SHORT-TERM SCHEDULING

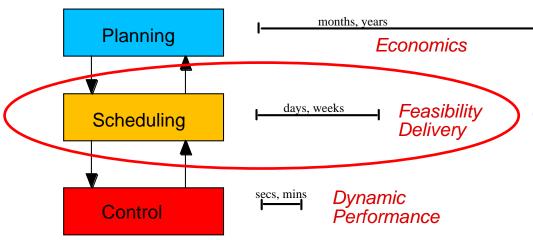
CARLOS A. MENDEZ

Instituto de Desarrollo Tecnológico para la Industria Química (INTEC)
Universidad Nacional de Litoral (UNL) – CONICET
Güemes 3450, 3000 Santa Fe, Argentina
cmendez@intec.unl.edu.ar

OUTLINE

- **PROBLEM STATEMENT**
- **4** MAJOR FEATURES AND CHALLENGES
- **SOLUTION METHODS**
- **MILP-BASED MODELS**
- **EXAMPLES AND COMPUTATIONAL ISSUES**
- **INDUSTRIAL-SCALE PROBLEMS**

LITERATURE. REVIEW PAPERS



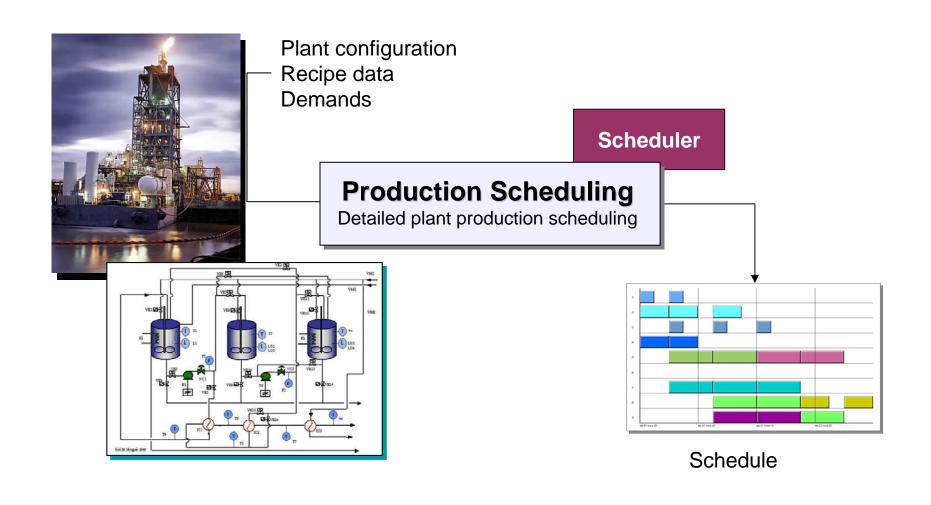
- ♣ Pekny, J.F., & Reklaitis, G.V. **(1998).** Towards the convergence of theory and practice: A technology guide for scheduling/planning methodology. In *Proceedings of the third international conference on foundations of computer-aided process operations* (pp. 91–111).
- ♣ Shah, N. (1998). Single and multisite planning and scheduling: Current status and future challenges. In *Proceedings of the third international conference on foundations of computer-aided process operations* (pp. 75–90).
- ♣ Pinto, J.M., & Grossmann, I.E. (1998). Assignments and sequencing models of the scheduling of process systems. *Annals of Operations Research*, 81, 433–466.
- **♣** Kallrath, J. **(2002).** Planning and scheduling in the process industry. *OR Spectrum*, *24*, 219–250.
- ♣ Floudas, C A., & Lin, X. **(2004).** Continuous-time versus discrete-time approaches for scheduling of chemical processes: A review. *Computers and Chemical Engineering*, *28*, 2109–2129.
- ♣ Méndez, C.A., Cerdá, J., Harjunkoski, I., Grossmann, I.E. & Fahl, M. **(2006).** State-of-the-art review of optimization methods for short-term scheduling of batch processes. *Computers and Chemical Engineering*, 30, 6, 913 946,

TRADITIONAL "BIG PICTURE"

• Plant Level: Multilevel/Hierarchical Decisions

Allocation of limited resources over time to perform a collection

of tasks


Information systems

Optimization-based computer tools

"Decision-making process with the goal of optimizing one or more objectives"

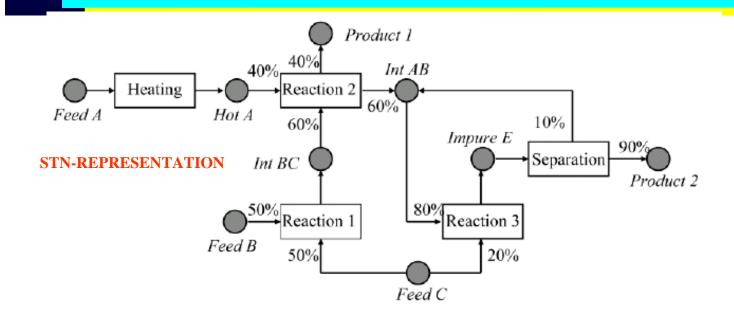
SHORT-TERM SCHEDULING

DECISION-MAKING PROCESS

Batches or campaigns to be processed

unit allocation

resource allocation: steam, electricity, raw materials, manpower

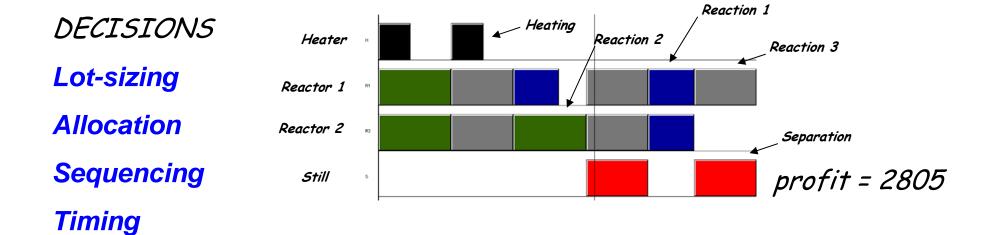

Timing of manufacturing operations

MAIN CHALLENGES

- High combinatorial complexity
- Many problem features to be simultaneously considered
- Time restrictions

ILLUSTRATIVE EXAMPLE

EQUIPMENT


-HEATER
- 2 REACTORS
-STILL

BATCH TASKS

-HEATING

- 3 REACTIONS
- **SEPARATION**

GOAL MAXIMIZE PROFIT

PROBLEM STATEMENT - I

• Given:

- plant configuration
 - plant equipment (processing units, storage tanks, transfer units, connecting networks)
 - resources (electricity, manpower, heating/cooling utilities, raw materials)
- product recipes
- product precedence relations
- demands

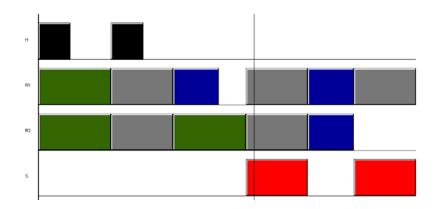
PROBLEM STATEMENT - II

• Determine:

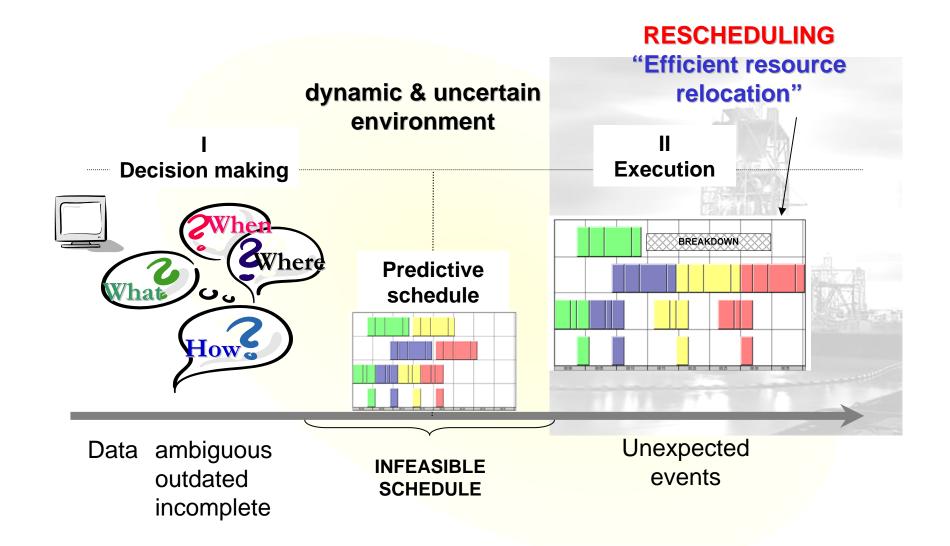
- assignment of equipment and resources to tasks
- Where

