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Abstract

An overview of developments in the scheduling of multiproduct/multipurpose batch and continuous processes is presented. Existing
approaches are classified based on the time representation and important characteristics of chemical processes that pose challenges to tt
scheduling problem are discussed. In contrast to the discrete-time approaches, various continuous-time models have been proposed in the
literature and their strengths and limitations are examined. Computational studies and applications are presented. The important issues of
incorporating scheduling at the design stage and scheduling under uncertainty are also reviewed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction given requirements in a specific time horizon, a set of limited
resources, and processing recipes. Due to the discrete deci-
The research area of batch and continuous processsions involved (e.g., equipment assignment, task allocation
scheduling has received great attention from both the over time) these problems are inherently combinatorial in
academia and the industry in the past two decades. This isnature, and hence very challenging from the computational
motivated, on one hand, by the increasing pressure to im-complexity point of view Pekny & Reklaitis, 1998 These
prove efficiency and reduce costs, and on the other hand, byproblems are known to belong to the set of NP-complete
the significant advances in relevant modeling and solution problems Garey & Johnson, 1979As a result, all existing
techniques and the rapidly growing computational power. algorithms scale exponentially in the worst case. Therefore,
In multiproduct and multipurpose batch, semicontinuous a modest growth in problem size can lead to a significant
and continuous plants, different products are manufacturedincrease in the computational requirements. This has impor-
via the same or different sequence of operations by sharingtant implications for the solution of scheduling problems.
available pieces of equipment, intermediate materials and Reklaitis (1992)reviewed the scheduling and planning
other production resources. They have long been acceptedf batch process operations, focusing on the basic elements
for the manufacture of chemicals that are produced in small of scheduling problems of chemical manufacturing systems
quantities and for which the production process or the de- and the available solution methodgippin (1993)summa-
mand pattern is likely to change. The inherent operational rized the development of batch process systems engineering
flexibility of these plants provides the platform for great sav- with particular reference to the areas of design, planning,
ings reflected in good production schedules. scheduling and uncertaintgassett, Dave, et al. (199f6)e-
In general, scheduling is a decision making process to de-sented an overview of existing strategies for implementing
terminewhen whereandhowto produce a set of products integrated applications based on mathematical programming
models and examined four classes of integration including
scheduling, control, planning and scheduling across single

* Corresponding author. Tek:1 609 258 4595; fax+1 609 258 0211, and multiple sites, and design under uncertaiApplequist,
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Nomenclature

parameter, fixed processing time of tagkiri unit (j)

parameter, processing time for staselfy task ()

parameter, linear coefficient of the variable term of the processing time ofijaskuqit (j)
parameters, fractions of statg produced and consumed by tagk (espectively

parameter, duration of the cleaning operation required for gpip(switch from orderi{ to (i")
parameter, duration of the cleaning operation required for yhtio(switch from product family ) to (f’)
parameter, duration of the cleaning operation required for yhiio(switch from taski() to (i)
continuous variable, durations of time sléj (

continuous variable, amount of material which starts undergoing tagk (nit (j) at time interval )
continuous variable, amount of material which starts undergoing tagk (nit (j) at event point )
continuous variable, completion time of ordér 4t stagel{

parameter, storage capacity limit for stagg (

parameter, due date of orde) (

continuous variable, amount of sta® ¢elivered at time intervalt(

continuous variable, amounts of stage delivered at event poinnj

parameter, amount of the demand for stajeaf event point )

parameter, due date of the demand for statat{ event pointif)

indices, product families

set of product families

parameter, time horizon

indices, tasks or orders

index, cleaning task required for unit)(to switch from product familyf() to (f')

set of all tasks or orders

set of tasks or orders that can be performed in upit (

sets of tasks for familyf( and €’) that can be performed in unif){ respectively
sets of tasks that produce and consume sg)fegspectively

index, units

set of all units

set of units suitable for task or orde) (

set of units for stagd

set of units for stagd) of order {)

set of units for stagd) of both ordersi| and {’)

indices, time slots or events

set of events

set of time slots of unit )

index, stage

index, the last stage for ordei) (

set of stages included in the processing of order (

set of stages that can be performed in ufjt (

set of stages included in the processing of both ordg=nd {’)

parameter, a sufficiently large positive number

index, event point

set of event points

index, the last event point

index, time point

parameter, processing time for ord@rit unit (j)

parameter, amount of stats) (eceived from external sources at time intental (
parameters, minimum and maximum processing rates of gnittfen performing taski), respectively
parameter, earliest time at which ord@rdan start

parameter, earliest available time of unii} (

index, material state

set of material states
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Sy continuous variable, amount of material stadeduring time interval )
SL(s, n) continuous variable, difference between the amount
of the demand for states)(and the amount of stats)(delivered at event poinnj
SUu; parameter, setup time for ordej {n unit (j)
ST(s, n) continuous variable, amount of sta® ¢$tored at event pointj
t,t, 1, to indices, time intervals
tijk continuous variable, duration of tasiy (hich starts afly in unit (j)
T set of time intervals
T continuous variable, timing of everk)(

TG, 4,n), TG, n)

continuous variables, starting and ending times of t@sk (unit (j) at event pointi),
respectively

Tsjk continuous variable, the starting time of time sl ¢f unit (j)

Tsiy, Teiy continuous variables, the starting and completion times of stagé ¢rder {)

Xiin binary variable, whether or not orde) precedes ordei’f at stagel(

Xijkk/ binary variable, whether or not task étarts afT; in unit (j) and completes &k

y(s, p) binary variable, whether or not statg {s used at time pointp]

Y;i binary variable, whether or not to allocate ordgrt¢ unit (j)

Yikk binary variable, whether or not task étarts at timek) and is active over slok{) > (k)
yv(j, n) binary variable, whether or not unif)(starts being utilized at event point)(

V”mi”, Vijmax parameters, minimum and maximum capacity of upjtfér task (), respectively

Wikt binary variable, whether or not stagé ¢f order () is assigned to time slok) of unit (j)
W binary variable, whether or not tasi 6tarts in unit {) at the beginning of time intervall()
Wi binary variable, whether or not task étarts afT; in unit (j)

wv(i, n) binary variable, whether or not task étarts at event pointj

formulation and solution of process scheduling and planning mathematical models in the literature can be classified into
problems, as well as issues associated with the developmentwo main groups based on the time representations. Early
and use of scheduling softwarghah (1998gxamined first attempts relied on the discretization of the time horizon
different techniques for optimizing production schedules at into a number of time intervals and inevitably has the main
individual sites, with an emphasis on formal mathematical limitations of model inaccuracy (i.e., discrete approxima-
methods, and then focused on progress in the overall plan-tion of the time horizon which leads to suboptimal solution
ning of production and distribution in multi-site flexible by definition) and unnecessary increase of the overall size
manufacturing systems. of the resulting mathematical programming problems due

Pekny and Reklaitis (1998liscussed the nature and char- to the introduction of large number of binary variables
acteristics of the scheduling/planning problems and pointed associated with each discrete time interval. To address
out the key implications for the solution methodology these limitations, methods based on continuous-time rep-
for these problems. They reviewed the available schedul-resentations have attracted a great amount of attention
ing technologies, including randomized search, rule-basedand provide great potential for the development of more
methods, constraint guided search, simulation-based strateaccurate and efficient modeling and solution approaches.
gies, as well as mathematical programming formulation The main objective of this review paper is to provide an
based approaches using conventional and engineered soeverview of the discrete-time and continuous-time models
lution algorithms.Pinto and Grossmann (1998)esented  for chemical process scheduling. The rest of this paper is
an overview of assignment and sequencing models used inorganized as follows. First, the mathematical models are
process scheduling with mathematical programming tech- classified based on the time representation and we discuss
nigues. They identified two major categories of scheduling the major characteristics and challenges of the process
models—one for single-unit assignment and the other for scheduling problems. Then, the discrete-time approach
multiple-unit assignment—and discussed the critical issuesis presented. Subsequently, the various continuous-time
of time representation and network structure. models that have been proposed in the literature are pre-

Given the computational complexity of combinatorial sented along with their strengths and limitations. A sum-
problems arising from process scheduling, it is of crucial mary of computational studies and applications follows.
importance to develop effective mathematical formulations Finally, two important issues of integrated design, synthe-
to model the manufacturing processes and to explore ef-sis and scheduling, and scheduling under uncertainty are
ficient solution approaches for such problems. All of the presented.
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formulations for various process scheduling problems will

be provided inSection 4

2.1. Time representation

2.2. Characteristics of process scheduling problems

The key issue for process scheduling problems concerns
the time representation. All existing scheduling formulations
can be classified into two main categories: discrete-time
models and continuous-time models.

