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Novel Univariate Underestimator
Use piecewise BB underestimators and

augment them with tangent lines !

 Step 1: Partition domain [xL,xU] in N= subdomains

 Step 2: Construct BB underestimators Pi(x), i=1..N

 Step 3: Identify tangential linear segments Tk, k=1..NL

                required for an overall underestimator U(x)

 Use slope comparisons

 Local solver suffices !

 U(x) is smooth (C1-continuous)

(Gounaris and Floudas,  2008a)



Novel Univariate Underestimator

Step 3 : Utilize INNER and OUTER algorithms

INNER : Given two convex pieces, identify

supporting line segment that

underestimates both pieces in their

respective subdomains

xn-1

xn

xm-1

xm

Pn(x)

Pm(x)

Case 1 : Tangential to both pieces

Case 2 : Tangential only to one piece

Case 3 : Not tangential to any of the two pieces

Applicable case can be identified

just by comparing slopes !

Due to convexity of pieces, local

techniques (e.g. Newton-Raphson)

suffice for calculation of tangential

points !



Novel Univariate Underestimator
Step 3 : Utilize INNER and OUTER algorithms

OUTER : Given a set of sequential convex

pieces (not necessarily connected), identify

those supporting line segments that participate

in the overall underestimator

                 N : # of pieces

                 NL : # of lines in list

                 ni : piece from which ith line begins

                 Li : ith line in the list   (i=1,2,…NL)

                 c : candidate line

                 m : candidate piece
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Novel Univariate Underestimator
Use piecewise BB underestimators

and augment them with tangent lines !

Furthermore, why not take only the

tangents into account ?

 Step 1: Partition domain [xL,xU] in N subdomains

 Step 2: Construct BB underestimators Pi(x), i=1..N

 Step 3: Identify tangential linear segments Tk, k=1..NL

                required for an overall underestimator U(x)
 Use slope comparisons

 Local solver suffices !

 U(x) is smooth (C1-continuous)

 Step 1: Construct underestimator U(x)

 Step 2: Consider linear segments as lines Tk (x)

 Step 3: If applicable, augment set Tk with tangent

lines at domain edges

 Step 4: New underestimator is V(x) =        {Tk(x)}
 Lower bounding problem can

    now be formulated as an LP !

 Relaxed constraints are linear !

k
max



Examples – Univariate Functions

Note: N = 32

(in all examples)
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Examples – Univariate Functions

(Test functions from Casado et al., 2003)Asterisk = Global Optimum reached (6 decimal digits)



Examples – Univariate Functions

0.05 avg / 0.07 max  (N=  512)

0.09 avg / 0.12 max  (N=1024)CPU(sec) = (Test functions from Casado et al., 2003)



Tightness of U(x), V(x)
Property 1: Underestimators become tighter as level of partitioning increases  (                             )

Sufficiently large N will CLOSE the GAP at the ROOT NODE of the bb-tree !

Property 2: There is some finite level of partitioning, for which U(x) is the convex envelope of f(x)

Property 3: There is some finite level of partitioning, for which V(x) is -close to U(x)

*ÍssN ,N



Novel Multivariate Underestimator
Gounaris, Floudas, JOGO, 2008b

Univariate underestimators are very tight !

Can we make use of them ?

 Step 1: Partition domain into N =     Ni subdomains

 Step 2: Select variable ‘w’ and enumerate all M = N/Nw

                permutations of the other domain partitions
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 Step 3: For every permutation ‘m’, define univariate

                function Gwm(xw) =          P(x)

 This function is piecewise convex, thus

     suitable for the univariate methodology

!

wi,x i

m in

3

Some pieces are connected

Some others are not

• Usually not known explicitly

• However, evaluations can be done reliably

   through convex minimization

Function Gwm(xw) :



Novel Multivariate Underestimator

  Each of these underestimators is :

•  parallel to all basis vectors, except ew

•  piecewise affine

•  valid for a different subdomain

 Step 4: Calculate underestimator Vwm(xw) of Gwm(xw)

 Underestimator Vwm(xw), considered as

    Vwm(x), is valid for the whole subdomain

(m=j-1)

4

(m=j)

(m=j+1)



Novel Multivariate Underestimator

5

(side view)

 Step 5: Repeat for all permutations ‘m’ and combine

                into an overall underestimator Vw(xw) that

                would be valid for the whole domain

•  Work on projected plane

How can we combine all segments

into an overall underestimator ?

•  Take into account

    connection / end points

    of line segments

•  Compute 2D convex hull

    of these points



Novel Multivariate Underestimator

6

 Step 6: Repeat, optionally, for all variables ‘w’ and

                construct a more tight underestimator that

                would be the pointwise maximum of all Vw

)}({max)( xVxV w
w

=

Underestimators are piecewise affine            Relaxation can be formulated as an LP



 Step 1: Apply orthonormal transformation  = R x
 R   SO(n) ( i.e. RT=R-1 and det(R)=  1 )

 Step 2: Specify orthogonal domain that completely

                includes  the original one. Identify subdomains

                worth considering

 Step 3: Calculate underestimator V( ) and transform

                back to the original variables x
 V( ) is still linear, but not necessarily

    perpendicular to some xi

 Step 4: Optionally, repeat with other matrices R and

                accumulate valid linear cuts

+

Domain Rotation
Could the lost information

due to the projections be recovered ?

x1

x2

12

• Overall underestimator is the pointwise

maximum of all those linear cuts !

• Lower bounding problem is just an LP !

r)xR(VLB.t.s

LBmin

r

x,LB



Examples – Bivariate Functions

  N = (32 x 32)    =  / 8

Total Linear Cuts    =  162

Global minimum     = 0.398

Lower Bound          = 0.316

BB Lower Bound  = - 884
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  N = (32 x 32)    =  / 16

Total Linear Cuts    =    309

Global minimum     = -

1.03163

Lower Bound          = -1.03164

BB Lower Bound  =  - 6.04



Examples – Bivariate Functions

  N = (8 x 24)    =  / 8

Total Linear Cuts    =      49

Global minimum     =        0

Lower Bound          =    - 14

BB Lower Bound  = - 8441

[ ]{ }

2,1i,
4

1x
1y

)1y()y(sin101)1y()y(sin10
2

)x,x(f

i
i

2

22

22

11

2

21

=+=

+++= ( ) ( )
2

2

2

2

1

2

2

52

1

5

21
4

1
xx1x101x10)x,x(f ++=

  N = (32 x 32)    =  / 8

Total Linear Cuts    =    191

Global minimum     =  8 x 10-6

Lower Bound          = -7 x 10-6

BB Lower Bound  =  - 0.69



Examples – Bivariate Functions

(Test functions from More et al., 1981; Ge and Qin, 1990)

 (No Rotation)



Examples – Bivariate Functions

0.40 avg / 1.16 max  (N=32)

1.86 avg / 6.41 max  (N=64)CPU(sec) = (Test functions from More et al., 1981; Ge and Qin, 1990)

 (No Rotation)
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Examples – Multivariate Functions
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•  Method improves over original BB method, even for N=2

•  Improvement is consistent with doubling of partitioning

•  Method will always approach the actual global optimum,

   thus could potentially improve over existing lower bounding schemes

•  Note that although lower bounds are presented here, the method is

   used to compute convex UNDERESTIMATORS that are TIGHT across

   the COMPLETE DOMAIN



Examples – Multivariate Functions

 (No Rotation)

B. General Nonconvex

-300-300-300-300-526.3-2409(3)

0-0.007-0.036-0.230-5.027-28.02(4)[0,1]

-4 E+2
(approx.)

