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Steady-State Process Optimization with
Guaranteed Robust Stability and Feasibility

M. Monnigmann and W. Marquardt¨
RWTH Aachen University, D-52056 Aachen, Germany

A new approach is presented to the optimization based design of continuous pro-
cesses in the presence of parametric uncertainty. In contrast to pre®ious works focusing
on process feasibility, it allows to consider both feasibility and stability of the process in
the presence of parametric uncertainty. The new approach, therefore, permits an inte-
grated treatment of steady-state flexibility and robust stability in the optimization of
continuous processes. The process optimization problem is extended by constraints that
ensure a lower bound on the distance of the nominal point of operation to stability and
feasibility boundaries in the space of the uncertain parameters. While pre®ious ap-
proaches are based on e®aluating constraint ®iolation in the range space of the con-
straints, the measure for flexibility and robustness used here is gi®en in the domain space
of the uncertain parameters. The method is discussed in the context of existing ap-
proaches to flexibility in process optimization and is illustrated with a continuous poly-
merization which is known to ha®e a nontri®ial stability boundary resulting from multi-
ple steady states and sustained oscillations.

Introduction

Models of chemical engineering processes are subject to
inaccuracy and uncertainty. Numerous articles have ad-
dressed the problem of process design under uncertainty over

Žthe past two decades. Grossmann and coworkers Swaney and
.Grossmann 1985; Halemane and Grossmann, 1982 intro-

duced feasibility and flexibility measures on which many later
Ž .articles are based. These measures allow 1 to determine if a

given design is feasible despite the presence of parametric
Ž .uncertainty, 2 to calculate a scalar index of design flexibil-

ity, which, for example, allows to compare different designs,
Ž .and 3 to identify bottlenecks which impede the desired flex-

ibility. Several approaches have been suggested to solve the
optimization problems that arise in determining the proposed
flexibility and feasibility measures. Early approaches had to
assume that global optima occur at vertices of a hyperrectan-

Ž .gle of uncertain parameters Swaney and Grossmann, 1985 .
Later research was devoted to relaxing this assumption
ŽGrossmann and Floudas, 1987; Ostrovsky et al., 2000; Ka-

.batek and Swaney, 1992 . A more recent approach is based

Correspondence concerning this article should be addressed to W. Marquardt.

Žon branch and bound global optimization Floudas et al.,
.2001 .

The development of process flexibility measures is still sub-
Ž .ject to research. Ierapetritou 2001 presented a new ap-

Žproach to analyzing the feasible region of 1-D one-dimen-
.sional quasi-convex problems, which provides a more accu-

rate description of the true feasible space than previous
methods. The approach is based on determining the convex
hull of a set of points on the boundary of the feasible region.
These points are determined from optimization problems
similar to the ones proposed by Swaney and Grossmann
Ž .1985 .

Based on the flexibility and feasibility measures, methods
for process optimization under uncertainty have been devel-

Ž .oped. Bahri et al. 1996 presented a two-level optimization
procedure for the optimization-based design of continuous
processes in the presence of uncertainty at steady state. The
authors evaluate design flexibility and detect critical values of
the uncertain parameters based on constraint violation in the
range space of the constraints, similar to the measures pro-

Žposed by Grossmann and coworkers Halemane and Gross-
. Ž .mann, 1982; Swaney and Grossmann, 1985 . Bahri et al. 1997
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discuss the extension of this approach to dynamic process sys-
tems.

Ž .Mohideen et al. 1996 introduce an iterative procedure for
optimization-based design in the presence of uncertainty that

Žis based on an acti®e set strategy Grossmann and Floudas,
.1987 . The approach makes use of the feasibility and flexibil-

ity measures introduced by Grossmann and coworkers. An
extension of these measures to dynamic disturbances has later

Ž .been suggested Dimitriadis and Pistikopoulos, 1995 . Dy-
namic disturbances are incorporated into the design process
in the form of scenarios to allow for the treatment of flexibil-
ity and controllability. In a successive work Mohideen et al.
Ž .1997 augment their procedure by eigenvalue bounds based

Ž .on matrix measures Kokossis and Floudas, 1994 in order to
avoid flexible and optimal, but unstable designs.

Ž .Bansal et al. 2001 outline a method based on parametric
programming. This approach allows to determine explicit ex-
pressions for the feasibility and flexibility measures as func-
tions of the uncertain parameters a priori to the actual pro-
cess design step. These explicit expressions predict in which
regions of the process parameter space feasible operation can
be guaranteed despite uncertainty. Once obtained, the ex-
plicit feasibility and flexibility functions can be used to find
an optimal flexible process design. This approach in particu-
lar avoids two-level or nested optimizations as employed in
the methods mentioned so far. Algorithms for the solution of

Žsingle- and multiparametric MILPs Acevedo and Pistikopou-
.los, 1997; Bansal et al., 2000 , and convex MINLPs where

Žuncertain parameters enter linearly Papalexandri and
.Dimkou, 1998; Pertsinidis et al., 1998 and their application

to process design problems under uncertainty have been pre-
sented. Both parametric programming-based design methods
and the approach presented here avoid iterations of opti-
mization problems which arise because of the max-min-max

Ždefinitions of feasibility and flexibility measures Halemane
.and Grossmann, 1982; Swaney and Grossmann, 1985 .

Ž .Luyben and Floudas 1994 treat controllability and eco-
nomic profit as distinct objectives in a multiobjecti®e optimiza-
tion approach. In this approach, open-loop controllability en-
ters the optimization problem in the form of controllability
indices for a linear approximation of the process at an oper-
ating point. While not addressed by Luyben and Floudas
Ž .1994 , the authors point out that flexibility and uncertainty
may be treated by considering them in additional design ob-
jectives in their multiobjective optimization approach.

Much work has addressed the question of how to describe
parametric uncertainty correctly and with sufficient precision.
For applications in which a more precise description is too
expensive or tedious to obtain, hyperrectangular uncertainty

Žregions are often used see, for example, Mohideen et al.,
.1996, 1997; Bahri et al., 1996, 1997 . A more precise descrip-

tions can, however, be incorporated into the design proce-
Ž .dures. Pistikopoulos 1995 discusses the problem of design

under stochastic uncertainty and the concept of information
cost. The impact of the precision of the description of para-
metric uncertainty on the design has been investigated by
Rooney and Biegler who compare hyperrectangular uncer-

Žtainty regions to elliptical joint confidence regions Rooney
.and Biegler, 1999 and to confidence regions derived from

Ž .the likelihood ratio test Rooney and Biegler, 2001 . They
show that these more precise approaches greatly improve the

description of uncertainty in the examples presented, and they
Žincorporate them into an existing algorithm Grossmann and

.Floudas, 1987 for design under uncertainty.
This article addresses the steady-state optimization of con-

tinuous processes that are subject to parametric uncertainty.
The major contribution of this work is a unified description
of the feasibility and stability boundaries, and the derivation
of constraints for parametric robustness based on this de-
scription. While approaches for guaranteeing feasibility in the
presence of parametric uncertainty have been established in
previous work, an equally general approach to ensuring pro-
cess stability under parametric uncertainty does not exist to
the authors’ knowledge. This is the more surprising as prob-
lems related to a loss of stability of optimal process designs
have been encountered in applications of existing approaches

Žto optimization-based design some time ago Kokossis and
.Floudas, 1994; Mohideen et al., 1997 . Roughly speaking, a

unified treatment of both feasibility and stability boundaries
is possible if the notion of constraint ®iolation in the sense of

ŽGrossmann and coworkers Halemane and Grossmann, 1982;
.Swaney and Grossmann, 1985 is replaced by evaluating pro-

cess designs according to their distance to critical boundaries
in the space of the uncertain parameters. We call attention to
the fact that measuring constraint violation amounts to evalu-
ating designs in the range space of the feasibility constraints.
In contrast, the approach suggested here assesses process de-
signs by measuring distances in the space of the uncertain
parameters, that is, by a measure which is given directly in
the domain of the uncertain process parameters. This detail,
which seems quite technical at first sight, in fact allows to
treat both stability and feasibility in a unified manner.

While the examples in this article are limited to open-loop
systems, the proposed method can be applied to closed-loop
systems without modifications. This will be detailed in the
next section. For a small example of a closed-loop system, see

Ž .Monnigmann and Marquardt 2002b .¨
The next section states the problem class which is ad-

dressed. It is followed by a sketch of the solution approach.
This sketch introduces the notion of critical boundaries, and
it explains how this idea applies both to feasibility constraints
and stability in process optimization. After having outlined
the intuitive ideas, the section entitled Normal spaces to man-
ifolds introduces the terminology which is necessary in the
subsequent section to state the constraints for parametric ro-
bustness with respect to feasibility and stability. The concep-
tual part of the article closes with the statement of the formal
nonlinear program with constraints for robustness. Through-
out the conceptual part, a simple fermenter model is used for
illustrative purposes. Results of the application of the pro-
posed approach to a more complex example, a polymeriza-
tion reaction carried out in a continuous stirred tank reactor
Ž .CSTR , are then reported in a subsequent section. Finally, a
summary and a brief outlook are given.