There are a number of common components involved in

most process scheduling problems, such as equipment-task
assignment, sequencing and timing of activities. Neverthe-

Early attempts in modeling the process scheduling prob- g5 " gifferent problems may also vary significantly in the
lems relied on the discrete-time approach, in which the time following aspects, which present different requirements or

horizon is divided into a number of time intervals of uni-

of a task are associated with the boundaries of these time in-
tervals. To achieve a suitable approximation of the original
problem, it is usually needed to use a time interval that is
sufficiently small, for example, the greatest common factor
(GCF) of the processing times. This usually leads to very

large combinatorial problems of intractable size, especially o

for real-world problems, and hence limits its applications.
The basic concept of the discrete-time approach is illustrated
in Fig. 1and further discussion will be given Bection 3

Due to the aforementioned limitations of the discrete-
time approach, researchers have started developing
continuous-time models in the past decade. In these mod-

els, events are potentially allowed to take place at any e

point in the continuous domain of time. Modeling of this
flexibility is accomplished by introducing the concepts of
variable event times, which can be defined globally or for
each unit. Variables are required to determine the timings
of events. The basic idea of the continuous-time approach
is also illustrated inFig. 1 Because of the possibility of
eliminating a major fraction of the inactive event-time in-
terval assignments with the continuous-time approach, the
resulting mathematical programming problems are usually
of much smaller sizes and require less computational efforts
for their solution. However, due to the variable nature of the
timings of the events, it becomes more challenging to model

the scheduling process and the continuous-time approach

may lead to mathematical models with more complicated
structures compared to their discrete-time counterparts.
A detailed examination of the existing continuous-time

S O S N N I |

] e degrees of difficulty for the modeling of these processes.
form durations and events such as the beginning and ending

2.2.1. Processing sequences

Based on the complexity of processing sequences em-

ployed to produce products, we classify all the processes in
multiproduct/multipurpose plants into two different groups:

Sequential processeBifferent products follow the same
processing sequence. It is usually possible to define pro-
cessing stages, which can be single stage or multiple
stages. There can be only one unit per stage or parallel
units at each stage. For this type of process, batches are
used to represent production and it is thus not necessary
to consider mass balances explicitly.

Network-represented process®ghen production recipes
become more complex and/or different products have low
recipe similarities, processing networks are used to rep-
resent the production sequences. This corresponds to the
more general case in which batches can merge and/or split
and material balances are required to be taken into account
explicitly. Kondili, Pantelides, and Sargent (1993)o-
posed a general framework of State-Task Network (STN)
for the ambiguity-free representation of such processes.
The STN representation of a chemical process is a directed
graph with two types of distinctive nodes: teatenodes
denoted by a circle, representing raw materials, interme-
diate materials or final products, and ttesk nodes de-
noted by a rectangle box, representing an operation. The
fraction of a state consumed or produced by a task, if not
equal to one, is given beside the arch linking the corre-
sponding state and task nodes. As an exankjide 2 gives

F N N N N N SN N U N (s N IO

T rrrr T
1234567

11T g

...................... H-1 H H+l Time

Time

Continuous-time representation

Fig.

1. Discrete and continuous representations of time.
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Fig. 2. Example of State-Task Network.

the STN representation of a process involving the merg- ¢ Unlimited intermediate storage (UISh this case, there
ing/splitting of materials/batches and recycle that have is no need to model inventory levels.

been widely studied in the literatur@antelides (1993) e Nointermediate storage (NISJhere are no storage tanks
extended the STN to the Resource-Task Network (RTN) available for intermediate materials. However, the mate-
framework, which describes processing equipment, stor- rials can be held in the processing unit after the task is
age, material transfer and utilities as resources in a uni- finished before they are transfered into the next unit.
fied way. The RTN representation of the same process ase Zero-wait (ZW) Relevant intermediate materials are re-
in the STN example is provided iRig. 3. In addition to quired to be consumed immediately after being produced.
the resources of materials, denoted also by circles, the re- Special timing constraints are required to be incorporated.
lated four pieces of equipment, denoted by ellipses, aree Finite intermediate storage (FISThis correspond to the
alsoincluded. Tasks taking place in different units are now  most general case.

treated as different tasks.
2.2.3. Changeovers

2.2.2. Intermediate storage policies There exist three main types of changeovers.

There exist four major categories of treating intermediate e Sequence dependeWhen switched between tasks, a unit

storage. may require clean-up or setup for safety or quality rea-
Product 1
Heater
: rTTT s IntAB
O] o] P
Feed A ' HotA |oa Reaction2_2 0.6
e Ht Still
Reactorl | -
E Reactor2 3 + ‘
' | — |
: ! i Feed B 08 Reaction3_§ . Product 2
! ! ! 11 !
! | L ! Lool02 !
: l ( — |
! | N | |
! | FeedC ! !

Fig. 3. Example of Resource-Task Network.
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sons. The requirement depends on the unit and the tasks The complexity of the scheduling problems necessitates
involved. the development of effective schemes for organizing the
Time or frequency dependerd changeover may be large amount of information required to describe most
needed after a certain amount of time or a certain numberscheduling applications. For instancgentner, Elkamel,

of batches (tasks). Pekny, and Reklaitis (1998roposed a high level language
None No changeover is needed between two tasks in aas a compact and context independent means of expressing
unit. a wide variety of process scheduling problems. On the other

hand, as illustrated bylonkomp, Lombardo, Rosen, and

2.2.4. Operation modes of processing tasks Pekny (2000) many of the features of the process schedul-

The processing tasks can be classified into batch and coning problems described above, such as resource sharing

tinuous tasks. and inventory constraints, make these scheduling problems

difficult to solve and present challenges to the regular use
Batch task Materials are fed at the start of the task; after of scheduling technologies.
a certain period of time, products are produced at the end Note that in the literature on process scheduling, a num-
of the task. ber of earlier work addressed the traditional campaign op-
Continuous taskMaterials are fed and/or products are erations, such as those presented/Msllons and Reklaitis
produced continuously during the course of the task. The (1991a,b)andTsirukis, Papageorgaki, and Reklaitis (1993)
processing rate can either be fixed or within a certain As pointed out byApplequist et al. (1997)a key limitation
range. of these campaign-based approaches arises from the restric-

tion of the cyclic campaign operation which usually lead to

2.2.5. Demand patterns lower equipment utilization and higher levels of inventories.

There exist two main classes of demand patterns. In this review, we focus on the more general and flexible
operational mode.

Demands due at the end of horiz&emands for products

are specified at the end of the horizon under consideration.

Demands due at intermediate dat&emands for prod- 3. Discrete-time approaches

ucts are specified at designated time instances within the

time horizon. In discrete-time approaches for scheduling problems, the
time horizon of interest is divided into a number of time

2.2.6. Resource considerations intervals of uniform durations. Events such as the begin-

There are two primary types of resource considerations. ning and ending of a task are associated with the bound-
aries of these time intervals. Two of the earliest research
Renewable resource3he operations may require utili-  contributions that employed this type of discrete time rep-
ties, such as steam, cooling water, electricity, and/or man- resentation were presented Bgpwman (1959)and Manne
power. These are regarded as renewable resources whicl(1960) for jobshop scheduling problems in the operations
are completely recovered at the time a task finishes. Theseresearch community literature. There have been notable sub-
resources can never exceed the maximum availability atsequent developments, for example, thoséhisker, Wat-
any time during the production. ters, and Wolfe (196%pr resource-limited multiproject and
None No restrictions on resources are considered. jobshop scheduling. More recently, the same concept was
introduced to the chemical engineering literature for the gen-

2.2.7. Objectives eral scheduling problem of a wide variety of chemical pro-

Typical examples of overall objectives in process schedul- cesses. Examples of work based on this approach include

ing problems include: those presented bigondili et al. (1993) Shah, Pantelides,

and Sargent (1993antelides (1993Pedopoulos and Shah
Minimize makespanGiven the production requirement, (1995) Pekny and Zentner (1993entner, Pekny, Reklaitis,
the objective is to find the optimal schedule with the short- and Gupta (1994 Bassett, Pekny, and Reklaitis (19%6)d
est completion time of the whole process. Elkamel, Zentner, Pekny, and Reklaitis (1997)
Minimize earliness/tardiness/costSiven the production The main advantage of the discrete-time representation
requirement, the optimal schedule is considered to be theis that it provides a reference grid of time for all opera-
one with the lowest cost, which is measured by either tions competing for shared resources, such as equipment
simple deviations from specified due dates or total costs items. This renders the possibility of formulating the var-
calculated in more sophisticated ways. ious constraints in the scheduling problem in a relatively
Maximize profit Given available equipment and other re- straightforward and simple manner, which will be illustrated
sources, the objective is to find the optimal schedule with below with a general discrete-time formulation proposed
the highest value of overall profit in a specified time hori- by Kondili et al. (1993)andShah et al. (1993)ased on the
zon. STN representation.