-8 E+3-3 E+4-1 E+5-5 E+5-2 E+6(3)[-10,10]

0-0.175-0.670-4.405-40.1-217.9(4)[0,1]

0.3960.396-0.019-4.679-24.31-109.9(4)

0-9 E+3-4 E+4-2 E+5-7 E+5-3 E+6(3)
[-10,10]

0-1 E+4-5 E+4-2 E+5-7 E+5-3 E+6(4)

-400-400-400-400-695.9-3212(4)

(5)

(3)

(4)

(3)

(3)

n

[-5,2]

[1,3]

[-1,1]

[-2,2]

-500-500-500-500-865.4-4015

0.3960.396-0.019-4.684-24.32-109.9

-0.4-0.4127-0.738-2.363-10.73-45.74

-0.3-0.3095-0.554-1.772-8.05-34.31

-1-1.291-1.941-14.78-101.6-411.21

G.O.N=16N=8N=4N=2BB)(xf

{ }
=

+
n

i

ii xx
1

2
)5cos(1.0

ixx U

i

L

i ],,[

)4461.24(

)4461.24(

4

3

2

332

6

2

4

2

2

2

4

2

2

221

6

1

4

1

2

1

xxxxxxx

xxxxxxx

++++

+++

exnxn
n

i

i

n

i

i ++

==

20)2cos(exp02.0exp20
1

1

1

21

( ) ( ) ( )+++
=

+

1

1

2

1

22

1

2
1)(sin1011)(sin10

n

i

nii xxxx
n

( ) ( ) ( ) ( )

( ) ( )[ ] ( )( )[ ]
42

2

4

2

2

2

3

22

34

2

1

22

12

118.19111.10

1901100

xxxx

xxxxxx

+++

+++

[ ] [ ]
= =

+

=

++++
1

1

5

1

1

5

1

)1(cos)1(cos
n

i k

i

k

i kxkkkxkk

( ) ( ) ( ) ( )4
41

4

32

2

43

2

21
102510 xxxxxxxx ++++

( )
=

+
n

i

iii xxx
1

24
516

2

1



• Deterministic Global Optimization: Objectives & Motivation

• Convex Envelopes:
• Trilinear Monomials

• Univariate Monomials 

• Fractional Terms

• Edge Concave functions

• Checking Convexity: Products of Univariate Functions

• Convex Underestimators for Trigonometric Functions
• P BB: Piecewise Quadratic Perturbations

• G BB: Generalized BB

• Functional Forms of Convex Underestimators

• Augmented Lagrangian Approach for Global Optimization

• New Class of Convex Underestimators

• Pooling Problems & Generalized Pooling Problems

• Conclusions

Outline



Generalized Pooling Problem

Christodoulos A. Floudas

Princeton University



Generalized Pooling Problem
Meyer, Floudas, AIChE J.  (2006)

                 Sources Plants             Destinations

     Q1: What is the optimal topology?      Binary Terms

     Q2: Which plants exist?      Binary Variables



• Floudas, Aggrawal, Ciric (1989): global optimum search

• Foulds (1992): convex envelopes for bilinear terms

• Floudas and Visweswaran (1993, 1996): Lagrangian relaxation

• Ben-Tal et al. (1994): “q-formulation” – Lagrangian relaxation

• Quesada and Grossmann (1995): reformulation – linearization

• Adhya et al. (1999): Lagrangian relaxation

• Tawarmalani and Sahinidis (2002): reformulation – linearization of

“q-formulation” and analysis

• Audet et al. (2002): branch and cut for nonconvex QP’s

Global Optimization of the Pooling

Problem



• intensive water usage in industry:

petrochemical

pharmaceutical

hydrometallurgical

paper

• regulation of water pollution:

Clean Water Act (EPA, 1977)

• measures on water quality:

heavy metals – cadmium, mercury

synthetic organics – dioxin, PCB’s

organic matter – total organic carbon

color, odor

Wastewater Treatment Problem



Mathematical programming formulations:

(Takama et al., 1980, Alva-Argaez, 1998; Galan and Grossmann,

1998; Huang et al., 1999)

• superstructure of alternatives

• nonconvex NLP and MINLP models

• generalized pooling structure

• linear treatment model – removal ratio

Wastewater Treatment Networks

Technologies target contaminants

Distributed wastewater treatment

(Eckenfelder et al., 1985) 

' '

t ct tct ctf q f qr =



Objective: Minimize Overall Cost

- Plant construction and operating costs

- Pipeline construction and operating cost

Binary Variables

- ya
s,e: Existence of stream connecting source s to exit stream e.

- yb
t,e: Existence of stream connecting plant t to exit stream e.

- yc
t,t’: Existence of directed stream connecting plant t to plant t’.

- yd
s,t: Existence of stream connecting source s to plant t.

- ye
t: Existence of plant t.

Formulation of Generalized

Pooling Problem



Continuous Variables

- as,e: Flowrate of stream connecting source s to exit stream e.

- bt,e:  Flowrate of stream connecting plant t to exit stream e.

- ct,t’: Flowrate of directed stream connecting plant t to plant t’.

- ds,t: Flowrate of stream connecting source s to plant t.

- et: Flowrate of plant t.

- fs,t: Concentration of species s in effluent of plant t.

Formulation of Generalized

Pooling Problem



Constraints

- Logical constraints on plants, flow through plant is nonzero only if

    plant exists

- Logical constraints on streams, flow through pipeline is nonzero only

    if stream exists.

- Logical constraints on streams connecting plant t with plant t’.

- Mass balance constraints on total flow over plants.

- Mass balance constraints on individual species over plants.

- Bounds on flowrates through pipelines.

- Bounds on flowrates through plants.

- Bounds on overall species concentration in each exit stream.

Formulation of Generalized

Pooling Problem



Superstructure of Plant

Existence and Connectivity

S1,E1

dS1,T1

bT1,E1

cT1,T3

a

S2

S3

S4

S5

S6

S7

T1

T2

T3

T4

S1
   Continuous Variables

as,e : Flowrate of stream connecting source s to exit stream e

bt,e :  Flowrate of stream connecting plant t to exit stream e

ct,t’ : Flowrate of directed stream connecting plant t to plant t’

ds,t : Flowrate of stream connecting source s to plant t

   Binary Variables

ya
s,e : Existence of stream connecting source s to exit stream e

yb
t,e : Existence of stream connecting plant t to exit stream e

yc
t,t’ : Existence of directed stream connecting plant t to plant t’

yd
s,t : Existence of stream connecting source s to plant t

ye
t : Existence of plant t

E1



Formulation of Generalized

Pooling Problem
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Formulation of Generalized

Pooling Problem
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Problem Characteristics

- Mixed integer bilinear programming problem with bilinearities involving

     pairs of continuous variables, (b,f) and (c,f) and (d,f).

- Nonconvex mass balance constraints on the species include bilinear

     terms.

- Industrial case study: |C| = 3, |E| = 1, |S| = 7, |T| = 10.

- Number of nonconvex equality constraints: |C| x (|T| + |E|).  (33)

- Number of bilinear terms: |C| x |T| x (|E| + |S| + 2|T| - 2).  (780)
- Complex network structure with numerous feasible yet nonoptimal

     possibilities.