A First Problem Formulation
In this article nonlinear dynamical systems are addressed

that can be modeled in terms of ordinary differential equa-
tions and algebraic equations. We start with a general nonlin-
ear systems notation. This notation allows us to point out
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that our approach can be applied to both open-loop and
closed-loop systems. In addition, this notation allows us to
state the requirements that must hold for an application of
our approach. Once the requirements have been stated, we
will introduce a strongly simplified notation which is natural
for the normal vector constraints on which the presented ap-
proach is based.

A broad class of nonlinear systems can be modeled by
equations of the form

x d t s f d x d t , x a t ,u t ,d t ,� ,t , x d 0 s x d,Ž . Ž . Ž . Ž . Ž . Ž .˙ Ž . 0

0s f a x d t , x a t ,u t ,d t ,� ,t , 1Ž . Ž . Ž . Ž . Ž .Ž .

y t sh x d t , x a t ,u t ,d t ,� ,tŽ . Ž . Ž . Ž . Ž .Ž .

Ž dT aT .T nx nu nd n�where xs x x g� , ug� , dg� , � g� , yg
� n y are state variables, inputs, disturbances, parameters, and
outputs of the system, respectively. In Eq. 1, t denotes time,

Ž dT aT .Tand f :s f , f and h are smooth functions which map
from some subset U ;� nx �� nu �� nd �� n� �� into � nx

and � n y, respectively. The state variables x and the corre-
sponding equations have been partitioned into dynamic state
variables x d and differential equations f d, and algebraic
variables x a and equations f a.

We assert that closed-loop systems can be modeled in the
Ž .form Eq. 1, if some of the inputs u t are replaced by refer-

Ž .ence signals r t . This is briefly explained. Assume first that
Eq. 1 represents an open-loop system to be augmented by a
controller. The controller can be modeled as a nonlinear sys-
tem itself. In order to distinguish it from the physical system,
all symbols referring to the controller are marked with a hat.
The inputs of the controller are partitioned into reference

Ž .signals r t , which, for example, comprise time-dependent setˆ
Ž .points, and all remaining inputs u tˆ

d d̂ d a ˆ ˆ d dẋ t s f x t , x t ,r t ,u t ,d t ,� ,t , x 0 s x ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆ ˆ ˆ ˆŽ . 0

â d a ˆ ˆ0s f x t , x t ,r t ,u t ,d t ,� ,t 2Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆŽ .
ˆ d a ˆ ˆy t sh x t , x t ,r t ,u t ,d t ,� ,tŽ . Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆ ˆŽ .

In the closed-loop system the outputs y of the system are
fed to the controller inputs u, and the controller outputs y inˆ ˆ
turn are fed back to the inputs u of the nonlinear system 5.
This yields

x d t s f d x d t , x a t , y t ,d t ,� ,t , x d 0 s x d,Ž . Ž . Ž . Ž . Ž . Ž .˙ ˆŽ . 0

d d̂ d a ˆ ˆ d dẋ t s f x t , x t ,r t , y t ,d t ,� ,t , x 0 s x ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆ ˆ ˆŽ . 0

0s f a x d t , x a t , y t ,d t ,� ,tŽ . Ž . Ž . Ž .ˆŽ .
â d a ˆ ˆ0s f x t , x t ,r t , y t d t ,� ,t 3Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆŽ .

0s y t yh x d t , x a t , y t ,d t ,� ,tŽ . Ž . Ž . Ž . Ž .ˆŽ .

ˆ d a ˆ ˆ0s y t yh x t , x t ,r t , y t ,d t ,� ,tŽ . Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆŽ .

System 3 is of the form of Eq. 1 without output equations,
d Ž dT dT .T a Ž aT aT T T .Tif the replacements x § x , x , x § x , x , y , y ,ˆ ˆ ˆ

d dT d̂T T a aT âT T ˆ T T TŽ . Ž Ž . Ž . . Žf § f , f , f § f , f , yyh , yyh , d§ d ,ˆ
T̂ T T ˆT T. Ž .d , � § � ,� , and u§ r are made. Note that after

closing the loop, the output equations form a system of alge-
braic equations which will in general no longer explicitly yield
y and y. Thus, the closed-loop system will in general com-ˆ
prise algebraic equations even if the open-loop system and
the controller do not.

Since Eq. 1 can be used to model both closed-loop and
open-loop systems, we will not distinguish between the two
types of systems further.

In order to simplify the notation we will omit the time-de-
aŽ . dŽ . Ž .pendencies in x t , x t , u t and so on. Furthermore, we

will assume that the linearization of the algebraic equations
f a in Eq. 1 with respect to x a have full rank. By virtue of the

Ž .implicit function theorem IFT , the algebraic variables can
then be expressed as a function of the remaining variables.

a d a IFT a a d0s f x , x ,u ,d ,� ,t x s x x ,u ,d ,� ,t 4Ž . Ž . Ž .
™

and the differential-algebraic model is of index one. Substi-
Ž .tuting Eq. 4 into the nonlinear system Eq. 1 yields a simpli-

fied nonlinear system without algebraic equations

xs f x ,u ,d ,� ,t , x 0 s x 5Ž . Ž . Ž .˙ 0

ysh x ,u ,d ,� ,t ,Ž .

where the label d for the dynamic variables is omitted for
Ž .simplicity. We will focus on systems of this type Eq. 5 and

defer the discussion of systems with algebraic equations to
the appendix.

Having established the terms state variables x, input and
reference signals u and r, disturbances d, and parameters � ,
the restrictions for an application of the approach presented
in this article can be stated. Most importantly, we will exclu-
sively address the design of continuous processes operated at
steady state. These may either be open-loop or closed-loop
processes. In detail we will assume that the following restric-
tions hold:
Ž .1 Equations f and h in Eq. 5 must not explicitly depend

on t.
Ž . Ž .2 Inputs u t can be partitioned into a constant mean

value and bounded time-dependent variations

lower upperu t su q� t , � F� t F� � t 6Ž . Ž . Ž . Ž .i i u u u ui i i i

Furthermore, the variations are slow compared to the time
scales of the system Eq. 5, that is

d�1 ui � �� Re � , � i , j, 7Ž .Ž .j� dtui

Ž .where Re � denote the real parts of the eigenvalues � ofj j
the Jacobian of f with respect to x, evaluated at the steady
state of interest.
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Ž . Ž . Ž .3 The assumptions on u t must also hold for d t .
Ž . Ž .4 In the closed-loop case, the assumptions on u t must

Ž .also hold for r t .
These assumptions allow us to simplify the notation fur-

ther. Equations 6 and 7 imply that inputs u, references r,
and disturbances d vary only quasistatically compared to the
system dynamics, and, thus, can be modeled in terms of a
mean value and a parametric uncertainty. Parameters � are
not time-dependent and can be modeled in the same man-
ner. Note, however, that some of the parameters are typically
not uncertain, or the uncertainty can be neglected in the given
model. If Eq. 5 models a tank reactor, for example, the vol-
ume of the reactor may be a parameter � for which the un-i
certainty can be neglected for all practical purposes. Simi-
larly, there may be inputs u for which the uncertainty can bei
neglected.

The assumptions suggest to repartition inputs, references,
disturbances, and parameters into those which are uncertain
and those for which uncertainty does not exist or can be ne-
glected. We will, therefore, rewrite the ordinary differential

Ž .equations of the system Eq. 5 as

xs f x ,� , p , x 0 s x , 8Ž . Ž . Ž .˙ 0

ysh x ,� , pŽ .

where � denotes those inputs u, references r, disturbances
d, and parameters � that are modeled in terms of an average
value and an uncertainty, while p denotes all inputs, refer-
ences, disturbances, and parameters for which uncertainty can
be neglected. For the lack of a better term, � and p will be
referred to as uncertain parameters, and parameters which
are not subject to uncertainty, respectively. The output equa-
tion does not impact our results, since the outputs y do not
enter the state equations. The output equations are, there-
fore, omitted subsequently.

Nontrivial process optimization problems for systems of the
type of Eq. 8 at steady state involve inequality constraints
that account for, for example, product quality or safety re-
strictions. Let � and � in Figure 1 represent uncertain1 2
process parameters, and let M c represent a boundary given
by such a constraint. Clearly, in process optimization the
nominal point of operation � Ž0. is required to stay outside of
the region bounded by M c. One approach to process flexibil-
ity is to ensure that the constraint which corresponds to M c

not only holds for the nominal point, but for all points in
some ®icinity of the nominal point. Let the region bounded by
M r in Figure 1 represent this vicinity of � Ž0.. The size and
shape of this region reflects the desired flexibility. If, for a
given design, the regions bounded by M c and M r in Figure 1
have an empty intersection, the design will be flexible in the
sense that process operation will remain feasible even in the
presence of the uncertainty described by M r. It will be shown
that stability can be described in terms of a boundary like
M c; thus, the same line of thoughts applies to stability bound-
aries. Note that Figure 1 is incomplete in that more than one
boundary M c may be present, for example, because both a

Figure 1. Abstract parametric flexibility problem.

feasibility and a stability boundary have to be taken into ac-
count. For simplicity of presentation, we assume first that only
one such boundary exists. Multiple constraints are treated
further below.