C.A. Floudas, X. Lin/Computers and Chemical Engineering 28 (2004) 2109-2129

2115

One of the common components in scheduling problems time interval ) is equal to that during the previous time

involves the allocation of units to tasks. To model these as-

signments, binary variablédj;, are introduced to determine
whether or not a taski)(starts in unit {) at the beginning
of time interval ) and the following allocation constraints
are formulated:

Y Wi <1, VjelJ teT, ()
iEIj
t+ajj—1
DT Wi — 1< M- Wyp),
i/elj t'=t
Vield iel; tel, (2)

wherel; is the set of tasks that can be performed in unit
(j), o4j is the fixed processing time of task {n unit (j)
andM is a sufficiently large positive number. Constraint (1)

states that at most one task can start in any unit at any time Z
interval. Constraint (2) further expresses the requirement that, -~ ;

if task (i) starts in unit §) at time interval T) (i.e., W;;; =

1), then no other task can start in the same unit until taskVje J, f# f € F, 1 <t €T,

(i) is finished after the duration af;;. Note that the latter
constraint becomes trivially satisfied when tagkdpes not
start at time T) (i.e., W;;; = 0).

interval (T — 1) plus the amount produced by tasks that fin-
ish at the end of the previous time intervdl ¢ 1) minus

the amount consumed by tasks that start at the beginning of
the current time intervall{), further adjusted by the amount
received from or delivered to external systems at this time
interval (T'). The restriction on storage of a material state is
then represented by Constraint (5).

The sequence-dependent changeover is another impor-
tant element in many process scheduling problems. It can
be incorporated by introducing cleaning tagjs to model
the changeover required for unif)(to switch from family
(f) to family (f’). Then this task must take place if a task
for family (f) and a second task for familyff’j are per-
formed in unit () consecutively, which can be written as
the following constraint:

-1 tp—1
Wi 10 = Z Wijt, + Z Wijt, — Z Z Wi —1,
ieI;f) ie[ﬁ.fd) t=t1+1li€l;

(6)

wheref is the set of product families, antjf) and 1}(_1")
are the set of tasks for familyfX and '), respectively.

To account for batch-sizes and mass balances, continuoug he above constraint is only meaningful when the first two

variablesB;;; are used to represent the amount of material
which starts undergoing task (n unit (j) at time interval
(T), andS;; is the amount of material stats) (during time
interval (T). The following constraints are introduced to

sums on the right hand side are equal to one and the third
one is zero. An alternative way is to account for the case
that if a task for family {) starts processing in unjt no
task for family ¢’) can start for a period of time required

represent the relations among them and the correspondingor the related cleaning operation after the end of the first

binary variables:

Wiit Vijmin < Bijt < Wit Vijmin, Viel jel,teT (3)
Sst = Ss-1 + ) Ple)_ Bijtt-aw) = ) P Bijs
iel?  Jedi iels  jel;
+Rst - Dst, Vs € S, t e T; (4)
0<S8Sg4<Cs, VseS teT, (5)

whereVi}'nin and V{"® are the minimum and maximum ca-

pacity of unit (j) for task {), respectively:® and I¢ the set

of tasks that produce and consume sta),er(f;spectiveIy;of{,’S
andpi; the fractions of states) produced and consumed by
task (), respectively;); the set of units suitable for task(

;s the processing time for stats) Py task {); andC, is the
storage capacity limit for state)( Ry, is the amount of state
(s) received from external sources at time intervia). (Vari-
ableDy, represents the amount of stag delivered at time
interval (T). Constraints (3) enforce that if task 6tarts in
unit (j) at time interval T) (i.e., W;;; = 1), the batch-size is
bounded by the minimum and maximum capacities of the
involved unit (Vi]-m'n < Bji < V”max) When the task does not
take place (i.e.W;; = 0), the corresponding batch-size is
zero (i.e.,B;;; = 0). The mass balance is expressed by Con-
straint (4), which states that the amount of staed(iring

task. This can be expressed as

1+eij+7 —1

2 X

i’elj.f/) ' =t+ajj

Wiy < M(1 — W),

Vieldiel teT @)
wherertjs is the duration of the cleaning operation required
for unit (j) to switch from family {) to family (f').

In a simple manner analogous to those shown above,
discrete-time formulations can also model other relation-
ships involved in various scheduling problems, such as
product delivery at intermediate due dates, renewable re-
source considerations and a variety of schedule perfor-
mance criteria. These resource constrained formulations are
straightforwardly formulated models which usually lead to
well-structured mathematical programming problems. How-
ever, they have two main limitations: the discrete approxima-
tion of time and the large size of resulting MILP problems.

Because of the continuous nature of time and the con-
cept of discretization, the discrete-time formulations are by
definition only approximations of the actual problem. Fur-
thermore, one of the key issues in these approaches is the
selection of the duration of the uniform time intervals, which
always presents a tradeoff between the accuracy or quality
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of solution and the required computational efforts. If the
chemical process of interest involves only fixed processing
times, it is possible to model the process accurately, butitis ;. , | 0 P |
required to use the greatest common factor of the processing
times as the duration of each time interval, which usually ypit2 } | } !
leads to very large combinatorial problems for real-world : :
applications that are difficult or even impossible to solve. : : pSlotk
If a coarser discretization scheme is used, the problem size :
may become more tractable, but there is an inevitable loss of
model accuracy and it results by definition in suboptimal so-
lutions. Furthermore, for operations with variable processing -
times such as continuous processes, which consume feeds Time
and produce products continuously and in general can poten-
tially run for a time period of any duration, the discrete-time
approaches pr(_)V|de approx'lmate descrlptlons of the aCtualimplications for the modeling of related scheduling prob-
processes, which can deviate substantially from the true lems

solutions. ’

To reduce the difficulty in solving the large MILP prob-
lems resulting from the discrete-time models, a number
of techniques have been proposed to improve the solution
efficiency by exploiting the characteristics of the problem.
These techniques include: (i) reformulation that reduce the
gap between the optimal solution and its LP relaxation
counterpart, for exampl&ahinidis and Grossmann (1991b)
Shah et al. (1993and Yee and Shah (1998kformulated
the allocation and/or batch-sizing constraints based on vari-
able aggregation/disaggregation; (ii) adding cut constraints
which are redundant but reduce the region of integer infea-
sibility, such as those proposed Bedopoulos and Shah
(1995) and Yee and Shah (1998Jiii) intervening in the
branch and bound solution procedure, for instargleah
et al. (1993eveloped ways to reduce the size of the relaxed
LP and perform post analysis of the LP solution at each node
of the branch and bound treBedopoulos and Shah (1995)
proposed techniques to fix variables to values implied during
the branch and bound procedure; (iv) decomposition that di-
vides a large and complex problem to smaller subproblems,
for example Bassett, Pekny, et al. (199f)oposed a num-
ber of time-based decomposition approaches Bikdmel

Unit NU I 1T 1 I 1

Fig. 4. Time slots defined for each unit.

4.1. Sequential processes

One of the first approaches to formulate continuous-time
models for the scheduling of sequential processes, which
can be single or multi-stage, is based on the concept of
time slots. At each stage, there can be one or multiple par-
allel units. When multiple units are involved, time slots
are defined for each unit. The basic idea is illustrated in
Fig. 4. Research contributions following this direction in-
clude those presented Bynto and Grossmann (1994, 1995,
1996) Pinto, Ttirkay, Bolio, and Grossmann (199&arimi
and McDonald (1997)Lamba and Karimi (2002a,pBok
and Park (1998)Moon and Hrymak (1999)

To illustrate this type of models, let us consider the mul-
tistage flowshop problem with parallel units at each stage.
The following key variables are definét;,: binary, deter-
mines whether or not stagB of order {) is assigned to the
time slot k) of unit (j); Tsi;, Teij: continuous, the starting
and completion times of stagh 6f order {); Tsj: contin-
uous, the starting time of time sldt)(of unit (j).

