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Abstract

Mathematical models are important tools for optimizing the design and operation of solid-state fermentation (SSF) bioreactors. Such
models must describe the kinetics of microbial growth, how this is affected by the environmental conditions and how this growth affects
the environmental conditions. This is done at two levels of sophistication. In many bioreactor models the kinetics are described by simple
empirical equations. However, other models that address the interaction of growth with intraparticle diffusion of enzymes, hydrolysis
products and O2 with the use of mechanistic equations have also been proposed, and give insights into how these microscale processes
can potentially limit the overall performance of a bioreactor. The current article reviews the advances that have been made in both the
empirical- and mechanistic-type kinetic models and discusses the insights that have been achieved through the modeling work and the
improvements to models that will be necessary in the future.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Mathematical models have an important role to play in
the optimization of solid-state fermentation (SSF) bioreac-
tors [1]. Bioreactor models aim to describe the overall per-
formance of the bioreactor and consist of two sub-models:
a balance/transport sub-model that describes mass and heat
transfer within and between the various phases of the biore-
actor and a kinetic sub-model that describes how the growth
rate of the microorganism depends on the key local envi-
ronmental variables. One of two approaches may be taken
to describing the growth kinetics. Simple empirical equa-
tions may be used or mechanistic models that attempt to
describe intraparticle diffusion processes related to growth
may be proposed. In fact, several mechanistic models have
been proposed that do not concern themselves with overall
bioreactor performance but instead focus on the question
of how growth can be limited by events that occur at the
level of individual particles. In this context, they have been
referred to as microscale models[2].

The current work represents the second part in a two-part
review of modeling in SSF. The first part reviewed ap-
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proaches that have been used to modeling macroscale heat
and mass phenomena in various bioreactor types[1]. The
current part reviews the microscale phenomena, including
both the simple empirical approaches to describing growth
kinetics that have been used in most of the bioreactor
models and microscale models that have been proposed in-
dependently of bioreactor models. The review aims to give
an insight into how the various kinetic and intraparticle
phenomena that occur within the system can be described
mathematically. To this end key model equations are re-
produced and discussed. However, the sets of equations
that constitute the various models that are discussed are not
reproduced in their entirety. Readers wishing to understand
individual models in detail must refer to the original works.
Also discussed are the insights that have been achieved
through the modeling work, and improvements to models
that will be necessary in the future.

2. State of the art of modeling growth with empirical
growth kinetic models

The majority of current bioreactor models have sim-
ple empirical kinetic sub-models, since the heterogeneity
within many bioreactors means that the balance/transport

1369-703X/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S1369-703X(03)00120-7



16 D.A. Mitchell et al. / Biochemical Engineering Journal 17 (2004) 15–26

sub-model is already quite complex[1,2]. For example,
significant gradients can be expected within a packed bed
bioreactor with respect to temperature, moisture and the
gas phase O2 concentration[3,4]. The balance equations
in dynamic models of such systems are partial differen-
tial equations, which require much more computational
power to solve than the ordinary differential equations that
describe the balances over well-mixed bioreactors. If the
intraparticle diffusion of enzymes, hydrolysis products and
O2 were to be described in the model of such a bioreactor,
the computational power required to solve the model would
increase dramatically. Further, a greater experimental ef-
fort would be required to determine the model parameters
associated with the microscale. This is typically avoided
by using empirical kinetic sub-models[2]. One exception
is the gas–solid fluidized bed bioreactor. This bioreactor
provides good mixing and heat removal at the macroscale,
greatly simplifying the balance equations, and allowing
the assumption that all substrate particles are subjected to
identical external conditions. As a result, the various mod-
els that have been proposed for this bioreactor use kinetic
sub-models that consider intraparticle diffusion phenomena.

2.1. Basic kinetic equations

Various kinetic profiles have been reported in SSF sys-
tems, including linear, exponential, logistic and fast-acce-
leration/slow-deceleration[5]. The typical forms of these
curves are shown inFig. 1. Empirical equations that have
been proposed to describe these curves are shown inTable 1
(Eqs. (1)–(8)). These equations do not include the effect of
nutrient concentration on growth. To do so would require
modeling of intraparticle diffusion processes. The empirical
equations are simply fitted to experimental growth profiles
by non-linear regression.

The linear, exponential and logistic equations have been
used for some time. The two phase equation was developed

Fig. 1. The various empirical kinetic profiles that have been described in
solid-state fermentation systems: (A) exponential; (B) logistic; (C) linear;
(D) fast-acceleration/slow-deceleration. In applying non-linear regression
to experimental data zero time will typically be taken as the end of the
lag-phase.

more recently in order to describe the fast-acceleration/
slow-deceleration profile[6]. In this kinetic model, an
exponential phase is followed by a deceleration phase.
The quantity in square brackets inEq. (4b) represents the
specific growth rate during the deceleration phase, which
decreases due to two factors. Firstly, a sudden deceleration
is assumed at the instant that the switch from exponential
to deceleration phase occurs at timeta, with the parameter
L representing the ratio of the specific growth rate at the
start of the deceleration phase to the specific growth rate
during the previous exponential phase. Secondly, further
deceleration is described by an exponential decay in specific
growth rate throughout the deceleration phase, described
by the exponential term inEq. (4b), with a first-order rate
constant ofk. One difficulty with applying this model is
that the exponential period is typically short and has quite
low microbial biomass concentrations, meaning that there
are few experimental points and a relatively large error.
Therefore, it might be difficult to determine the parameters
for the exponential phase accurately. This could present a
problem becauseµ from the exponential phase is used in
the analysis of the deceleration phase, although it is also
possible to combineµ and L and estimate this combina-
tion as a single parameter,µL, from the deceleration phase
data.

