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Abstract

To date, sensitivity, bifurcation and singularity analysis have been employed to identify and characterize the qualitative nonlinear behaviour
of chemical process systems. The phenomena of interest include multiple steady states and periodic or even chaotic oscillations. The analyses
have been aiming at proper understanding of the relation between the observed behaviour on the one and the process parameters as well
as the underlying physical–chemical phenomena on the other hand. These methods have rarely been used to address synthesis problems,
neither in process design nor in process control, where a desired process behaviour has to be realized according to given design specifications
in a constructive manner. The present paper reviews the authors’ recent work on constructive nonlinear dynamics that extends and applies
ideas from nonlinear dynamics to address synthesis rather than analysis problems. The suggested method systematically accounts for process
economics and process operability in an integrated framework. Further, model as well as process uncertainties can be addressed systematically.
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he suggested formalism is illustrated by means of examples from various areas of process systems engineering including pro
ontroller tuning and the integration of design and control under uncertainty. Additional opportunities for future research and appl
ointed out.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

The development and application of a variety of meth-
ds for the analysis of the nonlinear dynamics of process
ystems has a long tradition in chemical engineering re-
earch. Continuously improving software for numerical bi-
urcation analysis (Kuznetsov & Yu, 1999) by parameter
ontinuation has made such analyses more and more attrac-
ive. The software package AUTO2000 (Doedel et al., 2001)
nd its predecessors have often been used by researchers in
hemical engineering. Other software package also exist, but
ave not found such a widespread use, for example, CON-
ENT (Kuznetsov & Yu, 1998), which provides an easy-to-
se interface to support a variety of analysis tasks, or DIVA
Mangold, Kienle, Gilles, & Mohl, 2000), which is particu-
arly well-suited for the analysis of large-scale process mod-
ls.
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Early applications of numerical bifurcation analysis w
aimed at deepening the understanding of the dynami
chemical process systems in general. For this purpose, m
problems have been chosen carefully to reflect the qualit
behaviour of an important class of process systems. Th
namic behaviour of these model processes can be repre
by low-order nonlinear models, which can be treated with
analytical and numerical methods from nonlinear dynam
in a straightforward manner. The process studied mos
quently is the continuous stirred tank reactor (CSTR)
various types of chemical reaction systems (for an over
seeRazon & Schmitz, 1987). The seminal paper on the d
namics of CSTR with an exothermic irreversible first or
reaction A→ B by Uppal, Ray, and Poore (1974)is still up-
to-date in that it demonstrates what type of information
the dynamics can be inferred from a bifurcation analysi
numerical parameter continuation. Most importantly, num
ical bifurcation analysis is used to systematically detect
disclose stability boundaries due to saddle-node and
bifurcations by one- and two-parameter continuation. W
the first examples treated were restricted to small mode
098-1354/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2005.02.009
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ther to illustrate the application of a mathematical technique
or to get a fundamental understanding of a class of prob-
lems, this type of analysis has been applied more recently to
industrially relevant process models of significant complex-
ity including single chemical or biochemical reactors (e.g.,
Bildea & Dimian, 1998; Harold, Ostermaier, Drew, Lerou,
& Luss, 1996; Khinast, Luss, Harold, Ostermaier, & McGill,
1998; Lei, Olsson, & Jørgensen, 2003; Morud & Skogestad,
1998; Ray & Villa, 2000) and distillation columns (Bekiaris,
Meski, Radu, & Morari, 1993; Bekiaris, Meski, & Morari,
1996; Dorn & Morari, 2002) and distillation sequences (e.g.,
Esbjerg, Andersen, M̈uller, Marquardt, & Jørgensen, 1998;
Güttinger & Morari, 1996), multi-functional processes such
as reactive distillation columns (e.g.,Kienle & Marquardt,
2002) as well as simple process plants (e.g.,Kiss, Bildea,
Dimian, & Iedema, 2002, 2003; Pushpavanam & Kienle,
2001; Zeyer, Pushpavanam, & Kienle, 2003).

While bifurcation analysis by continuation is an estab-
lished method, there has been no systematic attempt so far
to employ the rich theory of nonlinear dynamics to address
synthesis problems in a rigorous manner. Rather, an iterative
application of nonlinear analysis techniques embedded into
a manual and time-consuming search in the parameter space
has been employed. Typically, the designing engineer starts
with an initial design with fixed process structure and param-
eters. He or she then employs nonlinear analysis methods to
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reviews selected case studies to illustrate the capability of
the method. Section5 puts this new approach into perspec-
tive with alternative problem formulations and solution tech-
niques. We conclude with a summary and with an outline of
future research issues.

2. Conceptual problem formulation

2.1. Preliminaries

In the present paper we assume that process models can be
stated as a system of ordinary differential equations (ODE):

ẋ = f (x, u, θ), (1)

wherex, u, andθ denotenx-, nu-, andnθ-dimensional vec-
tors of state variables, inputs, and parameters of the model,
respectively. The vector-valued functionf is assumed to be
smooth with respect tox,u, andθ. The parametersθ comprise
model parameters (such as a heat of reaction), equipment de-
sign parameters (such as a vessel volume), and operational
parameters that are not manipulated by a controller or an
operator (such as a feed temperature). For convenience, the
notationηT = (uT, θT) is introduced, equation(1) is rewritten
as:
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nderstand the behaviour and performance of this des
arameter space in the vicinity of the nominal design. F

he results of such an analysis the designing engineer h
ically derives design modifications to better meet the de
pecifications. The process understanding accumulate
ng previous analysis phases can be effectively used to
rocess design (for an example seeBildea & Dimian, 1998).