- Number of binary variables: |T| x (|E| + |S| + |T|) + |S| x |E|.  (187)

- Fixing the y variables, the problem is a nonconvex bilinear NLP.

- Fixing the f variables, the problem is a MILP.

- Fixing the a,b,c,d imposes values on all the other variables.



Solutions Using GAMS/DICOPT and

Random Starting Points
- Continuous variables initialized with uniformly distributed random

       numbers.

- Binary variables initialized by rounding the uniformly distributed

       numbers in [0,1] to the nearest integer.

- DICOPT used to solve problem from 1000 starting points.

- Number of times best known solution was found: 0.



Feasible Solutions
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Objective function value: 1.132e6
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  convex envelope:

concave envelope:

Envelopes of Bilinear Terms
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Industrial Case Study

Components: 3     Best known solution: 1.086 x 106

Sources: 7

Exit streams: 1     780 Bilinear Terms
Potential plants: 10

0.550583544187987Bilinear Terms

1.0862.5424187207Nonconvex

Obj (106)CPU (s)Constr.{0,1} var var.Formulation



Lower Bounds using Reformulation

Linearization Technique
                                   Original RLT: Sherali and Alamedine (1992)

- MILP Relaxation of the nonconvex MINLP to determine lower bounds

     on the global optimum.

- Pairs of linear constraints a1
Tx – b1  0 and a2

Tx - b2  0 are multiplied

     together yielding constraints with bilinear terms

     [a1
Tx – b1] · [a2

Tx - b2]  0.

- All nonlinear constraints are linearized by replacing each bilinear term

     with a new variable.

- Linear constraint pairs are chosen such that one constraint contains

     f variables and the other, a, b, c, or d variables.

- Number of constraints increases.

- Number of continuous variables increases.



Reformulation Linearization

Technique Example

Constraints:

are multiplied to yield:

which is linearized by substituting:
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Industrial Case Study

Components: 3     Best known solution: 1.086 x 106

Sources: 7

Exit streams: 1

Potential plants: 10

0.7433621193211873850RLT

0.550583544187987Bilinear Terms

1.0862.5424187207Nonconvex

Obj (106)CPU (s)Constr.{0,1} var var.Formulation



Augmented Binary RLT
                                          (Meyer and Floudas, AIChE J. 2006)

- Additional binary variables yf introduced to facilitate branching on the

      continuous variables f within a MILP framework.

- Multiple MILP’s combined into a single MILP lower bounding problem.

- Takes advantage of the performance of CPLEX 8.0 in solving MILP

      problems.

- The interval [fL, fU] is partitioned into N subintervals.

- Throughout the formulation, fL and fU are replaced by parameters fk

      and fk+1.

- Variable f is constrained to lie in interval [fk, fk+1] when binary variable

      yf = 1 by constraints:

- A constraint for interval [fk, fk+1] is active if yk = 1 and inactive if yk = 0.
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RLT to Strengthen MILP Formulation

RLT to improve convergence of MILP

• products of original bound factors

• products of original and discretized constraints

• new variables (|C|·|T|·(2|T| + |S|))
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Industrial Case Study

Components: 3     Best known solution: 1.086 x 106

Sources: 7     Lower bound on solution: 1.070 x 106

Exit streams: 1     Absolute Gap: 0.016 x 106

Potential plants: 10     Relative Gap: 1.5 %

1.0705948611706139766Bin RLT N = 7

1.0518580010338127766Bin RLT N = 6

1.03176178970115766Bin RLT N = 5

1.02236727602103766Bin RLT N = 4

1.005816623491766Bin RLT N = 3

0.977519486679766Bin RLT N = 2

Subnetwork {t3, t7, t9, t10}

0.7433621193211873850RLT

0.550583544187987Bilinear Terms

1.0862.5424187207Nonconvex

Obj (106)CPU (s)Constr.{0,1} var var.Formulation



• Motivational Areas & Review of contributions

• Convex Envelopes: Trilinear Monomials; Univariate; 

Fractional; Edge Concave Functions

•Checking Convexity:Products of Univariate Functions

• Convexification of Trigonometric Functions
• P BB: Piecewise Quadratic Perturbation Based BB

• G BB: Generalized BB

• Augmented Lagrangian Approach

• Functional Forms of Convex Underestimators

• Novel Convex Underestimators: 1-D, Multivariate Functions

• Generalized Pooling Problems

Conclusions

Exciting theoretical and algorithmic advances

with potential impact on several application areas
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 Objective 1

 Determine a global minimum of the objective 

 function subject to the set of constraints

 Objective 2

Determine LOWER and UPPER BOUNDS

on the global minimum

 Objective 3

Identify good quality solutions (i.e., local 

minima close to the global minimum)

 Objective 4

Enclose ALL SOLUTIONS of 

constrained systems of equations

Deterministic Global Optimization: 

Objectives

Objective 2

Objective 3

Major Importance in

Engineering Applications



Deterministic Global Optimization:

C2 NLPs
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Formulation Application Areas

• Phase Equilibrium Problems

• Minimum Gibbs Free Energy

• Tangent Plane Stability

• Pooling/Blending

• Parameter Estimation &

•    Data Reconciliation 

• Physical Properties

• Design Under Uncertainty

• Robust Stability of Control Systems

• Structure Prediction in Clusters

• Structure Prediction in Molecules

• Protein Folding

• Peptide Docking

• NMR Structure Refinement

• Prediction of Crystal Structure
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Deterministic Global Optimization:

MINLPs
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Formulation Application Areas

• Process Synthesis Problems

• HENs

• Separations/Complex Columns

• Reactor Networks

• Flowsheets

• Scheduling, Design, Synthesis of

   Batch and Continuous Processes

• Planning

• Synthesis Under Uncertainty

• Design, Synthesis of Materials

• Metabolic Pathways

• Circuit Design

• Layout Problems

• Nesting of Arbitrary Objects
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Deterministic Global Optimization:

Bilevel Nonlinear Optimization, BNLPs
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Formulation Application Areas

• Economics

• Civil Engineering

• Aerospace

• Chemical Engineering

• Design Under Uncertainty :

  Flexibility Analysis

• Chemical Equilibrium Process Design

• Location/Allocation in Exploration

• Interaction of Design with Control

• Optimal Pollution Control

• Molecular Design

• Pipe Network Optimization



Deterministic Global Optimization:

DAEs - Optimal Control

Formulation Application Areas

• Parameter Estimation of

   Kinetic Models

• Optimal Control

• Interaction of Design and Control

• Dynamic Simulations

• Synthesis of Complex

   Reactor Networks
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Deterministic Global Optimization:

Grey-Box Models

Application Areas

• Mechanical Design

• Airplane Design

• Modular Process Simulation

Inputs Outputs



Deterministic Global Optimization:

Enclosure of All Solutions
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Formulation Application Areas

• Process Modeling & Simulation

•    of Flowsheets

• Multiple Steady States in 

• CSTRs

• Reaction Networks

• Metabolic Networks

• Homo- & Heterogeneous

•  azeotropic distillation

• Homogeneous

• Heterogeneous

• Reactive

• Eutectic Points

• Reactive Flash

• Reactive Distillation

• Transition States & Reaction Pathways

2
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Azeotropes



Historical Global Optimization Perspective
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       Convexification Techniques

• Björk et al. (2003), Westerlund (2003;2005),

Lundell et al. (2007)