The causes of the deceleration of growth are not specified
in the simple empirical growth kinetic equations presented
in Table 1. In developing their two-phase equation, Ikasari
and Mitchell [6] suggested that the sudden deceleration at
the end of the exponential phase might be associated with an
event such as the meeting of hyphae from different expand-
ing microcolonies, which could cause a sudden decrease in
the number of actively extending hyphal tips. However, they
did not propose a mechanism by which this effect might be
mediated. Possible explanations are the accumulation of in-
hibitory metabolites in the medium, exhaustion of readily
utilizable nutrients or the onset of oxygen limitation. The
mechanisms by which these phenomena can cause deceler-
ation of growth are discussed in more detail inSection 3of
this review, which addresses the modeling of intraparticle
phenomena.

Mathematical models of SSF bioreactors most commonly
use the logistic equation, including several of the most re-
cently proposed models[7–17]. This is done on the basis
of mathematical simplicity, because often the logistic equa-
tion can, in a single equation, give an adequate approxima-
tion of the whole growth curve, including the lag phase and
the cessation of growth in the latter stages of the fermenta-
tion. With the other kinetic models the growth curve must
be separated into various phases, with a different equation
for each phase. For example, for the linear model, lag and
stationary phases might be recognized on either side of the
linear growth region, and would be described by setting the
growth rate equal to zero.

It may be difficult to undertake experimental growth stud-
ies to determine the kinetic equations and their parameters.



D.A. Mitchell et al. / Biochemical Engineering Journal 17 (2004) 15–26 17

Table 1
Differentiated and integrated forms of the various empirical growth equations that have been applied to SSF systemsa

Differentiated form Integrated form

Linear
dX

dt
= K (1) X = Kt +X0 (5)

Exponential
dX

dt
= µX (2) X = X0eµt (6)

Logistic
dX

dt
= µX

(
1 − X

Xm

)
(3) X = Xm

1 + ((Xm/X0)− 1)e−µt (7)

Two phase
dX

dt
= µX, t < ta (4a) X = X0eµt, t < ta (8a)

dX

dt
= [µLe−k(t−ta)]X, t ≥ ta (4b) X = XA exp

[
µL

k
(1 − e−k(t−ta))

]
, t ≥ ta (8b)

a X is microbial biomass,t is time,K is the linear growth rate,µ is the specific growth rate constant,X0 is the initial biomass andXm is the maximum
possible microbial biomass. The symbolsta, L and k in the two-phase model are explained in the text.

Many SSF processes involve filamentous fungi, which bind
tightly to the substrate, usually making it impossible to de-
termine the dry weight of fungal biomass directly since it
cannot be weighed independently of the residual substrate.
Therefore, many of the kinetic studies done to determine the
kinetic model are either undertaken in artificial systems that
allow microbial biomass measurement, such as membrane
culture [18] or amberlite resin[19], or are undertaken in
the real system but using indirect measurements of growth,
such as O2 consumption or glucosamine content. However,
both approaches have problems. The growth kinetics in arti-
ficial systems may not reflect the growth kinetics in the real
system, while indirect measurements may be hard to inter-
pret. The use of O2 consumption to monitor growth will be
discussed later. The determination of the growth kinetics by
measuring the content of a microbial biomass component
within the fermenting solid mass can be complicated by two
factors. Firstly, if the biomass component is also present in
the substrate and is consumed during the fermentation, it
is impossible to determine independently the contributions
of growth and consumption to the observed changes in the
level of this component within the fermenting mass. It is
for this reason that glucosamine is often used as an indica-
tor of growth, since it is present in the cell walls of most
fungi, in the form of chitin, but is not found in the plant ma-
terial commonly used as substrates in these fermentations.
However, this introduces the second factor, which is that the
level of components such as glucosamine within the fungal
biomass may change during the fermentation. Nagel et al.
[20], who used glucosamine as an indicator of growth, tried
to overcome this problem by characterizing these changes
in cell composition. They used a membrane culture system,
in which fungal biomass could be measured, in order to es-
tablish an empirical equation for the glucosamine content of
the biomass (Gx) as a function of time (t):

Gx = 44.61+ 43.65

1 + exp({(t − λ)− 61.70}/12.34)
(9)

where λ is the lag time (h). Such a strategy allows glu-
cosamine measurements made in the fermentation in the real
system to be converted into a corresponding dry weight of
fungal biomass. However, it is not necessarily the case that
the temporal variations in the glucosamine content of the
fungal biomass in the artificial and real systems are the same.
The more closely the growth conditions provided by the ar-
tificial system mimic those experienced in the real system,
the more likely they are to be similar, but it is never possible
to be completely certain.