All these methods are focusing on analysis and are
irectly addressing the synthesis problem. Synthesis h
e accomplished by the design engineer applying the a
is methods during a time consuming iterative search
ess. To overcome this limitation, a new set of nonlin
ynamics methods has been suggested by the authors
ent years (Mönnigmann, 2003; Mönnigmann & Marquard
000, 2002, 2003). These nonlinear dynamics methods s

ematically address the synthesis rather than the an
roblem. The next section introduces the basic ideas wi
athematical rigor first. Section3 summarizes the techn

al issues to be tackled in order render the ideas operat
ection4 introduces a number of problem formulations

ig. 1. Critical manifolds separate regions with qualitatively different p
c) the intersection of the regions in (a) and (b).
-

˙ = f (x, η), (2)

nd the domain ofη is referred to as the parameter space.
roblem class can easily be extended to differential–alge
ystems of index one (Mönnigmann, 2003). It is importan
o note that(2) can represent both open- or closed-l
rocesses. The parameter vectorη may approximate time
arying quantities, if their dynamics is much slower t
hat of the process. For a more thorough discussion o
roblem class, the reader is referred to other publica
Mönnigmann, 2003; Mönnigmann & Marquardt, 2003).

In the space of the parametersη, regions with qualitativel
ifferent process behaviour can be distinguished. Thes
ions are separated by nonlinear boundaries, the so-
ritical manifolds (for a sketch seeFig. 1). The critical man
folds are not apparent from the process model, but mu
dentified by often-tedious calculations. A typical case f
ritical manifold is a stability boundary that separates a re
f the parameter space in which a single stable steady
xists from a region with sustained oscillations around an

behaviour from one another: (a) stability boundary, (b) feasibility boundary, an
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stable steady-state (Fig. 1a). In this case, the critical manifold
is a manifold of Hopf bifurcations, which can be found with,
for example, a numerical bifurcation analysis (Kuznetsov &
Yu, 1998). It is noted that simple inequality constraints on
state variables, such as an upper bound on the process tem-
perature, or on functions of state variables, give rise to criti-
cal manifolds too (Fig. 1b). In addition, other constraints on
the process dynamics than stability boundaries can be de-
scribed by critical manifolds.Mönnigmann and Marquardt
(2000)show, for example, how information on the location
of critical manifolds of cusp singularities can be used to avoid
multiple steady states. Similarly,Gerhard, M̈onnigmann, and
Marquardt (2004)solve optimization problems with con-
straints on the location of nontransversal Hopf bifurcations.
These constraints ensure that no stability loss can occur in a
finite, user-specified, range of a bifurcation parameter. The
concept of a critical manifold in fact provides a unified de-
scription of constraints on both process operation and dynam-
ics in the parameter space (Mönnigmann, 2003; Mönnigmann
& Marquardt, 2003).

2.2. Steady state process design by optimization

Any steady state 0 =f(x, η) of the model(2) corresponds
to a stationary operating point of a continuous process. Since
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In a next step, we therefore have to force the design into a
particular region of the parameter space constrained by crit-
ical manifolds. For example, we want to make sure that any
design results in a stable steady-state operating point rather
than in an unstable point with an oscillatory regime. Simi-
larly, critical manifolds due to feasibility constraints have to
be taken into account in(3). If we introduce the regionP,
which is the intersection of those regions with a certain de-
sired behaviour reflecting the design objectives (cf.Fig. 1c),
the problem(3) can be replaced by:

minφ(x, η) subject to 0= f (x, η) and η ∈ P. (4)

The boundaries ofPare given by parts of the critical mani-
folds separating regions in the parameter space with different
qualitative process properties. If none of the critical manifolds
boundingP gives rise to an active constraint, the problems
(3) and(4) will result in the same optimal design. In the se-
quel, however, we assume that at least one critical manifold
imposes a nontrivial restriction, cf.Fig. 2a and b. In this case,
the optimal design is not in the desired regionP in the param-
eter space for problem formulation(3) but is forced onto one
of the boundaries ofP for problem formulation(4). Denoting
the values of the objectiveφ resulting from problem formu-
lations(3) and(4) by φ(3) andφ(4), respectively, this implies

φ =φ(4) − φ(3) ≥ 0. Hence, there is a loss
φ in the objec-
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particular valueη =η fixes design and operational para
ters of the process (for the set of chosen model par

ers), the pointη* represents a certain design in the param
pace. Finding an appropriate valueη* therefore amounts
esigning the process. The selection of the desired po

he parameter space can be interpreted as a simple syn
roblem if we assume a fixed process and model struc
he restriction to a fixed process and model structure has
uiding our research in the past. However, we expect tha
estriction can be overcome by an appropriate extensi
ur method in the future.