Denoting the regions bounded by M c and M r by Rc and
Rr, respectively, we can state the process optimization prob-
lem with flexibility and parametrically robust stability

min � x Ž0. ,� Ž0. , pŽ0. aŽ .Ž .
Ž0. Ž0. Ž0.x , � , p

Ž0. Ž0. Ž0.s.t. 0s f x ,� , p aŽ .Ž . 9Ž .
r Ž0. Ž0. c Ž0.0u sR � , p � R p cŽ .Ž . Ž .

Ž0. Ž0. Ž0.x g X , � g A , p gP . dŽ .

As introduced before, x g � nx are state variables, � g � n�

are uncertain parameters, p g � np are parameters which
are not affected by uncertainty, and X ;� nx, A;Rn�, P;
� np represent simple box constraints on the respective vari-
ables and parameters. The upper index zero denotes the
nominal point of operation. In particular � Ž0. are the nomi-
nal values of the uncertain parameters. Equation 9b guaran-
tees that the optimal point of operation is a steady state of
Eq. 8. Equation 9c guarantees that the regions bounded by
M c and M r have an empty intersection and, therefore, M c is
not crossed for any value � g Rr. We allow Rr to vary in
shape and size when the nominal point � Ž0. is varied. Simi-
larly, both Rr and Rc may depend on p. We will write

rŽ . cŽ . rŽ . cŽ .R � , p , R p and, accordingly, M � , p , M p to point
out these dependences where appropriate.

Unified Treatment of Stability and Feasibility
Ž .The problem statement Eq. 9 is preliminary. Obviously,

the constraint in Eq. 9c needs further discussion. We will
proceed by explaining first how Eq. 9c can be stated for feasi-
bility constraints based on maximizing the constraint viola-
tion. After pointing out the difference between feasibility
constraints and stability constraints, we show that both can
be treated in a unified manner if the notion of the constraint
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violation is replaced by the notion of the closest critical points
in the space of uncertain parameters.

Assume that a feasibility constraint

0F g x ,� , p 10Ž . Ž .

Žwhere g maps into �, has to be enforced for the system Eq.
. c8 of interest. The corresponding boundary M is given by

M cs �g A , xg X , pgP : 0s g x ,� , p , 0s f x ,� , p� 4Ž . Ž .
11Ž .

For a constraint of this type, Eq. 9c can be recast in the form

0F g x ,� , p for all �gM r. 12Ž . Ž .

Existing approaches to process design under uncertainty are
based on finding an appropriate sample of values of � which
replaces Eq. 12. Such a sample can be identified by maximiz-
ing the constraint violation, that is, maximizing g over all
steady states �gM r for a fixed p. These approaches are
based on the assumption that maxima of g correspond to
‘‘worst points’’ in the sense that they violate Eq. 12 with ex-

Žtremal values on the righthand side Swaney and Grossmann,
.1985; Halemane and Grossmann, 1982 .

Unfortunately, for stability boundaries a simple condition
like Eq. 12 does not exist. The stability of a given steady state
could be tested for by calculating the eigenvalues of the lin-
earized process model at a steady-state operating point of
interest. If all eigenvalues are in the open left half of the
complex plane, the nonlinear process is locally exponentially

Ž .stable Hahn, 1967 , while the existence of one or more
eigenvalues in the open right half of the complex plane im-
plies instability. A calculation of the eigenvalues is tedious,
however, in particular if it has to be repeated for a sample of
points � which represents Eq. 12. Similarly, identifying the
worst points by maximizing real parts of the eigenvalues would

Ž .be computationally demanding. Kokossis and Floudas 1994
Ž .and Mohideen et al. 1997 avoided the tedious calculation of

all eigenvalues by using matrix measures. Matrix measures
can provide a single upper bound for all eigenvalues. This
bound should, however, not be used, because it is typically
not tight and, therefore, may result in an overestimation of
the stability boundary at the price of obtaining a suboptimal
process design only.

Ž .While a simple inequality Eq. 12 does not exist for stabil-
ity boundaries, a meaningful definition of M c does exist. The
stability boundary is characterized by a real eigenvalue or a
complex conjugate pair to move from the left half complex
plane onto the imaginary axis. However, instead of directly
evaluating the eigenvalue criterion, a system of equations im-
plicitly defining M c can be derived based on bifurcation the-

Ž .ory Dobson, 1993 . The technical details of this description
will be explained in the section entitled Stability manifold nor-
mal ®ectors. At this point, it is sufficient to note that these

Ž .equations are of the form 0s g x,� , p and, therefore, the

stability boundary can be described by Eq. 11, that is, in the
same manner as a feasibility boundary.

Having obtained a description of the stability boundary, we
still need to identify a measure for the parametric robustness
of a given steady state with respect to a loss of stability. For
this purpose, we determine the parametric distance between
the manifolds M r and M c. In Figure 1, the closest distance �
between M c and M r can be obtained from

� 2s min nTn
c r� ,�

s.t. � cgM c

� rgM r 13Ž .

where n is defined as

ns� cy� r 14Ž .

Intuitively, one would like to restate the constraint Rr � Rc

s0u in Eq. 9 by the requirement that the minimal distance
between M r and M c is greater than or equal to zero. Obvi-
ously, � as defined in Eq. 13 cannot be used for stating this
requirement, as � G0 by definition. The points marked by
dots in Figures 2a and 2b, for example, yield �s0, and,
therefore, Eq. 13 does not allow to distinguish between
Rr � Rcs0u in Figure 2a and Rr � Rc�0u in Figure 2b.

Ž .We emphasize that the vector Eq. 14 is a normal ®ector
both with respect to manifolds M c and M r in Figure 2a. In
the section entitled Relation to minimization of parametric dis-
tance, we discuss how Eq. 13 relates to normal vectors on M r

and M c, and how normal vectors can be used to replace the
constraint Rr � Rcs0u in Eq. 9. This can, in fact, be done in
a way which retains the intuitive idea of the distance between
M r and M c of Eq. 13, while avoiding the problem of not
being able to distinguish the cases shown in Figure 2.

Normal Spaces to Manifolds
In this section we briefly introduce the notion of a mani-

fold and its tangent and normal space. A basic understanding
and a more precise terminology than used before are prereq-
uisites for stating the constraints for robust stability and ro-
bust feasibility in the next section.

A nonempty set M;� n is called a smooth manifold of
dimension nyk, k� n, if, for all points agM, there exists

Ž . nan open neighborhood U a ;� and k smooth functions

� : U a ™�, . . . , � : U a ™� 15Ž . Ž . Ž .1 k

such that the Jacobian of � with respect to � has full rank
Ž .for all � gU a and

M �U a s � gU a : � � s0 16� 4Ž . Ž . Ž . Ž .

Ž n.For basic notions of differential geometry in � see, for
Ž .example, Fleming 1977 . For our purposes, it is often suffi-
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Figure 2. Robustness manifold and critical manifold
( ) ( )touch a and intersect b .

Ž .The dashed line in a marks the common normal direction
at the point of intersection of M r and M c. At the points in
Ž .b no such common normal direction exists.

cient and more convenient to describe the manifold in terms
of the functions that generate it in � n. Thus, we let k given

Ž . Ž .smooth functions Eq. 15 define an ny k -dimensional
manifold. This simplifies Eq. 16, since the manifold no longer
has to be given in terms of generally different functions on a

Ž .patchwork of neighborhoods U a . Equation 16 can be re-
placed by

Ms � gU :� � s0 17� 4Ž . Ž .

where U ;� n no longer depends on the point agM, but is
valid for all points on the manifold. Note that M c, as defined
in Eq. 11, is of the form of Eq. 17.

Figure 3 illustrates the dimensions n and k involved in the
definition. It is instructive to think of a body to move along
the manifolds M in Figure 3. Figure 3a is a sketch in �2, that
is, ns2, with two independent directions to move in. For
clarity, let these directions be fixed by two linearly indepen-
dent unit vectors e and e . If we restrict motion by one1 2
equation, that is, ks1, this equation will, roughly speaking,
fix steps along the unit vector e for a given step along e2 1
and vice versa, confining motion to a one-parametric curve,

Ž . 3that is, a 1-D manifold nyks1 . Similarly, in � spanned

Figure 3. Normal and tangent space for a curve in lR2

and a surface in lR3.

by appropriate vectors e , e , e , a single equation will fix the1 2 3
step along one of the unit vectors for given steps along the
other two unit vectors, confining motion to a 2-D surface,

Ž .that is, a 2-D manifold nyks2 . Thinking in terms of con-
straints in optimization again, the 1-D manifold in the �2

example splits the �2 into those parts in which the constraint
is violated and those parts in which it is inactive. Similarly,
the 2-D manifold in the �3 example splits the �3 into two
such parts.