The allocation constraints are written as

et al. (1997)eveloped another algorithm consisting of both Z Z Wi =1 Viel lel, (8)
spatial decomposition and temporal decomposition. jeing) kek

Z Z Wik <1, VjelJ keKk;. (9)
4. Continuous-time approaches ieljle(L;NL})

In terms of timing, the following constraints are formu-

Due to the inherent limitations of the discrete-time ap- N .
S . lated to match the starting time of batches to the time slots
proaches, there has been a significant amount of attention 2 .
. . : . and to correlate the starting time of an order at a stage with
on the development of continuous-time representations in

: X X h ing time for th h i :
the past decade. We classify all continuous-time approachest e ending time for the same order at the previous stage

|_nt0 two categories based on the type of processes. The_M(l_ Wik) < (Tsii — Tsi) < M(1— Wik),

first category of approaches focuses on sequential processes 0

and the second category aims at the scheduling of gen-": €/ / € Ui J). k€ K;, [ € Li, (10)
eral network-represented processes. The critical dlf“fer.encesTeiiI <Tsiigsy, Viel leLi— {15}_ (11)
between these two types of processes is that sequential pro-

cesses are order or batch oriented and do not require the extt should be noted that this type of model generally re-
plicit consideration of mass balances, which has important quires a large number of binary variables resulting from the
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introduction of variable¥V;;;, which are defined on four di- ~ Table 1

mensions (i.e., the number of variables is equal t® § x Comparison between slot based and non-slot based formulations

k x I). Furthermore, in all the time-slot based models, a pre- Formulation Slot baseRinto and  Non-slot based,

defined number of time slots is used and hence optimality Grossmann (1995) Méndez, Henning,

cannot be guaranteed. and Cerd (2001)
Because of the batch or order oriented characteristics ofBinary variable 161 155

the sequential processes, it is possible to define continuousggzg?r‘;?n‘i variable ff: 472;’

variables directly to represent the timings of the batches oy eciive (maximize) 6151 6269

without the use of time slots. This alternative direction has Nodes 851 201

also been pursued to formulate continuous-time schedulingCPU time (s) 58.87 1.5%

models for sequential processes, as reported in the work™ a p 9900-730.

presented byu and Karimi (1988) Cerda, Henning, and b pentium H PC (400 MHz).

Grossmann (1997)Méndez et al. (2000b, 2001Moon,
Park, and Lee (1996)Hui, Gupta, and van der Meulen . o . o
(2000) Hui and Gupta (2001)0rcun, Altinel, and Hortasu ~ S€tUP time and processing time for ordey i unit (j),
(2001) andLee, Heo, Lee, and Lee (2002) respectivelyd; is the due date of order)(' ' .

For comparison with the slot-based approaches, let us Compared to the slot-based formulations, since this ap-
consider the formulation oMéndez, Henning, and Cerda proach features continuous variables directly representing

(2001)for scheduling of multistage flowshop problems with the tas_k timings, it does not rely on time slots for task-unit
parallel units, which was based on the notion of order pre- allocation and hence can be more accurate and lead to bet-

decessor. The key variables are defined as follows: ter solutions. However, to model the sequencing of compet-
Y;;: binary, to allocate ordefiYto unit (j); X;;: binary, ing tasks in shared units, binary variables, suctXgs de-
defined only once for every pair of ordeid 4nd (), =1, if scribed above, and corresponding constraints are introduced
(i) precedesi() at stagelj, = 0 otherwise Cy: completion to determine the relative order of tasks. Consequently, the
time of order {) at stage ]. size and complexity of the resulting model of this approach
The allocation constraints now take the form of is usually comparable to that of the slot-based approach,
. both leading to large scale mathematical programming prob-
Z Yj=1 Viel lel (12) lems for real-world applications. As an illustrative example,
Jjedi Table 1compares a slot based formulation and a non-slot
which ensures that exactly one unit is assigned to each ordef@sed formulation applied to the scheduling of a multiprod-
at a related stage. uct batch plant with 5 stages and 25 units that manufactures

For sequencing and timing purposes, the timings of dif- dyes. The formulations resulted in MILP models of similar

ferent orders processed consecutively in the same unit are>12€S in terms of the number of binary variables, however,
maintained through the following constraints: the formulation proposed byiéndez et al. (2001)ed to
better solution than the one found Bynto and Grossmann
Cit — Pty ; = Cit + sWj + tirj — M(1 — Xiir) (1995) . _
M2 Y — Yy The continuous-time models that have been developed
! n for sequential processes can be applied to scheduling prob-

Vi,i' e I, i" > i, I € Lii, j € Jin, (13) lems with various features, including different intermediate
storage policies, sequence-dependent change-overs, batch
Cit — Ptj > Ciry + SUj + T — MXiiy — M(2 = Yij — Yy )), and continuous processes, intermediate due dates, renew-

able resource restrictions, and different objective functions
such as minimization of order earliness and minimization of
For each order, the timing variables for different stages and makespan.

delivery are connected as follows:

vi,i' eI, i’ > i, 1 € L, je Ji. (14)

4.2. General network-represented processes
Ci > Z Yij(Max[ruj, ro;]) + suj +pt;, Viel €L,
JeJi For general network-represented processes that allow

(15) batches to merge/split and thus require explicit considera-
) . tion of mass balance, two types of approaches have been

Cii = Cir1 — Z Yip, Viel leli—{}, (16) developed to build continuous-time scheduling formula-

&t tions. The first approach introduces a set of events or time

Cy<di, Vi€l (17) slots thgt are used. for a!l tasks and all units. We denote the
i formulations applying this approach as “global event based
where ry is the earliest available time of unif) ro; the models.” The second approach defines event points on a

earliest time at which ordeii)(can start; sy and pf; the unit basis, allowing tasks corresponding to the same event
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point but in different units to take place at different times.
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can be linearized, but introduces a large number of additional

This is the most general and most rigorous representationvariables and constraints.

and we denote it as “unit-specific event based models.”

4.2.1. Global event based models

Mockus and Reklaitis (1997,1999a (@lso seeMockus,
Eddy, Mockus, Mockus, & Reklaitis, 199part V) pro-
posed a similar approach based on the STN framework

There have been an increasing number of research con-and applied it to a variety of scheduling problems for mul-

tributions on continuous-time formulations for scheduling

tiproduct/multipurpose batch and continuous plants. Their

of general processes. The earliest efforts were presented byontinuous-time formulation, which is called Non-Uniform

Zhang and Sargent (1996, 199&hang (1995) Mockus
and Reklaitis (1997, 1999a,kgndSchilling and Pantelides
(1996, 1999) Recent developments include the work pre-
sented byCastro, Barbosa-Pévoa, and Matos (20043jozi
and Zhu (2001)Lee, Park, and Lee (2001Burkard, For-
tuna, and Hurkens (2002ndWang and Guignard (2002)

Discrete-Time Model (NUDTM), also leads to large scale
MINLP problems. They can be transformed into MILP prob-
lems if the objective function is of simple form. When a
more complicated objective is involved (for example, the
maximization of overall profit which takes into account stor-
age cost and utility cost), they proposed a modified outer

Most of these formulations have been based on either theapproximation Quran & Grossmann, 1986r a Bayesian

STN or RTN process representations.

heuristic approach to solve the resulting nonconvex MINLP

The basic idea of the continuous-time scheduling models problems.
based on global events is to introduce continuous variables Schilling and Pantelides (1996, 1999roposed a
to determine the timings of events or variable time slots and continuous-time formulation based on the RTN framework.
use binary variables to assign important state changes ofThere are two main differences between their formula-
the system, for example, the start or end of a task, to thesetion and those oZhang (1995)and Mockus and Reklaitis

events or time slots.
Zhang and Sargent (1996, 199&)d Zhang (1995)de-

(1997) First, they defined the durations of time slotg,
as the main timing variables instead of the absolute times

veloped the first such continuous-time model based on bothof the slot boundaries. Second, they introduced binary vari-

STN and RTN for mixed production facilities involving both

ablesyix to take the value of one if task)(starts at time

batch and continuous processes. We discuss the key com{k) and is active over slotk) > (k). Exact linearization

ponents of their RTN formulation to illustrate this type of
model.
The most important variables in this formulation include:
Tk: continuous, timing of evenk); W;;: binary, whether
or not task () starts affy in unit (j); Xijj : binary, activated
if task (i) starts afTy in unit (j) and completes &f} .
The timings of events are required to be monotonically
increasing.