In a typical design scenario, the design objectives are
nto an economic objective functionφ. In a first attempt
n economically optimal steady state can therefore b

ermined by solving a problem of the form:

inφ(x, η) subject to 0= f (x, η). (3)

learly this problem statement does not take informatio
he critical manifolds of the particular model into accou

ig. 2. The parameters of the optimal design are marked with a cros
tatement(3) is likely to result in a steady state on one or more critical m
nto regionP.
s

ive due to the restrictions imposed by confining the desig
particular regionP, which, for example, guarantees a c

ain qualitative dynamic behaviour. This loss is a quantita
easure for the cost of enforcing such qualitative dyna
ehaviour or another constraint.

.3. Design optimization under uncertainty

Depending on the nature of the objective function and
ritical manifolds, the optimal design can either lie in
nterior of the regionP or on its boundary. In fact, the app
ations treated in Section4suggest that the latter case is m
ikely. If the solution of the optimization problem(4) results
n a design on the boundary ofP, this result is not robus
ince even a slight change inη may cause the design to lea
he desired parameter space regionP. Thus, the design ma
ross a stability boundary, or an infeasibility may occu
he real process due to the parametric uncertainties in e
odel or operational parameters. In order to make use o

roblem statement(2) fails to the take critical manifolds into account. (b) Prob
s. (c) Problem statement(5) forces design to back off from the critical manifo
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information on the location of critical manifolds in a manner
that is meaningful for practical applications, parametric un-
certainty has to be taken into account. To do so, the parameter
vectorη is split into two parts, a subset ofnp parametersp
that are known precisely, and a subset ofnα =nη−np parame-
tersα that are uncertain. The parameter space is consequently
split into two subspaces, which correspond to uncertain and
certain parameters, respectively.

While a nominal process design corresponds to a single
point in parameter space, taking the parametric uncertainty
into account now unfolds this point into a region denoted by
R in the (p, α)-space (for a sketch of a situation where only
uncertain parameters exist, seeFig. 2c). With this uncertainty
description, we now require the resulting design to lie in the
desired region of the parameter spaceP despite the given
uncertainties. Geometrically, the uncertainty regionR that
surrounds the nominal design has to be in the interior of the
regionP. The optimization problem to be solved therefore is:

minφ(x, η) subject to 0= f (x, η) and R\P = ∅. (5)

The solution of the optimization problem is sketched in
Fig. 2c. Obviously, it is not only determined by the design
constraints but also by the shape of the uncertainty regionR.

2.4. Leveraging the design loss by structural
m
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reduction leads to a smaller uncertainty regionR, which fa-
cilitates a design closer to the boundaries ofP. If a reduc-
tion of the level of parametric uncertainty is not sufficient,
a structural modification of the process can be envisioned.
This structural modification may lead to a process with the
desired qualitative behaviour, for example, stability, but with
a smaller profit loss even in case of parametric uncertainty.
Typically, if the nominal steady-state process is open-loop
unstable, such a structural change is implemented by some
type of feedback control or—less frequently—by some mod-
ification of the process or equipment itself.

3. Mathematical problem formulation and solution

This section presents some of the mathematical back-
ground necessary to implement the concept sketched in the
previous section. The style is kept informal. References to
more detailed literature are given.

3.1. Critical manifolds

In order to understand the concept of a critical manifold, it
is instructive to consider a simple feasibility constraint first.
Assume that a feasibility constraint has to be enforced for
steady states of the process model(1), i.e., we are interested
i
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Assuming that the constraintR\P=Ø is not trivially met,
he objective function valueφ(5) resulting from(5) will be
arger than or equal toφ(4), i.e.,
φ′: =φ(5) − φ(4) ≥ 0. This
rofit loss is larger or equal to the loss
φ that does not ac
ount for parametric uncertainty. The successive introdu
f design specifications and parameteric uncertainty wi
ult in different desirable regionsP and robustness regio
and ultimately to different losses after the solution of

ssociated optimization problem. This way, a systematic
ation of the cost of a certain design specification or the
ertainty in a specific model or design parameter beco
ossible. If the critical manifold is a stability boundary,
xample, the loss measures the cost of requesting a
perating point for a given uncertainty in selected mode
rocess parameters. If the loss
φ′ is not acceptable, th
esigner might try to reduce the level of uncertainty in
r more of the parametersα. Geometrically, this uncertain

Fig. 3. (a) Illustration of a critical manifoldMc. (b) Closest dista
n steady states that obey 0 =f(x, α, p) and further satisfy:

≤ g(x, α, p) (6)

hereg is scalar and real-valued. In this simple case, th
f points at which the inequality is active defines the crit
anifoldMc of interest

c = {(x, α, p) : 0 = f (x, α, p) and 0= g(x, α, p)}. (7)

As sketched inFig. 3a, the projection of this critical ma
fold separates the space of the uncertain parametersα into
he region in which(6) holds on the one hand, and the reg
n which (6) is violated on the other hand.Fig. 3b shows the
rojection ofMc into the space of the uncertain parameteα
long with a robustness regionR to be discussed below. T
ominal values of the uncertain parameters are denot
α1

(0), α2
(0))T in Fig. 3.