2.2. Describing the effect of environmental
conditions on growth

The aim of a bioreactor model is to describe the envi-
ronmental conditions within the bioreactor as a function
of time, and the response of the microorganism to these
conditions. In bioreactor models, the two most important
environmental variables are the temperature and the water
activity of the bed, since these can be affected by the way
in which the bioreactor is operated. To date the approach
to modeling these effects has been through what can be
referred to as the “constant condition” approach. In this
approach, a range of cultures are incubated at different
values of the environmental variable, with each culture be-
ing subjected to the same conditions throughout the whole
fermentation. The kinetic profile for each culture is then
analyzed in order to extract the values of the kinetic model
parameters for those particular conditions. The growth pa-
rameters are then plotted against the environmental variable
and an empirical equation is fitted.

For example, in applying this approach, Saucedo-
Castaneda et al.[7] arrived at the following equations for
two parameters of the logistic equation as functions of
temperature:

µ = 2.694× 1011 e(−70225/8.314T)

1 + 1.300× 1047 e(−283356/8.314T)
(10)
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and

Xm = −127.08+ 7.95(T − 273)− 0.016(T − 273)2

− 4.03×10−3(T − 273)3+4.73× 10−5(T − 273)4

(11)

whereT is the absolute temperature (K).
To date most models of SSF bioreactors have used this ap-

proach to describing the effect of environmental conditions
on the parameters of the growth equation[7,9,11–17,21,22]
although the form of the empirical equation that is used
varies. Factorial design of experiments could potentially be
used to evaluate the combined effect of more than one envi-
ronmental condition, such as temperature and water activity,
although this has not yet been done, with current equations
being developed on the basis of one-by-one variations of
environmental variables. In any case, use of these equations
within the kinetic sub-model of a bioreactor model has the
implicit assumption that the growth of the microorganism
depends only on the current values of the environmental
variables. However, in SSF bioreactors it is notoriously dif-
ficult to control the environmental variables at the optimum
values for growth and the response to these variations might
not be that described by the equations derived from the
constant condition approach[23]. For example, significant
variations in the temperature can be expected. Ikasari et al.
[24] mimicked such changes by incubating a culture ofRhi-
zopus oligosporusat its optimum temperature of 37◦C for
20 h, followed by incubation at 50◦C for another 10 h before
returning the culture to 37◦C. After the return to 37◦C, the
culture took 20 h to establish a growth rate similar to that of
an otherwise identical culture incubated at 37◦C through-
out. This result suggests that modeling approaches are
needed that describe the growth rate at any instant not only
as a function of the present values of the environmental vari-
ables, but also incorporating the deleterious effects of unfa-
vorable growth conditions experienced in the past. Within
the context of SSF no effort has been made either to propose
such models or to undertake the experimental studies on
which such models could be based. However, insights into
possible mathematical strategies can be gained from studies
undertaken in the context of food microbiology. Bovill et al.
[25] modified the logistic equation by inclusion of a param-
eter (Q) that represented the physiological state of the cell:

dX

dt
= µX

(
1 − X

Xm

)(
Q

1 +Q

)
(12)

A differential equation can then be developed that describes
how the physiological state changes with time and how
these changes are influenced by environmental conditions:

dQ

dt
= f(T, aw,Q) (13)

Such an approach enables the past environmental conditions
to affect the current growth rate, since the past conditions
affect the current value ofQ. The growth rate also depends

on the current environmental conditions through the param-
eterµ. In effect,µ is the maximum possible value of the
specific growth rate constant under a given set of environ-
mental conditions, with the physiological state determining
how closely the maximum value is approached. In this work
the variableQ was never defined in more detail, being sim-
ply referred to as “a dimensionless quantity related to the
physiological state of the cells”, although it is possible to
speculate thatQ might represent the levels of intracellular
enzymes that play key roles in the growth process.

2.3. Modeling of death kinetics

In SSF bioreactors the environmental conditions, espe-
cially the temperature, can attain values that are sufficiently
adverse to cause death. The modeling of death kinetics in
SSF systems has received relatively little attention due to
the fact that the majority of SSF processes involve filamen-
tous fungi. The mycelial mode of growth of fungi makes
the definition of death more problematic than is the case
for unicellular organisms, for which death can be both de-
fined and measured experimentally through total and viable
counts. If death is simply defined as a permanent loss of
the ability to grow, then autolysis is not a necessary con-
sequence of death and therefore death will not necessarily
lead to a reduction in the amount of fungal biomass, so it is
not a simple matter to quantify death experimentally. As a
result, current models of death used in SSF bioreactor mod-
els are very simple. For example, Sangsurasak and Mitchell
[12] assumed first-order death kinetics and segregated the
microbial biomass into living and dead sub-populations:

dXV

dt
= µGXV

(
1 − XV +XD

XM

)
− kDXV (14a)

dXD

dt
= kDXV (14b)

where XV represents viable cells,XD represents the dead
cells andµG is the true specific growth rate, not the observed
specific growth rate. It is not a simple matter to determine the
true specific growth rate and the first-order death constant
(kD) for use in these equations. Szewczyk and Myszka[26]
did this by fitting an equation containing two Arrhenius-type
terms to a plot of observed specific growth rate versus tem-
perature. One term describedµG as a function of tempera-
ture and the other describedkD as a function of temperature:

µobs = µG − kD = µG0 exp

(
−EaG

RT

)
− kD0 exp

(
−EaD

RT

)
(15)

whereµG0 andkD0 are frequency factors andEaG andEaD
are activation energies for the growth and death reactions,
respectively. However, independent data of death kinetics
was not available to confirm the validity of this approach,
which tends to predicts small but significant death rates at
the optimum temperature for growth.
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Future developments in the modeling of death kinetics of
fungi in SSF could potentially be based on the symmetric
branching model that was developed by Viniegra-Gonzalez
et al.[27,28]and later refined by Ikasari et al.[24] for use in
characterizing the effect of temperature. Viniegra-Gonzalez
et al.[27,28] showed how the microscopic events of hyphal
elongation and branching could be related to logistic growth
kinetics if the length of hyphal extension prior to branching
was always the same and each of the daughter hyphae were
identical with each other and with the hypha that gave rise
to them. Ikasari and Mitchell[6] extended this model to al-
low for the death of hyphal tips, giving rise to the decelera-
tion phase of the two phase model inTable 1, the parameter
k in Eq. (4b)representing a first-order tip-death coefficient.
This model could be applied to growth profiles obtained at
different temperatures, obtainingk as an empirical function
of temperature, this relationship being incorporated into the
kinetic sub-model of a bioreactor model. Ikasari et al.[24]
determinedk at 37 and 50◦C, but two data points are insuf-
ficient to determine the form of the relationship. Although
the model is empirical, it is based on considerations of mi-
croscale growth processes that potentially could be investi-
gated through microscope-based studies in which tip death
was measured directly, possibly through the use of fluores-
cent vital stains.

A slightly different approach was taken by Smits et al.
[21]. They did not model death explicitly, but rather pro-
posed an equation that described how the specific respira-
tion activity of the microbial biomass decreased over time,
something which would be expected if a part of the biomass
were dying. The specific rate of O2 uptake (qO2) was mod-
eled as depending on growth and maintenance:

qO2 = 1

YXO2

µ(t)+mO2 −D (16)

where YXO2 is the yield of microbial biomass from O2,
µ(t) is the instantaneous specific growth rate andmO2 is
the maintenance coefficient for O2. The termD describes a
decrease in maintenance activity. Various expressions were
suggested forD. One which gave realistic predictions was
the temporary-decline model. In this model, there is no in-
activation initially, that is, all the microbial biomass con-
tributes to maintenance metabolism:

for 0 ≤ t < td, D = 0 (17a)

After time td is reached inactivation starts and increases with
time:

for td ≤ t < tr, D = md(t − td) (17b)

After time tr, D takes on a constant value:

D = md(tr − td) (17c)

The form of the termD and the parameters of the model are
determined by comparing experimental profiles for either
the microbial biomass or a component of the biomass and

the experimental results for O2 uptake. Therefore, it is not
necessary to undertake measurements distinguishing living
and dead biomass. Since this model does not try explicitly
to describe death kinetics, it may be the preferred approach
until better experimental methods are developed to study the
death of fungi.

2.4. Modeling the effect of growth on the environment

It is usually of interest to model how the growth of the mi-
croorganism causes changes in its environment, because, in
turn, the growth of the microorganism depends on the con-
ditions in its local environment. Growth of the microorgan-
ism is associated with the consumption of O2 and nutrients
and the production of waste metabolic heat, water, carbon
dioxide and various products. The growth process also leads
to an overall decrease in the dry matter of the fermenting
solids, because the mass of dry microbial biomass produced
is less than the mass of dry substrate consumed, at least for
carbon sources such as carbohydrates for which the yield
coefficient (YXS) is less than 1.

The typical manner to model these effects in bioreactor
models is to assume growth-associated and non-growth as-
sociated components. The general equations for a reactant
R or a product P are therefore:

dR

dt
= − 1

YXR

dX

dt
−mRX (18a)

dP

dt
= YPX

dX

dt
+mPX (18b)

whereYXR andYPX are stoichiometric coefficients andmR
and mP are maintenance coefficients. In the case of some
products,mP is referred to as the non-growth associated pro-
duction rate constant. All coefficients are written as positive
numbers.

The identity of the components that are incorporated into
the model depends on what the model proposes to describe.
In some cases only a kinetic equation and an energy bal-
ance are written, in which caseEq. (18b)is written in terms
of metabolic heat. It has often been assumed that heat pro-
duction is directly proportional to growth[11,12,14,16,17],
although this is probably not true. In any case, the inclusion
of maintenance heat production is a simple matter[9].