• signomials, quasi-convex convexifications

• Li et al. (2005), Wu et al. (2007)

• hidden convexity

• Wu et al. (2005)

• monotone programs

• Zlobec (2005,2006)

• Liu-Floudas convexification

• Li, Tsai (2005), Tsai, Lin (2007),

Tsai et al. (2007), Li et al. (2007)

• convexity rules for  signomial terms

• Gounaris, Floudas (2008)

• suitable transformations for GGP

C2NLPs
   Convex & Concave Envelopes

• Tawarmalani, Sahinidis (2001)

• (x/y) on unit hypercube

• f(x)y2, f(x)/y

• Tawarmalani, Sahinidis (2002)

• convex extensions for l.s.c

• Liberti, Pantelides (2003)

• odd degree univariate

  monomials

• Meyer, Floudas (2003;2005)

• trilinear monomials

• Meyer, Floudas (2005)

• edge convex/concave functions

• Tardella (2004, 2008)

• vertex polyhedral envelopes



• Adjiman et al. (1998a,b)

  Hertz et al. (1999)

• Zamora, Grossmann (1998a,b;1999)

• (x/y)

• Ryoo, Sahinidis (2001)

• multilinear (AI, Recursive, Log, Exp)

• Tawarmalani et al. (2002)

• tighter LP relaxations:

• Meyer, Floudas (2005a)

• P BB (Piecewise Quadratic

Perturbation)

• Caratzoulas, Floudas (2005)

• Trigonometric functions

• Akrotirianakis, Floudas (2004a,b; 2005)

• G BB (Generalized BB)

C2NLPs Convex Relaxation

} BB
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• Linderoth (2005)

• Quadratically constrained

• Sherali (2002,2007), Sherali, Wang (2001),

Sherali, Fraticelli (2002), Sherali et al. 2005

• RLT methodology

• Nie, Demmel, Gu (2006)

• rational functions

• Gounaris, Floudas (2008a,b)

• Tight convex underestimators



• Adjiman et al. (1998a,b)

   Androulakis, Floudas (1998)

• Yamada, Hara (1998)

• triangle covering for H

• Klepeis et al. (1998); Klepeis, Floudas

(1999)

• solvated peptides

• Klepeis, Floudas (1999)

• free energy calculations

• Westerberg, Floudas (1999a,b)

• dynamics of protein folding

• transition states

• Klepeis et al. (1994)

• NMR structure refinement

• Byrne, Bogle (1999)

       bound constrained interval LP

   relaxations

• Gau, Stadtherr (2002a,b)

• Interval Newton

• hybrid preconditioning strategies

• distributed computing

• VLE, parameter estimation

General C2NLPs
• Lucia, Feng (2002)

• differential geometry, global terrain

• Klepeis et al. (2002): review

• DGO, oligopeptides, dynamics,

   protein-protein interactions

• Zilinskas, Bogle (2003b)

• balanced random IA

• Klepeis, Floudas (2003b)

• BB + torsional angle dynamics

• Klepeis, Floudas (2003c)

• ASTRO-FOLD: first principles protein

structure prediction

• Klepeis et al. (2003a,b)

• hybrid stochastic + deterministic G.O.

• Lucia, Feng (2003)

• terrain approach for multivariable and

   integral curve bifurcations

• Schafroth, Floudas (2004)

• protein-protein interactions via BB

   and Poisson Boltzman

• Akrotirianakis, Floudas (2004a,b, 2005)

• G BB for box constrained NLPs

• hybrid G.O. methods

} BB



• Gao (2003;2004;2005;2007)

• canonical dual transformation

• Sun et al. (2005)

• saddle points of Augmented

Lagrangians

• Parpas, Rustem, Pistikopoulos (2006)

       - stochastic DE, linear constraints

•Marcovecchio et al. (2006)

• improve-and-branch algorithm

• Gattupalli, Lucia (2008)

• molecular conformation of alkanes

using terrain / funneling methods

• Parpas, Rustem, Pistikopoulos (2008)

• G.O. of robust chance problems

• Maringer, Parpas (2008)

• G.O. of higher order moments in

portfolio selection

General C2NLPs (cont’d)



• Zamora, Grossmann (1998b)

• B&B approach for bilinear, linear,

  fractional, univariate, concave

• contraction operation

• Shectman, Sahinidis (1998)

• finite G.O. for separable concave

• Zamora, Grossmann (1999)

• branch and contract G.O.

• reduction of nodes in B&B tree

• Van Antwerp et al. (1999)

• bilinear matrix inequality

• B&B approach

Concave, Bilinear, Fractional, and

Multiplicative Models

• Adhya et al. (1999)

• pooling problem

• Lagrangian relaxation

• Ryoo, Sahinidis (2003)

• linear, generated multiplicative

  models

• recursive AI approach for lower

  bounds

• greedy heuristics

• branch and reduce

• randomly generated problems

• Goyal, Ierapetritou (2003)

• evaluations of infeasible domains

  via a simplicial OA for concave or

  quasi-concave constraints

• Liberti, Pantelides (2006)

• reformulation for bilinear programs

• Nahapetyan, Pardalos (2007)

• bilinear relaxation for concave piecewise

linear networks
• Tsai (2005)

• nonlinear fractional programming (NFP)

• Jiao et al. (2006)

• generalized linear fractional programming

• Benson (2007)

• B&B algorithm for linear sum-of-rations



• Maier et al. (1998)

• IA for enclosure of homogeneous

  azeotrope

• Meyer, Swartz (1998)

• test convexity of VLE

• McKinnon, Mongeau (1998)

• IA for phase & chemical reaction

  equilibrium

• Hua et al. (1998a,b)

• phase stability, EOS

• Zhu, Xu (1999a,b)

• simulated annealing for phase stability

• Lipschitz G.O. for stability with S.R.V.

• Harding, Floudas (2000a)

• cubic EOS, phase stability, BB

• Harding, Floudas (2000b)

• enclosure of heterogeneous and

  reactive azeotropes

• Tessier et al. (2000)

• monotonicity based enhancements of

  Interval Newton for phase stability

Phase Equilibrium & Parameter Estimation
•  Zhu et al. (2000)

• simulated annealing for PR, SRK

• Zhu, Inoue (2001)

• B&B with quadratic underestimator for

  phase stability

• Xu et al. (2002)

• Interval Newton for SAFT

• stability criterion

• Cheung et al. (2002)

• clusters: solvent-solute interactions,

  OPLS, tight bounds, binary system

• Esposito, Floudas (1998)

• error-in-variables + BB for algebraic

  models

• Gua, Stadtherr (2000)

• IA for error-in-variables

• Gua et al. (2000)

• VLE via IA with Wilson equation for

  azeotropes

• Gua et al. (2002)

• Interval Newton for parameter estimation

  catalytic reactor, HEN, VLE



• Scurto et al. (2004)

• High P solid-fluid equilibrium with

cosolvents

• Nichita et al. (2004)

• direct Gibbs minimization using

tunneling G.O. method

• Henderson et al. (2004)

• prediction of critical points

• Freitas et al. (2004)

• critical points in binary mixtures

• Lin, Stadtherr (2004)

• interval methods in parameter

estimation

• Lucia et al. (2005)

• phase behavior of n-alkane systems

• Ulas et al. (2005)

• uncertainties in parameter estimation

and optimal control of batch distillation

• Nichita et al. (2006)

• global phase stability analysis

Phase Equilibrium & Parameter Estimation
• Srinivas, Rangaiah (2006)