- production sequence
 - detailed schedule

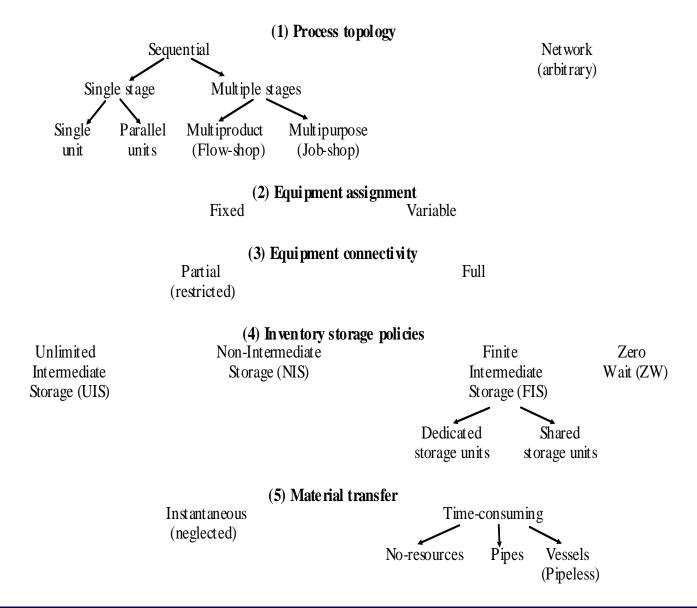
• resources utilization profiles

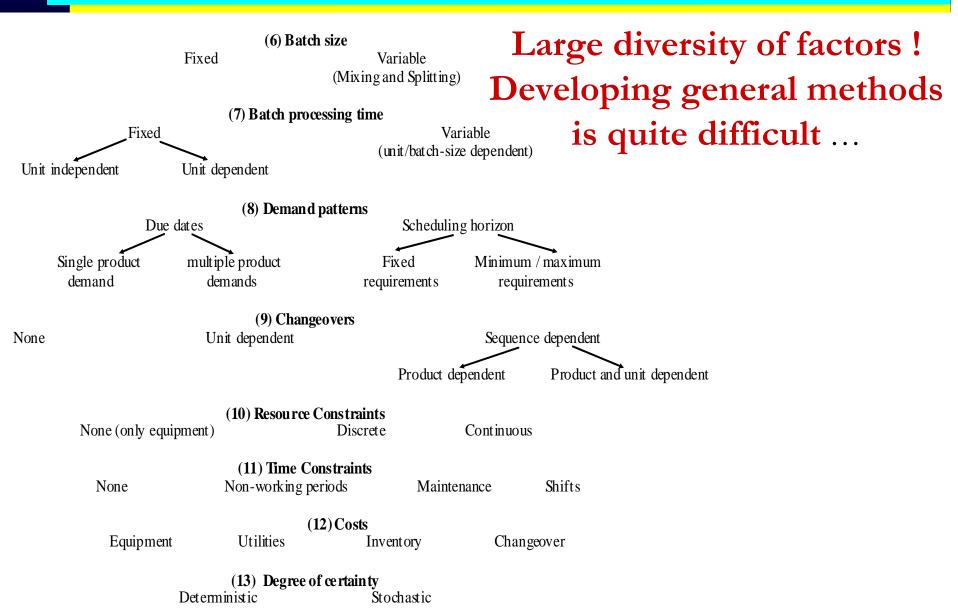


PROBLEM STATEMENT - III



- **To** optimize one or more objectives:
 - time required to complete all tasks (makespan)
 - number of tasks completed after their due dates
 - plant throughput
 - customer satisfaction
 - profit
 - costs


SCHEDULING & RE-SCHEDULING


BATCH SCHEDULING FEATURES

BATCH SCHEDULING FEATURES

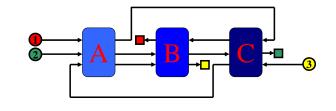
ROAD-MAP FOR BATCH SCHEDULING

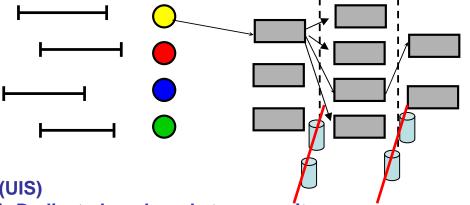
(1) TASK TOPOLOGY:

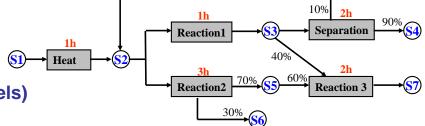
- Single Stage (single unit or parallel units)
- Multiple Stage (multiproduct or multipurpose)
- Network

- Fixed
- Variable

(3) EQUIPMENT CONNECTIVITY


- Partial
- Full

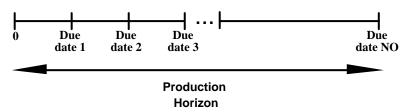

(4) INVENTORY STORAGE POLICIES


- Unlimited intermediate storage (UIS)
- Finite intermediate storage (FIS): Dedicated or shared storage units
- Non-intermediate storage (NIS)
- Zero wait (ZW)

(5) MATERIAL TRANSFER

- Instantaneous (neglected)
- -Time consuming (no-resource, pipes, vessels)

ROAD-MAP FOR BATCH SCHEDULING



(6) BATCH SIZE:

- Fixed
- Variable (mixing and splitting operations)

(7) BATCH PROCESSING TIME

- Fixed
- Variable (unit / batch size dependent)

(8) DEMAND PATTERNS

- Due dates (single or multiple product demands)
- Scheduling horizon (fixed, minimum/maximum requirements)

(9) CHANGEOVERS

- None
- Unit dependent
- Sequence dependent (product or product/unit dependent)

(10) RESOURCE CONSTRAINTS

- None (only equipment)
- Discrete (manpower)
- Continuous (utilities)

(Fixed or time dependent)

ROAD-MAP FOR BATCH SCHEDULING

(11) TIME CONSTRAINTS

- None
- Non-working periods
- Maintenance
- Shifts

(12) COSTS

- Equipment
- Utilities (fixed or time dependent)
- Inventory
- Changeovers

(13) Degree of certainty

- Deterministic
- Stochastic

ROAD-MAP FOR SOLUTION METHODS

- (1) Exact methods MILP MINLP
- (3) Meta-heuristics
 Simulated annealing (SA)
 Tabu search (TS)
 Genetic algorithms (GA)
- (5) Artificial Intelligence (AI)
 Rule-based methods
 Agent-based methods
 Expert systems

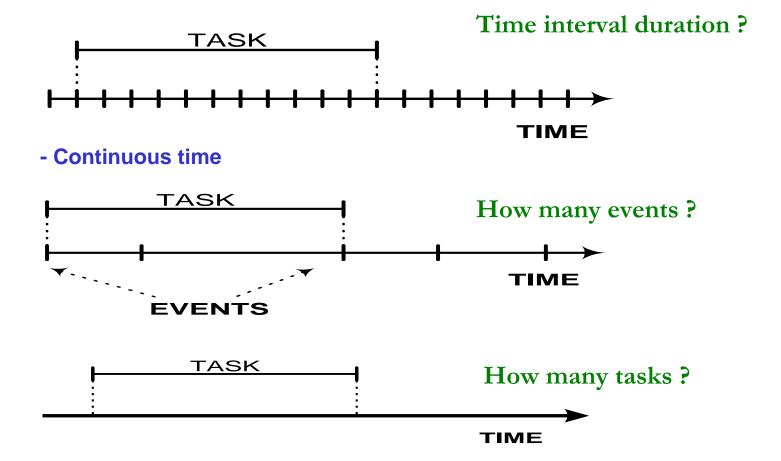
- (2) Constraint programming (CP)
 Constraint satisfaction methods
- (4) Heuristics
 Dispatching rules

(6) Hybrid-methods

Exact methods + CP

Exact methods + Heuristics

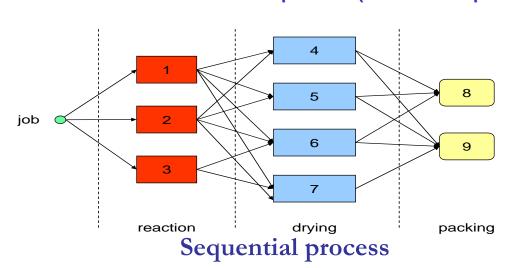
Meta-heuristics + Heuristics


Rigorous mathematical representation
Non-linear constraints are avoided
Discrete and continuous variables
Mathematical-based solution methods
Systematic solution search
Feasibility and optimality

ROAD-MAP FOR OPTIMIZATION APPROACHES

TIME DOMAIN REPRESENTATION

- Discrete time


ROAD-MAP FOR OPTIMIZATION APPROACHES

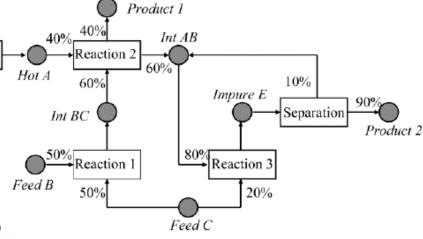
MATERIAL BALANCES

- Lots (Order or batch oriented)
- Network flow equations (STN or RTN problem representation)

Heating

Separate Batching from Scheduling?
Batch mixing and splitting?

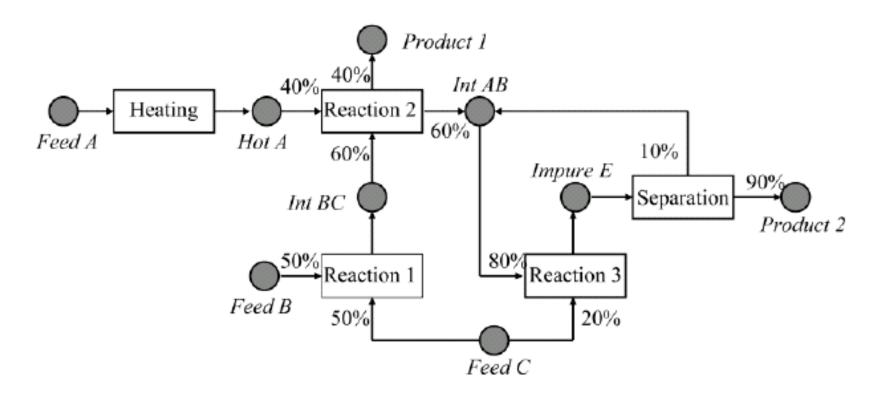
Network process


- Makespan
- Earliness/ Tardiness
- Profit
- Inventory

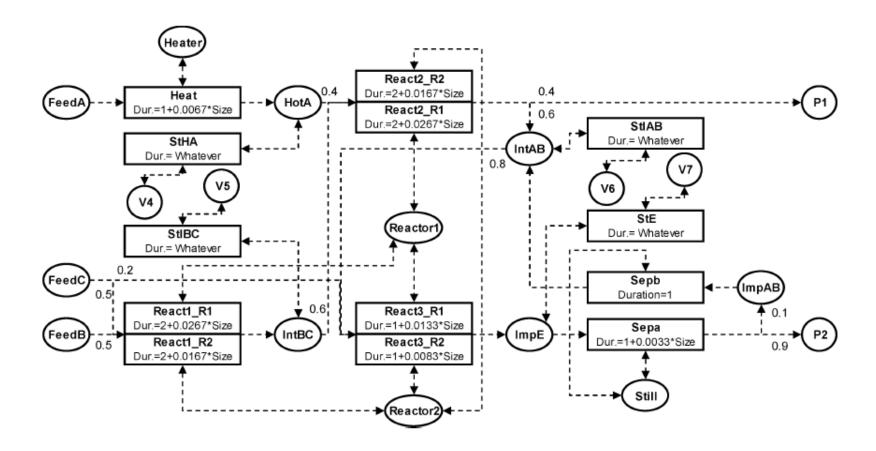
- Cost

Which goal?

Feed A


Multi-objective?

NETWORK PROCESS REPRESENTATION


State-Task Network (STN): assumes that processing tasks produce and consume states (materials). A special treatment is given to manufacturing resources aside from equipment.

NETWORK PROCESS REPRESENTATION

Resource-Task Network (RTN): employs a uniform treatment for all available resources through the idea that processing tasks consume and release resources at their beginning and ending times, respectively.