Even though typically attempts are not made within biore-
actor models to predict intraparticle concentration profiles
of nutrients and the dependence of growth on local nutri-
ent concentrations, due to the complexity that this would
introduce, overall consumption of the solid substrate may
be of interest in order to predict gross changes in the sub-
strate bed such as bed shrinkage. Some models take this dry
weight loss into account[9,29]. Other models have ignored
the decrease in total solids weight despite the fact that such
decreases occur in reality[12,14,17]. This could be a short-
coming since bed shrinkage can potentially have important
effects on bioreactor performance, such as promoting chan-
neling in packed-beds[30].
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At times Eqs. (18a) and (18b)are used in order to es-
timate the growth kinetics parameters from indirect mea-
surements of either O2 consumption or carbon dioxide
evolution. For example, assuming logistic growth kinet-
ics and that O2 is consumed for growth and maintenance
according to

dO2

dt
= YOX

dX

dt
+mOX (19)

then the cumulative O2 consumption between time zero and
time t is given by[31]

COU = Xm

[
YOX

((Xm/X0)− 1)e−µt + 1
− YOX

(Xm/X0)

+ m0

µ
ln

(
((Xm/X0)− 1)e−µt + 1

((Xm/X0)− 1)e−µt

)]
(20)

Although this equation appears quite complex, if the growth
kinetics have been determined then the parametersXm,
X0 and µ can be inserted into the equation, leaving the
O2-microbial biomass stoichiometric coefficient (YOX) and
the maintenance coefficient (m0) as the only unknown pa-
rameters. Non-linear regression can be used to find the
values of these two parameters that give the best agreement
with the experimentally-determined cumulative O2 uptake
profile. Similar analyses could be made for kinetic types
other than logistic kinetics, the only requirement being a
growth rate equation that can be integrated analytically.
Such an approach requires the measurement of microbial
biomass in order to arrive at the growth kinetic equation
and therefore, for the majority of SSF systems, in which
direct microbial biomass measurement is not feasible, such
experiments would have to be done in an artificial system
that allows biomass measurement. Applying this method
to a real fermentation in a bioreactor in which there are
significant temperature variations would carry with it the
implicit assumption thatYOX and m0 do not vary with
temperature, although this may not be a good assumption
[32].

3. State of the art in modeling of intraparticle
phenomena in SSF

A number of models have been proposed that, unlike the
equations above that give simple empirical descriptions of
observed growth curves, do attempt to describe how the
growth can be affected by intraparticle diffusion of O2,
enzymes, hydrolysis products and other nutrients, and the
role in the fermentation of other phenomena such as par-
ticle shrinkage and spatial microbial biomass distribution
(Fig. 2). In a few cases, these models have formed the ki-
netic sub-models of bioreactor models, but in most cases the
models were proposed without concern for overall bioreac-
tor performance.

Fig. 2. Various of the microscale processes involved in growth in SSF
systems and which have been investigated in modeling work. Key to
processes: (1) diffusion of O2 in a static air phase or convective flow,
with uptake by aerial hyphae; (2) transfer of O2 across a gas–liquid
interface; (3) diffusion and reaction of O2 within a liquid phase; (4)
enzyme release; (5) enzyme diffusion; (6) hydrolysis of polymers by the
enzyme, releasing soluble hydrolysis products; (7) diffusion of hydrolysis
products, and other nutrients, with uptake by the microbial biomass; (8)
increase in hyphal density at the surface; (9) growth of aerial hyphae;
(10) growth of penetrative hyphae. Key to physical features: (A) aerial
hyphae; (B) hyphae submerged within a liquid phase. Above the surface
there are hyphae submerged within a thin liquid film that fills the spaces
between the hyphae, below the surface the moisture is held within the
solid matrix; (C) depth of penetration of O2 into the substrate. The depth
of penetration of O2 varies during the fermentation depending on the
respiratory activity of the microbial biomass and the thickness of the
biomass layer, at times of peak O2 consumption the O2 may penetrate
only partially into the liquid film above the surface; (D) aerobic zone; (E)
anaerobic zone; (F) substrate surface. The surface may become indistinct
or may even recede, especially if there is no inert polymer to give the
particle structure while other macromolecules are being hydrolyzed.

3.1. Modeling intraparticle diffusion

Early models describing the overculture of microorgan-
isms on solid substrates were those of Georgiou and Shuler
[33], which described growth at the surface of a flat slab of
substrate with glucose as the substrate, and Mitchell et al.
[34], which described a similar system but with the use of
starch as a substrate, in which case it was necessary to de-
scribe the release of glucoamylase by the microorganism at
the surface, the diffusion of the glucoamylase into the sub-
strate, the hydrolysis of starch by the glucoamylase, the dif-
fusion of the released glucose to the surface and the uptake
of glucose at the surface by the microbial biomass.

These models had several limitations. Firstly, they de-
scribed growth on an infinitely-wide, flat slab of substrate.
This is not a severe limitation since it is a relatively sim-
ple matter to change the equations to take into account a
spherical geometry, which is a much better approximation
of particle shape in SSF systems. Secondly, they did not
recognize any structure in the microbial biomass. Glucose
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Fig. 3. The system modeled by Rajagopalan and Modak[35]. The pro-
cesses modeled were: (1) enzyme release, which occurs only at the sub-
strate/biomass interface; (2) diffusion of glucoamylase within the sub-
strate particle; (3) hydrolysis of starch by the glucoamylase; (4) liberation
of glucose and diffusion within the substrate particle; (5) diffusion of
glucose within the biofilm and uptake by the microbial biomass; (6) dif-
fusion of O2 through the biofilm and uptake by the microbial biomass;
(7) expansion of biofilm due to growth.

reaching the surface of the substrate was immediately taken
up and converted into new microbial biomass. In effect the
microbial biomass was treated mathematically as though it
were an infinitely thin plane of infinite density at the sub-
strate surface. Thirdly, they did not consider the possibility
that O2 availability and not glucose availability might limit
the growth.

