framework
and applied it to a variety of scheduling problems for mul-
tiproduct/multipurpose batch and continuous plants. Their
continuous-time formulation, which is called Non-Uniform
Discrete-Time Model (NUDTM), also leads to large scale
MINLP problems. They can be transformed into MILP prob-
lems if the objective function is of simple form. When a
more complicated objective is involved (for example, the
maximization of overall profit which takes into account stor-
age cost and utility cost), they proposed a modified outer
approximation (Duran & Grossmann, 1986) or a Bayesian
heuristic approach to solve the resulting nonconvex MINLP
problems.

Schilling and Pantelides (1996, 1999)proposed a
continuous-time formulation based on the RTN framework.
There are two main differences between their formula-
tion and those ofZhang (1995)andMockus and Reklaitis
(1997). First, they defined the durations of time slots,τk,
as the main timing variables instead of the absolute times
of the slot boundaries. Second, they introduced binary vari-
ablesyikk′ to take the value of one if task (i) starts at time
(k) and is active over slot (k′) ≥ (k). Exact linearization
techniques are also required to remove the nonlinearities
arising from products of integer and continuous variables.
For the solution of the resulting large scale MILP/MINLP
problems, they developed a special branch and bound algo-
rithm which branches on both the continuousτk variables
and the binary variables.

More recently,Castro et al. (2001)proposed an RTN
based MILP continuous-time formulation for the short-term
scheduling of batch processes. They defined binary variables
to determine the beginning and end of tasks at event points
as well as continuous variables for timings of events and for-
mulated the constraints, such as excess resource constraints,
in a very similar way to that in the approach ofSchilling and
Pantelides (1996). Majozi and Zhu (2001)proposed an
MILP continuous-time formulation for the short-term
scheduling of batch processes based on a new process rep-
resentation called State Sequence Network. They used time
points to denote the use or production of states and intro-
duced binary variablesy(s, p) associated with the usage of
state (s) at time point (p). Their formulation leads to small
MILP problems, but relies on the definition of effective
states which are related to tasks and units.Lee et al. (2001)
reported an STN based MILP formulation for batch and
continuous processes, which introduced three sets of binary
variables to account for the start, process, and end events of
each task.Burkard et al. (2002)developed an STN based
MILP formulation for the makespan minimization problem
for batch processes and discussed the choice of the objec-
tive function and additional constraints.Wang and Guignard
(2002)presented an STN based MILP formulation for batch
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process scheduling problems, which proposed the definition
of events associated with inventory changes to reduce the
total number of events required to model a schedule.

The global event based continuous-time models can
incorporate a wide variety of considerations in process
scheduling, such as intermediate storage, change-over, batch
and continuous operational modes, due dates, renewable
resources, and various objective functions.

As pointed out byZhang and Sargent (1996), for all the
global event based continuous-time models discussed above,
an important issue (in addition to the required lineariza-
tions) is the estimation and adjustment of the number of
events/time slots/time points. An underestimation may lead
to suboptimal solutions or even infeasible problems, while
an overestimation results in unnecessarily large problems,
which increase even more the difficulty of the solution. De-
spite its significance, there has been relatively little atten-
tion on this issue in the literature. The only exceptions are
the work presented bySchilling (1997)and very recently by
Castro et al. (2001). They proposed an iterative procedure in
which the model begins with a small number of events and
then the number is gradually increased until no improve-
ment can be achieved. However, as reported byCastro et al.
(2001), in some cases, the solution may improve only after
the addition of more than one event, which creates difficulty
for the establishment of a stopping criterion that can guar-
antee the optimality of the solution.

4.2.2. Unit-specific event based models
Ierapetritou and Floudas (1998a,b), Ierapetritou, Hene,

and Floudas (1999), Lin and Floudas (2001), Ierapetritou
and Floudas (2001)proposed a novel continuous-time for-
mulation for short-term scheduling of batch, semicontinu-
ous, and continuous processes. This formulation introduces
an original concept of event points, which are a sequence
of time instances located along the time axis of a unit, each

Fig. 5. Event points defined for each unit.

representing the beginning of a task or utilization of the
unit. The basic idea is illustrated inFig. 5. The location of
event points are different for different units, allowing dif-
ferent tasks to start at different moments in different units
for the same event point. The timings of tasks are then ac-
counted for through special sequencing constraints, as will
be discussed in detail below. Because of the heterogeneous
locations of the event points for different units as well as
the definition of an event as only the starting of a task (com-
pared to that in a global-event based model which considers
the starting and the finishing of a task as two events), for
the same scheduling problem, the number of event points
required in this formulation is smaller than the number of
events in the global event based models described in the
previous section. This results in substantial reduction of the
number of binary variables.