ROAD-MAP FOR OPTIMIZATION APPROACHES

Main events involve changes in:

Processing tasks (start and end)

Availability of any resource

Availability of any resource

Resource requirement of a task

EVENT REPRESENTATION

NETWORK-ORIENTED PROCESSES

DISCRETE TIME

- Global time intervals (STN or RTN)

CONTINUOUS TIME

- Global time points (STN or RTN)
- Unit- specific time event (STN)

Key point: reference points to check resources

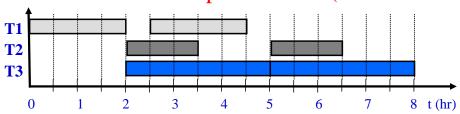
BATCH-ORIENTED PROCESSES

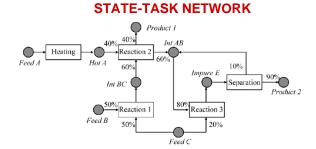
CONTINUOUS TIME

- Time slots
- Unit-specific direct precedence
- Global direct precedence
- Global general precedence

Key point: arrange resource utilization

STN-BASED DISCRETE TIME FORMULATION




(Kondili et al., 1993; Shah et al., 1993; Rodrigues et al., 2000.)

MAIN ASSUMPTIONS

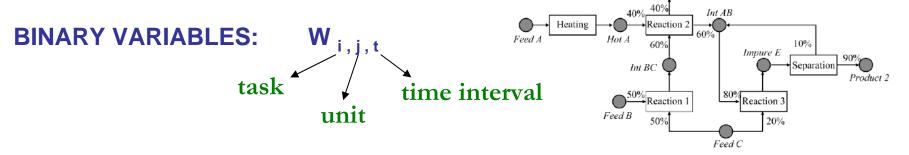
- •The scheduling horizon is divided into a finite number of time intervals with known duration
- •The same time grid is valid for all shared resources, i.e. global time intervals
- •Tasks can only start or finish at the boundaries of these time intervals

Discrete Time Representation (Global time intervals)

ADVANTAGES

- •Resource constraints are only monitored at predefined and fixed time points
- •Good computational performance
- •Simple models and easy representation of a wide variety of scheduling features

DISADVANTAGES


- •Model size and complexity depend on the number of time intervals
- Constant processing times are required
- •Sub-optimal or infeasible solutions can be generated due to the reduction of the time domain

STN-BASED DISCRETE TIME FORMULATION

MAJOR MODEL VARIABLES

STATE-TASK NETWORK

W_{i,j,t} = 1 only if the processing of a batch undergoing task i in unit j is started at time point t

CONTINUOUS VARIABLES:

 $B_{i,j,t}$ = size of the batch (i,j,t)

 $S_{s,t}$ = available inventory of state s at time point t

 $R_{r,t}$ = availability of resource r at time point t

The number of time intervals is the critical point (data dependent)

STN-BASED DISCRETE TIME FORMULATION

(Kondili et al., 1993; Shah et al., 1993)

$$\sum_{i \in I_j} \sum_{t'=t-pt_{ii}+1}^t W_{ijt'} \leq 1 \qquad \forall j,t \qquad \text{allocation and sequencing}$$

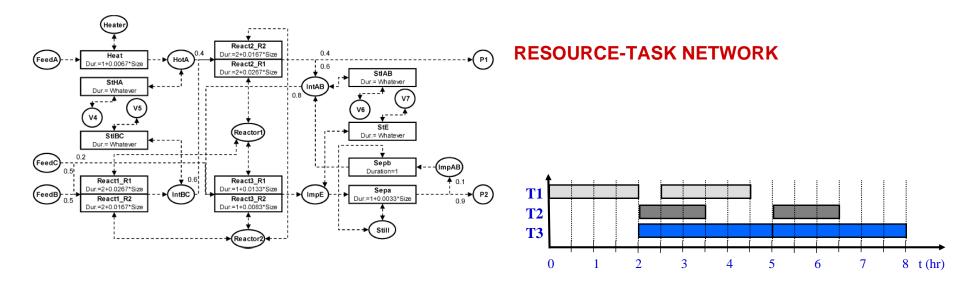
$$V_{ij}^{\min}W_{ijt} \leq B_{ijt} \leq V_{ij}^{\max}W_{ijt} \quad orall i, j \in Ji, t$$
 BATCH SIZE

$$S_{st} = S_{s(t-1)} + \sum_{i' \in I_s^p} \rho_{is}^p \sum_{j \in J_i} B_{ij(t-ptis)} - \sum_{i' \in I_s^c} \rho_{is}^c \sum_{j \in J_i} B_{ijt} + \prod_{st} - D_{st} \qquad \forall s, t$$

$$C_s^{\min} \leq S_{st} \leq C_s^{\max} \quad \forall s, t$$

$$R_{rt} = \sum_{i} \sum_{t=0}^{ptij-1} \left(\mu_{irt'} W_{ij(t-t')} + v_{irt'} B_{ij(t-t')} \right) \quad \forall r, t$$

RESOURCE BALANCE


$$0 \le R_{rt} \le R_{rt}^{\max} \quad \forall r, t$$

$$\sum_{i \in I_j^f} W_{ijt} + \sum_{i \in I_j^{f'}} \sum_{t'=t-clf'f-ptij+1}^t W_{ijt'} \leq 1 \qquad \forall j, f, f', t$$

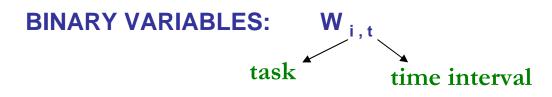
CHANGEOVER TIMES

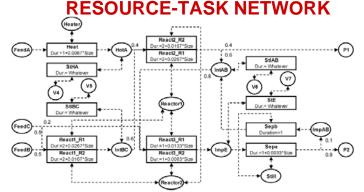
RTN-BASED DISCRETE TIME FORMULATION

(Pantelides, 1994).

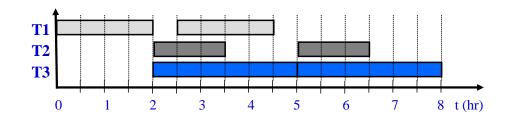
ADVANTAGES

- Resource constraints are only monitored at predefined and fixed time points
- All resources are treated in the same way
- Good computational performance
- Very Simple models and easy representation of a wide variety of scheduling features


DISADVANTAGES


- Model size and complexity depend on the number of time intervals
- Constant processing times are required
- Sub-optimal or infeasible solutions can be generated due to the reduction of the time domain
- Changeovers have to be considered as additional tasks

RTN-BASED DISCRETE TIME FORMULATION


MAJOR MODEL VARIABLES

 $W_{i,t} = 1$ only if the processing of a batch task i is started at time point t

CONTINUOUS VARIABLES:

 $B_{i,t}$ = size of the batch (i,t)

 $R_{r,t}$ = availability of resource r at time point t

The number of time intervals is the critical point (data dependent)

RTN-BASED DISCRETE TIME FORMULATION

$$R_{rt} = R_{r(t-1)} + \sum_{i \in I_r} \sum_{t'=0}^{pti} \left(\mu_{irt'} W_{i(t-t')} + \nu_{irt'} B_{i(t-t')} \right) + \prod_{rt} rt \qquad \forall r, t$$

$$0 \le R_{rt} \le R_{rt}^{\max} \quad \forall r, t$$

$$V_{ir}^{\min}W_{it} \leq B_{it} \leq V_{ir}^{\max}W_{it} \qquad \forall i, r \in R_i^J, t$$

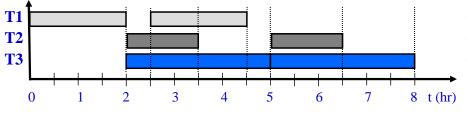
$$\forall i, r \in R_i^J, t$$

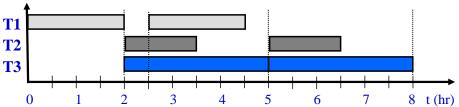
BATCH SIZE

Changeovers must be defined as additional tasks

STN-BASED CONTINUOUS TIME FORMULATION

(GLOBAL TIME POINTS)




(Pantelides, 1996; Zhang and Sargent, 1996; Mockus and Reklaitis, 1999; Mockus and Reklaitis, 1999; Lee et al., 2001, Giannelos and Georgiadis, 2002; Maravelias and Grossmann, 2003)

- Define a common time grid for all shared resources
- The maximum number of time points is predefined
- The time at which each time point takes place is a model decision (continuous domain)
- Tasks allocated to a certain time point n must start at the same time
- Only zero wait tasks must finish at a time point, others may finish before

Continuous Time Representation I

Continuous Time Representation II

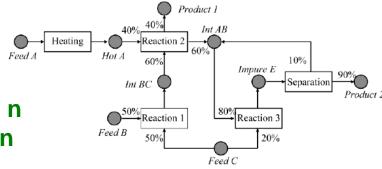
ADVANTAGES

- Significant reduction in model size when the minimum number of time points is predefined
- Variable processing times
- A wide variety of scheduling aspects can be considered
- Resource constraints are only monitored at each time point

DISADVANTAGES

- Definition of the minimum number of time points
- Model size and complexity depend on the number of time points predefined
- Sub-optimal or infeasible solution can be generated if the number of time points is smaller than required

STN-BASED CONTINUOUS TIME FORMULATION


MAJOR MODEL VARIABLES

BINARY VARIABLES:

Ws $_{i,n}$ = 1 only if task i starts at time point n

Wf i, n = 1 only if task i ends at time point n

STATE-TASK NETWORK

CONTINUOUS VARIABLES:

o 1 2

T1 T2

T3

T_n = time for events allocated at time point n

Ts $_{i,n}$ = start time of task i assigned at time point n

Tf i = end time of task i assigned at time point n

Bs $_{i,n}$ = batch size of task i when it starts at time point n

 $Bp_{i,n}$ = batch size of task i at an intermediate time point n

Bf $i_{i,n}$ = batch size of task i when it ends at time point n

 $S_{s,n}$ = inventory of state s at time point n

 $R_{r,n}$ = availability of resource r at time point n

The number of time points n is the critical point

STN-BASED CONTINUOUS FORMULATION

(GLOBAL TIME POINTS)

(Maravelias and Grossmann, 2003)

ALLOCATION CONSTRAINTS

$$\begin{cases} \sum_{i \in Ij} Ws_{in} \leq 1 & \forall j, n \\ \sum_{i \in Ij} Wf_{in} \leq 1 & \forall j, n \\ \sum_{i \in Ij} \sum_{n' \leq n} (Ws_{in'} - Wf_{in'}) \leq 1 & \forall j, n \\ \sum_{n} Ws_{in} = \sum_{n} Wf_{in} & \forall i \end{cases}$$