O=T1<Tro<---<Tg <H, (18)

whereH is the time Horizon.

The following allocation constraints are written to ensure
that if task {) starts in unit {) at event timeK), it finishes
at exactly one later event time:

Wik =Y X, Viel jeli keKk.
kK'>k

(19)

The duration of a task, represented by variabjg is
determined by the following timing constraint:

lik = Z Xiw (Ty — T), Viel, jelJ, kek.
k'>k

(20)

Note that the above equation involves bilinear products of
binary and continuous variables. Exact linearization tech-
niques Glover, 1975; Floudas, 1996an be applied to trans-
form them into linear forms at the expense of introducing
additional variables and constraints.

This formulation leads to large scale MINLP problems.

techniques are also required to remove the nonlinearities
arising from products of integer and continuous variables.
For the solution of the resulting large scale MILP/MINLP
problems, they developed a special branch and bound algo-
rithm which branches on both the continuctjsvariables

and the binary variables.

More recently,Castro et al. (2001proposed an RTN
based MILP continuous-time formulation for the short-term
scheduling of batch processes. They defined binary variables
to determine the beginning and end of tasks at event points
as well as continuous variables for timings of events and for-
mulated the constraints, such as excess resource constraints,
in a very similar way to that in the approach®c¢hilling and
Pantelides (1996)Majozi and Zhu (2001)proposed an
MILP continuous-time formulation for the short-term
scheduling of batch processes based on a new process rep-
resentation called State Sequence Network. They used time
points to denote the use or production of states and intro-
duced binary variableg(s, p) associated with the usage of
state §) at time point p). Their formulation leads to small
MILP problems, but relies on the definition of effective
states which are related to tasks and uniee et al. (2001)
reported an STN based MILP formulation for batch and
continuous processes, which introduced three sets of binary
variables to account for the start, process, and end events of
each taskBurkard et al. (2002@eveloped an STN based
MILP formulation for the makespan minimization problem
for batch processes and discussed the choice of the objec-

For certain classes of problems, for example, in the case oftive function and additional constrain#é/ang and Guignard

batch processes with simple objective function, the model

(2002)presented an STN based MILP formulation for batch
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process scheduling problems, which proposed the definitionrepresenting the beginning of a task or utilization of the
of events associated with inventory changes to reduce theunit. The basic idea is illustrated Fig. 5. The location of
total number of events required to model a schedule. event points are different for different units, allowing dif-
The global event based continuous-time models can ferent tasks to start at different moments in different units
incorporate a wide variety of considerations in process for the same event point. The timings of tasks are then ac-
scheduling, such as intermediate storage, change-over, batclounted for through special sequencing constraints, as will
and continuous operational modes, due dates, renewabléde discussed in detail below. Because of the heterogeneous
resources, and various objective functions. locations of the event points for different units as well as
As pointed out byZhang and Sargent (1996pr all the the definition of an event as only the starting of a task (com-
global event based continuous-time models discussed abovepared to that in a global-event based model which considers
an important issue (in addition to the required lineariza- the starting and the finishing of a task as two events), for
tions) is the estimation and adjustment of the number of the same scheduling problem, the number of event points
events/time slots/time points. An underestimation may lead required in this formulation is smaller than the number of
to suboptimal solutions or even infeasible problems, while events in the global event based models described in the
an overestimation results in unnecessarily large problems,previous section. This results in substantial reduction of the

which increase even more the difficulty of the solution. De-
spite its significance, there has been relatively little atten-
tion on this issue in the literature. The only exceptions are
the work presented b$chilling (1997)and very recently by
Castro et al. (2001)rhey proposed an iterative procedure in
which the model begins with a small number of events and
then the number is gradually increased until no improve-
ment can be achieved. However, as reporte@hgtro et al.
(2001) in some cases, the solution may improve only after
the addition of more than one event, which creates difficulty
for the establishment of a stopping criterion that can guar-
antee the optimality of the solution.

4.2.2. Unit-specific event based models

lerapetritou and Floudas (1998a,lh¢rapetritou, Hene,
and Floudas (1999)Lin and Floudas (2001)lerapetritou
and Floudas (2001proposed a novel continuous-time for-
mulation for short-term scheduling of batch, semicontinu-

number of binary variables.

Two sets of binary variables are defined: ww() to de-
termine whether or not task) (starts at event pointy; yv(j,
n) to determine whether or not unif)(starts being utilized
at event pointif). They are connected through the following
allocation constraint:

> wv(i,n) =yv(in), Vjel neN.

ielj

(21)

These constraints express that in each ypgd at an event
point (n) at most one of the tasks that can be performed in
this unit (i.e.,i € I;,) should take place. Note that if a task
can be performed in multiple units, it is split into multiple
tasks with each one performed in a different unit. This will
increase the number of wiy() binary variables and in the
worst case where every task can take place in every unit, the
total number of tasks after splitting is equal to the number
of the original tasks times the number of units.

ous, and continuous processes. This formulation introduces Continuous variabld(i, j, n) represents the batch-size
an original concept of event points, which are a sequenceof task {) in unit (j) at event pointif) and it is correlated
of time instances located along the time axis of a unit, each with binary variable wvi; n) through the following capacity

(Unit j: yv(j,n)

Task i: wv(i,n)

. | |
Unit 1 | i ; 1 |
n0 nl n2 - nl—-1 nl
Unit 2 { ] I I I
n0 nl n2 - nl-1
A task must begin at one of the units
if a point exists i.e., yv(j,n)=1
I
n
Unit NJ I i I I I

n0 nl

Fig. 5. Event points defined for each unit.
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constraint:

V"™ (i, n) < BG, j,n) < VWG, n),

Viel jeJ;, neN. (22)
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WhereR{jnin and R{"™ are the minimum and maximum pro-
cessing rates of unitj{ when performing taski), respec-
tively.

A very important element of the formulation is the fol-

lowing three sets of special sequencing constraints:

ST(s, n) and D(s, n) are the amounts of state) (stored
and delivered at event poim); respectively; they are used ®
in the following material balance constraint:

ST(s,n) = ST(s, (n — 1)) — D(s, n)

+> kY BG, j (n — 1)

iel?  Jeli
> 0SS B jin), ¥seS neN. (23)
ielf jedi

The above constraint is written for batch tasks, while similar *
constraints can be written for continuous tasks which takes
into account the different nature of the continuous opera-
tion mode (sederapetritou & Floudas, 1998blt should be
pointed out that the amount of stag &t an event pointr),
represented by s(n), generally does not correspond to one
well-defined time instance or time period due to the fact that
the state can be consumed or produced by different tasks that
take place in different units with different time axis. When
there is a storage limit for the state, an upper bound can be
imposed on the SB(n) variable as an approximate way to
model the storage restrictions. A rigorous way is to introduce
storage tasks and storage units with certain capacity ranges
(seelerapetritou & Floudas, 1998lkin & Floudas, 200}

The last two sets of main continuous variabl€¥i, j, n)
andT'(i, j, n) represent the starting and ending times of task
() in unit (j) at event point1f). The various relationships
among the timings of tasks are formulated by two types of
timing constraints: duration constraints and sequence con-
straints. The duration of a task is expressed as a linear func-
tion of the batch-size as follows:

T'(i, j,n) = TSG, j, n) + aijWv(i, n) + B BG, j, n),

Viel, jeJ, ne€N. (24)

This general form of variable processing times is able to
deal with a wide variety of processes. For tasks with fixed
processing timesy;; corresponds to the processing time of
the task ands;; is zero. While for tasks operating in the
continuous modey;; is zero andg;; is the inverse of the
processing rate. When a range is given for the processing
rate, the related constraints are then written as

RI[T' G, j,n) — TG, j, )]

< BG. j.n) < RP®{T' (. j.n) — T%G, j.n)).
Viel jeJ, neN, (25)
Tf(i, jin) =T33, j,n) < HWV(i, n),

Viel jelJ;, neN, (26)

Same task in the same unit

TS, j, (n + 1) > T'G, j, n),

ViEI’ jEJl" nGN, n?énlast (27)

These constraints state that tagkstarting in unit () at
event point ( + 1) should start after the end of the same
task performed in the same unit which has already started
at event point ).