Two sets of binary variables are defined: wv(i, n) to de-
termine whether or not task (i) starts at event point (n); yv(j,
n) to determine whether or not unit (j) starts being utilized
at event point (n). They are connected through the following
allocation constraint:
∑

i∈Ij
wv(i, n) = yv(j, n), ∀j ∈ J, n ∈ N. (21)

These constraints express that in each unit (j) and at an event
point (n) at most one of the tasks that can be performed in
this unit (i.e.,i ∈ Ij,) should take place. Note that if a task
can be performed in multiple units, it is split into multiple
tasks with each one performed in a different unit. This will
increase the number of wv(i, n) binary variables and in the
worst case where every task can take place in every unit, the
total number of tasks after splitting is equal to the number
of the original tasks times the number of units.

Continuous variableB(i, j, n) represents the batch-size
of task (i) in unit ( j) at event point (n) and it is correlated
with binary variable wv(i, n) through the following capacity
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constraint:

Vmin
ij

wv(i, n) ≤ B(i, j, n) ≤ Vmax
ij wv(i, n),

∀i ∈ I, j ∈ Ji, n ∈ N. (22)

ST(s, n) and D(s, n) are the amounts of state (s) stored
and delivered at event point (n), respectively; they are used
in the following material balance constraint:

ST(s, n) = ST(s, (n− 1))−D(s, n)
+

∑

i∈Ips
ρ

p
is

∑

j∈Ji
B(i, j, (n− 1))

−
∑

i∈Ics
ρc

is

∑

j∈Ji
B(i, j, n), ∀s ∈ S, n ∈ N. (23)

The above constraint is written for batch tasks, while similar
constraints can be written for continuous tasks which takes
into account the different nature of the continuous opera-
tion mode (seeIerapetritou & Floudas, 1998b). It should be
pointed out that the amount of state (s) at an event point (n),
represented by st(s, n), generally does not correspond to one
well-defined time instance or time period due to the fact that
the state can be consumed or produced by different tasks that
take place in different units with different time axis. When
there is a storage limit for the state, an upper bound can be
imposed on the ST(s, n) variable as an approximate way to
model the storage restrictions. A rigorous way is to introduce
storage tasks and storage units with certain capacity ranges
(seeIerapetritou & Floudas, 1998b; Lin & Floudas, 2001).

The last two sets of main continuous variablesTs(i, j, n)
andT f (i, j, n) represent the starting and ending times of task
(i) in unit ( j) at event point (n). The various relationships
among the timings of tasks are formulated by two types of
timing constraints: duration constraints and sequence con-
straints. The duration of a task is expressed as a linear func-
tion of the batch-size as follows:

T f (i, j, n) = T s(i, j, n)+ αij wv(i, n)+ βijB(i, j, n),

∀i ∈ I, j ∈ Ji, n ∈ N. (24)

This general form of variable processing times is able to
deal with a wide variety of processes. For tasks with fixed
processing times,αij corresponds to the processing time of
the task andβij is zero. While for tasks operating in the
continuous mode,αij is zero andβij is the inverse of the
processing rate. When a range is given for the processing
rate, the related constraints are then written as

Rmin
ij [T f (i, j, n)− T s(i, j, n)]

≤ B(i, j, n) ≤ Rmax
ij [T f (i, j, n)− T s(i, j, n)],

∀i ∈ I, j ∈ Ji, n ∈ N, (25)

T f (i, j, n)− T s(i, j, n) ≤ Hwv(i, n),

∀i ∈ I, j ∈ Ji, n ∈ N, (26)

whereRmin
ij andRmax

ij are the minimum and maximum pro-
cessing rates of unit (j) when performing task (i), respec-
tively.

A very important element of the formulation is the fol-
lowing three sets of special sequencing constraints:

• Same task in the same unit:

T s(i, j, (n+ 1)) ≥ T f (i, j, n),

∀i ∈ I, j ∈ Ji, n ∈ N, n �= nlast. (27)

These constraints state that task (i) starting in unit (j) at
event point (n + 1) should start after the end of the same
task performed in the same unit which has already started
at event point (n).

• Different tasks in the same unit: The following constraints
establish the relationship between the starting time of a
task (i) at event point (n + 1) and the ending time of task
(i′) at event point (n) when these tasks take place in the
same unit (j).

T s(i, j, (n+ 1))≥ T f (i′, j, n)+ τji ′iwv(i′, n)
−H(1 − wv(i′, n)),

∀j ∈ J, i ∈ Ij, i′ ∈ Ij, i �= i′, n ∈ N, n �= nlast. (28)

If wv( i′, n) = 1 which means that task (i′) takes place in
unit ( j) at event point (n), then the last term of constraint
(28) becomes zero forcing task (i) in unit ( j) at event point
(n + 1) to start after the ending time of task (i′) in unit ( j)
at event point (n) plus the required clean-up time; other-
wise the right hand side of constraint (28) becomes neg-
ative and the constraint is trivially satisfied. Note that the
sequence-dependent changeover is directly incorporated
in this constraint. It should also be pointed out that this
constraint actually imposes a lower bound not only on the
starting time of task (i) at event point (n + 1) but also on
the starting times of task (i) at the subsequent event points
(n + 2), (n + 3), etc. because of the monotonically in-
creasing relationships among the timings of the same task
in the same unit at consecutive event points established by
Constraint (27). In other words, if two tasks take place in
the same unit consecutively, but at two event points with
an idle event point in between, the requirement on their
timings is also enforced.