BATCH SIZE CONSTRAINTS

$$\left(\begin{array}{c} V_{i}^{\min}Ws_{in} \leq Bs_{in} \leq V_{i}^{\max}Ws_{in} \quad \forall i, n \\ V_{i}^{\min}Wf_{in} \leq Bf_{in} \leq V_{i}^{\max}Wf_{in} \quad \forall i, n \\ V_{i}^{\min} \left(\sum_{n' < n} Ws_{in'} - \sum_{n' \leq n} Wf_{in'} \right) \leq Bp_{in} \leq \\ V_{i}^{\max} \left(\sum_{n' < n} Ws_{in'} - \sum_{n' \leq n} Wf_{in'} \right) \quad \forall i, n \\ V_{i}^{\max} \left(\sum_{n' < n} Ws_{in'} - \sum_{n' \leq n} Wf_{in'} \right) \quad \forall i, n \\ Bs_{in-1} + Bp_{i(n-1)} = Bp_{in} + Bf_{in} \quad \forall i, n > 1 \end{array} \right)$$

$$\left\{ \begin{array}{c} Tf_{i(n-1)} \leq T_{n} + H \quad (1) \\ Tf_{i(n-1)} \geq T_{n} - H(1 - Wf_{in}) \quad \forall i, n \\ Ts_{i'n} \geq Tf_{i(n-1)} + cl_{ii'} \quad \forall j, i \in I_{j, n} \\ S_{sjn} \leq C_{j}V_{jsn} \quad \forall j \in J^{T}, n \\ S_{sjn} \leq C_{j}V_{jsn} \quad \forall j \in J^{T}, s \in I_{j, n} \\ S_{sin} \leq T_{j, n} \quad \forall i, n > 1 \end{array} \right)$$

ALLOCATION CONSTRAINTS
$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \\ S_{sn} \leq C_s^{\max} & \forall s, n \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \\ S_{sn} \leq C_s^{\max} & \forall s, n \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \\ S_{sn} \leq C_s^{\max} & \forall s, n \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

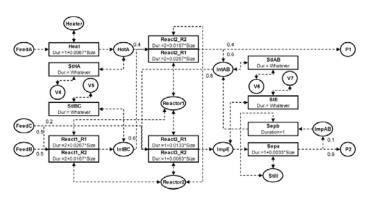
$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

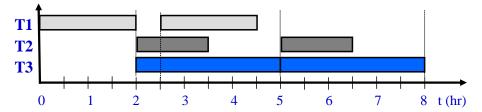
$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

$$\begin{cases} S_{sn} = S_{s(n-1)} - \sum_{i \in I_s^p} \rho_{is}^p B s_{in} + \sum_{i \in I_s^p} \rho_{is}^p B f_{in} & \forall s, n > 1 \end{cases}$$

$$\begin{cases} S_{sn} =$$

RTN-BASED CONTINUOUS TIME FORMULATION




MAJOR MODEL VARIABLES

BINARY VARIABLES:

W_{i,n,n'} = 1 only if task i starts at time point n and finishes at time point n'

RESOURCE-TASK NETWORK

CONTINUOUS VARIABLES:

T_n = time for events allocated at time point n

B_{i,n,n'} = batch size of task i when it starts at time point n and finishes at time point n'

 $R_{r,n}$ = availability of resource r at time point n

The number of time points n is the critical point

RTN-BASED CONTINUOUS FORMULATION

INTEC

(GLOBAL TIME POINTS)

(Castro et al., 2004)

$$T_{n'} - T_{n} \geq \sum_{i \in I_{r}} \left(\alpha_{i} W_{inn'} + \beta_{i} B_{inn'} \right) \qquad \forall r \in R^{J}, n, n', (n < n')$$

$$T_{n'} - T_{n} \leq H \left(1 - \sum_{i \in I_{r}^{ZW}} W_{inn'} \right) + \sum_{i \in I_{r}^{ZW}} \left(\alpha_{i} W_{inn'} + \beta_{i} B_{inn'} \right) \qquad \forall r \in R^{J}, n, n', (n < n') \right)$$

$$V_{i}^{min} W_{inn'} \leq B_{inn'} \leq V_{i}^{max} W_{inn'} \qquad \forall i, n, n', (n < n')$$

$$R_{m} = R_{r(n-1)} + \sum_{i \in I_{r}} \left[\sum_{n' < n} \left(\mu_{ir}^{p} W_{in'} + V_{ir}^{p} B_{in'} n \right) - \sum_{n' > n} \left(\mu_{ir}^{c} W_{inn'} + V_{ir}^{c} B_{inn'} \right) \right] +$$

$$\sum_{i \in I_{r}} \left[\mu_{ir}^{p} W_{i(n-1)n} - \mu_{ir}^{c} W_{in(n+1)} \right] \qquad \forall r, n > 1$$

$$R_{r}^{min} \leq R_{m} \leq R_{r}^{max} \qquad \forall r, n$$

$$V_{i}^{min} W_{in(n+1)} \leq \sum_{r \in R_{i}^{s}} R_{rn} \leq V_{i}^{max} W_{in(n+1)} \qquad \forall i \in I^{s}, n, (n \neq |N|)$$

$$V_{i}^{min} W_{in(n+1)} \leq \sum_{r \in R_{i}^{s}} R_{rn} \leq V_{i}^{max} W_{in(n-1)n} \qquad \forall i \in I^{s}, n, (n \neq 1)$$

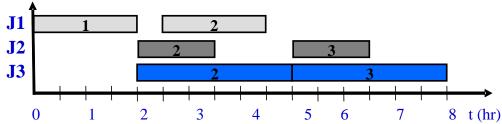
$$V_{i}^{min} W_{in(n+1)} \leq \sum_{r \in R_{i}^{s}} R_{rn} \leq V_{i}^{max} W_{in(n-1)n} \qquad \forall i \in I^{s}, n, (n \neq 1)$$

$$V_{i}^{min} W_{in(n+1)} \leq \sum_{r \in R_{i}^{s}} R_{rn} \leq V_{i}^{max} W_{in(n+1)} \qquad \forall i \in I^{s}, n, (n \neq 1)$$

$$V_{i}^{min} W_{in(n+1)} \leq \sum_{r \in R_{i}^{s}} R_{rn} \leq V_{i}^{max} W_{in(n+1)n} \qquad \forall i \in I^{s}, n, (n \neq 1)$$

STN-BASED CONTINUOUS FORMULATION

(UNIT-SPECIFIC TIME EVENT)



(lerapetritou and Floudas, 1998; Vin and lerapetritou, 2000; Lin et al., 2002; Janak et al., 2004).

MAIN ASSUMPTIONS

- The number of event points is predefined
- Event points can take place at different times in different units (global time is relaxed)

Event-Based Representation

ADVANTAGES

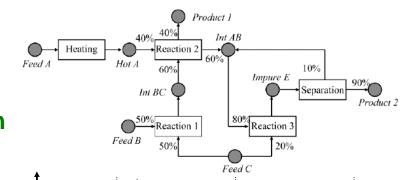
- More flexible timing decisions
- Less number of event points

DISADVANTAGES

- Definition of event points
- More complicated models, no reference points to check resource availabilities
- Model size and complexity depend on the number of time points predefined
- Sub-optimal or infeasible solution can be generated if the number of time points is smaller than required
- Additional tasks for storage and utilities

STN-BASED CONTINUOUS TIME FORMULATION

(UNIT-SPECIFIC TIME EVENT)



MAJOR MODEL VARIABLES

BINARY VARIABLES:

 $W_{i,n} = 1$ only if task i starts at time point n Ws_{i,n} = 1 only if task i starts at time point n Wf_{i,n} = 1 only if task i ends at time point n

CONTINUOUS VARIABLES:

STATE-TASK NETWORK

noint n

T2

T3

T_n = time for events allocated at time point n

Ts _{i, n} = start time of task i assigned at time point n

Tf i end time of task i assigned at time point n

Bs $i_{i,n}$ = batch size of task i when it starts at time point n

 $B_{i,n}$ = batch size of task i at an intermediate time point n

 $Bf_{i,n}$ = batch size of task i when it ends at time point n

 $S_{s,n}$ = inventory of state s at time point n

 $R_{i,r,n}$ = amount of resource r consumed by task i at time point n

 $R_{r,n}^{A}$ = availability of resource r at time point n

The number of time events n is the critical point

STN-BASED CONTINUOUS FORMULATION

(UNIT-SPECIFIC TIME EVENT)

(Janak et al., 2004)

ALLOCATION CONSTRAINTS

$$\sum_{i \in I_{j}} W_{in} \leq 1 \quad \forall j, n$$

$$\sum_{n' \leq n} W_{s_{in'}} - \sum_{n' < n} W_{f_{in'}} = W_{in} \quad \forall i, n$$

$$\sum_{n} W_{s_{in}} = \sum_{n} W_{f_{in}} \quad \forall i$$

$$\sum_{n} W_{s_{in}} \leq 1 - \sum_{n' < n} W_{s_{in'}} + \sum_{n' < n} W_{f_{in'}} \quad \forall i, n$$

$$W_{f_{in}} \leq \sum_{n' < n} W_{s_{in'}} - \sum_{n' < n} W_{f_{in'}} \quad \forall i, n$$