Rajagopalan and Modak[35] developed a model that took
O2 diffusion into account and gave a structure to the micro-
bial biomass, treating it as a wet biofilm of constant den-
sity. The model described the various steps that are shown
in Fig. 3. Diffusion of glucoamylase within the substrate
particle was described as

∂Cs
E

∂t
= Ds

E

r2

∂

∂r

(
r2∂C

s
E

∂r

)
(21)

wherer is the radial position in the particle,Cs
E is the con-

centration of enzyme within the substrate particle,Ds
E is the

effective diffusivity of the enzyme within the substrate and
t is time. It was assumed that the enzyme was liberated into
the substrate at the biofilm/particle boundary and could not
cross this boundary into the biofilm, although there is no
reason to suppose this would be the case in reality.

Hydrolysis of starch within the substrate particle was as-
sumed to follow Michaelis–Menten kinetics:

∂Cs
S

∂t
= −KcatC

s
E

(
Cs

S

KS + Cs
S

)
(22)

whereCs
S is the starch concentration within the substrate,

Kcat the catalytic constant of the enzyme andKS the
Michaelis–Menten constant for starch.

Release of glucose by the action of glucoamylase and the
diffusion of this glucose within the substrate particle were

described by
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whereCs
G is the glucose concentration within the substrate

andDs
G is the effective diffusivity of glucose. The first term

on the right hand side (RHS) describes diffusion and the
second term the glucose generation.

The glucose that diffuses into the biofilm is consumed as
it diffuses through the biofilm:
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whereCf
G is the glucose concentration within the biofilm

andDf
G is the effective diffusivity.The equation for diffusion

and reaction of O2 within the biofilm was
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whereCf
O2

is the concentration of glucose in the microbial

biomass film andDf
O2

is the effective diffusivity of O2 within
the biofilm. Oxygen was assumed to not be able to cross the
biofilm/particle boundary, although there is no reason why
this should be so.

Note that growth and therefore growth-related activities
such as nutrient and O2 uptake are assumed to be simul-
taneously limited by both O2 and glucose. In the second
term on the RHS of both of the previous two equationsµm
is the maximum specific growth rate,ρx the density of the
microbial biomass andYO2/X andYG/X the stoichiometric
coefficients for O2 and glucose, respectively. In both these
equations, the first term on the RHS describes diffusion
within the biofilm.

Growth of the microbial biomass causes the biofilm to
expand. First the overall amount of microbial biomass was
followed through integration of the growth equation across
the biofilm:

dX

dt
=
∫ R
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µmρx

(
Cf

O2

KO2 + Cf
O2

)(
Cf

G

KG + Cf
G

)
4πr2 dr

(26)

and then the volume occupied by this microbial biomass in
a spherical shell starting at the particle/biomass boundary at
Ri was used to calculate the overall radius of the particle:

R = 3

√
3X

4πρx
+ R3

i (27)
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Fig. 4. Typical predictions of the model of Rajagopalan and Modak
[35] regarding relative O2 and glucose limitation in the biofilm. The
X-axis represents the position within the biofilm with 0 representing the
biomass/particle interface and 1 representing the air/biomass interface.
The Y-axis represents the values of the Monod expressionsCf

O2
/(Cf

O2

+ KO2) andCf
G/(Cf

G + KG).

The particle was assumed to maintain its structure, as though
an inert macromolecule were maintaining the physical struc-
ture.

The density of the biofilm was assumed to be equal to
that of water and the diffusivities of glucose and O2 in
the biofilm were assumed to be equal to their diffusivities
in water. Therefore, this system describes either a biofilm
of unicellular organisms, or hyphae of a fungus embedded
within a film of water at the surface. This model was used
to show that for such a system O2 limitation was a more
serious problem for the microorganism than glucose limi-
tation (Fig. 4). During the rapid growth period 70–80% of
the biofilm can be in anaerobic conditions. Glucose limi-
tation becomes most important at the outer surface of the
biofilm and, even so, is only important late in the fermen-
tation when the rate of glucose supply from the substrate
becomes limiting. These assumptions and insights would
not necessarily be true for aerial fungal hyphae, that is, hy-
phae that are not submerged within a liquid film. A model
that describes aerial hyphal growth is described later in
Section 3.3.

Only relatively few bioreactor models have kinetic
sub-models that describe the intraparticle phenomena rather
than simply using empirical growth kinetics. The model
of Rottenbacher et al.[36] described a somewhat un-
conventional SSF system that involved pressed pellets of
Saccharomyces cerevisiaewithin a fluidized bed bioreac-
tor designed for the production of ethanol. Glucose was
sprayed onto the surface of the fluidized bed. Due to the
assumption of good mixing within the bed and good heat
removal, the balance/transport model did not involve partial
differential equations and the model focused on the intra-
particle diffusion and reaction of glucose and the resultant
growth and ethanol production. A similar model for this
system was proposed by Bahr and Menner[37], although
in this case it was assumed that the bed was fluidized in
air, such that O2 diffusion and reaction was also taken into
account. The model predicted high O2 and glucose con-
centrations in an outer shell of 100�m depth, such that
catabolite repression would be expected, and that both O2
and glucose limitation would occur within the inner regions
of the particle. The only model that involves the use of par-
tial differential equations to describe both transport across
the bed and intraparticle diffusion is the tray bioreactor
model of Rajagopalan and Modak[22]. They used a version
of the model presented in this section that described only
O2 diffusion within the particle and not enzyme production,
diffusion and action and neither glucose diffusion. Their
equations are presented and discussed in Mitchell et al.
[1].