A basic result from differential geometry states that a lin-
ear subspace, the tangent space, can be attached to any point
on the manifold locally. As pointed out in the examples above
and as expected intuitively, the k equations defining the
manifold fix k of the degrees of freedom in � n, leaving nyk
linearly independent directions to move locally tangentially

Ž .to the manifold. These directions span the ny k -
dimensional tangent space at a given point on the manifold.
Again, as expected intuitively, there exist k independent di-
rections in � n which are normal to the nyk directions that
span the tangent space. Orthogonality is with respect to the
usual inner product. Note that tangent and normal spaces are
unique, while the directions which span them in general are
not.

In the examples given above, the tangent space to the curve
2 Ž 2.in � that is, to the 1-D manifold in � is 1-D. The normal
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space is the 1-D straight line orthogonal to the curve at the
respective point. The tangent space of the 2-D surface in �3

Ž 3.that is, the 2-D manifold in � is the 2-D plane tangent to
the manifold at the point of interest, while the normal space
is the straight line normal to the manifold through this point.
See Figures 3a and 3b for a sketch.

The notion of a manifold allows us to carry over the con-
cept of a normal space, which we intuitively use in �2 and �3

correctly, to higher dimensional spaces. More precisely, let-
Ž .ting the k functions in Eq. 15 define an nyk -dimensional

manifold in � n, the k vectors in � n

b s	� , . . . , b s	� 18Ž .1 1 k k

evaluated at a point on the manifold of interest are linearly
independent and span the normal space to the manifold at

Ž . Ž .this point Fleming, 1977 . This normal space basis Eq. 18
will be illustrated with simple examples in the next section.

Flexibility and Robust Stability Constraints
Based on the notions manifold and normal space, con-

straints can now be stated which allow to recast the require-
r c Ž .ment R � R s0u Eq. 9b into a form that can be imple-

mented. Two details complicate the application of the terms
introduced in the previous section. One complication arises
because the equations defining the manifolds M c and M r

involve other variables than uncertain parameters � , namely
the state variables x and parameters p. Roughly speaking,
we are interested in the normal vector in the subspace of the
uncertain parameters � , since a measure of the distance be-
tween M c and M r is needed in this subspace.

The second complication arises because a single feasibility
constraint can not always be stated as a single inequality, but
an inequality along with an equation or even a set of equa-
tions are necessary. A simple example will be given below.
Similarly, a constraint for stability cannot be stated as a sin-
gle equation, but it involves auxiliary equations that deter-
mine variables such as eigenvalues or eigenvectors which oc-
cur only in the stability constraint, but not in the model or in
other constraints. Note that this complication does not result
from multiple constraints, but from a single constraint which
cannot be stated as a single equation or inequality. Multiple
constraints will be treated in the section entitled Optimization
with flexibility and robust stability constraints.

The present section resolves these complications. For illus-
trative purposes, a simple model of a continuous fermenta-
tion process is introduced.

Illustrati©e fermentation process example
A simple model for a fermentation process in a CSTR is

given by

F
Ẋsy Xq
 S X s f 19Ž . Ž .1V

F
Ṡs S yS y� S Xs fŽ .Ž .F 2V

w y3 x w y3 xwhere X kg m and S kmol m are the cell concentra-
w y1 x wtion and the substrate concentration, F kg s , S kmolF

y3 x w 3xm , and V m denote the feed, substrate concentration in
Ž . Ž .the feed and the reactor volume, and 
 S skS exp ySrK

w y1 x Ž . Ž . Ž . w y1 y1 xs and � S s
 S r aqbS kg kmol s are the
growth and substrate consumption rate, respectively. In the

3 Ž . y1calculations to follow, we set ks1 m kmol s , Ks0.12
kmol m3, �s5.4 kg kmoly1, bs180 kg m3 kmoly2, Vs�
Ž .23m 5.7 m. For details on the process model, we refer to

Ž .Brengel and Seider 1992 .
y1Ž .F is replaced by FsFr 10 kg s for better numerical

scaling. We assume that S and F are subject to uncertainty,F
T TŽ . Ž .that is, �s F, S , furthermore xs X, S . The parame-F

Ž .Tters ps k, K , a, b, V are assumed to be known precisely
in this simple example.

Feasibility boundary normal ©ectors
For simplicity, it has so far been assumed that a feasibility

constraint is given by a single inequality

0F g x ,� , p , 20Ž . Ž .

where g maps into �. The corresponding feasibility boundary
c ŽM is defined by the steady states of the process model Eq.

.8 at which this constraint is active

M cs x ,� , p gU : 0s g x ,� , p , 0s f x ,� , p . 21� 4Ž . Ž . Ž . Ž .

U ; � nx � � n� � � np is an appropriate domain for the
variables which depends on the process of interest. A larger
class of constraints can be accounted for, if we allow the scalar
function g to be replaced by a vector-valued function. This
type of constraint arises if g depends on intermediate or aux-
iliary variables x, which are not part of the process model,˜
but nevertheless have to be introduced to state the con-
straint. We first discuss the general form of constraints of
this type and give a brief example below. The general form
reads

0s g x , x ,� , p aŽ . Ž .ˆ ˜
22Ž .

0F g x , x ,� , p bŽ . Ž .˜

˜ nxwhere g and g are smooth, defined on some subset U ;�ˆ
nx̃ n� np nx̃�� �� �� , and map into � and �, respectively. The

nx̃auxiliary variables are denoted by xg � . Furthermore, the˜
Jacobian of g with respect to x is assumed to have full rank.ˆ ˜
This property will be used below to guarantee that Eq. 22a
can be solved for x locally.˜

The feasibility boundary M c that corresponds to Eq. 22 is
Ž .defined by the steady states of the process model Eq. 8 at

Ž .which Eq. 22a holds, and at which the inequality Eq. 22b is
active. Using the abbreviation

g x , x , � , p :s g x , x , � , p , . . . , 23Ž . Ž . Ž .˜ ˜ ˆ ˜Ž 1

T
g x , x , � , p , g x , x , � , pŽ . Ž .ˆ ˜ ˜ .nx̃
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Ž . cthe definition Eq. 21 of M therefore generalizes to

c ˜M s x , x , � , p gU : 0s g x , x , � , p , 0s f x , � , p .Ž . Ž . Ž .˜ ˜ ˜� 4
24Ž .

Ž .TIt is stressed that gs g , . . . , g , g comprises n q1˜ ˆ ˆ1 n x̃x̋

equations, whereas x has only n entries. While counter-in-˜ x̃
tuitive at first sight, this can be clarified by counting dimen-

Žsions. Loosely speaking, the n q1 equations 0s g x, x, � ,˜ ˜x̃
.p in Eq. 24 fix the n auxiliary variables as well as one of thex̃

variables x of the model. It is instructive to see that this alsoi
Ž .holds for the case of a single inequality Eq. 20 , and that this

Ž .case is recovered from the general formulation Eq. 22 by
setting n s0. In this case, no auxiliary Eq. 22a nor auxiliaryx̃
variables x exist, and Eq. 22 is reduced to the single inequal-˜

Ž . Žity Eq. 22b . Likewise, the set of n equations 0s g x, x, � ,˜ ˜x̃
. Ž .p in Eq. 24 is reduced to the single equation 0s g x, � , p

in Eq. 21. This single equation obviously does not determine
any auxiliary variables, but it still fixes one of the variables xi

Ž .of the model that is, n q1s1 .x̃
Ž .Constraints of the type Eq. 22 arise, for example, if an

inequality constraint is a function of outputs y of the process
Ž .model Eq. 8 . A constraint of the type

ysh x , � , pŽ .
25Ž .

0F g x , y , � , pŽ .

Ž .can be rewritten in the form Eq. 22 using x:s y and˜
Ž . Ž .g x, x, � , p :s xyh x, � , p . While Eq. 25 provides explicitˆ ˜ ˜

Žformulas for the auxiliary variables xs y, the constraint Eq.˜
.22 is more general in that one may not be able to solve Eq.

22a for the x explicitly. By assumption, Eqs. 22a have full˜
rank with respect to x, however. The implicit function theo-˜
rem, therefore, implies that Eqs. 22 can be solved for the x̃
locally.