BATCH SIZE CONSTRAINTS

$$\begin{cases} \sum_{i \in I_{j}}^{i} W_{in} \leq 1 \quad \forall j, n \\ \sum_{n' \leq n}^{i} W_{s_{in'}} - \sum_{n' < n}^{i} Wf_{in'} = W_{in} \quad \forall i, n \\ \sum_{n}^{i} W_{s_{in}} = \sum_{n' < n}^{i} Wf_{in} \quad \forall i \\ \sum_{n}^{i} W_{s_{in}} \leq 1 - \sum_{n' < n}^{i} Wf_{in'} + \sum_{n' < n}^{i} Wf_{in'} \quad \forall i, n \\ Wf_{in} \leq \sum_{n' < n}^{i} Ws_{in'} - \sum_{n' < n}^{i} Wf_{in'} \quad \forall i, n \end{cases}$$

$$\begin{cases} BATCH SIZE CONSTRAINTS \\ V_{i}^{min} W_{in} \leq B_{in} \leq V_{i}^{max} W_{in} \quad \forall i, n \\ B_{in} \leq B_{in-1} - V_{i}^{max} \left(1 - W_{i(n-1)} + Wf_{i(n-1)}\right) \quad \forall i, n > 1 \\ B_{in} \geq B_{i(n-1)} - V_{i}^{max} \left(1 - W_{i(n-1)} + Wf_{i(n-1)}\right) \quad \forall i, n > 1 \\ Bs_{in} \leq B_{in} \quad \forall i, n \\ Bs_{in} \leq B_{in} + V_{i}^{max} Ws_{in} \quad \forall i, n \\ Bf_{in} \leq B_{in} - V_{i}^{max} \left(1 - Ws_{in}\right) \quad \forall i, n \\ Bf_{in} \leq B_{in} - V_{i}^{max} \left(1 - Wf_{in}\right) \quad \forall i, n \end{cases}$$

$$\begin{cases} P_{in}^{min} W_{in} \leq B_{in} \leq V_{i}^{max} W_{in} \quad \forall i, n \\ Bs_{in} \leq B_{in} + V_{i}^{max} Ws_{in} \quad \forall i, n \\ Bf_{in} \leq B_{in} - V_{i}^{max} \left(1 - Wf_{in}\right) \quad \forall i, n \end{cases}$$

$$\begin{cases} P_{in}^{min} W_{in} \leq B_{in} \leq V_{i}^{max} W_{in} \quad \forall i, n \\ Bs_{in} \leq B_{in} + V_{i}^{max} Ws_{in} \quad \forall i, n \\ Bs_{in} \leq B_{in} + V_{i}^{max} Wf_{in} \quad \forall i, n \end{cases}$$

$$\begin{cases} P_{in}^{min} W_{in} \leq B_{in} \leq B_{in} + V_{i}^{max} W_{in} \quad \forall i, n \\ Bs_{in} \leq B_{in} + V_{i}^{max} Ws_{in} \quad \forall i, n \\ Bs_{in} \leq B_{in} + V_{i}^{max} Wf_{in} \quad \forall i, n \end{cases}$$

MATERIAL BALANCE

$$S_{sn} = S_{s(n-1)} + \sum_{i \in I_s^p} \rho_{is}^p B f_{i(n-1)} + \sum_{i^{st} \in I_s^{ST}} B_{i^{st}(n-1)} - \sum_{i \in I_s^c} \rho_{is}^c B s_{in} - \sum_{i^{st} \in I_s^{St}} B_{i^{st}n} \quad \forall s, n$$

STORAGE CAPACITY

$$B_{i^{st}n} \leq C_s^{\max} \quad \forall s, i^{st} \in I_s^{st}, n$$

STN-BASED CONTINUOUS FORMULATION

(UNIT-SPECIFIC TIME EVENT)

$$\begin{split} Tf_{in} \geq Ts_{in} & \forall i, n \\ Tf_{in} \leq Ts_{in} + H \ W_{in} & \forall i, n \\ Ts_{in} \leq Tf_{i(n-1)} + H \left(1 - W_{i(n-1)} + Wf_{i(n-1)}\right) & \forall i, n > 1 \\ Tf_{in'} - Ts_{in} \geq \alpha_i Ws_{in} + \beta_i B_{in} + H \left(1 - Ws_{in}\right) + H \left(1 - Wf_{in'}\right) + H \left(\sum_{n \leq n'' \leq n'} Wf_{in''}\right) \\ & \forall i, n, n', (n \leq n') \\ Tf_{in'} - Ts_{in} \leq \alpha_i Ws_{in} + \beta_i B_{in} + H \left(1 - Ws_{in}\right) + H \left(1 - Wf_{in'}\right) + H \left(\sum_{n \leq n'' \leq n'} Wf_{in''}\right) \\ & \forall i \in I^{ZW}, n, n', (n \leq n') \\ Ts_{in} \geq Tf_{i(n-1)} & \forall i, n > 1 \\ Ts_{in} \geq Tf_{i'(n-1)} + cl_{i'i} + H \left(1 - Wf_{i'(n-1)} - Ws_{in}\right) & \forall i, i', i \neq i', j \in J_{i'}, n > 1 \\ Ts_{in} \geq Tf_{i'(n-1)} + H \left(1 - Wf_{i'(n-1)}\right) & \forall s, i \in I_s^c, i' \in I_s^p, j \in J_i, j' \in J_{i'}, j \neq j', n > 1 \\ Ts_{in} \leq Tf_{i'(n-1)} + H \left(2 - Wf_{i'(n-1)} - Ws_{in}\right) & \forall s \in S^{ZW}, i \in I_s^c, i' \in I_s^p, j \in J_i, j' \in J_{i'}, j \neq j', n > 1 \\ \end{split}$$

TIMING AND
SEQUENCING
CONSTRAINTS
(PROCESSING TASKS)

STN-BASED CONTINUOUS FORMULATION

(UNIT-SPECIFIC TIME EVENT)

$$\begin{split} &Tf_{i^{st}_{n}} \geq Ts_{i^{st}_{n}} \quad \forall i^{st}, n \\ &Ts_{i^{st}_{n}} \geq Tf_{i(n-1)} - H\left(1 - Wf_{i(n-1)}\right) \quad \forall s, i \in I_{s}^{p}, i^{st} \in I_{s}^{ST}, n > 1 \\ &Ts_{i^{st}_{n}} \leq Tf_{i(n-1)} + H\left(1 - Wf_{i(n-1)}\right) \quad \forall s, i \in I_{s}^{p}, i^{st} \in I_{s}^{ST}, n > 1 \\ &Ts_{i^{st}_{n}} \geq Tf_{i^{st}_{(n-1)}} \quad \forall s, i \in I_{s}^{c}, i^{st} \in I_{s}^{ST}, n > 1 \\ &Ts_{i^{st}_{n}} \leq Tf_{i^{st}_{(n-1)}} + H\left(1 - Ws_{i^{st}_{n}}\right) \quad \forall s, i \in I_{s}^{c}, i^{st} \in I_{s}^{ST}, n > 1 \\ &Ts_{i^{st}_{n}} = Tf_{i^{st}_{(n-1)}} \quad \forall i^{st}_{n}, n > 1 \end{split}$$

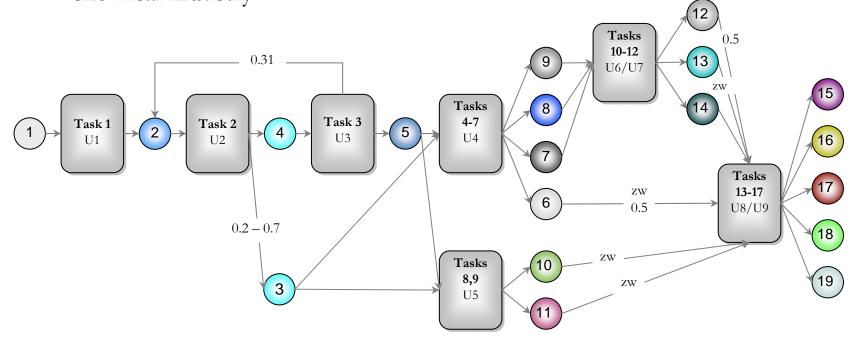
TIMING AND SEQUENCING CONSTRAINTS (STORAGE TASKS)

$$R_{irn} = \mu_{ir}^{c}W_{in} + \nu_{ir}^{c}B_{in} \quad \forall r, i \in I_r, n$$

$$\sum_{i \in I_r} R_{irn} + R_{rn}^{A} = R_r^{\max} \quad \forall r, n = 1$$

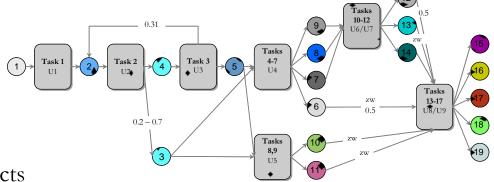
$$\sum_{i \in I_r} R_{irn} + R_{rn}^{A} = \sum_{i \in I_r} R_{ir(n-1)} + R_{r(n-1)}^{A} \quad \forall r, n > 1$$

RESOURCE BALANCE

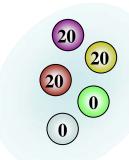

$$\begin{split} &Tf_{rn} \geq Ts_{rn} \quad \forall r, n \\ &Tf_{i(n-1)} \geq Ts_{rn} - H\left(1 - W_{i(n-1)} + Wf_{i(n-1)}\right) \quad \forall r, i \in I_r, n > 1 \\ &Tf_{i(n-1)} \leq Ts_{rn} - H\left(1 - W_{i(n-1)}\right) \quad \forall r, i \in I_r, n > 1 \\ &Ts_{rn} \geq Ts_{in} - H\left(1 - W_{in}\right) \quad \forall r, i \in I_r, n \\ &Ts_{rn} \leq Ts_{in} + H\left(1 - W_{in}\right) \quad \forall r, i \in I_r, n \\ &Ts_{rn} = Tf_{r(n-1)} \quad \forall r, n > 1 \end{split}$$

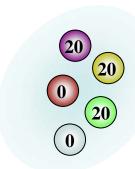
TIMING AND SEQUENCING OF RESOURCE USAGE

CASE STUDY: Westenberger & Kallrath (1995)

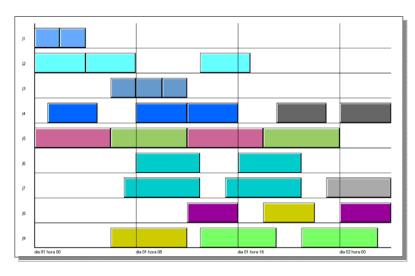

Benchmark problem for production scheduling in chemical industry

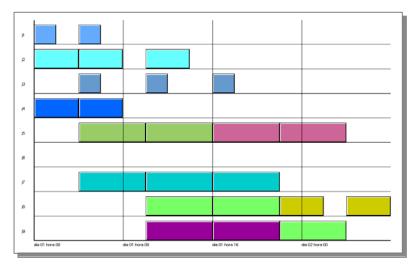
PROBLEM FEATURES




- 17 processing tasks, 19 states
- 9 production units
- 37 material flows
- Batch mixing / splitting
- Cyclical material flows
- Flexible output proportions
- Non-storable intermediate products
- No initial stock of final products
- Unlimited storage for raw material and final products
- Sequence-dependent changeover times

MAKESPAN MINIMIZATION





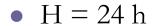
Instance		A			В	
Formulation	Discrete	Continuo	us	Discrete	Contin	uous
time points	30	8	9	30	7	8
binary variables	720	384	432	720	336	384
continuous variables	(3542	2258	2540	(3542	1976	2258
constraints	6713	4962	5585	6713	4343	4964
LP relaxation	9.9	24.2	24.1	9.9	25.2	24.3
objective	28	28	28	28	32	30
iterations	728	78082	27148	2276	58979	2815823
nodes		1180	470	25	1690	63855
CPU time (s)	1.34	108.39	51.41	4.41	66.45	3600.21
relative gap	0.0	0.0	0.0	0.0	0.0	0.067