• random tunneling algorithm in phase

equilibrium calculations

• Singer, Taylor, Barton (2006)

     -dynamic complex kinetic model

•Srinivas, Rangaiah (2007)

• tabu list in phase equilibrium calculations

• Mitsos, Barton (2007)

• Gibbs tangent plane stability criterion

via Lagrangian duality



• Zamora, Grossmann (1998a)

• thermo-based convex underestimators

  for quadratic/linear fractional

• hybrid B&B + OA

• HENs without splitting

• Westerlund et al. (1998)

• extended cutting plane for P-convex

  MINLPs

• paper industry application

• Vecchietti, Grossmann (1999)

• disjunctive programming, LOGMIP

• hybrid modeling framework

• process synthesis, FTIR

• Sinha et al. (1999)

• solvent design: nonconvex MINLP

• reduced space B&B approach

• single component blanked wash design

• Noureldin, El-Halwagi (1999)

• IA for pollution prevention

• water usage/discharge in tire-to-fuel

  plant

MINLPs
• Pörn et al. (1999)

• exponential and potential transformation

  for integer posynomial problems

• Harjunkoski et al. (1999)

• trim loss minimization

• Adjiman et al. (2000)

• SMIN- BB: heat exchanger network

• GMIN- BB: pump networks, trim loss

• Kesavan, Barton (2000)

• generalized Branch & Cut approach

• decomposition, B&B are special cases

• Sahinidis, Tawarmalani (2000)

• design of just-in-time flowshops

• design of alternatives to freon

• Parthasarathy, El-Halwagi (2000)

• optimal design of condensation

• iterative G.O. based on decomposition

  and physical insights



• Pörn, Westerlund (2000)

• successive linear approximation for

  objective, line search technique

• cutting plane approach for P-convex

  objective and constraints

• Lee, Grossmann (2001)

• nonconvex generalized disjunctive

  programming

• convex hull of each nonlinear disjunction

• two-level B&B approach

• multicomponent separation, HENs,

  multistage design of batch plants

• Björk, Westerlund (2002)

• G.O. of HEN synthesis

• piecewise linear approximation of

  signomials

• Wang, Achenie (2002)

• solvent design

• hybrid G.O.: OA + simulated annealing

• near optimal solutions

MINLPs
• Ostrovsky et al. (2002)

• branch on variables which depend

  linearly on the search variables

• tailored B&B approach

• linear underestimators via a multilevel

  function representation

• significant reduction in B&B spacw

• Dua, Bozinis, Pistikopoulos (2002)

• multiparametric mixed-integer quadratic

  models

• decomposition approach

• envelopes of parametric solutions

• Sahinidis et al. (2003)

• alternative refrigerants design

• integer formulation

• branch & reduce G.O. approach

• Vaia, Sahinidis (2003)

• parameter estimation + model

  identification in infrared spectroscopy

• B&B approach



• Ostrovsky et al. (2003)

• reduced space B&B

• sweep method for linear underestimators

• Sinha et al. (2003)

• cleaning solvent blends

• IA based G.O. approach

• Zhu, Kuno (2003)

• hybrid G.O. method

• revised GBD and convex quadratic

  underestimation

• Goyal, Ierapetritou (2003)

• MINLPs with concave/Q-concave

  constraints

• simplical approximation of convex hull

• Kallrath (2003)

• nonconvex portfolio pf products

• concave objective, trilinear terms

• piecewise linear approximation of

  objective

• sBB, Baron

• weak lower bounds

MINLPs

• Grossmann, Lee (2003)

• nonconvex GDP with bilinear equalities

• use of RLT for convexification

• convex hull representation of

  disjunctions

• two-level approach for pooling, water

  usage, wastewater networks

• Lin, Floudas, Kallrath (2004), (2005)

• nonconvex product portfolio

• improved formulation

• techniques for bound tightening

• customized B&B

• large problems solved efficiently

• Kesavan,Allgor, Gatzke, Barton (2004)

• separable MINLPs with nonconvex

  functions

• (2) decomposition approaches

• alternating sequences of relaxed master,

  (2) NLPs, Outer approximation

• first approach leads to global solution

• second approach provides valid lower

  bounds



• Yan, Shen, Hu (2004)

• line-up competition algorithm

• Tawarmalani, Sahinidis (2004;2005)

• domain reduction strategies

• polyhedral branch-and-cut

• BARON framework enhancements

• Dua, Papalexandri, Pistikopoulos (2004)

       - multiparametric continuous/integer

•Munawar, Gudi (2005)

• hybrid evolutionary method for MINLPs

• based on nonlinear transformations

• Luo, Wang, Liu (2006)

• Improved particle swarm optimization

algorithm

• Young, Zheng, Yeh, Jang (2007)

• Information-guided genetic algorithm

MINLPs

RECENT APPLICATIONS

• Meyer, Floudas (2006)

• generalized pooling problem

• Karuppiah, Grossmann (2006)

• integrated water systems

• Bringas et al. (2007)

• groundwater remediation networks

• Bergamini, Scenna, Aquirre (2007)

• heat exchanger networks

• via piecewise relaxation

• Exler et al. (2007), Egea et al. (2007)

• integrated process and control

• Karuppiah, Furman, Grossmann (2008)

• scheduling refinery crude operations

• Lin, Floudas, Kallrath (2005)

• product portfolio

• Ghosh et al. (2005)

• flux identification in NMR data

• Foteinou, Saharidis, Ierapetritou,   

Androulakis (2008)

• regulatory networks

• Rebennack, Kallrath, Pardalos (2008)

• column enumeration

• packing of circles & rectangles



• Esposito, Floudas (2000a,b;2001)

• parameter estimation with ODEs

• nonlinear optimal control

• BB principles for underestimation

• alternative was for  calculation

• Chachuat, Singer, Barton (2005; 2006a,b)

• hybrid discrete/continuous dynamic systems

• emphasis on control parameterization

• Esposito, Floudas (2002)

• isothermal reactor network synthesis

• BB framework

• Lin, Stadtherr (2006;2007)

• parameter estimation of dynamic systems

• constraint propagation scheme for domain

reduction

• Papamichail, Adjiman (2002;2004;2005)

• spatial B&B G.O. for DAEs

• theory of differential inequalities

• convex relaxations for rigorous bounds for

  parametric ODEs and their sensitivities

• parameter estimation of kinetic models

Differential-Algebraic Models, DAEs
• Singer, Barton (2003;2004;2006)

• G.O. of integral objective with ODEs

• pointwise integrand scheme for convex

  relaxations of integral

• B&B approach

• Lee, Barton (2003;2004), Barton et al. (2006)

• G.O. of linear time varying hybrid systems

• determination of optimal mode sequence

  with transition times fixed

• convex relaxations of Bolza-type functions

• isothermal PFR

• Chachuat, Latifi (2003)

• spatial B&B G.O. for ODEs

• first, second order derivatives

• two point boundary value problem

• sensitivities vs adjoint approach

•  Banga et al. (2003)

• integrated design and operation

• parameter estimation in bioprocesses

• stochastic G.O.