Having stated the general form of feasibility constraints
Ž . Ž .Eqs. 22 and the corresponding definition Eq. 24 of the
critical manifold M c, normal vectors to M c can be intro-

Ž T T .T Ž T T .Tduced. We use  s x , x and �s f , g as abbrevia-˜ ˜
tions. According to Eq. 18, the normal space to the manifold
Ž .Eq. 24 is spanned by

	 �	 �  n qn q1 1 x x̃
b s , . . . , b s 26Ž .1 n qn q1x x̃ 	 �ž /	�� ž /� n qn q11 x x̃

evaluated at the point on the manifold of interest. Since we
look for the normal vector in the space of the uncertain pa-
rameters � , we seek a linear combination in the normal space
that does not have a contribution along the variables u. Such

nxqn x̃q1 Ž .a linear combination kg� of the vectors Eq. 26
can be determined from

� �	 � . . . 	 � ks0 aŽ .Ž . 1  n qn q1x x̃ 27Ž .
Tk ky1s0, bŽ .0

where the second equation for some k not normal to k0
guarantees that the trivial solution ks0 is rejected. The pa-
rameter space normal vector n can be evaluated from the

Ž .remaining rows of the basis vectors Eq. 26

ns 	�� . . . 	 � k . 28Ž .Ž .1 � n qn q1x x̃

Ž .Monnigmann and Marquardt 2002a show that Eqs. 27 and¨
28 yield a unique normal direction.

As an illustration, we assume that the constraint

0F0.7 kmol my3yS s: g S 29Ž .Ž .F F

applies in the fermenter example. Since n s0, we have  sx̃
Ž .T Ž T T .Txs X,S and �s f , g where f refers to Eq. 19. Equa-

tion 27a evaluates to

F
ky F q
 S y� S 0Ž . Ž . 10V 0k s2 ž /0F � 0� � k� 0 3
 S X y F y� S X 0Ž . Ž .0V

30Ž .

Ž .Twhich is solved by ks 0, 0, 1 . This solution is unique apart
from a nonzero scaling factor. It obeys Eq. 27b for the choice
k sk. Evaluating Eq. 28 yields the normal vector0

F X F S ySŽ .0 0 F ky 0 1
V V 0kns s 31Ž .2 ž /y1FF0 � 0k� 0 30 y1

V

Due to the simplicity of Eq. 29, the normal vector is indepen-
dent of � . This result is visualized in Figure 4 along with less

Figure 4. Examples of normal vectors for the fermenter.
c,1 Ž . c,2M corresponds to the feasibility constraint Eq. 29 . M

and M c,3 correspond to stability boundaries due to Hopf and
saddle-node bifurcations. Figures 5a and 6a are obtained by
plotting X along the dashed lines at S s 0.3 kmol my3 andF
S s 0.2 kmol my3, respectively.F
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trivial examples of normal vectors to be explained in the next
section.

Stability manifold normal ©ectors
Stability manifold normal vectors will be introduced for

process models which consist of ordinary differential equa-
Ž .tions ODE only

xs f x , � , p 32Ž . Ž .˙

The extension to models with algebraic equations is deferred
Ž .to the appendix. The ODE model Eq. 19 of the fermenter

will be used in subsequent illustrations.
The aim of the present section is to describe the loss of

stability of an ODE process model by a set of algebraic con-
straints, which will allow for a characterization of stability

Ž .boundaries in terms of manifolds of the form Eq. 17 . Note
that stability is a property of the dynamical system modeled
by differential equations. It is therefore not trivial that a de-
scription of stability in terms of algebraic equations exists at
all. As explained briefly in the section entitled Solution ap-
proach, such an algebraic description is possible based on the
observation that the existence of an eigenvalue on the imagi-
nary axis is a necessary condition for a loss of stability. Be-

Figure 5. Equilibria of the fermenter for S s0.3 kmolF
�3 ( )m a and behavior of eigenvalues in the

( )vicinity of the stability boundary b .

fore proceeding to the normal vector systems, this is illus-
Ž .trated further with the fermentation process example Eq. 19 .

Figure 5a shows values of the cell concentration X for
equilibria over a range of the dimensionless feed F and a
fixed value S s0.3 kmol my3. The eigenvalues of the lin-F
earized process model evaluated along the points shown in
the enlargement are depicted in Figure 5b. The loss of stabil-
ity occurs when the complex conjugate pair of eigenvalues
crosses the imaginary axis. Figures 6a and 6b show similar
plots for a fixed substrate feed concentration S s0.2 kmolF
my3. In this case, the process loses stability as a single real
eigenvalue crosses the imaginary axis. The second real eigen-
value is not shown in Figure 6b, since it is well below zero
and, therefore, its influence on stability can be neglected.

The illustrated examples correspond to the simplest two
cases by which a loss of stability can occur, that is, a single
real eigenvalue or a pair of complex conjugate eigenvalues
moving from the left half into the right half of the complex
plane. The remainder of this section will state the systems of
equations which correspond to the existence of a real eigen-
value and a complex conjugate pair on the imaginary axis.

Before proceeding to these systems, we stress that a loss of
stability need not occur due to exactly one real eigenvalue or
exactly two complex conjugate eigenvalues on the imaginary
axis, but may involve any combination of these two basic cases

Figure 6. Equilibria of the fermenter for S s0.2 kmolF
�3 ( )m a and behavior of eigenvalues in the

( )vicinity of the stability boundary b .

December 2003 Vol. 49, No. 12 AIChE Journal3118



leading to a larger number of eigenvalues on the imaginary
axis. For a point to lie on the stability boundary, however, at
least a real eigenvalue or a complex conjugate pair of eigen-
values must exist on the imaginary axis. Thus, the systems of
equations presented below are necessary conditions for a loss
of stability. In fact it is known from bifurcation theory that a
loss of stability typically occurs due to either exactly one sin-
gle real, or exactly one complex conjugate pair of eigenvalues
on the imaginary axis, and that more complicated situations
involving combinations of the two cases rarely occur in physi-
cal systems. More precisely, bifurcation theory states that in a
n -dimensional parameter space, the stability boundary will�

Ž .be given by n y1 -D manifolds of equilibria with either a�

single real or a complex conjugate pair on the imaginary axis,
while combinations of the two basic cases will occur only in

Ž .the manifolds or, more generally, sets of dimensions of at
most n y2. A thorough discussion of this issue is beyond�

the scope of this article. For this article, it is important to
note that both the detection of stability boundaries and the
calculation of normal vectors can be based on the necessary
conditions of a single real or a complex conjugate pair of
eigenvalues on the imaginary axis presented below. We refer
to summarizing articles and textbooks in the bifurcation the-

Žory Guckenheimer and Holmes, 1993; Kuznetsov, 1999; Beyn
.et al., 2003 , and articles which discuss technical details of

Žnormal vectors on manifolds of bifurcation points Dobson,
.1993; Monnigmann and Marquardt, 2002a .¨

At an equilibrium for which a real eigenvalue on the imagi-
nary axis exists, the system of 2n q1 equationsx

0s f 33Ž .
0s f T®x g̃5T0s® ®y1

holds. Here f T denotes the transposed Jacobian of the pro-x
Ž . nxcess model Eq. 32 with respect to x, and ®g� is the

eigenvector corresponding to the eigenvalue zero. Arguments
of f and its derivatives are omitted here and in the sequel for
brevity. Equations 33 are necessary conditions for a saddle-

Ž .node bifurcation Beyn et al., 2003; Kuznetsov, 1999 . A 1-D
manifold of points which satisfy Eqs. 33 for the fermenter
model is given by M c,3 in Figure 4.

If a complex conjugate pair of eigenvalues with real part
zero exists, the system of 3n q2 equationsx

0s f
Ž1. Ž2.¶0s f w q� wx

Ž2. Ž1.0s f w y� w •x g 34Ž .˜
T0sw wy1 ßŽ1.T Ž2.0sw w

holds. Again, f denotes the Jacobian, wswŽ1.q iwŽ2., wgx
� nx is the eigenvector of f corresponding to the eigenvaluex
�s i�, �g�, and w denotes the complex conjugate of w.
Equations 34 are necessary conditions for a Hopf bifurcation
Ž .Beyn et al., 2003; Kuznetsov, 1999 . In Figure 4 the 1-D
manifold M c,2 is composed of points which satisfy Eq. 34.

Equations 33 and 34 are the systems of algebraic equations
necessary to state defining equations for the manifolds at
which a loss of stability occurs. Substituting Eqs. 33 or 34 into
Eq. 24, repeated here for convenience

c ˜M s x , x ,� , p gU : 0s g x , x , � , p , 0s f x , � , pŽ . Ž . Ž .˜ ˜ ˜� 4
provides a description of the stability manifold which has the
same form as the feasibility manifolds in the previous section.
Having obtained an algebraic description of the stability
boundary, the corresponding normal vector systems can be
derived by the line of arguments in Eqs. 26�28. The applica-
tion of Eqs. 26�28 requires straightforward but tedious linear
algebra, thus, we only summarize the resulting normal vector

Ž .systems and refer to Monnigmann and Marquardt 2002a for¨
details.