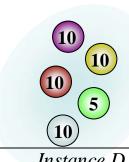
MAKESPAN MINIMIZATION

Discrete model

Time intervals: 30

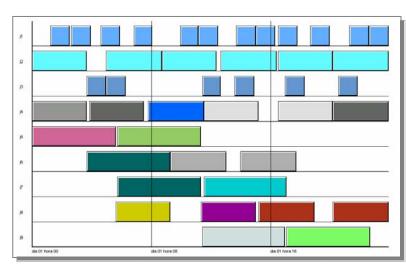
Makespan: 28


Continuous model


Time points: 7

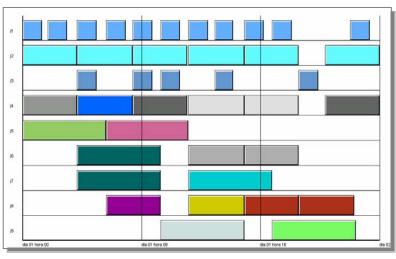
Makespan: 32

PROFIT MAXIMIZATION



		Discrete		Continuous
Formulation		LB	UB	
time points	240	24	24	14
binary variables	5760	576	576	672
continuous variables	28322	2834	2834	3950
constraints	47851	4794	4799	8476
LP relaxation	1769.9	1383.0	2070.9	1647.1
objective	(1425.8)	1184.2	1721.8	(1407.4)
iterations	449765	3133	99692	256271
nodes	5580	203	4384	1920
CPU time (s)	7202	6.41	58.32	258.54
relative gap	0.122	0.047	0.050	0.042

PROFIT MAXIMIZATION


• H = 24 h

Discrete model

Time intervals: 240

Profit: 1425.8

Continuous model

Time points: 14

Profit: **1407.4**

ROAD-MAP FOR OPTIMIZATION APPROACHES

Main events involve changes in:
Processing tasks (start and end)
Availability of any resource
Resource requirement of a task

EVENT REPRESENTATION

NETWORK-ORIENTED PROCESSES

DISCRETE TIME

- Global time intervals (STN or RTN)

CONTINUOUS TIME

- Global time points (STN or RTN)
- Unit- specific time event (STN)

Key point: reference points to check resources

BATCH-ORIENTED PROCESSES

CONTINUOUS TIME

- Time slots
- Unit-specific direct precedence
- Global direct precedence
- Global general precedence

Key point: arrange resource utilization

SLOT-BASED CONTINUOUS TIME FORMULATIONS

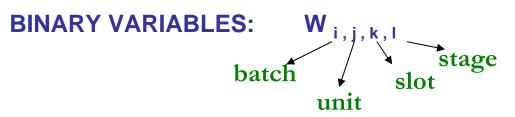
(Pinto and Grossmann (1995, 1996); Chen et. al. ,2002; Lim and Karimi, 2003)

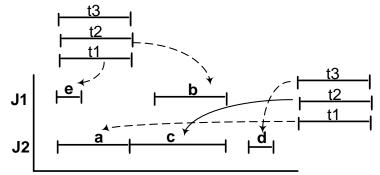
MAIN ASSUMPTIONS

- A number of time slots with unknown duration are postulated to be allocated to batches
- Batches to be scheduled are defined a priori
- No mixing and splitting operations
- Batches can start and finish at any time during the scheduling horizon

ADVANTAGES

- Significant reduction in model size when a minimum number of time slots is predefined
- Good computational performance
- Simple model and easy representation for sequencing and allocation scheduling problems


DISADVANTAGES


- Resource and inventory constraints are difficult to model
- Model size and complexity depend on the number of time slots predefined
- Sub-optimal or infeasible solution can be generated if the number of time slots is smaller than required

SLOT-BASED CONTINUOUS TIME FORMULATION

MAJOR MODEL VARIABLES

 $W_{i,j,k,l} = 1$ only if stage I of batch i is allocated to slot k of unit j

CONTINUOUS VARIABLES:

Ts $_{i,l}$ = start time of stage I of batch i Tf $_{i,l}$ = end time of stage I of batch I

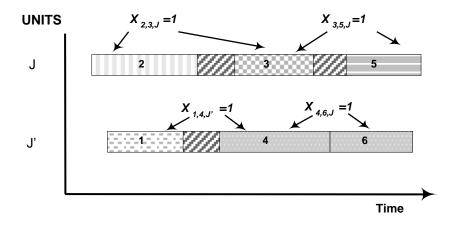
Ts $_{j,k}$ = start time of slot k in unit j Tf $_{j,k}$ = end time of slot k in unit j

The number of time slots k is the critical point

SLOT-BASED CONTINUOUS TIME FORMULATIONS

(Pinto and Grossmann (1995)

$$\begin{split} &\sum_{j} \sum_{k \in K_{j}} W_{ijkl} = 1 \quad \forall i, l \in L_{i} & \textbf{BATCH ALLOCATION} \\ &\sum_{i} \sum_{l \in L_{i}} W_{ijkl} \leq 1 \quad \forall j, k \in K_{j} & \textbf{SLOT ALLOCATION} \\ &Tf_{jk} = Ts_{jk} + \sum_{i} \sum_{l \in L_{i}} W_{ijkl} \Big(p_{ij} + su_{ij} \Big) \quad \forall j, k \in K_{j} & \textbf{SLOT TIMING} \\ &Tf_{il} = Ts_{il} + \sum_{j} \sum_{k \in K_{j}} W_{ijkl} \Big(p_{ij} + su_{ij} \Big) \quad \forall i, l \in L_{i} & \textbf{BATCH TIMING} \\ &Tf_{jk} \leq Ts_{j(k+1)} & \forall j, k \in K_{j} & \textbf{SLOT SEQUENCING} \\ &Tf_{il} \leq Ts_{i(l+1)} & \forall j, k \in K_{j} & \textbf{STAGE SEQUENCING} \\ &-M \Big(1 - W_{ijkl} \Big) \leq Ts_{il} - Ts_{jk} & \forall i, j, k \in K_{j}, l \in L_{i} \\ &M \Big(1 - W_{ijkl} \Big) \geq Ts_{il} - Ts_{jk} & \forall i, j, k \in K_{j}, l \in L_{i} \end{split}$$


UNIT-SPECIFIC DIRECT PRECEDENCE

(Cerdá et al., 1997).

MAIN ASSUMPTIONS

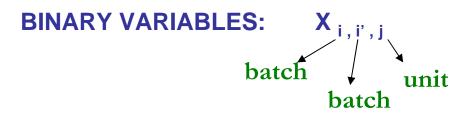
- Batches to be scheduled are defined a priori
- No mixing and splitting operations
- Batches can start and finish at any time during the scheduling horizon

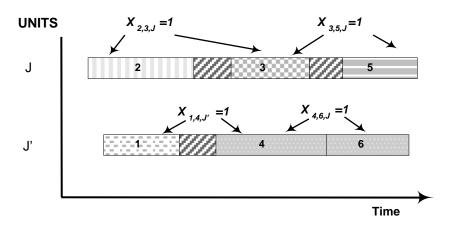
6 BATCHES, 2 UNITS

6 x 5 x 2= 60 SEQUENCING VARIABLES

ADVANTAGES

- Sequencing is explicitly considered in model variables
- Changeover times and costs are easy to implement


DISADVANTAGES


- Large number of sequencing variables
- Resource and material balances are difficult to model

UNIT-SPECIFIC DIRECT PRECEDENCE

MAJOR MODEL VARIABLES

 $X_{i,i',j} = 1$ only if batch i' is processed immediately after that batch i in unit j

 $Xf_{i,j} = 1$ only if batch i is first processed in unit j

CONTINUOUS VARIABLES:

Ts_i = start time of batch i Tf_i = end time of batch i

The number of predecessors and units is the critical point

UNIT-SPECIFIC DIRECT PRECEDENCE

(Cerdá et al., 1997).

$$\sum_{i \in I_j} XF_{ij} = 1 \quad \forall j$$

FIRST BATCH IN THE PROCESSING SEQUENCE

$$\sum_{j \in J_i} XF_{ij} + \sum_{j \in J_i} \sum_{i' \in I_i} X_{i'ij} = 1 \quad \forall i$$

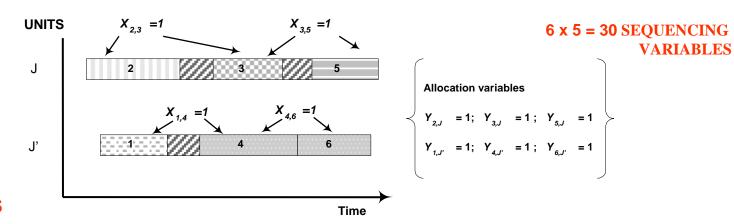
FIRST OR WITH ONE PREDECESSOR

$$\sum_{i' \in I_j} X_{ii'j} \le 1 \quad \forall i$$
 AT MOST ONE SUCCESSOR

$$XF_{ij} + \sum_{i' \in I_j} X_{i'ij} + \sum_{\substack{j' \in J_i \ i \neq i'}} \sum_{i' \in I_j} X_{ii'j'} \le 1 \quad \forall i, j \in J_i$$
 SUCCESSOR AND PREDECESSOR IN THE SAME UNIT

$$Tf_i = Ts_i + \sum_{j \in J_i} tp_i \left(XF_{ij} + \sum_{i' \in I_j} X_{i'ij} \right) \quad \forall i \quad \text{PROCESSING TIME}$$

$$Ts_i \ge Tf_{i'} + \sum_{j \in J_{ii'}} cl_{i'i} X_{i'ij} - M \left(1 - \sum_{j \in J_{ii'}} X_{i'ij}\right) \quad \forall i, i'$$
 SEQUENCING


GLOBAL DIRECT PRECEDENCE

(Méndez et al., 2000; Gupta and Karimi, 2003)

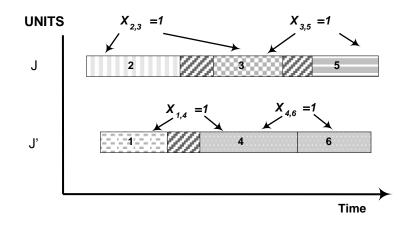
MAIN ASSUMPTIONS

- Batches to be scheduled are defined a priori
- No mixing and splitting operations
- Batches can start and finish at any time during the scheduling horizon 6 BATCHES, 2 UNITS