A larger class of critical manifolds can be described if
ingle equation 0 =g(x, α, p) in (6) is replaced by a set

ng normal direction to the manifold. Nominal design at (α
(0)
1 , α

(0)
2 )

T
.
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equations, i.e.,

Mc = {(x, x̃, α, p) : 0 = f (x, α, p) and 0= g̃(x, x̃, α, p)}.
(8)

In equation(8), x̃ denotes anx̃-dimensional vector of aux-
iliary variables that are necessary to state the defining equa-
tionsg̃ of the particular critical manifold. The function ˜g has
a range of dimensionnx̃ + 1 and hence implicitly constrains
a single state variable (Mönnigmann, 2003; Mönnigmann &
Marquardt, 2003). For critical manifolds of the process model
(1), f andg̃ form the so-called augmented system for the crit-
ical phenomenon of interest. Often, these critical phenomena
are bifurcations. Most importantly, saddle-node and Hopf bi-
furcations give rise to stability boundaries. Higher order bi-
furcations and singularities such as cusp or nontransversal
Hopf points can also be related to engineering applications
as demonstrated with an example in Section4. A thorough
discussion of the theoretical background is beyond the scope
of the present paper. In the sequel, we will only make use of
the fact that these systems can be stated in the form(8). The
reader is referred toKuznetsov and Yu (1999)for an intro-
duction to applied bifurcation theory and toGolubitsky and
Schaeffer (1985)for singularities of higher codimension.

As a natural extension to the stability boundary, critical
manifolds can be defined to be steady states at which the
r cified
v m
a teady
s -
d cted
m e a
s ifur-
c e
i

3

ust-
n
b s
i -
b n
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occurs along the direction that is normal to the critical man-
ifold as shown inFig. 3b. In this figure, the uncertainty box
αi ∈ [α(0)

i − 
αi , α
(0)
i +
αi ], i = 1, . . ., nα, is overestimated

by a ball. By enforcing the distance|r| betweenα(0) and the
critical manifold along the normal directionr to be larger than
the radius of the ball, the critical manifold is guaranteed not
to be crossed, regardless of the actual values of the uncertain
parameters in the robustness box.

Mönnigmann and Marquardt (2000)show that the nor-
mal vectorr can be calculated from the defining equations
0 = g̃ (x, x̃, α, p), 0 =f(x, α, p) in equation(8). Here, we do
not digress to discussing the construction of sets of equations
for the calculation of normal vectors, but only cite the result.
According toMönnigmann and Marquardt (2000)the normal
vector can be calculated from equations of the form:

0 = G(c,i)(x(c,i), x̃(c,i), α(c,i), p(c, i), r(c, i)), (9)

where the upper index (c,i) denotes the quantities that belong
to the critical manifold numberi, r refers to the desired nor-
mal vector, andG(c,i) comprisesnx+nx̃ +nα +np+nr equa-
tions which have full rank at solutions (Mönnigmann, 2003;
Mönnigmann & Marquardt, 2000). The structure of these
equations depends on the type of critical manifold such as
one stemming from saddle-node or Hopf bifurcations or from
a feasibility constraint.
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ple clos exity.
eal part of the leading eigenvalue attains a user spe
alue σ0 < 0. Such a critical manifold is interesting fro
technical point of view because it separates those s

tates which have a decay rate ofσ0 or faster to linear or
er from steady states for which disturbances are reje
ore slowly. Formally, the resulting critical manifolds ar

imple extension of the augmented system of the Hopf b
ation (Mönnigmann & Marquardt, 2002). A simple exampl

s given in Section4.3.

.2. Distance to a critical manifold

Based on the concept of a critical manifold, the rob
ess of a candidate nominal designη(0)T = (α(0)T, p(0)T) can
e quantified. The distancer of α(0) to the critical manifold

n the subspace of the uncertain parametersα is used as a ro
ustness measure. The locally closest distance betweeα(0)

nd the projection of the critical manifold onto theα-space

Fig. 4. (a) Uncertainty need not be described by a box. (b) Multi
As pointed out in the previous section, the approach
ented here is not restricted to describing parametric u
ainty by boxesαi ∈ [α(0)

i − ∆αi , α
(0)
i +
αi ], i = 1, . . ., nα.

ig. 4a sketches a general robustness region around a c
ate nominal valueα(0) for the uncertain parameters. Pa
etric robustness can be enforced in such a case by req

he locally closest connections between the robustness
fold Mr and the critical manifoldM(c,i) to be larger than o
qual to zero. The locally closest connections betweeMr

ndM(c,i) occur along directions that are normal to both,
ritical manifold and the robustness manifold.Mönnigmann
nd Marquardt (2003)show that a large class of robustn
egionsMr can be described by considering the bounda

r to be a manifold of the same form(8) as the critical man
olds. In order to distinguish the robustness manifold no
ector system from(8), all quantities for the robustness m
fold normal vector system are labeled with an upper in
r, i) instead of (c,i).

est connections exist due to multiple critical manifolds and non-conv
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Fig. 4b illustrates that generally more than one critical
manifold exists. Assuming thatimax locally closest connec-
tions exist, the optimization problem with constraints for ro-
bustness reads:

min
x(0),α(0),p(0)

φ(x(0), α(0), p(0)) (10a)

s.t. 0 = f (x(0), α(0), p(0)) (10b)

0 = G(r,i)(x(r,i), x̃(r,i), α(r,i), p(r,i), r(i)) (10c)

0 = G(c,i)(x(c,i), x̃(c,i), α(c,i), p(c,i), r(i)) (10d)

0 = l(i)r(i) − (α(c,i) − α(r,i)) (10e)

0 <= l(i) (10f)

i = 1, . . . , imax. (10g)

Equation(10b) ensures that the optimal design (x(0), α(0),
p(0)) is a steady state of process model(1). Equations(10c)
and (10d) ensure that the critical manifoldM(c,i) and the
robustness manifoldM(r) are connected by a common nor-
mal directionr(i), cf. Fig. 4b. Constraints(10e) and (10f)
guarantee that a distance larger than or equal to zero ex-
ists along this direction. For a more detailed discussion the
reader is referred toMönnigmann (2003)orMönnigmann and
Marquardt (2003).
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added to(10a)–(10g), and the process is repeated until no new
critical manifolds must be taken into account.Mönnigmann
and Marquardt (2005)successfully demonstrated that this ap-
proach can be used for the optimization of examples with a
few hundred model equations without a priori knowledge on
the existence and location of critical manifolds.