Using the notation introduced in the previous section, we
have xs® for stability boundaries due to a saddle-node bi-˜

Žfurcation. In Eqs. 27 and 28, k can be chosen to be ks ® ,1
.T 2 n xq1 Ž. . . , ® , 0, . . . , 0 g� Monnigmann and Marquardt,¨n

.2002a . The n q1 trailing zeroes in k allow to reduce thex
Žsize of the normal vector system considerably Monnigmann¨

.and Marquardt, 2002a . The resulting system for the normal
vector n is given by the 2n qn q1 equationsx �

Equations 33
35Ž .Tf ®yns0�

For stability boundaries due to a Hopf bifurcation, we have
Ž Ž1. Ž1. Ž2. Ž2. .T 2 n xq1xs w , . . . , w , w , . . . , w , � g� . Applying Eqs.˜ 1 n 1 nx x

Ž Ž1. Ž1. Ž2. Ž2. .T26�28 yields ks u , . . . , u , ® , . . . , ® , ® , . . . , ® , 0 g1 n 1 n 1 nx x

�3n xq2 and the normal vector system

Equations 34

f T®Ž1.y� ®Ž2.q� wŽ1.y� wŽ2.s0x 1 2

f T®Ž2.q� ®Ž1.q� wŽ1.q� wŽ2.s0x 1 2

®Ž1.T wŽ1.q®Ž2.T wŽ2.y1s0 36Ž .
®Ž1.T wŽ2.y®Ž2.T wŽ1.s0

f Tuq®Ž1.T f wŽ1.q®Ž2.T f wŽ2.s0x x x x x

f Tuq®Ž1.T f wŽ1.q®Ž2.T f wŽ2.yns0� x � x �

which consists of 6n q2n q4 equations. The term ®Ž1. f wŽ1.
x � x x

Ž Ž1. w Ž1. . Ž1.is short for the tensor product ® f s ®Ýx x i �
� j�

� 2 fs
Ž1.w . The other tensor products in Eqs. 36 are de-�� x � x� i

fined accordingly. Note that ®s®Ž1.q i®Ž2. g � nx can be in-
terpreted as the eigenvector of f T corresponding to thex
eigenvalue �sy i�. The variables � , � are auxiliary vari-1 2
ables which can be shown to be always zero. They are added

Žto render the normal vector system regular Monnigmann and¨
.Marquardt, 2002a .

Equations 36 contain second derivatives of f. Adifor
Ž . Ž .Bischof et al., 1996 and maple Monagan et al., 2000 are
used to calculate these derivatives by automatic and symbolic
differentiation in our implementation of the method.

As an illustration, the stability boundary normal vector sys-
Ž .tems Eqs. 33 and 35 are evaluated for the fermenter. The
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y3 y3values Xs2.16 kg m , Ss0.120 kmol m , Fs0.712, SF
s0.2 kmol my3 correspond to the equilibrium at which sta-
bility is lost in Figure 6. At this point, the Jacobian has an
eigenvalue of zero corresponding to the left eigenvector ®s
Ž .Ty1,0 , which satisfies Eq. 33. Equation 35 evaluates to

F X F S ySŽ .0 0 Fy
V V y1 yns0 37Ž .ž /0FF0� 00

V

Ž .Twhich yields ns y0.0134, . The normal direction defined
by this vector is shown in Figure 4.

Normal ©ectors to M r

From a technical point of view, normal vectors to the ro-
bustness manifold M r can be calculated in the same manner
as normal vectors to feasibility and stability boundaries. M r

differs from feasibility and stability boundaries M c in that
M r generally varies in form and shape when the nominal point
of operation is varied. As explained above, M r is allowed to

Ž0. Žvary in shape and location if � is varied see Figure 1 for
.an illustration . To account for this variation, the defining

equations of M r may depend on the value of the uncertain
parameters at the point of operation � Ž0.. Technically, M r is
parameterized by � Ž0.; thus, � Ž0. belongs to the parameters
p of the defining equations of M r. The general definition of
a manifold M r here is of the form of Eq. 24, repeated here
for convenience

r ˜M s x , x ,� , p gU : 0s g x , x , � , p , 0s f x ,� , pŽ . Ž . Ž .˜ ˜ ˜� 4
38Ž .

nx̃q1 n x˜where the smooth functions g map into � , and U ;�˜
nx̃ n� np�� �� �� .

Figure 4 illustrates normal vectors on M r. We assume that
the parametric uncertainty of F and S in the fermenter ex-F
ample can be described by the circle

2 2Ž0. Ž0.FyF S ySF FŽ0. Ž0.g F ,S ; F ,S s q y2, 39Ž .˜Ž .F F ž / ž /�S� F F

y3where � Fs0.05 and �S s0.05 kmol m . Since Eq. 39F
does not depend on the state variables X and S of the fer-
menter, the model equations f can be omitted in this case in
Eq. 38. Since a single defining equation for M r remains in
this simple example, the normal space is 1-D and the single
basis vector can be obtained from Eq. 18 to be

Ž0. Ž0.FyF S ySF F Tns2 , . 40Ž .22ž /�S� F F

Note that this corresponds to evaluating Eq. 28 with ksk0
s1g�. Figure 4 visualizes normal vectors on M r for the
fermenter example. The direction given by n from Eq. 40 can
be interpreted as the direction that is spanned by the line

Ž0. Ž0.Ž .drawn from the center F , S of the circle to any pointF
Ž .F,S on the circle.F

Optimization with Flexibility and Robust Stability
Constraints

Having introduced the systems of equations that allow to
calculate normal vectors on manifolds M c and M r, the non-

Ž .linear program NLP for the steady-state optimization of
continuous processes in the presence of parametric uncer-
tainty can be stated.

In summary, the normal vector systems are nonlinear sets
of equations which depend on state variables x of the dy-

Ž .namic system of interest Eq. 8 , on auxiliary variables x such˜
Žas the eigenvectors in systems for stability boundaries Eqs.

.33 and 34 , on the uncertain parameters � , on the parame-
ters not subject to uncertainty p, and, in the case of M r dis-
cussed in the previous section, on the nominal point of oper-
ation � Ž0.. In the statement of the NLP below, we will there-
fore abbreviate the normal vector systems by

Ž t . Ž0. � 4G x , x ,� , p ,n ,� s0, tg f , s , s , 41Ž .˜Ž . 1 2

where the index t denotes the type of manifold. An index
ts f refers to feasibility boundaries. In this case, Eq. 41
stands for the defining equations in Eq. 24 and Eqs. 27 and
28. The indices ts s , s denote stability boundaries. In these1 2
cases Eq. 41 abbreviates Eqs. 35 and 36, respectively. As
pointed out in the previous section, the normal vector system
for M r, denoted by ts r, has the same form as the case ts f

GŽ r . x , x ,� , p ,n ,� Ž0. s0. 42Ž .˜Ž .

Ž .The optimization problem Eq. 9 can now be restated us-
Ž .ing the normal vector systems Eqs. 41 and 42 . As opposed

to the introduction of Eq. 9, which focused on the existence
of one locally closest critical point for simplicity, more than
one locally closest critical point must be accounted for in the
general case. Multiple closest connections between M r and
M c may arise because of multiple constraints, or because of
nonconvexity of constraints, cf. Figure 7. Let the upper index

� 4 Žc, i.ig Is 1, . . . , i enumerate critical points � and themax
corresponding points � Ž r , i. on M r. For each ig I, the system

Figure 7. Typically more than one normal vector con-
straint exists due to the nonconvexity of mani-
folds M r, Mc, or because more than one fea-
sibility and stability boundary exist.
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of equations

0sGŽ r , i. x Ž r , i. , x Ž r , i. , � Ž r , i. , pŽ r , i. , nŽ i. , � Ž0.˜Ž .

0sGŽ t i ,i. x Žc , i. , x Žc , i. , � Žc , i. , pŽc , i. , nŽ i. , � Ž0.˜Ž .

yields the direction nŽ i. which is normal to the respective
manifold at both � (r,i) and � Žc, i.. Along this normal direc-
tion, the distance between � (r,i) and � (c,i) must be equal to
or larger than zero. This is ensured by Eq. 46 and the in-

Ž .equality Eq. 47 in the NLP

min � x Ž0. ,� Ž0. , pŽ0. 43Ž .Ž .
Ž0. Ž0. Ž0.x ,� , p

Ž0. Ž0. Ž0.s.t. 0s f x ,� , p , 44Ž .Ž .
Ž r , i. Ž r , i. Ž r , i. Ž r , i. Ž r , i. Ž i. Ž0.0sG x , x ,� , p ,n ,�˜Ž .

45Ž .
Ž t , i. Žc , i. Žc , i. Žc , i. Žc , i. Ž i. Ž0.i0sG x , x ,� , p ,n ,� ,˜Ž .

� 4t g f , s , si 1 2

Ž i. Ž i. Žc , i. Ž r , i.0s l n y � y� 46Ž . Ž .
Ž i.0F l 47Ž .

ig I , xg X , �g A , pgP 48Ž .

which is a restatement of Eq. 9 that can be implemented.
Note that x(r,i), x(r,i), � (r,i), p(r,i), nŽ i., x(c,i), x(c,i), � (c,i), p(c,i),˜ ˜
l Ž i. are degrees of freedom in the optimization in addition to
x Ž0., � Ž0., pŽ0.. We do not list these variables as arguments of
43 to avoid a too tedious notation.