ADVANTAGES

- Sequencing is explicitly considered in model variables
- Changeover times and costs are easy to implement

DISADVANTAGES


- Large number of sequencing variables
- Resource and material balances are difficult to model

GLOBAL DIRECT PRECEDENCE

MAJOR MODEL VARIABLES

 $X_{i,i'}$ = 1 only if batch i' is processed immediately after that batch i in unit j $W_{i,j}$ = 1 only if batch i' is processed in unit j $Xf_{i,j}$ = 1 only if batch i is first processed in unit j

CONTINUOUS VARIABLES:

Ts_i = start time of batch i Tf_i = end time of batch i

The number of predecessors is the critical point

GLOBAL DIRECT PRECEDENCE

(Méndez et al., 2000)

$$\sum_{i \in I_j} XF_{ij} \le 1 \quad \forall j$$

AT MOST ONE FIRST BATCH IN THE PROCESSING SEQUENCE

$$\sum_{j \in J_i} XF_{ij} + \sum_{j \in J_i} W_{ij} = 1 \quad \forall i$$

ALLOCATION CONSTRAINT

$$XF_{ij} + W_{ij} \le W_{i'j} - X_{ii'} + 1 \quad \forall i, i', j \in J_{ii'}$$

SEQUENCING-ALLOCATION MATCHING

$$XF_{ij} + W_{ij} \le 1 - X_{ii'} \quad \forall i, i', j \in (J_i - J_{ii'})$$

$$\sum_{j \in J_i} X F_{ij} + \sum_{i'} X_{i'i} = 1 \quad \forall i$$

FIRST OR WITH ONE PREDECESSOR

$$\sum_{i'} X_{ii'} \le 1 \quad \forall i$$

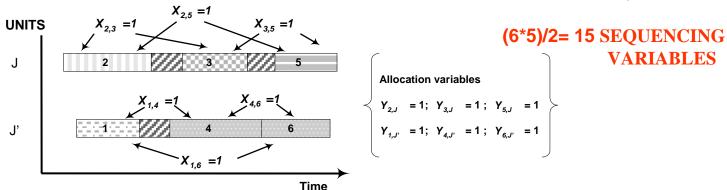
AT MOST ONE SUCCESSOR

$$Tf_i = Ts_i + \sum_{j \in J_i} tp_i \left(XF_{ij} + W_{ij} \right) \quad \forall i$$

TIMING AND SEQUENCING

$$Ts_{i'} \ge Tf_i + \sum_{j \in J_i} (cl_{ii'} + su_{i'j}) W_{i'j} - M(1 - X_{ii'}) \quad \forall i$$

GLOBAL GENERAL PRECEDENCE



(Méndez et al., 2001; Méndez and Cerdá (2003,2004))

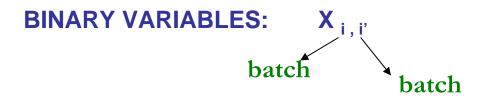
MAIN ASSUMPTIONS

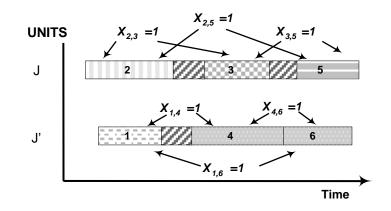
- Batches to be scheduled are defined a priori
- No mixing and splitting operations
- Batches can start and finish at any time during the scheduling horizon

6 BATCHES, 2 UNITS

ADVANTAGES

- General sequencing is explicitly considered in model variables
- Changeover times and costs are easy to implement
- Lower number of sequencing decisions
- Sequencing decisions can be extrapolated to other resources


DISADVANTAGES


• Material balances are difficult to model, no reference points

GLOBAL GENERAL PRECEDENCE

MAJOR MODEL VARIABLES

 $X_{i,i'}$ = 1 only if batch i' is processed after that batch i in unit j $W_{i,J}$ = 1 only if batch i' is processed in unit j

CONTINUOUS VARIABLES:

Ts_i = start time of batch i Tf_i = end time of batch i

CAN BE EASILY GENERALIZED TO MULTISTAGE PROCESSES AND TO SEVERAL RESORCES

The number of predecessors is the critical point

GLOBAL GENERAL PRECEDENCE

(Méndez and Cerdá, 2003)

$$\sum_{i \in J_{il}} W_{ilj} = 1 \quad \forall i, l \in L_i$$
 ALLOCATION CONSTRAINT

$$Tf_{il} = Ts_{il} + \sum_{j \in J_{il}} tp_{ilj} W_{ilj} \quad \forall i, l \in L_i$$
 PROCESSING TIME

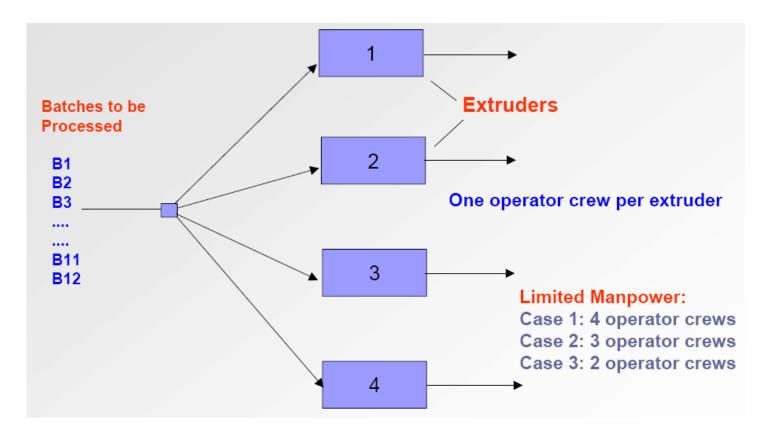
$$Ts_{i'l'} \ge Tf_{il} + cl_{il,i'l'} + su_{i'l'} - M(1 - X_{il,i'l'}) - M(2 - W_{ilj} - W_{i'l'j}) \quad \forall i, i', l \in L_i, l' \in L_{i'}, j \in J_{il,i'l'}$$

SEQUENCING CONSTRAINTS

$$Ts_{il} \ge Tf_{i'l'} + cl_{i'l',il} + su_{il} - MX_{il,i'l'} - M(2 - W_{ilj} - W_{i'l'j}) \quad \forall i, i', l \in L_i, l' \in L_{i'}, j \in J_{il,i'l'}$$

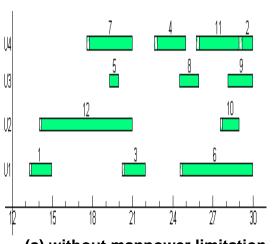
$$Ts_{il} \geq Tf_{i(l-1)}$$
 $\forall i, l \in L_i, l > 1$ STAGE PRECEDENCE

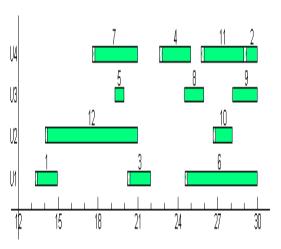
SUMMARY OF OPTIMIZATION APPROACHES

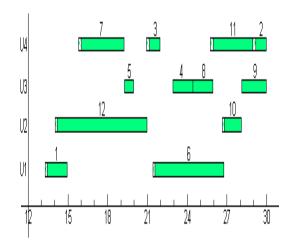


Time representation	DISCRETE			CONTI	NUOUS		
Event representation	Global time intervals	Global time points	Unit-specific time events	Time slots*	Unit-specific immediate precedence*	Immediate precedence*	General precedence*
Main decisions	Lot-s	sizing, allocation,	sequencing, timin	ıg	Allocati	on, sequencing, t	iming
Key discrete variables	W_{ijt} defines if task I starts in unit j at the beginning of time interval t .	Ws _{in} / Wf _{in} define if task i starts/ends at time point n. W _{inn} · defines if task i starts at time point n and ends at time point n'.	Ws _{in} /W _{in} / Wf _{in} define if task <i>i</i> starts/is active/ends at event point <i>n</i> .	W_{ijk} define if unit j starts task i at the beginning of time slot k .	X _{ii'j} defines if batch <i>i</i> is processed right before of batch <i>i</i> ' in unit <i>j</i> . XF _{ij} defines if batch <i>i</i> starts the processing sequence of unit <i>j</i> .	X _{ii'} defines if batch <i>i</i> is processed right before of batch <i>i'</i> . XF _{ij} /W _{ij} defines if batch <i>i</i> starts/is assigned to unit <i>j</i> .	X'ii' define if batch i is processed before or after of batch i'. Wij defines if batch i is assigned to unit j
Type of process		General ne	twork			X	
Material balances	Network flow equations (STN or RTN)	Network flow equations (STN or RTN)	Network flow equations (STN)		Batch-oriented		
Critical modeling issues	Time interval duration, scheduling period (data dependent)	Number of time points (iteratively estimated)	Number of time events (iteratively estimated)	Number of time slots (estimated)	Number of batch tasks sharing units (lot-sizing) and units	Number of batch tasks sharing units (lot-sizing)	Number of batch tasks sharing resources (lot-sizing)
Critical problem features	Variable processing time, sequence-dependent changeovers	Intermediate due dates and raw-material supplies	Intermediate due dates and raw-material supplies	Resource limitations	Inventory, resource limitations	Inventory, resource limitations	Inventory

RESOURCE-CONSTRAINED EXAMPLE




- 12 batches and 4 processing units in parallel
- Manpower limitations (4, 3, 2 operators crews)
- Specific batch due dates
- Total earliness minimization
- Three approaches: time-slots, general precedence and event times



COMPUTATIONAL RESULTS

(a) without manpower limitation

(b) 3 operator crews

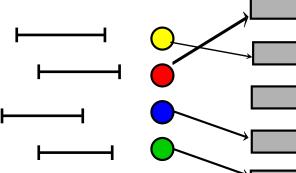
(c) 2 operators crews

Case Study	Event representation	Binary vars, cont. vars,	Objective	CPU time	Nodes
		constraints	function		
2.a	Time slots & preordering	100, 220, 478	1.581	67.74 ^a	456
	General precedence	82, 12, 202	1.026	0.11^{b}	64
	Unit-based time events (4)	150, 513, 1389	1.026	0.07^{c}	7
2.b	Time slots & preordering	289, 329, 1156	2.424	2224^{a}	1941
	General precedence	127, 12, 610	1.895	7.91^{b}	3071
	Unit-based time events (12)	458, 2137, 10382	1.895	6.53 ^c	1374
2.c	Time slots & preordering	289, 329, 1156	8.323	76390 ^a	99148
	General precedence	115, 12, 478	7.334	35.87^{b}	19853
	Unit-based time events (12)	446, 2137, 10381	7.909	178.85^{c}	42193

TIGHTENING CONSTRAINTS

MAJOR GOAL

Use additional constraints to


- Obtain a good estimation of problem variables related to the objective function (makespan, tardiness, earliness)
- Accelerate the pruning process by producing a better estimation on the RMIP solution value at each node
- **Exploit the information provided by 0-1 decision variables**
- Reduce computational effort

MOTIVATING EXAMPLES

SCHEDULING OF A SINGLE-STAGE BATCH PLANT

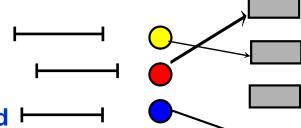
OBJECTIVE: MINIMUM MAKESPAN

If unit-dependent setup times are required

$$ru_{j}^{*} + \sum_{i \in I_{j}} (su_{ij} + pt_{ij}) Y_{ij} \leq MK \qquad \forall j \in J$$

where
$$ru_j^* = \text{Max}\left[ru_j, \min_{i \in I_j} \left[rt_i - su_{ij}\right]\right]$$

is a better estimation of the *j*th-unit ready time because it also considers the release times of the candidate tasks for unit *j*.