• hybrid approaches for dynamic

  optimization



• Long, Pollsetty, Gatzke (2006)

• Nonlinear Model Predictive Control

• method for improved convergence rate

• global NMPC superior to local NMPC

• alternative was for  calculation

• Long, Pollsety, Gatzke (2007)

• NMPC for hybrid systems

• mixed-integer dynamic model

•Stability & uncertainty

Differential-Algebraic Models, DAEs



• Gumus, Floudas (2001)

• bilevel NLPs

• inner level convex relaxation

• equivalent KKTs

• BB principles

• Floudas, Gumus, Ierapetritou (2001)

• G.O. of feasibility test, flexibility

  index

• bilevel NLPs

• BB framework

Bilevel Nonlinear Optimization

• Pistikopoulos et al. (2003)

• linear/linear

• linear/quadratic

• quadratic/linear

• quadratic/quadratic

• parametric programming

• Gumus, Floudas (2004, 2005)

• bilevel mixed-integer

• convex envelopes/hull

• De Saboia, Campelo, Scheimberg

(2004); Campelo, Scheimberg (2005)

       - linear BLP; equilibrium point

• Ryu, Dua, Pistikopoulos (2004)

      - transform BLP into single parametric

programming problems

• Babahadda, Gadhi (2006)

    - convexificator for necessary OCs

• Solodov (2007): bundle method

• Faisca, Dua, Rustem, Saraiva,

and Pistikopoulos (2007)

    - bilevel quadratic

    - bilevel mixed integer linear

    - w/wo RHS uncertainty

• Tuy, Migdalas, Hoai-Phuong (2007)

  - transform into monotonic optimization

 - branch reduce & bound + monotonicity



• Bhattacharjee, Lemonidis, Green, Barton (2005)

• B&B algorithm

• upper bound = finite inclusion bounds

• lower bound = convex relaxation of discretized approximation

• Bhattacharjee, Green, Barton (2005)

• use of interval analysis

• construction of finite nonlinear reformulations

Semi-Infinite Programming

• Chang and Sahinidis (2005)

• study of metabolic networks

• S-system representation

• additional constraint to enforce stability of the solution

• Floudas and Stein (2007)

• adaptively construct relaxations

• use of BB principles

• Liu (2007)

• homotopy interior point method

• globally convergent algorithm



- Jones et al. (1998), (2001)

- kriging model + response surface

•Byrne, Bogle (2000)

• G.O. of modular flowsheets

• IA approach

• lower bounds

• derivatives and their bounds

• B&B G.O. approach

• Meyer, Floudas, Neumaier (2002)

• G.O. of nonfactorable models

• new blending functions for

•  sampling

• linear under/overestimators via IA

• Branch & Cut G.O. approach

• oilshale pyrolysis

• nonlinear CSTR

Grey-Box and Nonfactorable Models
•Gutmann (2001)

   - radial basis function, RBF

• Zabinsky (2003)

• Regis, Shoemaker (2005,2007)

   - constrained optimization using

response surfaces, CORS-RBF

   - controlled Gutmann, CG-RBF

• Huang, Allen, Notz, Zeng (2006)

   - kriging meta-model

• Hu, Fu, Markus (2007)

    - model reference adaptive search

• Egea, Vasquez, Banga, Marti (2007)

   - scatter search metaheuristic

   - kriging-based prediction

• Davis, Ierapetritou (2008)

    - Kriging model + response surface

    - B&B for MINLPs under uncertainty

    - small process synthesis problems
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• The convex envelope of a trilinear monomial is polyhedral

over a coordinate aligned hyper-rectangular domain.

• A triangulation of the domain defines the convex envelope

of the monomial.

• The correct triangulation is determined by a set of

conditions related to the minimal affine dependencies of the

vertices of the hyper-rectangle.

• An explicit set of formulae for the elements of the convex

envelope is defined for each set of conditions.

Convex Envelopes for Trilinear Monomials
(Meyer and Floudas, JOGO, 2003)



 Positive Bounds
If           ,           and            and the auxiliary conditions apply:

the linear equalities defining the facets of the convex envelope are:

Convex Envelopes for Trilinear Monomials
(Meyer and Floudas, JOGO, 2003)

0x 0y 0z

xyz xyz xyz xyz+ + xyz xyz xyz xyz+ +

2w yzx xzy xyz xyz= + +

2w yzx xzy xyz xyz= + +

w yzx xzy xyz xyz xyz= + +

where xyz xyz xyz xyz= +

w yzx xzy xyz xyz xyz= + +

x
w x xzy xyz xyz xyz xyz

x x x x
= + + + +

x
w x xzy xyz xyz xyz xyz

x x x x
= + + + +



Illustration
To construct the concave envelope of             for

                                                 .  We substitute            ,             , and

and check conditions:

which translate into,

and,

Both conditions hold, so we can use the substitutions in the facet

defining equations.

Convex Envelopes for Trilinear Monomials
(Meyer and Floudas, JOGO, 2003)

1 2 3
( , , ) [1, 2] [1,2] [2,4]x x x

1 2 3
x x x

1
y x

2
x x

3
z x
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14 16
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14 16



Facet Defining Equations

Convex Envelopes for Trilinear Monomials
(Meyer and Floudas, JOGO, 2003)
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The separation distance between the function xyz and the convex

envelope (dC) is compared with the separation distance between xyz and:

• the Arithmetic Interval lower bounding approximation (dAI) and,

• the Recursive Arithmetic Interval lower bounding approximation (drAI).

Comparison with Lower Bounding 

Approximations



Univariate monomial of degree 2k+1 in interval                   where

                :

Convex envelope         separates from          at     .

Convex Envelopes for Odd Degree

Univariate Monomials
(Liberti and Pantelides, JOGO, 2002)
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if            :
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where                      and      are constants:

Convex Envelopes for Odd Degree

Univariate Monomials
(Liberti and Pantelides, JOGO, 2002)
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• linear underestimators are derived through linearization of the convex

envelope at the end points.

•                 .

if           :

otherwise:

Linear Underestimators for Odd Degree

Univariate Monomials
(Liberti and Pantelides, JOGO, 2002)
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• Fractional term      in interval                                     where                     .

  New variables:                  where    stands in for      .

• Explicit form for domain                                     .

Convex Envelope for Fractional Terms
(Tawarmalani and Sahinidis, JOGO, 2001)
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Convex Envelopes for

Edge-Concave Functions

Definition:

An Edge-Concave function is a function that has

a Vertex Polyhedral Convex Envelope

Several classes of functions are edge-concave on certain domains:

• Concave functions over polytopes

• Multilinear functions over hypercubes

Constructive Characterization

of the Convex Envelope

(Meyer and Floudas, Math. Programming,  2005)

(Rikun, 1997)

(Horst and Tuy, 1993; Floudas, 2000)
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Convex Envelopes for

Edge-Concave Functions

Alternative Characterization

of the Convex Envelope

(Meyer and Floudas, Math. Programming, 2005)

=   Through a system of facet-defining

hyperplanes (FDH)

Examples:a) Bilinear envelopes (McCormick, 1976;Al-

Khayyal,Falk,1983)

     b) Trilinear envelopes (Meyer and Floudas, 2003; 2004)

     c) Special forms of multilinear functions over hypercubes

(Sherali, 1997)



Convex Envelopes for

Edge-Concave Functions

Step1: Dominance Relations

(Meyer and Floudas, Math. Programming, 2005)
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Convex Envelopes for

Edge-Concave Functions

Step1: Dominance Relations

(Meyer and Floudas, Math. Programming,  2005)
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Apply Transformation:

Representative triangulation  Current triangulation



Convex Envelopes for

Edge-Concave Functions

Step1: Dominance Relations

(Meyer and Floudas, Math. Programming, 2005)

ALGORITHM

RVconvf )(:

{ } nRxxxV
n

=
221

,...,,

Edge-concave function

Set of vertices of hyperrectangle 

Evaluate function at each vertex point

and determine the dominant subsets

ix
{ } VPixX i

= )(:

Step2: Triangulation Class Determine the triangulation type
(6 different ways for 3d cube)

Step3: Reorientation
Apply Transformation:

Representative triangulation  Current triangulation

Step4: Compute Facets Calculate FDH from the cells of the current triangulation

Solve linear system of equations: =
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(Gounaris and Floudas, JOTA, 2008)
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Convexity of

 Products of Univariate Functions
(Gounaris and Floudas, JOTA, 2008)
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When is f(x) convex?