Ž .We will refer to the constraints Eqs. 45�48 as minimal
distance constraints for short. Note that this does not mean
that we seek a minimal distance, but the name is supposed to
reflect that we ensure a distance greater than some accept-
able lower bound.

Relation to minimization of parametric distance
Ž .The optimization problem Eq. 13 was used to introduce

the notion of parametric distance between candidate points
of operation and critical points. With the help of Figure 2, we

Ž .pointed out that the simple optimization problem Eq. 13
provides an incomplete characterization of the constraint Rr

lRcsø. It is instructive to see why the minimal distance
Ž .constraints Eqs. 45�48 avoid the problems of the straight-

forward measure � of the distance between the manifolds
introduced in Eq. 13.

Ž T T .TUsing the notation and the abbreviation �s f , g in-˜
troduced above, we can rewrite the optimization problem Eq.
13 as

1
2 T� s min n n

r r c c 2x ,� , x ,�

s.t. 0s� c x c,� cŽ .

0s� r x r ,� r 49Ž . Ž .

0sny � cy� rŽ .

where a factor 1r2 has been introduced into the objective as
compared to Eq. 13 to simplify the comparison to follow. The

Ž .first-order Karush-Kuhn-Tucker KKT conditions for opti-
mality are � rs0, � cs0 and

r � � r r
r r	 � . . . 	 � k s0Ž .x 1 x n n q1x x̃

c r r � � r r
r ry � y� q 	 � . . . 	 � k s0Ž . Ž .� 1 � n qn q1x x̃

50Ž .

c � � c c
c c	 � . . . 	 � k s0Ž .x 1 x n qn q1x x̃

c r c � � c c
c c� y� q 	 � . . . 	 � k s0Ž . Ž .� 1 � n qn q1x x̃

where k r and k c denote Lagrange multipliers, and argu-
ments of � r, � c and their derivatives are omitted for brevity.
Comparing the KKT conditions to the normal vector based
approach reveals that the first and second rows of equations

Ž c r.in Eq. 50 correspond to Eqs. 27a and 28. Thus, � y� in
Eq. 50 is a normal vector to M r. Similarly, the third and fourth

Ž c r.rows in Eq. 50 reveal that � y� is a normal vector to
M c. Note, however, that the KKT conditions permit the solu-
tion

k rsk cs0, ns � cy� r s0 51Ž . Ž .

In contrast, the minimal distance constraints reject this type
of solution, since a finite length of k is enforced by Eq. 27b.
Due to this difference, the minimal distance constraints allow
to distinguish between the solutions shown in Figures 2a and

Ž .2b while the KKT conditions Eq. 50 do not. Solutions of the
Ž .type Eq. 2a are accepted by the minimal distance con-

straints, since the points on M r and M c marked by the dot
have a common normal direction. Note that a step of length
zero, which is accepted by Eq. 47, is necessary along this di-
rection to connect the points on M r and M c in Figure 2a. In
contrast, the points marked in Figure 2b do not have a com-
mon normal direction. While they are solutions of the type
Ž .Eq. 51 of the KKT conditions, they are rejected by the min-
imal distance constraints.

Application to a Continuous Polymerization
Process

Ž .In this section, the NLP Eqs. 43�48 is solved for a poly-
merization reaction carried out in a CSTR. Process models
for continuous homopolymerization have been presented, an-
alyzed, and discussed in a series of articles by Ray and

Žcoworkers Schmidt and Ray, 1981; Hamer et al., 1981;
.Schmidt et al., 1984; Teymour and Ray, 1989, 1992a,b . The

process treated here is the solution free radical homopoly-
merization of vinyl acetate. The stability boundaries for the
model are known from a detailed analysis of its nonlinear

Ž .dynamic behavior Teymour and Ray, 1992b . Note that the
model was derived from a lab-scale reactor model which has

Ž .been validated experimentally Teymour and Ray, 1992a . A
Ž .good summary of the model can be found in DeCicco 2000 .

We do not repeat the process model, which consists of four
differential and 15 algebraic equations, for the sake of brevity.
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Optimization problem
We optimize the polymerization of vinyl acetate with re-

spect to the merit function

˜ w x� profitrtime sy® � C qm f m f m in

y® � C qsf s f s in

y I MW C qf I i in

q® � C q , 52Ž .p p p out

where ® and ® refer to the monomer and solvent volumem f sf
fraction in the feed, � , � and � are the density ofm f sf p
monomer in the feed, solvent in the feed, and polymer in the
reactor, MW and I are the molecular weight and the molarI f
concentration of the initiator, � refers to the residence time,
® denotes the volume fraction of polymer in the reactor, andp
the C refer to the cost coefficients of the respective sub-i
stances. The difference between input flow rate q and out-in
put flow rate q can be neglected. Therefore, we can opti-out
mize with respect to the simplified merit function

w x� profitrtimerreactor volume s

y® � C y® � C y I MW C q® � C r� . 53Ž .Ž .m f m f m sf s f s f I i p p p

The optimization results presented below were obtained with
the relative cost coefficients C s3C , C s6C , C s20C .m s p m i p

The robustness manifold M r is chosen to be the ellipsoid
defined by

2 2Ž0. Ž0.� y� � y�1 1 2 2r Ž0.g � ,� s q y2, 54Ž . Ž .ž / ž /�� ��1 2

where � s� , � s I and1 2 f

��s�� s5 min1

� I s�� s5 molrm3. 55Ž .f 2

Due to the simplicity of the chosen robustness manifold, the
normal vector can be calculated explicitly to be

TŽ0. Ž0.� y� � y�1 1 2 2
ns2 , . 56Ž .2 2ž /�� ��1 2

This simplifies Eq. 45 considerably.

Results
We will take into account robust stability and flexibility with

respect to a temperature restriction. For illustrative pur-
poses, we switch on these constraints one at a time.

For reference, we solve the optimization problem at first
without robust stability and flexibility constraints

max � x Ž0. ,� Ž0. 57Ž . Ž .
Ž0. Ž0.x ,�

s.t. 0s f x Ž0. ,� Ž0.Ž .

( )Figure 8. Optimum which results from the NLP Eq. 57 .
The optimum is marked by the cross.

Ž .Twhere �s � , I . The resulting optimal point of operationf
is �s0.777 min, I s23.4 molrm3, and Ts430 K. It isf
marked by a cross in Figure 8. Figure 8a shows all steady
states of the process as a function of � . Note that multiple
steady states exist for � up to about 50 min. As a rule of
thumb, we expect optimal points of operation to be located
on the branch of stable steady states at high temperatures,
since a high rate of polymer production will occur at high
temperature. In Figure 8a, the branch of interest is bounded
below with respect to � by a loss of stability due to a saddle-
node bifurcation and bounded above by a loss of stability due
to a Hopf bifurcation. Figure 8b shows the location of the
stability boundaries which result from saddle-node and Hopf
bifurcations as a function of � and I . The particular value off
I , at which Figure 8a was obtained, is marked by the hori-f
zontal dashed line in Figure 8b. Along this line, the points at
which stability is lost in Figure 8a can be found. Figure 8
reveals that the process design given by the optimal point
marked by the cross cannot be considered robust, as it is
parametrically close to a part of the stability boundary which
is due to the saddle-node bifurcations.

This result suggests to optimize the process with a minimal
distance constraint on the location of the closest saddle-node

� 4bifurcation. We, therefore, solve Eqs. 43�48 with Is 1 and
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Figure 9. Optimum which results from the optimization
with constraint on the minimal distance to the
saddle-node bifurcation manifold.
The optimum from Figure 8 is marked for reference.

t s s . The result is visualized in Figure 9. A comparison of1 1
Figures 8a and 9a shows that the bifurcation diagram changes
qualitatively. While a single S-shaped branch of solutions ex-
ists in Figure 8a, an isolated branch appears in Figure 9a. We
remark that the appearance of closed branches of steady

Žstates is due to an isola singularity Golubitsky and Schaeffer,
.1985 . The normal vector constraints can deal with this higher

codimension singularity without any special adjustments. As
opposed to the result in Figure 8, the optimum is now at a
safe distance from the stability boundary in Figure 9b. In par-
ticular, the process will be stable for any value of the uncer-
tain parameters � and I within the robustness manifold.f

In order to demonstrate the use of the normal vector based
approach on feasibility boundaries, we impose the tempera-
ture constraint T �373 K on the polymerization process in
the last optimization problem. The temperature constraint is
visualized in Figure 10 along with the stability boundaries.
The diagram reveals that the temperature constraint covers
up most of the part of the stability boundary which is due to
saddle-node bifurcations. In the optimization we, therefore,
require the process to be robustly stable with respect to a loss
of stability at the remaining Hopf bifurcation manifold and to

Figure 10. Result of the optimization with constraints on
the location of Hopf bifurcations and the
temperature constraint T�373K.

stay below the temperature constraint for all parameter val-
r � 4ues in M . This amounts to solving Eqs. 43�48 with Is 1,2 ,

t s s , t s f. The result is shown in Figure 10. The robust-1 2 2
ness ellipse in Figure 10b apparently touches the saddle-node

Ž .bifurcation manifold, but the bifurcation diagram Figure 10a
reveals that the corresponding saddle-node bifurcations oc-
cur on an unrelated part of the equilibrium solution curve, cf.
the saddle-node bifurcation at Tf323 K in Figure 10a.