• Different tasks in different units: The following constraints
are written for different tasks (i, i′) that are performed in
different units (j, j′) but take place consecutively according
to the production recipe due to material connections:

T s(i, j, (n+ 1)) ≥ T f (i′, j′, n)−H(1 − wv(i′, n)),
∀j, j′ ∈ J, i ∈ Ij, i′ ∈ Ij′ , i �= i′, n ∈ N, n �= nlast. (29)

If task (i′) takes place in unit (j′) at event point (n) (i.e.,
wv(i′, n) = 1), then we haveTs(i, j, (n + 1)) ≥ T f (i′,
j′, n) and hence task (i) in unit ( j) has to start after the
end of task (i′) in unit (j′). Similar to Constraint (28), this
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constraint also establishes the relationships between tasks
that are assigned to non-consecutive event points.

The zero-wait condition can also be incorporated by
adding the following constraint for tasks (i, i′) that take
place consecutively without delay due to storage restrictions
on the intermediate material.

T(i, j, (n+ 1)) ≤ T f (i′, j′, n)
+H(2 − wv(i, (n+ 1))− wv(i′, n)),

∀i, i′ ∈ I, j ∈ Ji, j′ ∈ Ji′ , n ∈ N, n �= nlast. (30)

With constraints (28) or (29), this constraint enforce that
task (i) in unit ( j) at event point (n + 1) starts immediately
after the end of task (i′) in unit (j′) at event point (n) if both
of them are activated.

The above duration and sequencing constraints model the
sequencing and timing relationships efficiently, avoiding the
introduction of any additional variables such asXijkk′ in the
global event based models discussed in the previous section.
This contributes to the significant further reduction of the
number of binary variables.

Demands with intermediate due dates can also be in-
corporated in this formulation. This is achieved by linking
demands to event points and enforcing the following con-
straints on the amounts and timings of product deliveries:

D(s, n)+ SL(s, n) = dasn, ∀s ∈ S, n ∈ N, (31)

T s(i, j, n) ≤ ddsn, ∀s ∈ S, i ∈ Ip
s , j ∈ Ji, (32)

where dasn and ddsn are the amount and due date of the
demand for state (s) at event point (n). Note that only the
tasks that produce the involved state are considered in Con-
straint (32). SL(s, n) are slack variables introduced to give
more flexibility to the model in handling partial fulfillment
of demands. Under feasible conditions, some or all of these
variables can be fixed to zero to ensure that some or all of
the demands within the time horizon are met.

Similar to the global event based models, this formulation
is also faced with the important issue of the determination
of the number of event points. The general procedure is to
start with a small number and iteratively increase it until

Table 2
Comparison between discrete-time models and global event based, unit-specific event based continuous-time models

Model Discrete-time models Continuous-time models

Global event based,
Zhang (1995)

Unit-specific event based,Ierapetritou
and Floudas (1998a, 2001)

Events/time intervals 8 16 32 7 5
Binary variable 38 171 591 147 40
Continuous variable 743 2386 8590 497 260
Constraints 1567 5135 18415 741 374
Objective (profit) 620.2 940.5 1195.3 1497.7 1498.2
Nodes 15 5123 ∼500,000 9575 51
CPU time (s) 0.29a 58a ∼100,000a 1027.5b 0.28a

a HP-C160.
b SunSparc10/41.

no improvement of the objective function can be achieved
(Ierapetritou & Floudas, 1998a). The possibility that it re-
quires the addition of more than one event point to improve
the solution for this formulation is much smaller than that
for the global event based models, due to the more efficient
utilization of event points and the smaller number of event
points required to model a process.

Compared to the discrete-time models and most of other
continuous-time models, this formulation leads to MILP
models of smaller size mainly in terms of the number of bi-
nary variables, which consequently requires less computa-
tional effort for their solution. This can be demonstrated by
comparing the different approaches applied to a small ex-
ample which involves the process described by the STN in
Fig. 2or the RTN inFig. 3and requires variable processing
times. As shown inTable 2, the discrete-time approach is an
approximation of the actual process and by definition leads
to suboptimal solutions that can deviate from the optimal
solution substantially. Furthermore, the size of the resulting
model and the required solution time explode exponentially
as the number of time intervals increases to improve the
degree of accuracy. When the number of time intervals is
increased from 8 (corresponding to a discretization interval
of 1 h) to 32 (corresponding to a discretization interval of
0.25 h), the discrete-time formulation attains better approx-
imation and better solution, which improves from 620.2 to
1195.3. Note that this is still suboptimal compared to the
best solution of 1498.2 obtained through a unit-specific event
based continuous-time formulation. Also, the size of the re-
sulted model grows significantly, which is mainly reflected
by the number of binary variables that increases from 38 to
591, and the required solution time explodes from less than a
second to more than 100,000 s without solving to optimality.
In contrast, continuous-time approaches lead to more accu-
rate models of smaller sizes. The global event based formu-
lation proposed byZhang (1995)led to an MILP model with
147 binary variables, which can be solved in reasonable time
and achieves a much better objective value of 1497.7. The
unit-specific event based approach proposed byIerapetritou
and Floudas (1998a, 2001)used a smaller number of events
and further reduces the size of the resulting model to 40
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Table 3
Comparison between sequential process oriented models and general pro-
cess oriented models (example 3 inKarimi and McDonald (1997))