Different tasks in the same unithe following constraints
establish the relationship between the starting time of a
task {) at event pointif + 1) and the ending time of task
(i") at event point 1f) when these tasks take place in the
same unit {).

TSG, j, (n 4+ 1) = T (@, j,n) + grwv (@', n)
—H@A —wv(’, n)),

Vjeld ielji' €l i#i, neN, n#nast (28)

If wv(i’, n) = 1 which means that task') takes place in
unit (j) at event pointr), then the last term of constraint
(28) becomes zero forcing taskip unit (j) at event point
(n+ 1) to start after the ending time of tasK (n unit (j)

at event pointr) plus the required clean-up time; other-
wise the right hand side of constraint (28) becomes neg-
ative and the constraint is trivially satisfied. Note that the
sequence-dependent changeover is directly incorporated
in this constraint. It should also be pointed out that this
constraint actually imposes a lower bound not only on the
starting time of taski} at event pointif + 1) but also on

the starting times of task)(at the subsequent event points
(n 4+ 2), (n + 3), etc. because of the monotonically in-
creasing relationships among the timings of the same task
in the same unit at consecutive event points established by
Constraint (27). In other words, if two tasks take place in
the same unit consecutively, but at two event points with
an idle event point in between, the requirement on their
timings is also enforced.

Different tasks in different unit3 he following constraints

are written for different tasks,(i’) that are performed in
different units {, ') but take place consecutively according
to the production recipe due to material connections:

TG, j,n+ 1) > T @, j/,n) — HL—wv(, n)),
Vi jed ielj i'elp, i#i', ne€N, n#npas (29)

If task (') takes place in unitj() at event pointr) (i.e.,
wv(i’, n) = 1), then we havel (i, j, (n + 1)) > T'(’,
i, n) and hence taski)in unit (j) has to start after the
end of taski() in unit (j’). Similar to Constraint (28), this
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constraint also establishes the relationships between task$io improvement of the objective function can be achieved

that are assigned to non-consecutive event points.

The zero-wait condition can also be incorporated by
adding the following constraint for tasks, (') that take
place consecutively without delay due to storage restrictions
on the intermediate material.

TG, j,(n+1) <T'@, j n)
+HQ2 —wv(, (n + 1)) —wv(i’, n)),

Viii'el, jelJ;, jelJy, neN, n+#npast (30)

With constraints (28) or (29), this constraint enforce that
task () in unit (j) at event pointif + 1) starts immediately
after the end of task’) in unit (') at event pointi) if both

of them are activated.

The above duration and sequencing constraints model th
sequencing and timing relationships efficiently, avoiding the
introduction of any additional variables suchXgq in the
global event based models discussed in the previous section
This contributes to the significant further reduction of the
number of binary variables.

Demands with intermediate due dates can also be in-
corporated in this formulation. This is achieved by linking
demands to event points and enforcing the following con-
straints on the amounts and timings of product deliveries:

D(s,n) +SL(s,n) =dasn, VseS, neN, (32)
T°(i, j. n) < ddsp,

where dg, and dg,, are the amount and due date of the
demand for states| at event pointrf). Note that only the

vseS,iell jeu, (32)

e

(lerapetritou & Floudas, 1998aThe possibility that it re-
quires the addition of more than one event point to improve
the solution for this formulation is much smaller than that
for the global event based models, due to the more efficient
utilization of event points and the smaller number of event
points required to model a process.

Compared to the discrete-time models and most of other
continuous-time models, this formulation leads to MILP
models of smaller size mainly in terms of the number of bi-
nary variables, which consequently requires less computa-
tional effort for their solution. This can be demonstrated by
comparing the different approaches applied to a small ex-
ample which involves the process described by the STN in
Fig. 2or the RTN inFig. 3and requires variable processing
times. As shown iTable 2 the discrete-time approach is an
approximation of the actual process and by definition leads
to suboptimal solutions that can deviate from the optimal
solution substantially. Furthermore, the size of the resulting
model and the required solution time explode exponentially
as the number of time intervals increases to improve the
degree of accuracy. When the number of time intervals is
increased from 8 (corresponding to a discretization interval
of 1h) to 32 (corresponding to a discretization interval of
0.25h), the discrete-time formulation attains better approx-
imation and better solution, which improves from 620.2 to
1195.3. Note that this is still suboptimal compared to the
best solution of 1498.2 obtained through a unit-specific event
based continuous-time formulation. Also, the size of the re-
sulted model grows significantly, which is mainly reflected
by the number of binary variables that increases from 38 to

tasks that produce the involved state are considered in Con-591, and the required solution time explodes from less than a

straint (32). SL$, n) are slack variables introduced to give second to more than 100,000 s without solving to optimality.

more flexibility to the model in handling partial fulfilment In contrast, continuous-time approaches lead to more accu-

of demands. Under feasible conditions, some or all of theserate models of smaller sizes. The global event based formu-

variables can be fixed to zero to ensure that some or all of lation proposed bizhang (1995)ed to an MILP model with

the demands within the time horizon are met. 147 binary variables, which can be solved in reasonable time
Similar to the global event based models, this formulation and achieves a much better objective value of 1497.7. The

is also faced with the important issue of the determination unit-specific event based approach proposetebgpetritou

of the number of event points. The general procedure is to and Floudas (1998a, 200G$ed a smaller number of events

start with a small number and iteratively increase it until and further reduces the size of the resulting model to 40

Table 2
Comparison between discrete-time models and global event based, unit-specific event based continuous-time models

Model Discrete-time models Continuous-time models

Global event based,
Zhang (1995)

Unit-specific event basederapetritou
and Floudas (1998a, 2001)

Events/time intervals 8 16 32 7 5
Binary variable 38 171 591 147 40
Continuous variable 743 2386 8590 497 260
Constraints 1567 5135 18415 741 374
Objective (profit) 620.2 940.5 1195.3 1497.7 1498.2
Nodes 15 5123 ~500,000 9575 51
CPU time (s) 0.29 582 ~100,000 1027.% 0.28
a8 HP-C160.

b SunSparc10/41.
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Table 3
Comparison between sequential process oriented models and general pro-
cess oriented models (example 3Karimi and McDonald (1997%)

Continuous-time Slot based, Unit-specific event based,
formulation Karimi and lerapetritou, Hea and
McDonald (1997) Floudas (1999)

Binary variable 152 140
Continuous variable 1378 1277
Constraints 1417 5927
CPU time (s) 328 35.6
Nodes 2563 802
Cost 350257 350216
LP relaxation 302934 259369

a8 IBMRS-6000.

b HP-C160.

binary variables. The model led to an objective value of
1498.2 and was solved with much less computational ef-
fort. The advantages have rendered this approach the ca-
pability of addressing large scale industrial applications in
medium-range production scheduling (e.gin, Floudas,
Modi, and Juhasz, 2002

It should be pointed out that the continuous-time models
for network-represented processes have been developed for
general chemical processing systems and can be employed
to address scheduling problems of sequential processes as
well. Furthermore, in this case, the unit-specific event based
model also performs better than other existing approaches
in terms of the size of the resulting model and the quality
of the optimal schedule, which can be illustratedrable 3
for a semi-continuous process.

5. Computational studies and applications

The various scheduling formulations have been employed
to study a considerable number of problerable 4sum-
marizes some of the largest model sizes that have been
reported in the literature.