It is only recently that the intraparticle gradients pre-
dicted by such models have been characterized experimen-
tally. Nagel et al.[38] used nuclear magnetic resonance to
investigate water and glucose concentration gradients within
substrate particles. Intraparticle gradients of O2 have also
been measured, using an O2 microprobe[39]. There is gen-
eral agreement between the model predictions and the ex-
perimental results.

The uptake of O2 into the microbial biomass in SSF sys-
tems has received special attention lately. Thibault et al.[40]
used an O2 diffusion and reaction model to compare the
rate of transfer of O2 across the air/liquid interface at the
surface of a biofilm with the rate of O2 diffusion through
the biofilm. They concluded that rather than characterize O2
transfer across the gas–liquid interface withKLa, which is
done in liquid culture because this is the limiting step, it
is preferable to use a “conductive biofilm coefficient”,KFa,
where KF is the ratio of the diffusivity of O2 within the
biofilm to the thickness of the aerobic portion of the biofilm.
This is necessary because, differently from submerged fer-
mentation, in SSF there is not a uniformly-mixed bulk liquid
phase on the other side of the gas–liquid interface and there-
fore it is diffusion through the biofilm that is the limiting
step in O2 transfer and not the gas–liquid transfer step. Sim-
ilarly, models of O2 reaction and diffusion in biofilms have
been used in combination with experimental data for over-
all O2 consumption rates to show that in some cases aerial
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hyphae do not contribute significantly to overall O2 uptake
[39] whereas in others they do[41].

3.2. Models recognizing the shrinking of particles

For many substrates the physical structure of the parti-
cle is degraded during the fermentation, and this may have
important effects on the bed properties within a bioreactor,
affecting bioreactor performance. Nandakumar et al.[42]
modeled this by assuming that the overall particle size, that
is, microbial biomass plus residual substrate, remained con-
stant, with the new microbial biomass filling the space freed
by the consumption of the particle. Consumption of the par-
ticle only occurred at a sharp biomass/substrate interface
and was limited by the rate of diffusion of O2 through the
microbial biomass layer to this interface. They arrived at the
equation:

t =
[

ebL
2

2bDeCA

](
1 + l2c

L2
− 2

lc

L

)
(28)

where b is the stoichiometric coefficient,eb is the molar
density of the substrate,L is the overall particle size, which
remains constant,De is the effective diffusivity of O2 in the
microbial biomass layer,CA is the O2 concentration at the
outer surface of the microbial biomass layer andlc is the
length of the undegraded core of residual substrate. However,
in applying their model to experimental data, they simply
treated the term within the square brackets as an empirical
constant, which represents the time required for complete
degradation of the particle, and determined the value of this
constant by non-linear regression of the equation against the
experimental data.

A more sophisticated model was developed by Ra-
jagopalan et al.[43], extending the model of Rajagopalan
and Modak[35] that described the intraparticle diffusion of
glucose and O2. As with the model of Nandakumar et al.
[42] there is a sharp biomass/particle interface, but the reac-
tion is not limited to this interface because of the liberation
of enzyme into the substrate and diffusion of the glucose
into the biofilm. The following equation was derived to
describe the transient particle radiusRi(t):

Ri(t) =
3

√√√√
R3
i0

−
3
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s
G/∂r)4πR

2
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]

4πρG
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where all the symbols have been previously defined above
except forρG, which is the original concentration of the
starch expressed as the equivalent mass per unit volume of
glucose andRi0, which is the initial radius of the substrate
particle. The volume of the residual particle (VS) is then
given as

VS = 4
3π(R

3
i0

− Ri(t)
3)ρG (30)

However, there are many assumptions in such a model that
might be reasonable for structurally simple substrates such

Fig. 5. Phenomena described in the model of Nopharatana et al.[44]
describing the growth of aerial fungal biomass above the substrate surface.

as beads of starch, but that might not apply well to more
complex substrates. Mechanistic modeling of substrate par-
ticle size reduction will remain a challenge.

3.3. Models recognizing the uneven distribution of
microbial biomass above the substrate surface

Nopharatana et al.[44] presented a model to describe the
growth of fungal hyphae above the surface, specifically at-
tempting to describe how the hyphal biomass distribution
with height above the surface might change over time, and
how this would depend on the diffusion of glucose from
the substrate surface to the tips extending into the airspace
(Fig. 5). Since the space between hyphae was assumed to
be filled with air, O2 supply was assumed not to be limit-
ing. The model considered only the vertical coordinate, and
therefore all points in a horizontal plane parallel to the sur-
face were assumed to be identical. Note that although fungal
growth occurs as a result of the extension and branching of
individual hyphal tips, the model did not attempt to describe
this. The space above the substrate surface was not sepa-
rated into distinct air and fungal biomass phases, but rather
a single phase was assumed, with height above the surface
being characterized by average spatial fungal biomass, glu-
cose and tip concentrations.