Continuous-time
formulation

Slot based,
Karimi and
McDonald (1997)

Unit-specific event based,
Ierapetritou, Heńe and
Floudas (1999)

Binary variable 152 140
Continuous variable 1378 1277
Constraints 1417 5927
CPU time (s) 320a 35.6b

Nodes 2563 802
Cost 350257 350216
LP relaxation 302934 259369

a IBMRS-6000.
b HP-C160.

binary variables. The model led to an objective value of
1498.2 and was solved with much less computational ef-
fort. The advantages have rendered this approach the ca-
pability of addressing large scale industrial applications in
medium-range production scheduling (e.g.,Lin, Floudas,
Modi, and Juhasz, 2002).

It should be pointed out that the continuous-time models
for network-represented processes have been developed for
general chemical processing systems and can be employed
to address scheduling problems of sequential processes as
well. Furthermore, in this case, the unit-specific event based
model also performs better than other existing approaches
in terms of the size of the resulting model and the quality
of the optimal schedule, which can be illustrated inTable 3
for a semi-continuous process.

5. Computational studies and applications

The various scheduling formulations have been employed
to study a considerable number of problems.Table 4sum-
marizes some of the largest model sizes that have been
reported in the literature.

With the substantial advances in the modeling and solu-
tion of scheduling formulations, they have been applied to a
wide variety of real-world problems. Some examples of no-
table applications are presented below.Sahinidis and Gross-
mann (1991a)proposed a time slot based MINLP model for
the cyclic scheduling of multiproduct plants with continuous
parallel lines and applied it to the scheduling of polymer pro-
duction in three parallel plants of a large chemical company.
Shah et al. (1993)described a case study on the schedul-
ing of a hydrolubes plant with adapted industrial data using
the STN based discrete-time approach.Wilkinson, Cortier,
Shah, and Pantelides (1996)addressed a large scale produc-
tion and distribution scheduling problem in which three mul-
tipurpose production facilities in different countries supply
a large portfolio of fast moving consumer goods to the Euro-
pean market. They proposed a detailed formulation that con-
sidered all three plants simultaneously. Due to the very large
size of the resulting problem, they generated an approximateTa

bl
e

4
E

xa
m

pl
es

of
la

rg
es

t
pr

ob
le

m
s

re
po

rt
ed

in
th

e
lit

er
at

ur
e

W
or

k
P

ro
ce

ss
fe

at
ur

e
T

im
e

re
pr

es
en

ta
tio

n
R

es
ul

tin
g

m
od

el
S

ol
ut

io
n

ap
pr

oa
ch

M
od

el
si

ze
(b

in
ar

y
va

ria
bl

es
,

co
nt

in
uo

us
va

ria
bl

es
,

co
ns

tr
ai

nt
s)

O
bj

ec
tiv

e
C

P
U

tim
e

S
ha

h
et

al
.

(1
99

3)
N

et
w

or
k

(S
T

N
)

12
st

at
es

/6
ta

sk
s/

6
un

its
/F

IS
,

N
IS

D
is

cr
et

e
M

IL
P

S
T

N
-b

as
ed

M
od

ifi
ed

br
an

ch
an

d
bo

un
d

23
16

,
38

55
,

33
76

M
ax

im
iz

e
ad

de
d

va
lu

e
48

m
in

a

P
in

to
an

d
G

ro
ss

m
an

n
(1

99
4)

S
eq

ue
nt

ia
l,

co
nt

in
uo

us
,

cy
cl

ic
8

pr
od

uc
ts

/3
st

ag
es

/3
un

its
C

on
tin

uo
us

sl
ot

-b
as

ed
M

IN
LP

G
B

D
/O

A
/A

P
44

8,
19

70
,

30
02

M
ax

im
iz

e
pr

ofi
t

49
m

in
b

P
in

to
an

d
G

ro
ss

m
an

n
(1

99
5)

S
eq

ue
nt

ia
l

50
or

de
rs

/5
st

ag
es

/2
5

un
its

C
on

tin
uo

us
sl

ot
-b

as
ed

M
IL

P
D

ec
om

po
si

tio
n

10
50

,
47

91
7,

48
84

3
M

in
im

iz
e

ea
rli

ne
ss

4.
2

h
c

S
ch

ill
in

g
an

d
P

an
te

lid
es

(1
99

6b
)