With the substantial advances in the modeling and solu-
tion of scheduling formulations, they have been appliedto a ¢
wide variety of real-world problems. Some examples of no-
table applications are presented bel&ahinidis and Gross-
mann (1991aproposed a time slot based MINLP model for
the cyclic scheduling of multiproduct plants with continuous
parallel lines and applied it to the scheduling of polymer pro-
duction in three parallel plants of a large chemical company.
Shah et al. (1993)escribed a case study on the schedul-
ing of a hydrolubes plant with adapted industrial data using
the STN based discrete-time approadfilkinson, Cortier,
Shah, and Pantelides (199)dressed a large scale produc-
tion and distribution scheduling problem in which three mul-
tipurpose production facilities in different countries supply
a large portfolio of fast moving consumer goods to the Euro-
pean market. They proposed a detailed formulation that cop-2
sidered all three plants simultaneously. Due to the very large &
size of the resulting problem, they generated an approximaiel

ples of largest problems reported in the literatu

CPU time

Objective

Model size (binary
variables, continuous
variables, constraints)

Resulting Solution approach
2316, 3855, 3376

model

Time
representation

Process feature

Work

48 mirf

Maximize added

value

Modified branch
and bound

Discrete MILP

Network (STN) 12 states/6
tasks/6 units/FIS, NIS

Shah et al. (1993)

STN-based

49min

Maximize profit

448, 1970, 3002

GBD/OA/AP

MINLP

Sequential, continuous, cyclic Continuous slot-based

8 products/3 stages/3 units
Sequential 50 orders/5

stages/25 units

Schilling and Pantelides (1996b) Network (RTN), continuous

Pinto and Grossmann (1994)

€ 4.2h
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Pinto and Grossmann (1995)
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MILP
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Maximize net profit
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CPLEX

MILP

Continuous

Network (RTN), continuous

Zhang and Sargent (1998)

FIS, 15 products/11 units

lerapetritou and Floudas (1998b) Network (STN), batch and

27h

Minimize makespan

2375, 29384, 51000

GAMS/CPLEX
MINOPT/CPLEX

MILP

Continuous

continuous FIS, 28
products/13 units

a8 SUN SparcStation IPX.

b HP 9000-750.
¢ HP 9000-730.

d Six parallel processors.
€ Sun-Sparc 10/41.

f HP-C160.
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formulation by aggregating constraints, whose solution gave decomposition algorithm for the short-term scheduling of
a tight upper bound on the production capacity and facili- a single-stage multiproduct facility with multiple semicon-
tated the decomposition of the original problem into small tinuous production lines. The algorithm is based on item
sub-problems, each involving a single plant. combinations and is applied to an industrial problem from a
Zhang (1995) Schiling and Pantelides (1996b) detergent plantCastro, Matos, and Barbosa-P6voa (2002)
lerapetritou and Floudas (1998bpnsidered the schedul- addressed the scheduling of a batch digester cooking sys-
ing of an industrial fast-moving consumer goods manu- tem of an industrial acid sulphite pulp mill constrained
facturing plant involving batch and continuous processes. by steam availability. A discrete time RTN based model
Continuous-time formulations were proposed using either featuring the most relevant steam-sharing alternatives was
global eventsZhang, 1995Schilling & Pantelides, 1996b developed and the required process data were obtained with
or unit-specific eventslé¢rapetritou & Floudas, 1998b a dynamic model of the heating systdin, Floudas, Modi,
lerapetritou et al. (1999%xtended the continuous-time for- and Juhasz (200Presented a systematic framework for the
mulation in (erapetritou & Floudas, 19983,bo deal with medium-range production scheduling of a large industrial
intermediate due dates and addressed a variety of prob-polymer multiproduct plant, which uses a rolling horizon
lems, including the short-term scheduling of a single-stage decomposition approach coupled with the unit-specific
multiproduct facility with multiple semicontinuous pro- event based continuous-time scheduling formulation.
cessors. Jain and Grossmann (1999jvestigated the
resource-constrained scheduling of testing tasks for new
product development in pharmaceutical and agrochemical6. Integrated synthesis, design and scheduling of
industries. Slot-based MILP models were proposed to solve multiprod-uct/multipurpose plants
the scheduling problenRinto, Joly, and Moro (2000dis-
cussed planning and scheduling applications for refinery The inherent operational flexibility of multiprod-
operations. Both continuous and discrete time formulations uct/multipurpose plants gives rise to considerable complex-
were developed for the scheduling of refinery production ity in the design and synthesis of such plants. In many cases,
and distributionMéndez and Cerda (2000ajidressed the  scheduling strategies are not incorporated or integrated very
short-term scheduling of a two-stage multiproduct batch well, which may lead to over-design or under-design. In
plant which delivered intermediate products to nearby order to ensure that any resource incorporated in the design
end-product facilities and proposed a continuous-time MILP can be used as efficiently as possible, detailed considera-
model. Georgiadis, Papageorgiou, and Macchietto (2000) tions of plant scheduling must be taken into account at the
considered the short-term cleaning scheduling in a spe-design stage. Therefore, it is important to consider design,
cial class of heat exchanger networks involving decaying synthesis and scheduling simultaneously.
equipment performance due to milk fouling. Discrete-time  There have been a number of publications in the area of
approaches were employed to formulate an MINLP model design and operation of multiproduct/multipurpose plants.
incorporating general fouling profiles, which is then lin- Sparrow, Forder, and Rippin (1978nd Grossmann and
earized and solved as an MILP probleM, Suh, Lee, Sargent (1979Rddressed the optimal design problem of
and Lee (2000)studied the production scheduling of a sequential multiproduct batch plants taking into account
polybutene process featuring the requirement of product scheduling issues by assuming campaigns of single prod-
quality check in intermediate storage tanks and developeducts and including simple aggregated timing constraints.
a discrete-time MILP model. The resulting MINLP problems were solved using heuris-
Glismann and Gruhn (200#eveloped an approach to in-  tics (Sparrow et al., 19750r branch and bound techniques
tegrate the short-term scheduling of multiproduct blending (Sparrow et al., 1975Grossmann & Sargent, 19)9
facilities and nonlinear recipe optimization. An RTN based  On this basisSuhami and Mah (1982Yudied the optimal
discrete-time MILP model was formulated for the schedul- design of multipurpose batch plants focusing on a restricted
ing problem.Harjunkoski and Grossmann (20Qdfesented  form of the problem as the “unique unit-to-task assignment”
a decomposition algorithm for the short-term scheduling of case. The resulting MINLP problem was solved using an
large scheduling problems in the steel making industry. The iterative procedure of solving NLP relaxations and adding
original problem is disaggregated into subproblems basedconstraints that corrected integer infeasibilities.
on product groups characteristic of steel making and a se- Vaselenak, Grossmann, and Westerberg (12839 in-
guence of smaller MILP problems are solved followed by an vestigated the design and scheduling of multipurpose batch
aggregating MILPLin, Chajakis, and Floudas (200B)ves- plants. They proposed a superstructure representation for
tigated the scheduling of marine vessels for tanker lighter- products grouping and formulated an MINLP formula-
ing in the crude oil supply chain. A novel continuous-time tion, which was also solved as a sequence of NLP pro-
MILP formulation was developed based on the concept grams.Birewar and Grossmann (198@yoposed MINLP
of event points, in which a task consists of a sequence formulations for the design and scheduling of sequential
of operations performed by a vessel during the lightering multi-product batch plants which considered mixed product
processLamba and Karimi (2002bjleveloped a two-step  campaignsBirewar and Grossmann (1996kxtended them
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to address synthesis, sizing and scheduling of such plantsThe MILP problems were solved with an LP-based branch

simultaneously and used the AP/OA/ER algorithm imple- and bound method. The nonconvex MINLP problems were

mented in DICOP¥+ to solved the resulting MINLP  solved with MINOPT Schweiger and Floudas, 199@nd

problems. global optimal solutions can be obtained for a class of prob-
Papageorgaki and Reklaitis (1990a,b, 19%9®&jressed the  lems with special structures.

optimal design and retrofit of multipurpose batch plants.

They pointed out that previous formulations omitted key

aspects of the general multipurpose plant, such as alterna<7. Scheduling under uncertainty

tive assignments of different equipment items to each prod-

uct task and sharing of the units of the same equipment Most of the scheduling models for chemical processes

type among multiple tasks of the same or different products. assume that all problem data are certain, that is, they are

They proposed formulations in which flexible unit-to-task of constant known values and they are called determinis-

allocations and non-identical parallel units are considered. tic models. However, uncertainty is prevalent in the context

Problem-specific decomposition strategies that iterated be-of scheduling in reality. The most common sources of un-

tween an MILP or MINLP master problem and an NLP or certainty include: (i) process or model parameters, such as