The algorithm described so far does not guarantee a
global solution to the problem. In some cases, the algorithm
may miss a critical manifold, which cuts the robustness re-
gion R after convergence. In this case, the critical distance
would not be maintained to this manifold. Such cases can
only be avoided, if rigorous search methods are employed.
Mönnigmann et al. (2004)present such a rigorous search
method based on interval arithmetics, which is however lim-
ited to problems of moderate complexity.

3.4. Software implementation

Several technical issues need to be resolved for an imple-
mentation of the method sketched here. Most importantly,
equation(9) and the defining equations 0 = ˜g(x, x̃, α, p)
in equation(8) contain higher order derivatives of the pro-
cess model equations. These derivatives are currently calcu-
lated with symbolic and automatic differentiation by MAPLE
(Monagan et al., 2000) and ADIFOR (Bischof, Carle,
Hovland, Khademi, & Mauer, 1998), respectively.
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.3. Numerical solution

In order to describe the robustness of a candidate d
x(0), p(0), α(0)) by its distance to the critical manifolds, t
ocation of these critical manifolds must be known. An a
sis of the critical manifolds is often tedious, however. S
xisting methods for the analysis of critical manifolds
rocess dynamics strongly rely on visualizations, a thoro
nalysis of these manifolds is only practical for process m
ls with a few uncertain parameters. Clearly, an optimiza
ethod for parametric robustness must not rely on an a
nalysis of the critical manifolds, but it must take the crit
anifolds into account automatically.
Rather than analyzing the critical manifolds a priori, t

an be detected as the optimization proceeds. From res
n applied bifurcation analysis, real-valued test functions
nown which signal the crossing of a critical manifold b
ign change (Kuznetsov & Yu, 1999). With these test func
ions, an optimal robust design can be found by solving th
imization problem(10a)–(10g)repeatedly while iterativel
uilding up information on the critical manifolds. Assum
hat a feasible solution and some critical manifoldsi = 1, . . .,
maxare known (possibly none to start with), the optimiza
an be started with constraints on the distance to thesejmax
nown critical manifolds. Loosely speaking, the optimi
ill push the robustness region through the search s
nd previously unknown critical manifolds are signalled
ign changes in the test functions. Constraints on the
ance to these previously unknown critical manifolds are
Furthermore, it must be pointed out that the test funct
re only meaningful at steady states of the process mode
ptimization algorithm used to solve(10a)–(10g)therefore
ust be of the feasible path type (e.g., FSQP,Lawrence &
its, 2001), if the test functions are to be evaluated simu
eously. The restriction of having to use a feasible path

imizer can be relaxed, however, by evaluating the test f
ions along a linear connection between the starting and
oints of the optimization. For details, the reader is refe

o Mönnigmann (2003).

. Illustrating applications

The previous sections introduced the concept of a
al manifold and the idea of stating constraints in term
istance between candidate points of operation and cr
anifolds in the space of the uncertain parameters. D

he generality of these concepts, the sketched approach
licable to a variety of problems. This section demonstr

he application to process design, robust controller tuning
ntegration of design and control. The examples given
re simple and the discussions are brief due to limita

n space. References to more detailed discussions and
xamples are given, however.

.1. Process design

In this application, a simple model for a fermentat
n a well-mixed tank is optimized. The fermenter mo
s not stated here for brevity, but the reader is referre
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Fig. 5. (a) Result of the optimization of the fermenter with constraints for robust stability. (b) Enlargement of the robustness ellipse at the critical manifold due
to saddle-node and Hopf bifurcations.

Agrawal, Lee, Lim, & Ramkrishna (1982)for details. The
cost functionφ in (10a) is the cost of the substrate dimin-
ished by the profit from produced cells in this example. The
constraints(10b)–(10f)comprise the fermenter model and
constraints on the distance to critical manifolds for stability.
Since the process model has been analyzed before (Agrawal
et al., 1982), we know a priori that two critical manifolds
due to saddle-node and Hopf bifurcations exist. The con-
straints(10c)–(10f)have to be stated for saddle-node and for
Hopf bifurcations, or, in other words,imax= 2 in (10g). The
Damk̈ohler numberDa and the substrate feed concentration
SF are assumed to be uncertain parametersα with uncer-
tainties
α1 =
Da= 0.05 and
α2 =
SF = 0.03 kmol m−3.
The constraints(10c)–(10f) ensure that the resulting op-
timal point of operation is stable despite this parametric
uncertainty.