N
et

w
or

k
(R

T
N

),
co

nt
in

uo
us

F
IS

,
15

pr
od

uc
ts

/1
1

un
its

C
on

tin
uo

us
M

IL
P

M
od

ifi
ed

br
an

ch
an

d
bo

un
d

10
42

,
27

46
,

49
81

M
ax

im
iz

e
ne

t
pr

ofi
t

57
m

in
d

Z
ha

ng
an

d
S

ar
ge

nt
(1

99
8)

N
et

w
or

k
(R

T
N

),
co

nt
in

uo
us

F
IS

,
15

pr
od

uc
ts

/1
1

un
its

C
on

tin
uo

us
M

IL
P

C
P

LE
X

13
18

,
32

37
,

48
01

M
ax

im
iz

e
ne

t
pr

ofi
t

18
m

in
e

Ie
ra

pe
tr

ito
u

an
d

F
lo

ud
as

(1
99

8b
)

N
et

w
or

k
(S

T
N

),
ba

tc
h

an
d

co
nt

in
uo

us
F

IS
,

28
pr

od
uc

ts
/1

3
un

its

C
on

tin
uo

us
M

IL
P

G
A

M
S

/C
P

LE
X

M
IN

O
P

T
/C

P
LE

X
23

75
,

29
38

4,
51

00
0

M
in

im
iz

e
m

ak
es

pa
n

2.
7

h
f

a
S

U
N

S
pa

rc
S

ta
tio

n
IP

X
.

b
H

P
90

00
-7

50
.

c
H

P
90

00
-7

30
.

d
S

ix
pa

ra
lle

l
pr

oc
es

so
rs

.
e

S
un

-S
pa

rc
10

/4
1.

f
H

P
-C

16
0.



C.A. Floudas, X. Lin / Computers and Chemical Engineering 28 (2004) 2109–2129 2123

formulation by aggregating constraints, whose solution gave
a tight upper bound on the production capacity and facili-
tated the decomposition of the original problem into small
sub-problems, each involving a single plant.

Zhang (1995), Schilling and Pantelides (1996b),
Ierapetritou and Floudas (1998b)considered the schedul-
ing of an industrial fast-moving consumer goods manu-
facturing plant involving batch and continuous processes.
Continuous-time formulations were proposed using either
global events (Zhang, 1995; Schilling & Pantelides, 1996b)
or unit-specific events (Ierapetritou & Floudas, 1998b).
Ierapetritou et al. (1999)extended the continuous-time for-
mulation in (Ierapetritou & Floudas, 1998a,b) to deal with
intermediate due dates and addressed a variety of prob-
lems, including the short-term scheduling of a single-stage
multiproduct facility with multiple semicontinuous pro-
cessors. Jain and Grossmann (1999)investigated the
resource-constrained scheduling of testing tasks for new
product development in pharmaceutical and agrochemical
industries. Slot-based MILP models were proposed to solve
the scheduling problem.Pinto, Joly, and Moro (2000)dis-
cussed planning and scheduling applications for refinery
operations. Both continuous and discrete time formulations
were developed for the scheduling of refinery production
and distribution.Méndez and Cerdá (2000a)addressed the
short-term scheduling of a two-stage multiproduct batch
plant which delivered intermediate products to nearby
end-product facilities and proposed a continuous-time MILP
model. Georgiadis, Papageorgiou, and Macchietto (2000)
considered the short-term cleaning scheduling in a spe-
cial class of heat exchanger networks involving decaying
equipment performance due to milk fouling. Discrete-time
approaches were employed to formulate an MINLP model
incorporating general fouling profiles, which is then lin-
earized and solved as an MILP problem.Yi, Suh, Lee,
and Lee (2000)studied the production scheduling of a
polybutene process featuring the requirement of product
quality check in intermediate storage tanks and developed
a discrete-time MILP model.

Glismann and Gruhn (2001)developed an approach to in-
tegrate the short-term scheduling of multiproduct blending
facilities and nonlinear recipe optimization. An RTN based
discrete-time MILP model was formulated for the schedul-
ing problem.Harjunkoski and Grossmann (2001)presented
a decomposition algorithm for the short-term scheduling of
large scheduling problems in the steel making industry. The
original problem is disaggregated into subproblems based
on product groups characteristic of steel making and a se-
quence of smaller MILP problems are solved followed by an
aggregating MILP.Lin, Chajakis, and Floudas (2003)inves-
tigated the scheduling of marine vessels for tanker lighter-
ing in the crude oil supply chain. A novel continuous-time
MILP formulation was developed based on the concept
of event points, in which a task consists of a sequence
of operations performed by a vessel during the lightering
process.Lamba and Karimi (2002b)developed a two-step

decomposition algorithm for the short-term scheduling of
a single-stage multiproduct facility with multiple semicon-
tinuous production lines. The algorithm is based on item
combinations and is applied to an industrial problem from a
detergent plant.Castro, Matos, and Barbosa-Póvoa (2002)
addressed the scheduling of a batch digester cooking sys-
tem of an industrial acid sulphite pulp mill constrained
by steam availability. A discrete time RTN based model
featuring the most relevant steam-sharing alternatives was
developed and the required process data were obtained with
a dynamic model of the heating system.Lin, Floudas, Modi,
and Juhasz (2002)presented a systematic framework for the
medium-range production scheduling of a large industrial
polymer multiproduct plant, which uses a rolling horizon
decomposition approach coupled with the unit-specific
event based continuous-time scheduling formulation.