An equation is necessary to describe the generation and
movement of tips:
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This equation postulates that the number of tips at a particu-
lar height (x) is the result of two processes. The first term on
the RHS describes the production of new tips by branching,
the rate of this process depending on the glucose concen-
tration at a distance ofδ behind the tip (G|x−δ), according
to a Monod relationship, in whichkt is the saturation con-
stant, and on the fungal biomass concentration (B), becom-
ing inhibited as the fungal biomass approaches a maximum
packing density (Bm). The maximum specific tip production
rate is given byαt. The second term on the RHS describes
the movement of tips into and out of a particular height.
This movement, due to extension of tips, is modeled as a
diffusion-like process, assuming that the rate of extension
of tips depends on the overall glucose concentration and the
overall fungal biomass concentration.

The production of fungal biomass depends on the exten-
sion of tips:

∂B
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= nvmaxaρ
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G|x−δ

kt +G|x−δ

)
(32)

wherevmax is the maximum possible tip extension rate. The
rate of extension of a single tip isvmax times the quantities in
the parentheses and therefore is assumed to depend both on
the fungal biomass concentration and the glucose concentra-
tion. Multiplying the tip extension rate by the cross-sectional
area of a hypha (a) and the dry weight of fungal biomass per
unit hyphal volume (ρ) gives the production of dry weight
per unit time.

A balance is also written for diffusion and consumption
of glucose within the hyphae:
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−mGB (33)

whereDhyp is the effective diffusivity of glucose in the hy-
phae. The first term on the RHS describes the diffusion of
glucose within the hyphae, which depends on the concen-
tration gradient of glucose within the hyphae, and not the
concentration gradient of glucose in space. Therefore, this
term is written in terms of∂(G/B)/∂x and not∂G/∂x. The sec-
ond term describes the consumption of glucose for growth
and the third term represents the consumption of glucose
for maintenance.YXG is the yield of fungal biomass from
glucose andmG is the glucose maintenance coefficient.

The model suggests that during the early stages of growth
two things occur (Fig. 6): the fungal biomass concentra-
tion at the surface increases and hyphae extend above the
surface, forming a sigmoidal-shaped fungal biomass con-
centration profile with height. When the fungal biomass
concentration at the surface reaches the maximum possible
value then the shape of this biomass concentration profile
does not change, but moves as a constant-shaped wavefront
to greater heights. Unfortunately, there is no experimen-
tal data giving fungal biomass concentration profiles as a
function of height above the substrate surface against which
these predictions can be compared. Even without this ex-
perimental validation, the modeling work done and the as-

Fig. 6. Typical predictions of the model of Nopharatana et al.[44] with
respect to the development of the fungal biomass concentration profile
above the surface during the fermentation. Two phases are apparent:
(A) initially the biomass concentration both increases at the surface and
extends to greater heights; (B) once the maximum concentration is reached
at the substrate surface a biomass concentration front of constant shape
moves to higher and higher heights.

sumptions made do raise interesting questions. One of the
most pertinent questions is whether the movement of glu-
cose within the hyphae, from the surface to the tips, ac-
tually occurs by a diffusion process, or whether there is
some sort of translocation mechanism such as cytoplasmic
streaming.

The model represents growth in a simplified system. The
situation would be expected to be even more complex in a
real SSF system in which hyphae extending from various
surfaces surrounding a common void space would soon
meet each other. Further, it was assumed that the hyphae
at the substrate surface were in contact with a constant
glucose concentration. To be more realistic it would be
necessary to incorporate equations that describe how the
various processes occurring within the substrate control the
rate of supply of glucose to the surface, in the manner done
by Mitchell et al.[34].

4. Conclusions

Simple models of growth kinetics have evolved little over
the past decade, and systematic analyses of growth profiles
in SSF systems have not been undertaken. This can be at-
tributed to the experimental difficulties faced in growth ki-
netic studies. Further, to be useful in bioreactor models, such
equations should describe how growth is affected by varia-
tions in key environmental parameters such as temperature
and water activity but current models do this in a very simple
fashion and are based on limited experimental data. Much
more experimental work is required to elucidate how growth
and death depend on these factors over wide ranges, and how
temporal variations in these factors affect the physiological
state of the microorganism.
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Models that describe intraparticle diffusion and reaction
suggest that oxygen limitation of at least part of the micro-
bial biomass for part of the fermentation is an intrinsic char-
acteristic of SSF processes. However, during the later stages
of the fermentation glucose can be limiting at the outer sur-
face of biofilm. Also it is quite possible that the diffusion of
glucose within aerial fungal hyphae controls their extension
above the substrate surface. These predictions agree reason-
ably with the little experimental work that has been done to
confirm them to date. More experimental work is required
to confirm the accuracy of these predictions for a range of
different microbe–substrate systems.

Future improvements in computing power may make it
feasible to use routinely bioreactor models that describe
mechanistically both the mass and heat transfer phenom-
ena at the macroscale and the particle-level phenomena. The
model of Rajagopalan and Modak[22] shows the potential
of these models to give insights into the complex manner
in which macroscale and microscale phenomena interact to
control growth in SSF systems.
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