Sufficient Conditions

• Every factor should be strictly positive

 

• Every factor should be strictly convex

• For every factor:  
( ) 0)()()(

2///

iiiiii xfxfxf

}
An even number of factors are

allowed to instead be strictly

negative and strictly concave

These conditions are in fact necessary if

all factors share the same functional form



Convexity of

 Products of Univariate Functions
(Gounaris and Floudas, JOTA, 2008)
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Convexity of

 Products of Univariate Functions
(Gounaris and Floudas, JOTA, 2008)

( )
( )

)()()()(

1log2
1log3

2.1
8.1

)(

44332211

2.1

4

12

2

1

2

2

43

xfxfxfxf

x

e
xx

x

x
x

x
xf

xx

=

+= Is f(x) convex in           ?
4

3

2
,

3

1

( )
111

1log6.0)( xxf =

2

2

2

22

32
)(

x

x
xf

+
=

2.1

4

44

4

)(
x

e
xf

x

=

3)(
33

x
exf =

Yes!

….because all four functions satisfy the

sufficient conditions in [1/3,2/3]



Convexity of

 Products of Univariate Functions
(Gounaris and Floudas, JOTA,  2008)
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Convexity of

 Products of Univariate Functions
(Gounaris and Floudas, JOTA, 2008)

yex

Which functions are suitable for convexification

transformations in multilinear and geometric programming?

(Maranas and Floudas, C&ChE, 1997)Exponential

y
x

1
(Li, Tsai and Floudas, Opt. Letters, 2007)Reciprocal

(used on every factor)

(used only on factors

raised to positive powers

WHY?

• They satisfy the conditions

• They satisfy the conditions when they are raised to some power >0

• The exponential function satisfies the conditions even when raised to some

negative power, thus it can convexify any arbitrary posynomial program

In fact, it is the only functional form with such a capability (Gounaris and Floudas, JOTA,2008)
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• Key Idea: Construct a 3-parameter ( ,b,xs) trigonometric function

 AND

   prove properties for the calculation of

                         ( ,b,xs)

such that (x) is a convex underestimator

Convex Underestimators for Trigonometric

Functions
Caratzoulas, Floudas, JOTA (2005)
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• For (x) to be convex:

• Property 1: matching g(x) and (x) at the bounds results in:

Convex Underestimators for Trigonometric

Functions
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• Property 2: The phase shift xs is:

• Note: (a) Equation (2) needs to be solved numerically since k

                  depends on xs

            (b) a few Newton iterations suffice

            (c) Equation (2) always has a solution

Convex Underestimators for Trigonometric

Functions
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Convex Underestimators for Trigonometric

Functions

• Property 3: g(x)  (x)   (i.e., (x) underestimates g(x))

• Property 4: (x) is convex

• Property 5: Maximum Separation Distance, Umax

• Note: (a) As D grows, r  0, rD(1-rD)  D-1, Umax grows linearly

                 with D for   0.

            (b) As D grows, Umax grows linearly with D for  = 0.
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Initial lower bound = -9.7818 at x = 9.656

BB with  = 6.0007               Initial lower bound = -185.23

Convex Underestimators for Trigonometric

Functions
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P BB:

Piecewise Quadratic Perturbations

Christodoulos A. Floudas

Princeton University



C2 NLPs - The BB Framework
• Based on a branch-and-bound framework

• Upper bound on the global solution is obtained by

  solving the full nonconvex problem to local optimality

• Lower bound is determined by solving a valid convex

  underestimation of the original problem

• Convergence is obtained by successive subdivision

  of the region at each level in the brand & bound tree

• Guaranteed -convergence for C2 NLPs



Convex Lower Bounding: The BB

Framework
(Androulakis et al., JOGO,1995; Adjiman et al.,Comp.&Chem.Eng. 1998)

• Decompose each constraint into a sum of terms

   LINEAR         CONVEX           BILINEAR                TRILINEAR

    FRACTIONAL    FRACTIONAL TRILINEAR      SIGNOMIAL

 UNIVARIATE CONCAVE      GENERAL NONCONVEX

• Develop valid convex underestimators for each term
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Convex Lower Bounding: The BB

Framework

Linear Terms

Convex Terms

Bilinear Terms  (McCormick, 1976; Al Kayyal, Falk, 1983)

 Define                    and introduce: Convex Envelope

Key Property  (Androulakis et al., 1995)
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Convex Lower Bounding: The BB

Framework
General C2 Nonconvex Terms
(Maranas, Floudas, 1994; Androulakis et. al, 1995)

P1:

P2:

P3:

P4:

P5: Maximum Separation Distance

P6: Convexity of L(x)
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Rigorous Calculations of : The BB

Framework
              (Adjiman, Floudas, 1996; Adjiman et al., 1998a,b)

Key Ideas - Derive Hessian matrix,        , of

- Compute INTERVAL Hessian in

-

- Compute              is P.S.D.

Uniform Diagonal Shift Matrix
O(n2) Methods     O(n3) Methods

- Gerschgorin Theorem     - Hertz

    - Lower Bounding Hessian

    - Mori-Kokane

    - E-Matrix Approach

Non-Uniform Diagonal Shift Matrix

- Scaled Gerschgorin Theorem

- H-Matrix

- Semi-definite Programming
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Scaled Gerschgorin Theorem: The BB

Framework
Gerschgorin Theorem  for real matrices:

Theorem for Interval Matrices     (Adjiman et al., 1998a,b)

   - d is a positive vector

     Use di = 1  or  di = xi
U – xi

L

Inexpensive and simple technique
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C2 NLPs - Illustrative Example

Pseudoethane
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• Curvature of the perturbation function is constant.

• The eigenvectors of the Hessian matrix of the perturbation

function are aligned with the coordinate axes.

BB Underestimator: 

Room for Improvement?
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Central Idea

• Partition the domain into subregions.

• Calculate the  parameters in each subregion.

• Construct an underestimator for the whole domain using

these ’s.

Properties of the Underestimator Function

• smoothness

• convexity

• underestimation

Structure of the Underestimator Function

• sum of piecewise quadratic univariate functions

• underestimator matches function at vertices

A Refinement of the BB Underestimator
Meyer, Floudas, JOGO, (2005)



• Partition interval             into       subintervals.

• Endpoints of the subintervals:                     .

A smooth convex underestimator         in an interval               :

Piecewise C2-Continuous Underestimator
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• Smoothness: function     and their gradients must match at

the internal endpoints     .

• Tight at extrema:                  at             .

Expands to a linear system in  and .

Joining the Pieces
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Linear System

Solution

where                                                .

Formulae for  and 
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                       in the interval                           .