ŽTable 1 summarizes the values of the merit function Eq.
.53 for the optimization runs. The first column reveals that

the merit function drops considerably if the saddle-node dis-
tance constraints are imposed. Note that the result for �none

Table 1. Optimization Results�

�r� �r�i none i saddle-node

� 1 5.0none

� 0.2 1saddle-node

� 0.03 0.15Hopf,temp

�
� , � , � refer to the optimization result withoutnone saddle-node Hopf,temp
minimal distance constraints, with minimal distance constraints on the
location of saddle-node bifurcations, and with minimal distance con-
straints both on Hopf bifurcations and the temperature constraint, re-
spectively.
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is of little practical importance, since the process cannot be
run at this optimum which is parametrically close to a loss of
stability at a saddle-node bifurcation. However, the compari-
son of � and � reveals that it is an economicallynone saddle-node
reasonable option to stabilize the process in the vicinity of
the unconstrained optimum to increase the stability margin
by the addition of a controller or by structural design modifi-
cations.

Similarly, the merit function value drops considerably, if a
temperature constraint is imposed on the process, cf. the sec-
ond column of Table 1. Again, this result allows to evaluate
whether it is economically reasonable to invest into a solvent
which is capable of higher temperatures, or to run the pro-
cess at a lower temperature at the cost of lowering the profit.

Summary and Future Directions
We presented a new approach to the steady-state opti-

mization of continuous processes in the presence of paramet-
ric uncertainty. The approach identifies an optimal nominal
point of operation which is exponentially stable, and which is
feasible with respect to inequality constraints such as physical
operating limits or product specifications. Furthermore, the
nominal point of operation is guaranteed to be parametri-
cally robust in the sense that stability and feasibility will not
be lost despite parametric uncertainty. Although the ap-
proach is more general, in the two examples the parametric
uncertainty was specified in terms of lower and upper bounds
on the uncertain parameters.

The approach is based on enforcing a lower bound on the
distance between the optimal point of operation and critical
points, that is, those points at which feasibility or stability is
lost. A unified approach to both feasibility and stability is
possible because critical points of either type can be de-
scribed in terms of manifolds in the space of the uncertain
parameters. Normal vectors to these critical manifolds are
used to measure the distance to the nominal point of opera-
tion. Having identified a measure for the distance between
the nominal point of operation and the critical manifolds of
the process, constraints can be stated which impose a lower
bound on this distance.

The approach presented here differs from existing ap-
proaches in that it is not based on the flexibility and feasibil-

Žity measures proposed by Grossmann and coworkers Swaney
.and Grossmann, 1985; Halemane and Grossmann, 1982 . As

opposed to these measures which evaluate constraint ®iolation
in the range space of the constraints, we characterize a point of
operation by its distance to the feasibility and stability bound-
aries in the domain of the uncertain parameters.. While the con-
cept of constraint violation has been used to address para-
metrically robust feasibility before, the notion of the distance
to critical points in the domain of the uncertain parameters
can be applied both to robust feasibility and parametric ro-
bustness with respect to stability. Thus, the presented ap-
proach allows for a unified treatment of robust feasibility and
robust stability.

The normal vector-based constraints were illustrated with
a simple fermenter model. Results for the use of the con-
straints in process optimization with guaranteed parametric
robustness and feasibility were shown for a model of the
polymerization of vinyl acetate in a CSTR.

In the fermenter and the polymerization example, stability
boundaries were known a priori since the process models had
previously been analyzed with the aid of bifurcation theory

Žand continuation Agrawal et al., 1982; Teymour and Ray,
.1989 . In general such an analysis will not be available and,

Žtherefore, the set I of all local closest critical points see Eqs.
.43�48 will not be known a priori. In fact the proposed nor-

mal vector constraints were developed as a first step towards
a method which allows to consider stability boundaries, while
avoiding a previous bifurcation analysis. In such a method,
stability and feasibility boundaries are detected in the opti-
mization instead of conducting the bifurcation analysis by
continuation and the optimization separately. While the vio-
lation of feasibility boundaries can be detected by simply
monitoring the sign of the feasibility constraint along a path
of candidate points of operation, special test functions for
stability boundaries are necessary. Test functions which sig-
nal the crossing of a stability boundary along a path of steady
states by a sign change have been used extensively in numeri-

Ž .cal bifurcation analysis Beyn et al., 2003 . Given an empty or
incomplete index set I in Eqs. 43�48, these test functions
allow to detect any stability or feasibility boundary which are

Žnot yet considered in the current set I as the NLP Eqs.
.43�48 is being solved. If such boundaries are found, the in-

dex set can be updated and the optimization problem can be
resolved until all boundaries are taken into account. Such an
approach is subject to current research.
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Appendix
Stability boundaries of DAE models

In this section we extend normal vector systems for ODE
process models to DAE systems of the type

x ds f d x d, x a,� , p , x d 0 s x dŽ .˙ Ž . 0

0s f a x d, x a,� , pŽ .

where the equations for the outputs y have been omitted
because they are not needed in the sequel. In the DAE sys-
tem, f d and f a are considered to be smooth with respect to
x dg� nd, x ag� na, �g� n�, pg� np, and the Jacobian of f a

with respect to x a is assumed to have full rank. According to
the implicit function theorem, f a can be solved for x a as a
function of x d, � and p. We denote this local solution of x a

d Ž d .as a function of x , � and p by  x ,� , p . The existence
Ž . Ž d .and smoothness to appropriate order of  x ,� , p accord-
ing to the implicit function theorem allows us to investigate
the dynamic behavior of the DAE model by considering the
ODE system

x ds f x d, x d,� , p ,� , p A1Ž .˙ Ž .Ž .

making use of

0s f a x d, x d,� , p ,� , p , A2Ž .Ž .Ž .

which by continuity holds in some neighborhood of an equi-
librium solution of Eq. 5.

Application of the chain rule to Eq. A2 yields the following
aŽ d Ž d . .expressions. Arguments of f x , x ,� , p , � , p and

Ž d . x ,� , p and of the respective derivatives are omitted for
brevity.

For the first derivative of Eq. A2 with respect to x, we
have

f d
a q f a

a  ds0x x x

where f d
a g� na�n d, f a

a g� na�n a,  dg� na�n d. By assump-x x x
tion, f a

a has full rank. Thus, after inverting f a
a ,  d can bex x x

determined from

 dsy f a
ay1 f d

a A3Ž .x x x
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For the first derivative of Eq. A2 with respect to � , we
have

f a
a  q f as0x � �

and  can be obtained from�

 sy f a
ay1 f a A4Ž .� x �

For second derivatives of Eq. A2 with respect to x, we find

f d d
a q2 f d a

a  dq f a a
a  d  dq f a

a  d ds0x x x x x x x x x x x x

Thus,  d d can be determined fromx x

 d dsy f a
ay1 f d d

a q2 f d a
a  dq f a a

a  d  d A5Ž .Ž .x x x x x x x x x x x x

For the mixed derivatives of Eq. A2 with respect to x, �
we find

f d a
a  q f d

a q f a a
a  d  q f a

a  dq f a
a  d s0x x � x � x x x � x � x x x �

and  d can be determind fromx �

 d sy f a
ay1 f d a

a  q f d
a q f d

a  d  q f a
a  A6Ž .Ž .x � x x x � x � x � x � x �

In summary,  ,  ,  and  can be determined fromx � x x x �

Eqs. A3�A6 by matrix vector multiplications after the inver-
sion of the n � n -matrix f a

a .a a x
The derivatives of f which occur in the normal vector sys-

tems 35 and 36 can now be calculated. By applying the chain
rule to

0s f d x d, x d,� , p � , p A7Ž .Ž .Ž .

the same expressions are obtained as for Eq. A2. In the nor-
mal vector systems 35 and 36, the replacements

f § f d
d q f a

d  dx x x x

f § f a
d  q f d

� x � �

f § f d d
d q2 f d a

d  dq f a a
d  d  dq f a

d  d dx x x x x x x x x x x x x x

f § f d a
d  q f d

d q f a a
d  d  q f a

d  dq f a
d  d A8Ž .x� x x � x � x x x � x � x x x �

are needed using the results for  ,  ,  and  obtainedx � x x x �

from Eqs. A3�A6 and its derivatives to account for the alge-
braic equations in the DAE process model 5.
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