The model is first optimizedwithout the constraints
(10c)–(10g)for reference. The result is an optimal but un-
stable point of operation. The optimization is then repeated
with the robustness constraints. This optimization results in
an optimal stable point of operation which is robust in the
sense that it remains stable despite the uncertainty inDa and
SF. This result is visualized inFig. 5. The loss for guarantee-
ing robust stability is about 66% of the profit in the nominal
case. Such a loss calls for a stabilizing controller (see Sec-
tion 4.2) or a process design modification. For details on this
e
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guaranteed over wide ranges of operating conditions rather
than for a single point of operation, however. For example, if
various grades are to be produced for a range of production
capacities, the process must be stable despite the demanded
flexibility. In this section, we discuss a simple example, where
the robustness constraints(10c)–(10f)are used to guarantee
parametrically robust stability for a large range of operat-
ing conditions. The example considered is a cooled CSTR
with an exothermic first order reaction A→ B. Unmodeled
dynamics are represented by an overdamped second order
process. A feedback linearizing controller is used to control
the temperature in the vessel. We are interested in a controller
tuning which guarantees robust stability in a large region of
operating temperatures. A bifurcation analysis of the model
reveals that a lower bound on the controller time constant
exists below which the region of process instability vanishes
(Hahn, Mönnigmann, & Marquardt, 2003).

This study has been extended to output feedback control
systems (Hahn, Mönnigmann, & Marquardt, 2004), where an
observer is implemented to estimate the full state of the CSTR
from available measurements. It is found that the plant–model
mismatch has a much more profound impact on the tuning of
the observer than it has on the controller tuning. Further, this
study reveals that an observer design, which makes use of
additional knowledge about the system, will not necessarily
result in better stability properties as the level of uncertainty
i
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xample, the reader is referred toMönnigmann (2003).
A similar but more involved application to a contin

us polymerization process is given byMönnigmann an
arquardt (2003). The polymerization is optimized with r

pect to an economic profit function. In order to guara
arametric robustness with respect to stability, critical m

folds due to Hopf and saddle-node bifurcations have t
aken into account. In addition, an upper bound on the pro
emperature gives rise to a critical manifold of the feasib
onstraint type. The example demonstrates that the app
resented here can be used to treat feasibility constrain
onstraints on the dynamics in a unified manner.

.2. Robust controller tuning

The previous examples addressed the robustness of
le optimal point of operation. Robust stability often has t
-

n the model increases.
A manifold of a particular type of bifurcation, a so-cal

ontransversal Hopf bifurcations, splits the closed-loop
ess parameter space into two regions with qualitatively
erent behaviour. While in one region unstable behaviou
ccur depending on the value of the temperature contr
et-pointTsp, process stability can be guaranteed for the
ire range ofTsp in the other region. By backing off the cr
cal manifold of nontransversal Hopf bifurcations at a u
pecified distance, process stability can be guaranteed f
ntire range ofTsp despite parametric uncertainty.

In this application, the cost functionφ in (10a)is the yield
f product B. Equations(10b)–(10f)are the CSTR proce
odel and the robustness constraints for the critical m

old of nontransversal Hopf bifurcations of the form(8). For
etails on the defining relations of the critical manifold
eader is referred toGerhard et al. (2004).
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Fig. 6. (a) Optimization without constraints(10c)–(10f). (b) Optimization with constraints(10c)–(10f).

The feed rateq to the reactor and the time constant
εv of the unmodelled dynamics are considered to be un-
certain parametersα. The robustness ball inFig. 6 over-
estimates the uncertainties
α1 =
q= 10 mol min−1 and

α2 =
εv = 0.01 min.Fig. 6 illustrates the result.Fig. 6a
shows the result of the optimizationwithout constraints
(10c)–(10f). This optimization has been carried out for ref-
erence only. For the resulting point of operation some val-
ues of the set-pointTsp are not admissible, since the pro-
cess may become unstable (dotted line) due to Hopf bifur-
cations (�). With robustness constraints, the process is sta-
ble for the entire range ofTsp (solid line) as illustrated in
Fig. 6b

4.3. Integration of design and control

The example in Section4.1 addressed the design of an
open-loop fermentation process. This section presents a sim-
ple application to a closed-loop model. The fermenter model
of Section4.1 is augmented by a simple P-controller to
demonstrate that both model and controller parameters can be
determined by solving the optimization problem(10a)–(10g).
It is stressed that this amounts to simultaneously tuning the
controller, and designing the process for optimal operation
with respect to an economic cost function.

In this example, the same cost function(10a)as in Section
4 p
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Fig. 7. Steady states of the closed-loop fermenter in the shaded area have a
decay rate of 1/(60 s) or faster.

ing eigenvalue is smaller than 1/(60 s). The robustness el-
lipse touches the critical manifold thus guaranteeing a de-
cay rate of 1/(60 s) despite the user-specified parametric
uncertainty.

The same approach has successfully been used in the op-
timization of larger process models.Grosch, M̈onnigmann,
and Marquardt (2003)optimized a continuous crystalliza-
tion process. The crystallization is modeled with a popula-
tion balance, which is discretized by the methods of mo-
ments. Simple crystallization kinetics given by Volmer’s
law for nucleation and McCabe’s law for crystal growth
are used. The open-loop process turns out to have an opti-
mal point of operation, which is unstable. In order to avoid
sustained oscillations due to a Hopf bifurcation, the pro-
cess is augmented by a PI-controller. The closed-loop model
is then optimized with an upper boundσ0 < 0 on the real
part of the dominant eigenvalue, simultaneously tuning the
controller and obtaining an optimal robust steady state of
operation.