6. Integrated synthesis, design and scheduling of
multiprod-uct/multipurpose plants

The inherent operational flexibility of multiprod-
uct/multipurpose plants gives rise to considerable complex-
ity in the design and synthesis of such plants. In many cases,
scheduling strategies are not incorporated or integrated very
well, which may lead to over-design or under-design. In
order to ensure that any resource incorporated in the design
can be used as efficiently as possible, detailed considera-
tions of plant scheduling must be taken into account at the
design stage. Therefore, it is important to consider design,
synthesis and scheduling simultaneously.

There have been a number of publications in the area of
design and operation of multiproduct/multipurpose plants.
Sparrow, Forder, and Rippin (1975)and Grossmann and
Sargent (1979)addressed the optimal design problem of
sequential multiproduct batch plants taking into account
scheduling issues by assuming campaigns of single prod-
ucts and including simple aggregated timing constraints.
The resulting MINLP problems were solved using heuris-
tics (Sparrow et al., 1975) or branch and bound techniques
(Sparrow et al., 1975; Grossmann & Sargent, 1979).

On this basis,Suhami and Mah (1982)studied the optimal
design of multipurpose batch plants focusing on a restricted
form of the problem as the “unique unit-to-task assignment”
case. The resulting MINLP problem was solved using an
iterative procedure of solving NLP relaxations and adding
constraints that corrected integer infeasibilities.

Vaselenak, Grossmann, and Westerberg (1987)also in-
vestigated the design and scheduling of multipurpose batch
plants. They proposed a superstructure representation for
products grouping and formulated an MINLP formula-
tion, which was also solved as a sequence of NLP pro-
grams.Birewar and Grossmann (1989)proposed MINLP
formulations for the design and scheduling of sequential
multi-product batch plants which considered mixed product
campaigns.Birewar and Grossmann (1990)extended them
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to address synthesis, sizing and scheduling of such plants
simultaneously and used the AP/OA/ER algorithm imple-
mented in DICOPT++ to solved the resulting MINLP
problems.

Papageorgaki and Reklaitis (1990a,b, 1993)addressed the
optimal design and retrofit of multipurpose batch plants.
They pointed out that previous formulations omitted key
aspects of the general multipurpose plant, such as alterna-
tive assignments of different equipment items to each prod-
uct task and sharing of the units of the same equipment
type among multiple tasks of the same or different products.
They proposed formulations in which flexible unit-to-task
allocations and non-identical parallel units are considered.
Problem-specific decomposition strategies that iterated be-
tween an MILP or MINLP master problem and an NLP or
MINLP upper bound subproblem were proposed to solve
the resulting MINLP problems.

Crooks and Macchietto (1992)and Crooks, Kuriyan,
and Macchietto (1992)integrated the synthesis, design
and scheduling of general batch plants. They incorporated
scheduling considerations by applying the STN framework
and the discrete-time approach proposed byKondili et al.
(1993).

Voudouris and Grossmann (1993, 1996)presented MILP
formulations for the optimal design and scheduling of se-
quential multiproduct and multipurpose batch plants under
a number of assumptions such as discrete equipment sizes.
Barbosa-Póvoa and Macchietto (1994)presented a de-
tailed formulation of multipurpose batch plant design and
retrofit based on the STN description and the discrete-time
scheduling model proposed byKondili et al. (1993). The
resulting MILP problem was solved using a branch and
bound method.Realff, Shah, and Pantelides (1996)consid-
ered the design problem for pipeless batch plants with mo-
bile vessels and incorporated the STN-based discrete-time
scheduling approach proposed byKondili et al. (1993). A
decomposition procedure is proposed to solve the resulting
large MILP problems.Barbosa-Póvoa and Pantelides (1997)
solved the multipurpose batch plant design problem using
the RTN-based discrete-time scheduling model proposed by
Pantelides (1993), which also resulted in MILP problems.

In recent years, continuous-time scheduling approaches
have also been incorporated into the design problem for mul-
tiproduct/multipurpose plants.Xia and Macchietto (1997)
presented a formulation based on the variable event time
scheduling model ofZhang and Sargent (1996, 1998)and
Zhang (1995). A stochastic method is used to solve the re-
sulting nonconvex MINLP problems directly, instead of in-
troducing a large number of auxiliary variables and con-
straints to reduce the MINLP into an MILP.Lin and Floudas
(2001) extended the continuous-time scheduling formula-
tion proposed byIerapetritou and Floudas (1998a,b, 2001),
Ierapetritou et al. (1999)to address the problem of inte-
grated design, synthesis and scheduling of multipurpose
batch plants. They studied both linear and nonlinear cases,
which resulted in MILP and MINLP problems, respectively.