MINLP upper bound subproblem were proposed to solve processing time and equipment availability; and (ii) environ-

the resulting MINLP problems. mental data, such as demand amount and/or due date, and
Crooks and Macchietto (1992and Crooks, Kuriyan, price/cost of product/raw materials. It can be shown that a

and Macchietto (1992)ntegrated the synthesis, design schedule generated by a deterministic model based on nomi-

and scheduling of general batch plants. They incorporatednal values of the parameters may be infeasible upon realiza-

scheduling considerations by applying the STN framework tion of the uncertain parameters. It is thus very important to

and the discrete-time approach proposedkiondili et al. take into account uncertainty during the course of schedul-
(1993) ing in order to improve the schedule quality.
Voudouris and Grossmann (1993, 1996¢sented MILP Although there has been a substantial amount of work

formulations for the optimal design and scheduling of se- to address the problem of design and operation of batch
guential multiproduct and multipurpose batch plants under plants under uncertainty (e.gShah and Pantelides, 1992

a number of assumptions such as discrete equipment sizesSubrahmanyam, Pekny, & Reklaitis, 199érapetritou &
Barbosa-Pévoa and Macchietto (199g)esented a de-  Pistikopoulos, 1996Harding & Floudas, 1997Petkov &
tailed formulation of multipurpose batch plant design and Maranas, 199) the issue of robustness in scheduling under
retrofit based on the STN description and the discrete-time uncertainty has received relatively less attention.

scheduling model proposed hgondili et al. (1993) The Existing approaches in the literature to deal with this prob-
resulting MILP problem was solved using a branch and lem can be divided into two groups: reactive scheduling and
bound methodRealff, Shah, and Pantelides (19%®)nsid- stochastic scheduling, and are presented below.

ered the design problem for pipeless batch plants with mo-
bile vessels and incorporated the STN-based discrete-time7.1. Reactive scheduling
scheduling approach proposed Kgndili et al. (1993) A
decomposition procedure is proposed to solve the resulting The first approach, called reactive scheduling, handles
large MILP problemsBarbosa-Pévoa and Pantelides (1997) uncertainty by adjusting a schedule upon realization of the
solved the multipurpose batch plant design problem using uncertain parameters or occurrence of unexpected events.
the RTN-based discrete-time scheduling model proposed byThe original schedule is usually obtained a priori in a deter-
Pantelides (1993which also resulted in MILP problems. ministic manner and reactive scheduling is performed either
In recent years, continuous-time scheduling approachesat or right before the execution of scheduled operations.
have also been incorporated into the design problem for mul- Therefore, reactive scheduling systems are required to be
tiproduct/multipurpose plants<ia and Macchietto (1997)  able to generate updated schedules relatively quickly. It is
presented a formulation based on the variable event timenot desirable to do full-scale rescheduling for every unex-
scheduling model oZhang and Sargent (1996, 19%)d pected event and usually heuristic approaches are developed
Zhang (1995) A stochastic method is used to solve the re- to achieve the purpose of schedule modifications.
sulting nonconvex MINLP problems directly, instead of in- One of the earliest efforts in reactive scheduling was re-
troducing a large number of auxiliary variables and con- ported byCott and Macchietto (1989)vhich was a part of
straints to reduce the MINLP into an MILEin and Floudas a larger computer aided production management system for
(2001) extended the continuous-time scheduling formula- batch processes. They considered fluctuations of processing
tion proposed byerapetritou and Floudas (1998a,b, 2001) times and used a shifting algorithm to modify the starting
lerapetritou et al. (19990 address the problem of inte- times of processing steps of a batch by the maximum de-
grated design, synthesis and scheduling of multipurposeviation between the expected and actual processing times
batch plants. They studied both linear and nonlinear cases,of all related processing stepKanakamedala, Reklaitis,
which resulted in MILP and MINLP problems, respectively. and Venkatasubramanian (199ddnsidered deviations in
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processing times and unit availabilities in multipurpose cific classes of problems. Examples of such methods can be
batch plants. They developed a least impact heuristic searchfound inHamada and Glazebrook (1998)dKamburowski
approach for schedule modification that allowed time shift- (1999, 2000)
ing and unit replacementuercio, Espuna, and Puigjaner In the chemical engineering literature, an approach based
(1995)andSanmarti, Huercio, Espuna, and Puigjaner (1996) on the framework of scenarios attempts to forecast and ac-
proposed reactive scheduling techniques to deal with vari- count for all possible future outcomes through the use of a
ations in task processing times and equipment availability. number of scenarios, using either discrete probability distri-
They used heuristic equipment selection rules for modifica- butions or the discretization of continuous probability distri-
tion of task starting times and reassignment of alternative bution functions. The expectation of a certain performance
units. criterion, such as the expected makespan, is optimized with
Rodrigues, Gimeno, Passos, and Campos (18186)con- respect to the scheduling decision variables. Such methods
sidered uncertain processing times and proposed a reactivgrovide a straightforward way to implicitly incorporate un-
scheduling technique based on a modified batch-orientedcertainty. However, they inevitably enlarge the size of the
MILP model according to the discrete-time STN formula- problem significantly as the number of scenarios increases
tion proposed byKondili et al. (1993) A rolling horizon exponentially with the number of uncertain parameters. This
approach is utilized to determine operation starting times main drawback limits the application of these methods to
with lookahead characteristics taking into account possi- solve practical problems with a large number of uncertain
ble violations of future due dateslonkomp, Mockus, and  parameters.
Reklaitis (1999)proposed a reactive scheduling framework  Bassett, Pekny, and Reklaitis (199%esented a frame-
for processing time variations and equipment breakdown by work to take into account process uncertainties in processing
coupling a deterministic schedule optimizer with a simulator time fluctuations, equipment reliability/availability, process
incorporating stochastic events. A nhumber of rescheduling yields, demands, and manpower changes. They used Monte
strategies are proposed based on the discrete-time MILPCarlo sampling to generate random instances, determined
scheduling model with the objective of minimizing the a schedule for each instance, generated distribution of ag-
task starting time deviations from where they were orig- gregated properties to infer operating policies. However, a
inally scheduled.Vin and lerapetritou (2000tonsidered specific robust schedule is not determinktapetritou and
two kinds of disturbances in multiproduct batch plants: Pistikopoulos (1996baddressed the scheduling of single-
machine breakdown and rush order arrival. They applied stage and multistage multiproduct continuous plants with
the continuous-time scheduling formulation proposed by single production line at each stage when uncertainty in
lerapetritou and Floudas (1998a, 200Brapetritou et al. product demands is involved. They used Gaussian quadra-
(1999) and reduced the computational effort required for ture integration to evaluate the expected profit and formu-
the solution of the resulting MILP problems by fixing bi- lated MILP models for the stochastic scheduling problem.
nary variables involved in the period before an unexpected Vin and lerapetritou (2001gonsidered demand uncertainty
event occurs.Rosl6f, Harjunkoski, Bjorkqvist, Karlsson, for the short-term scheduling of general multiproduct and
and Westerlund (2001jeveloped an MILP based heuris- multipurpose batch plants based on the continuous-time
tic algorithm that can be used to improve an existing MILP formulation proposed byerapetritou and Floudas
schedule or to reschedule jobs in the case of changed(1998a) They introduced several metrics to evaluate the
operational parameters by iteratively releasing a set of robustness of a schedule and proposed a multiperiod pro-
jobs in an original schedule and optimally reallocating gramming model using extreme points of the demand range

them. as scenarios to generate a single sequence of tasks with the
minimal average makespan over all scenarios.
7.2. Stochastic scheduling Balasubramanian and Grossmann (2Qf@¥®posed a mul-

tiperiod MILP model for scheduling multistage flowshop

A second approach, called stochastic scheduling, takesplants with uncertain processing times described by dis-
into account the uncertainty information at the original crete or continuous (using discretization schemes) proba-
scheduling stage and its objective is to create optimal andbility distributions. The objective is to minimize expected
reliable schedules in the presence of uncertainty. The con-makespan and a special branch and bound algorithm was
sideration of uncertainty transforms the problem from a used based on lower bounding by an aggregated probability
deterministic one, where standard methods of mathematicalmodel.
programming can be applied, to a stochastic problem where Sanmarti, Espuna, and Puigjaner (19p@sented a dif-
special techniques are required. ferent approach for the scheduling of production and main-

For the well-studied flowshop problem, considerable work tenance tasks in multipurpose batch plants in the face of
has been done in operations research, focusing on uncertairquipment failure uncertainty. They computed a reliability
processing times. A variety of rules or sufficient conditions index for each unit and for each scheduled task and formu-
for optimal solutions were proposed or identified to facilitate lated a nonconvex MINLP model to maximize the overall
the development of efficient scheduling algorithms for spe- schedule reliability. Because of the significant difficulty in
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the rigorous solution of the resulting problem, a heuristic and (f) the integration of scheduling with design, synthesis,
method was developed to find solutions that improve the ro- control and planning.
bustness of an existing schedule.
There have also been attempts to transform a stochastic
model to direct deterministic equivalent representation. This Acknowledgements
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