The estimation for makespan is based only on assignment variables.

MOTIVATING EXAMPLES

SCHEDULING OF A SINGLE-STAGE BATCH PLANT

OBJECTIVE: MINIMUM MAKESPAN

If sequence-dependent setup times are required +

$$ru_{j}^{*} - \operatorname{Max}_{i \in I_{j}} \left[\sigma_{ij}^{Min}\right] + \sum_{i \in I_{j}} \left(\sigma_{ij}^{Min} + su_{ij} + pt_{ij}\right) Y_{ij} \leq MK \qquad \forall j \in J$$

where
$$ru_{j}^{*} = \operatorname{Max}\left[ru_{j}, \operatorname{Min}_{i \in I_{j}}\left[rt_{i} - su_{ij}\right]\right]$$

$$\sigma_{ij}^{Min} = \operatorname{Min}_{i' \in I_{j}: i' \neq i}\left[\tau_{i'ij}\right]$$

The estimation for makespan is based only on assignment variables.

COMPUTATIONAL RESULTS

WITHOUT TIGHTENING CONSTRAINTS

	Binary vars,	Seque	Example 1A: Sequence independent setup times				Example 1B: Sequence dependent setup times			
n	Continuous vars, Constraints	Objective Function	Relative Gap (%)	CPU time (sec.)	Nodes	Objective Function	Relative Gap (%)	CPU time (sec.)	Nodes	
12	82, 25, 214	8.428	-	19.03	94365	8.645	-	8.36	39350	
16	140, 33, 382	12.353	2.43	3600 †	8893218	12.854	- /	1188.50	3421982	
18	161, 37, 444	13.985	-	2872.81	7166701	14.633	27.07	3600 [†]	8708577	
20	201, 41, 558	15.268	22.62	3600 [†]	6282059	15.998	21.95	3600 [†]	6570231	

WITH TIGHTENING CONSTRAINTS

12	82, 25, 218	8.428	-	0.05	12	8.645	-	0.05	15
16	140, 33, 386	12.353	-	0.03	1	12.854	-	0.09	44
18	161, 37, 448	13.985	-	0.11	27	14.611	-	40.36	116413
20	201, 41, 562	15.268	-	0.14	21	15.998	-	183.56	417067
22	228, 45, 622	15.794	-	0.20	49	16.396	-	167.09	359804
25	286, 51, 792	18.218	-	0.42	110	19.064*	-	79.25	109259
29	382, 59, 1064	23.302	-	0.61	82	24.723 *	-	5.92	5385
35	532, 71, 1430	26.683	-	0.97	90				
40	625, 81, 1656	28.250	-	0.91	34				

Marchetti, P. A. and Cerdá, J., Submitted 2007

SOLUTION OF A LARGE-SCALE MULTISTAGE PROCESS

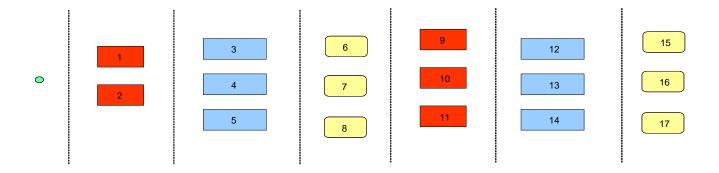
MULTISTAGE MULTIPRODUCT BATCH PROCESS

Major problem features (Pharmaceutical industry)

17 processing units

5 processing stages

30 to 300 production orders per week (thousands of batch operations)


Different processing times (0.2 h to 3 h)

Sequence-dependent changeovers (0.5 h to 2 h)

Allocation restrictions

Few minutes to generate the schedule

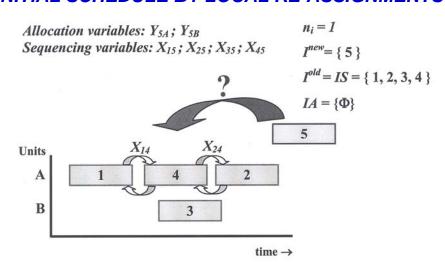
Rescheduling on a daily basis

SOLUTION STRATEGY

PROPOSED TWO-STAGE SOLUTION STRATEGY

FIRST STAGE: CONSTRUCTIVE STAGE

BASED ON A REDUCED MILP-BASED MODEL


GENERATE THE BEST POSSIBLE SCHEDULE IN A SHORT-TIME

OPTION: GENERATE A FULL SCHEDULE BY INSERTING ORDERS ONE BY ONE

SECOND STAGE: IMPROVEMENT STAGE

BASED ON A REDUCED MILP-BASED MODEL

IMPROVE THE INITIAL SCHEDULE BY LOCAL RE-ASSIGNMENTS AND RE-SEQUENCING

GENERAL MILP MODEL

(Méndez and Cerdá, 2003)

Multistage multipurpose batch plant

$$\sum_{j \in J_{il}} W_{ilj} = 1 \quad \forall i, l \in L_i$$

ALLOCATION CONSTRAINT

$$Tf_{il} = Ts_{il} + \sum_{j \in J_{il}} tp_{ilj} W_{ilj} \quad \forall i, l \in L_i$$
 PROCESSING TIME

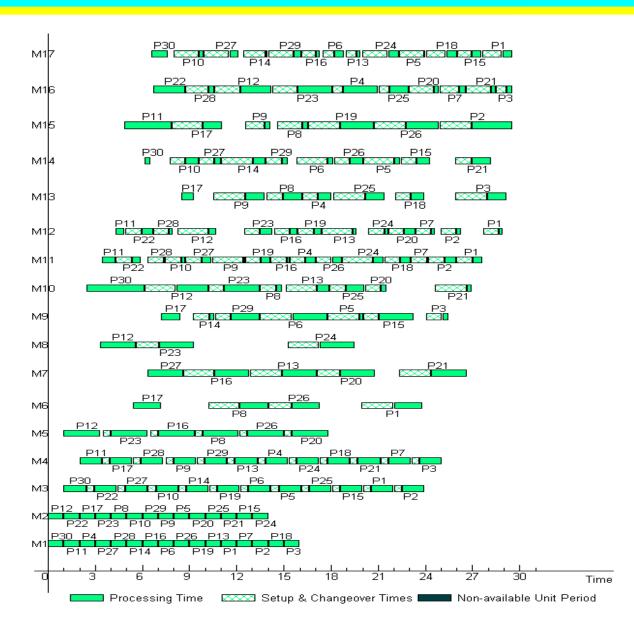
$$Ts_{i'l'} \ge Tf_{il} + cl_{il,i'l'} + su_{i'l'} - M(1 - X_{il,i'l'}) - M(2 - W_{ilj} - W_{i'l'j}) \quad \forall i, i', l \in L_i, l' \in L_{i'}, j \in J_{il,i'l'}$$

SEQUENCING CONSTRAINTS

$$Ts_{il} \ge Tf_{i'l'} + cl_{i'l',il} + su_{il} - MX_{il,i'l'} - M(2 - W_{ilj} - W_{i'l'j}) \quad \forall i, i', l \in L_i, l' \in L_{i'}, j \in J_{il,i'l'}$$

$$Ts_{il} \geq Tf_{i(l-1)}$$
 $\forall i, l \in L_i, l > 1$ STAGE PRECEDENCE

General problem representation


BEST SCHEDULE

SCHEDULE FOR 30-ORDER PROBLEM

TOTAL COMPUTATIONAL EFFORT

FEW MINUTES

COMPUTATIONAL RESULTS

Pure optimization approaches

Model Bin. vars.	Cont. vars.	Cons.	RMIP MIP	Best possible	CPUs Nodes
MILP (2521)	2708	10513	7.449 (47.982	13.325	3600 62668
CP -	1050	1300	- 79.989		3600 1432

Proposed solution strategy

			CPU-limit (s)	Makespan (h)		CPUs	
Orders	Ap.	NPS	Per phase	Constructive	Improvement	Scheduling	Total
				Stage	stage		
30	AP2	1	(10);(10)	33.149	31.175	86.4	188
30	AP2	2	(20);(10)	32.523	31.007	175	275
30	AP2	3	(30);(10)	34.447	31.787	255	355
50	AP2	1	(10);(10)	52.911	51.275	240	342
50	AP2	2	(15);(10)	52.964	51.080	321	429
50	AP3	3	(20);(10)	55.705	52.960	306	407

REMARKS

- Current optimization models are able to solve complex scheduling problems
- Small examples can be solved to optimality
- Discrete-time models may be computationally more effective than continuous-time
- Discrete-time models are usually more flexible than continuous-time models
- ♣ Difficult selection of the number of time or event points in the general continuous-time formulation.
- ♣ General continuous-time models become quickly computationally intractable for scheduling of medium complexity process networks.
- ♣ Problems with more than 150 time intervals are usually difficult to solve by using discrete time models.
- ♣ Problems with more than 15 time or event points appear intractable for continuous time models.
- Different performance depending on the objective function.

CONCLUSIONS

- Batch-oriented continuous models are more efficient for sequential processes and larger number of batches
- ◆ Batch-oriented models can incorporate practical process knowledge in a more natural way
- Resource constraints can be efficiently addressed without point references
- Inventory constraints seem very difficult to address without point references
- Combine other approaches with mathematical programming for solving large scale problems looks very promising