The MILP problems were solved with an LP-based branch
and bound method. The nonconvex MINLP problems were
solved with MINOPT (Schweiger and Floudas, 1997) and
global optimal solutions can be obtained for a class of prob-
lems with special structures.

7. Scheduling under uncertainty

Most of the scheduling models for chemical processes
assume that all problem data are certain, that is, they are
of constant known values and they are called determinis-
tic models. However, uncertainty is prevalent in the context
of scheduling in reality. The most common sources of un-
certainty include: (i) process or model parameters, such as
processing time and equipment availability; and (ii) environ-
mental data, such as demand amount and/or due date, and
price/cost of product/raw materials. It can be shown that a
schedule generated by a deterministic model based on nomi-
nal values of the parameters may be infeasible upon realiza-
tion of the uncertain parameters. It is thus very important to
take into account uncertainty during the course of schedul-
ing in order to improve the schedule quality.

Although there has been a substantial amount of work
to address the problem of design and operation of batch
plants under uncertainty (e.g.,Shah and Pantelides, 1992;
Subrahmanyam, Pekny, & Reklaitis, 1994; Ierapetritou &
Pistikopoulos, 1996; Harding & Floudas, 1997; Petkov &
Maranas, 1997), the issue of robustness in scheduling under
uncertainty has received relatively less attention.

Existing approaches in the literature to deal with this prob-
lem can be divided into two groups: reactive scheduling and
stochastic scheduling, and are presented below.

7.1. Reactive scheduling

The first approach, called reactive scheduling, handles
uncertainty by adjusting a schedule upon realization of the
uncertain parameters or occurrence of unexpected events.
The original schedule is usually obtained a priori in a deter-
ministic manner and reactive scheduling is performed either
at or right before the execution of scheduled operations.
Therefore, reactive scheduling systems are required to be
able to generate updated schedules relatively quickly. It is
not desirable to do full-scale rescheduling for every unex-
pected event and usually heuristic approaches are developed
to achieve the purpose of schedule modifications.

One of the earliest efforts in reactive scheduling was re-
ported byCott and Macchietto (1989), which was a part of
a larger computer aided production management system for
batch processes. They considered fluctuations of processing
times and used a shifting algorithm to modify the starting
times of processing steps of a batch by the maximum de-
viation between the expected and actual processing times
of all related processing steps.Kanakamedala, Reklaitis,
and Venkatasubramanian (1994)considered deviations in
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processing times and unit availabilities in multipurpose
batch plants. They developed a least impact heuristic search
approach for schedule modification that allowed time shift-
ing and unit replacement.Huercio, Espuna, and Puigjaner
(1995)andSanmarti, Huercio, Espuna, and Puigjaner (1996)
proposed reactive scheduling techniques to deal with vari-
ations in task processing times and equipment availability.
They used heuristic equipment selection rules for modifica-
tion of task starting times and reassignment of alternative
units.

Rodrigues, Gimeno, Passos, and Campos (1996)also con-
sidered uncertain processing times and proposed a reactive
scheduling technique based on a modified batch-oriented
MILP model according to the discrete-time STN formula-
tion proposed byKondili et al. (1993). A rolling horizon
approach is utilized to determine operation starting times
with lookahead characteristics taking into account possi-
ble violations of future due dates.Honkomp, Mockus, and
Reklaitis (1999)proposed a reactive scheduling framework
for processing time variations and equipment breakdown by
coupling a deterministic schedule optimizer with a simulator
incorporating stochastic events. A number of rescheduling
strategies are proposed based on the discrete-time MILP
scheduling model with the objective of minimizing the
task starting time deviations from where they were orig-
inally scheduled.Vin and Ierapetritou (2000)considered
two kinds of disturbances in multiproduct batch plants:
machine breakdown and rush order arrival. They applied
the continuous-time scheduling formulation proposed by
Ierapetritou and Floudas (1998a, 2001), Ierapetritou et al.
(1999) and reduced the computational effort required for
the solution of the resulting MILP problems by fixing bi-
nary variables involved in the period before an unexpected
event occurs.Roslöf, Harjunkoski, Bjorkqvist, Karlsson,
and Westerlund (2001)developed an MILP based heuris-
tic algorithm that can be used to improve an existing
schedule or to reschedule jobs in the case of changed
operational parameters by iteratively releasing a set of
jobs in an original schedule and optimally reallocating
them.

7.2. Stochastic scheduling

A second approach, called stochastic scheduling, takes
into account the uncertainty information at the original
scheduling stage and its objective is to create optimal and
reliable schedules in the presence of uncertainty. The con-
sideration of uncertainty transforms the problem from a
deterministic one, where standard methods of mathematical
programming can be applied, to a stochastic problem where
special techniques are required.

For the well-studied flowshop problem, considerable work
has been done in operations research, focusing on uncertain
processing times. A variety of rules or sufficient conditions
for optimal solutions were proposed or identified to facilitate
the development of efficient scheduling algorithms for spe-

cific classes of problems. Examples of such methods can be
found inHamada and Glazebrook (1993)andKamburowski
(1999, 2000).