• First term: convex, dominates when x is small

• Second term: concave, dominates when x is large

Minimum eigenvalues:

Illustration: Lennard-Jones Potential

Energy Function
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Standard BB underestimator:

2 subinterval underestimator:

Underestimator when                         :

Underestimator when                       :

Illustration: Lennard-Jones
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Illustration: Lennard-Jones
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Generalized BB
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Requirements of Convex Underestimators

for Nonconvex Functions

• Definition of a relaxation function             that is

convex and negative for every         .

• By adding             to the original nonconvex

function          we obtain an underestimating

function of         , i.e.,

•           is an underestimator of        .
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Requirements of Convex Underestimators

for Nonconvex Functions

•           has to match         at the corner points of
X, that is,                    where      is a corner point
of X.

• Convexity of the underestimating function:

If the Hessian of the relaxation function,             ,
is positive definite enough, then the Hessian of
the underestimator,              , can be positive
definite.
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The New Relaxation Function
Akrotirianakis, Floudas, JOGO, 2004, 2005

Properties:

•              is a separable function

•                     for all            and

•                      for every corner point of X

•                 is a diagonal and positive definite matrix

•              is a convex function

•              achieves its minimum at the middle point of X

and its maximum at the corner points of X
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The New Underestimating Function

Properties:

•            underestimates

•            matches          at the corner points of X

• Underestimators constructed over a subset of a

set are always tighter than the underestimator of

the original set.
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The New Underestimating Function

Properties (cont.):

• The maximum separation distance is achieved
at the middle point of X:

• Existence Theorem: The positive
semidefiniteness of               guarantees the
existence of a vector    , such that the Hessian
of              is positive semi-definite. Hence,
is a convex underestimator.

=

==

n

i

xx

Xx

L
i

U
iexLxfd

1

2)(5.0

1max
)1()};()({max

);(xH

);(
1

xL);(
1

xL



Comparison of Underestimators

• Lemma:                              , for some     and

• Tightness Theorem: The convex underestimator

                 is tighter than the convex underestimator

 , that is,
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Maximum Separation Distance

Theorem 2: Let                              be the solution of the

system of nonlinear equations

Then the underestimator                      with

has the same maximum separation distance as the

underestimator                  .
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Maximum Separation Distance

Remarks:

• Every interval              corresponds to another

interval             .

• Every underestimator             with                  is

looser than the underestimator                  .

•                 and               are tighter than

and               respectively.

• Only the underestimator                   is known to

be convex a priori.
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Illustrative Example
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Illustrative Example

•  BB value:      =77.12 (corresponding    value

is     =1.07).

• G BB value:     =0.85 (corresponding    value

is     =1.07).

• The method checks if there exist

or                    such that                or

are convex underestimators of         in X.

• After 21 partitions of the initial domain the

algorithm concludes that                is convex.
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Illustrative Example

• The minimum obtained by the BB is

• The minimum obtained by G BB is

• Improvement ratio:
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Illustrative Example

• Comparison of                      and                 :);(
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Given an optimization problem, we need to:

• Select appropriate technique/method to solve it, e.g., Gradient methods

Usually depends on problem type and formulation

• Select appropriate values for adjustable parameters, e.g., Step size

Usually select empirically – identify “optimal” values

• Select appropriate auxiliary functions,

e.g., Convex underestimators

Impractical to try all possible functions

Functional Forms of Convex Underestimators
(Floudas and Kreinovich, 2006, Opt.Letters 2008)

QUESTION:

 Is there an “optimal” auxiliary function to use ?

(SHORT) ANSWER:

 YES, in many cases !



BB Convex Underestimator
(Maranas and Floudas, 1994; Androulakis et al., 1995; Adjiman et al., 1998a,b)

Functional Forms of Convex Underestimators
(Floudas and Kreinovich, 2006,2008)
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Generalized BB Convex Underestimator
(Akrotirianakis and Floudas, JOGO, 2004a,b)

Functional Forms of Convex Underestimators
(Floudas and Kreinovich, 2006,2008)
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What if we generalize to a non-linear rescaling ?
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• Why do linear and exponential functions perform well in BB methods ?

• Are there better functional forms to do the job ?

Functional Forms of Convex Underestimators
(Floudas and Kreinovich, 2006,2008)

“Optimal” has to be “Invariant”

• SHIFT
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Both convex underestimation schemes are “optimal” !

Functional Forms of Convex Underestimators
(Floudas and Kreinovich, 2006,2008)

Which pairs of functional forms exhibit “Invariance” ?
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Augmented Lagrangian Method

with variable lower-level constraints

Define Augmented Lagrangian function:

(Birgin, Floudas and Martinez, 2007)
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Global optimization algorithm:

• At each outer Iteration, perform -global minimization

  of Augmented Lagrangian under “simple” constraints

• Solve subproblems using BB method

• Proven convergence to an - global minimizer



Augmented Lagrangian Method

with variable lower-level constraints

ALGORITHM

(Birgin, Floudas and Martinez, 2007)
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Augmented Lagrangian Method

with variable lower-level constraints

ALGORITHM

(Birgin, Floudas and Martinez, 2007)

Step 1: Find an    -global minimizer                  of                    ; that is, 

• Use BB global optimization method

•      is an auxiliary constraint set that incorporates

information obtain during the solution iterations (optional)
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Augmented Lagrangian Method

with variable lower-level constraints

ALGORITHM

(Birgin, Floudas and Martinez, 2007)

Step 2: Define: 

If                                                                           (or if         )
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     (increase     )
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Augmented Lagrangian Method

with variable lower-level constraints

ALGORITHM

(Birgin, Floudas and Martinez, 2007)

Step 3: Compute:                 

Increment:
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Augmented Lagrangian Method

with variable lower-level constraints

CONVERGENCE

(Birgin, Floudas and Martinez, 2007)

Theorem 1: Point                    is feasiblek

k
xx = lim

*

k

k
xx = lim

*  Theorem 2: Point                         is an -global minimizer



Augmented Lagrangian Method

with variable lower-level constraints

CONVERGENCE

(Birgin, Floudas and Martinez, 2007)

Theorem 1: Point                    is feasiblek

k
xx = lim

*

k

k
xx = lim

*Theorem 2: Point                    is an -global minimizer

EXAMPLE (Haverly’s Pooling Problem – 3 cases)
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Augmented Lagrangian Method

with variable lower-level constraints
(Birgin, Floudas and Martinez, 2007)

EXAMPLE (Haverly’s Pooling Problem – 3 cases)

-7508(6)11(c)

-6008(6)11(b)

-4008(6)11(a)

f(x*)mn
case

Problem Stats



Augmented Lagrangian Method

with variable lower-level constraints
(Birgin, Floudas and Martinez, 2007)

EXAMPLE (Haverly’s Pooling Problem – 3 cases)

variable k=max{ ,10-k}

8888(c)

13131313(b)

8888(a)

=10-4=10-3=10-2=10-1
case

Iterations

variable k=max{ ,10-k}

88847260(c)

671651613563(b)

1041008878(a)

=10-4=10-3=10-2=10-1
case

# Nodes

variable k=max{ ,10-k}

0.160.170.090.07(c)

0.760.730.700.64(b)

0.130.130.110.09(a)

=10-4=10-3=10-2=10-1
case

Time

-7508(6)11(c)

-6008(6)11(b)

-4008(6)11(a)

f(x*)mn
case

Problem Stats