Similarly,Mönnigmann and Marquardt (2005)use the ap-
proach sketched in the present section to optimize the reaction
section of Douglas’ HDA process. An optimal point of op-
eration is found in this example for which a user-specified
decay rate can be guaranteed despite parametric uncertainty.
The HDA model comprises several hundred equations and
twelve uncertain parameters. This example therefore demon-
s large-
s

.1 is used. Equations(10b)–(10f)comprise the closed-loo
odel and the constraints for robustness with respect
oundσ0 < 0 on the real part of the leading eigenvalue
iscussed in Section3.1. The bound on the eigenvalues
hosen to beσ0 =−1/60. By staying off this manifold, a dec
ate of 1/(60 s) or faster is guaranteed for the closed-
rocess to first order. Since only one critical manifold ex

max= 1 in equation(10g).
The fermenter model is stated in dimensional varia

or this application (Mönnigmann & Marquardt, 2003).
he feed flowrateF is considered an input. A P-control
=F0 +kP(S–S0) is added to the process, whereS is the
ubstrate concentration in the tank. The controller
0 and the substrate feed concentrationSF are consid
red to be uncertain parametersα. The parametric un
ertainties were assumed to be
α1 =
F0 = 0.7 m3 s−1

nd
α2 =
SF = 0.03 kmol m−3. The result is illustrated i
Fig. 7). In the shaded area shown in (Fig. 7), the lead
trates that the proposed approach can be applied to
cale models.
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5. Discussion

5.1. Limitations and obvious extensions

Several extensions of the approach presented here are cur-
rently being investigated. We give a brief account of the major
ideas. A more detailed description along with first examples
to illustrate the potential of synthesis methods based on crit-
ical manifolds and robustness regions can be found in the
thesis ofMönnigmann (2003).

Most importantly, the restrictive assumption on the dy-
namics of the quantititesη has to be relaxed. These quantities
have to be either constant, or they may vary on a time-scale
that is much slower than the dominating process time. A
suitable parameterization of time-varying inputs and per-
formance indices can be used to address this issue. Bounds
on performance indices can also be cast into a new type of
a critical manifold. By means of an exampleMönnigmann
(2003) shows that a bound on performance indices such
as the integral squared error (ISE) gives rise to critical
manifolds of the same type as those of a stability boundary.
Since the ISE increases, loosely speaking, both with larger
frequencies of oscillation and smaller decay rates, the idea
of bounding the ISE above is a natural extension of the
critical manifolds defined by the bounds on the eigenvalues
as briefly sketched in Section4.3.
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Pathath & Kienle, 2002). However, it is well known that the
spatial discretization may significantly impact the stability
behaviour. Stability boundaries may just move quantitatively
but they also may vanish completely (Liu & Jacobsen, 2004).
Hence, the impact of the discretization on the critical mani-
folds must be investigated in the future.

Our method, currently, only addresses a very restricted
class of synthesis problems as a fixed and given model struc-
ture must be assumed. Typically, not only the process and
control parameters but also the structure of the process and
its associated control system are of interest during design, re-
quiring the formulation of mixed-integer or disjunctive pro-
gramming problems (for a review, seeGrossmann (2002)).
Even though we did not address this problem yet in our re-
search, we would expect that the method can be extended in
the longer run to such problems replacing the dynamic pro-
cess model(1) by a disjunctive dynamic model (Oldenburg
Marquardt, Heinz, & Leineweber, 2003) that allows for struc-
tural design alternatives.

The system size that can be tackled with the current im-
plementation of the method is limited by the use of the dense
derivatives matrices generated by ADIFOR (Bischof et al.,
1998). The tractable system size can be expected to increase
considerably if the sparse option of ADIFOR is used in the
future.
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In an alternative extension of the existing method, bou
n trajectories of the dynamical system can be used to d
ritical manifolds for the response of a nonlinear syste
ime-varying disturbances. As opposed to the extension
loying critical manifolds of performance indices and in
arameterization, the critical boundaries for trajectorie
ot have to rely on the steady-state assumption.

On a different track, the stability boundaries known fr
pplied bifurcation theory have to be generalized to cri
anifolds that are more relevant from a practitioners p
f view. While bifurcation theory focuses on the stabi
f solutions, a stable solution with a very small real par

he leading eigenvalue is of little interest from a pract
oint of view. Critical manifolds defined as the steady-st
t which a user-specified bound on the leading real pa
ttained remedy this problem as demonstrated in Sectio4.3.
natural extension to bounding the real part is to con

igenvalues to a sector in the open right half of the com
lane.

All of the examples investigated so far in our research
een based on process models of the ODE type. An e
ion of the theory to DAE models of index one is straig
orward. An implementation of such an extension is plan
or the near future. A more interesting extension relate
he treatment of distributed parameter systems. A stra
orward extension of our method is the approximation of
istributed parameter model by a lumped ODE or DAE m
y means of the method of lines. This would be in line w
esearch related to the analysis of the nonlinear dyna
f distributed parameter systems (e.g.,Jensen & Ray, 198;
.2. Relation to other work

Due to the general applicability of the concept of a crit
anifold, the proposed approach cannot only be applie
esign for a certain qualitative dynamic process behav
ut also to design for process feasibility.