In the chemical engineering literature, an approach based
on the framework of scenarios attempts to forecast and ac-
count for all possible future outcomes through the use of a
number of scenarios, using either discrete probability distri-
butions or the discretization of continuous probability distri-
bution functions. The expectation of a certain performance
criterion, such as the expected makespan, is optimized with
respect to the scheduling decision variables. Such methods
provide a straightforward way to implicitly incorporate un-
certainty. However, they inevitably enlarge the size of the
problem significantly as the number of scenarios increases
exponentially with the number of uncertain parameters. This
main drawback limits the application of these methods to
solve practical problems with a large number of uncertain
parameters.

Bassett, Pekny, and Reklaitis (1997)presented a frame-
work to take into account process uncertainties in processing
time fluctuations, equipment reliability/availability, process
yields, demands, and manpower changes. They used Monte
Carlo sampling to generate random instances, determined
a schedule for each instance, generated distribution of ag-
gregated properties to infer operating policies. However, a
specific robust schedule is not determined.Ierapetritou and
Pistikopoulos (1996b)addressed the scheduling of single-
stage and multistage multiproduct continuous plants with
single production line at each stage when uncertainty in
product demands is involved. They used Gaussian quadra-
ture integration to evaluate the expected profit and formu-
lated MILP models for the stochastic scheduling problem.
Vin and Ierapetritou (2001)considered demand uncertainty
for the short-term scheduling of general multiproduct and
multipurpose batch plants based on the continuous-time
MILP formulation proposed byIerapetritou and Floudas
(1998a). They introduced several metrics to evaluate the
robustness of a schedule and proposed a multiperiod pro-
gramming model using extreme points of the demand range
as scenarios to generate a single sequence of tasks with the
minimal average makespan over all scenarios.

Balasubramanian and Grossmann (2002)proposed a mul-
tiperiod MILP model for scheduling multistage flowshop
plants with uncertain processing times described by dis-
crete or continuous (using discretization schemes) proba-
bility distributions. The objective is to minimize expected
makespan and a special branch and bound algorithm was
used based on lower bounding by an aggregated probability
model.

Sanmarti, Espuna, and Puigjaner (1997)presented a dif-
ferent approach for the scheduling of production and main-
tenance tasks in multipurpose batch plants in the face of
equipment failure uncertainty. They computed a reliability
index for each unit and for each scheduled task and formu-
lated a nonconvex MINLP model to maximize the overall
schedule reliability. Because of the significant difficulty in
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the rigorous solution of the resulting problem, a heuristic
method was developed to find solutions that improve the ro-
bustness of an existing schedule.

There have also been attempts to transform a stochastic
model to direct deterministic equivalent representation. This
framework circumvents any need for explicit or implicit
discretization or sampling of the uncertain data, avoiding
undesirable increase of the problem size, and thus ren-
ders the potential capability of handling problems with a
large number of uncertain parameters.Orçun, Altinel, and
Hortaçsu (1996)considered uncertain processing times in

batch processes and employed chance constraints to ac-
count for the risk of violation of timing constraints under
certain conditions such as uniform distribution functions.
Recently,Lin, Janak, and Floudas (2004)proposed a new
robust optimization framework for scheduling general batch
processes under uncertainty using a continuous-time MILP
formulation. The underlying framework is based on a Ro-
bust Optimization methodology, which when applied to
MILP problems produces “robust” solutions which are in a
sense immune against uncertainties in both the coefficients
and right-hand-side parameters of the inequality constraints.
The approach can be applied to generate reliable schedules
in the presence of uncertainty in processing times, product
demands, and prices of materials and to gain insights on
the tradeoffs between conflicting objectives.

8. Conclusions and perspectives

In this paper, we present an overview of the develop-
ments in the scheduling of multiproduct, multipurpose
batch and continuous processes. Existing approaches were
classified based on the time representation and important
characteristics of chemical processes that pose challenges
to the scheduling problem are discussed. In addition to the
discrete-time approaches, various continuous-time models
have been proposed in the literature and their strengths and
limitations are examined. Computational studies and appli-
cations are presented and the integrated scheduling, design
and synthesis, and scheduling under uncertainty are also
reviewed.

It is apparent that significant advances have been made
in the area of scheduling of chemical processes in the
past decade. Further research work is needed to address
classes of important large-scale industrial applications.
More specifically, future research efforts should aim at ad-
dressing (a) the development of mathematical models and
algorithms that reduce and even close the integrality gap for
medium and large scale short-term scheduling applications;
(b) medium-term scheduling of batch and continuous pro-
cesses; (c) the multisite production and distribution schedul-
ing; (d) the uncertainty in processing times, prices, changes
in product demands, and equipment failure/breakdown; (e)
the scheduling of manufacturing operations in the semicon-
ductor industry in the presence of multiple reentrant flows;

and (f) the integration of scheduling with design, synthesis,
control and planning.
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