The application to feasibility constraints relates
resented approach to research on design under uncer
umerous articles have addressed this problem ove

ast two decades (for a brief summary seeMönnigmann &
arquardt, 2003). Many articles on design under uncertai
re based on feasibility and flexibility measures for nonlin
rocess models that were introduced by Grossmann
o-workers (Halemane & Grossmann, 1985; Swaney &
rossmann, 1985). These measures are based on asse

he constraint violation. The idea of constraint violation
o rate designs (x, α, p) by the value of the functiong in (6).
learlyg(x, α, p) ≥ 0 andg(x, α, p) ≤ 0 indicate feasibility
nd infeasibility, respectively. In addition, however, the

icular value ofg(x, α, p) is used to compare designs. Amo
everal infeasible designs (x(i), α(i), p(i)), the one that yield
he smallest constraint violationg(x(i), α(i), p(i)) is, loosely
peaking, considered to be the best one. While this s
o be obvious for simple feasibility constraints (such a
pper bound on the temperature in a unit, for example)
ot clear which assumptions must hold for the functiong in
6) in general. Assume, for example, that we know a fea
teady-state (x(1), α(1), p(1)) for which a constraintg(x, α,
) ≥ 0 is active, i.e.,g(x(1), α(1), p(1)) = 0. Further assume th
e know that increasingp(1) by a small numberε > 0 renders
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the feasible steady state infeasible, i.e.,g(x(1), α(1), p(1)) = 0,
g(x(2), α(1), p(2)) < 0 for p(2) =p(1) + ε. One would like to
infer that for a third steady state 0 =f(x(3), α(1), p(3)) with
g(x(3), α (1), p(3)) <g(x(2), α(1), p(2)) that p(3) <p(2) <p(1).
Unfortunately, this cannot be inferred for general constraints
g in (6).

In contrast, the measure used here is not based on evalu-
ating a measure in the range of the constraint functions, but
the distance between the candidate point of operation and the
critical manifolds in the space of the uncertain parameters.
Note that this is a measure that is directly defined in the space
of the uncertain parameters. While this detail seems to be
technical at first sight, it is the key to an approach that covers
both feasibility and dynamical constraints. For constraints on
the dynamics, an inequality of the type(6) can in general not
be stated. The concept of constraint violation can therefore
not be extended from feasibility constraints of the form(6) to
constraints on the dynamics. A meaningful definition of the
critical manifold(8) can, however, be stated based on the so-
called augmented systems for bifurcation points known from
applied bifurcation theory (Kuznetsov & Yu, 1999). Since
both feasibility constraints and constraints on the dynamics,
such as stability boundaries, can be described by critical man-
ifolds a unified approach to robust stability and feasibility is
possible. Previous approaches to design under uncertainty
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sired process behaviour from those with undesired process
behaviour. As the concept of a critical manifold can be ap-
plied to both dynamical properties and feasibility constraints,
the proposed critical manifold-based constraints permit a uni-
fying approach to robust stability and feasibility. Because the
method relies on the distance to a critical manifold in param-
eter space, the curse of dimensionality limiting the applica-
bility of analysis methods is not faced, because the normal
to a manifold is always a one-dimensional object regardless
the dimension of the parameter space. A number of examples
have been briefly summarized to demonstrate the versatility
of the approach.

To the authors’ knowledge, the sketched critical manifold-
based approach is the first systematic approach to considering
stability at the process design stage which does not involve ap-
proximations such as matrix measures and which accounts for
uncertainty. As the new approach allows to optimize a process
model with respect to a profit function and to simultaneously
take constraints on the dynamics into account, it is ideally
suited for the integration of design and control. Our research
will focus in the near future on a more detailed comparison
to existing approaches to the design of robust controllers for
nonlinear systems as well as on tailoring of the method to the
integration of process and control system design.

R

A tical
irred

B ti-

B in
-

B ch

B DI-
ision
rallel

B ntrol
-

D . F.,
UTO
tial

f

D ous

E S.
distil-

G ble
nge.
ade use of matrix measures (Kokossis & Floudas, 199;
ohideen, Perkins, & Pistikopoulos, 1997). While matrix
easures are amenable to implementation, they are kno
e conservative. Unfortunately, this conservativeness ma
ult in an overestimation of the stability boundary and thu
uboptimal process designs only. Furthermore, the app
uggested seems to be a viable approach to systema
tudying the interaction between design and control for
inear systems. Only very few papers have been treatin
ubject (see, for example,Brengel & Seider, 1992; Lewin &
ogle, 1996).

. Summary

Methods for the analysis of the dynamics of nonlinear
ess models are well established in the chemical engine
ommunity. While these methods are very mature and
rful, they rely on visualizing numerical data and on s
equently interpreting diagrams. Unfortunately, an appr
hich depends on manual visualization and experience-b

nterpretation cannot be used systematically in proces
ign. Further, nonlinear analysis becomes tedious or
mpossible if the dimension of the space of relevant para
ers is large. The present paper summarizes the ideas b
new approach to taking dynamics into account at the d
tage. To the authors’ knowledge this is the first instance
onlinear dynamics method that is constructive in the s

hat it does not rely on analysis, visualization and interp
ion. The new approach is based on the concept of a cr
anifold that separates regions of the design space wit
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