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Abstract 

The Extended Kalman Filter (EKF) application encloses four important areas, 
related directly with control based on the real-time dynamic optimization 
strategies implantation to an industrial process: state estimation, unknown 
process parameters estimation, dynamic data reconciliation, and data filtering. 
The main goal of this paper is to evaluate the quality of five different EKF 
formulations for these four areas. The filters are applied in a studied case: the 
Sextuple Tank-Process. This process presents a high non-linearity degree and a 
RHP transmission zero, with multivariable gain inversion. 
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1. Introduction 

Real-time control based on the optimization of nonlinear dynamic process 
models has attracted increasing attention over the past decade, e.g. in chemical 
engineering. One important precondition of this methodology has a connection 
with approximate models used in the Dynamic Real-Time Optimization (D-
RTO) and in Model-Based Predictive Controller (MPC) since these models 
require frequent updates. Optimization approaches with very different modeling 
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fidelity has been investigated since the ability of a D-RTO system to track the 
changing optimum closely relies on an accurate model for representing the plant 
behavior [1, 2]. Moreover, the use of data preprocessing and dynamic data 
reconciliation techniques can considerably reduce the inaccuracy of process 
data due to measurement errors, improving the overall performance of the MPC 
when the data is first reconciled prior to being fed to the controller [3]. Hence, 
in order to take into account the requirements of D-RTO and MPC, in this work 
is used some formulations of EKF. Moreover, many physical systems exhibit 
nonlinear dynamics and have states subject to hard constraints, such as 
nonnegative concentrations or pressures [4-7]. As a result, many different types 
of nonlinear state estimators have been proposed, being the EKF the most 
popular because its application encloses four important areas related directly 
with advanced control strategies for industrial processes: state estimation, 
unknown process parameters estimation, dynamic data reconciliation, and data 
filtering. 

2. Five Formulations of Extended Kalman Filter 

• Extended Kalman Filter (EKF): The Continuous-Discrete Extended Kalman-
Bucy Filter [9, 10] is used. The prediction stage consists basically of the 
integration of differential equations, from the dynamic model, and the 
differential equations related to the covariance matrix P, which are made 
between the sampling times. 

• Continuous Extended Kalman Filter (CtEKF): The error covariance matrix is 
not updated in the correction stage. During the prediction stage, like in EKF, 
the integration of error covariance matrix is carried through with the 
differential equations of the system in a different proposed way [11]. 

• Discrete Extended Kalman Filter (DEKF): The basic difference between the 
DEKF and the EKF is that this formulation uses only the discrete form. The 
matrices Q and R are, respectively, the covariances of the process and the 
measurements noises (random errors). In order to make the transition from 
the discrete to continuous case, relations between Qk and Rk and the 
corresponding Q and R for a small step size were used [11]. 

• Constrained Extended Kalman Filter (CEKF): The basic equations of CEKF 
can be divided, like in the EKF, in prediction and correction stages [4].  
However, the integration of error covariance matrix is not carried through 
with the differential equations of the system. In correction stage, the system 
constrains directly appears in the optimization problem. 

• Modified Discrete Extended Kalman Filter (MDEKF): The error covariance 
matrix is not updated in the correction stage. The prediction stage is similar 
to CEKF and the error covariance is estimated and updated in discrete form 
using the correction equation of CEKF. 
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The aforementioned process is non-linear and continuous. The prediction stage 
of the states −

kx̂  is carried out in the same way for all the formulations. It is 
gotten from the system states integration in the time interval [tk-1, tk], according 
to the Equation 1. z, w and v are, respectively, vectors of measured variables, 
modeling and measurement errors. The filters formulations additional equations 
are showed in Table 1, where F and H are the Jacobian matrices of the functions 
f and h related to the −

kx̂  in the model provided by Equation 1.  
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Table 1. Five Formulations of Extended Kalman Filter 
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* kϕ is the discrete states transition, carried through the discrete Jacobian matrix kF .  

3. Case Study  

The proposed unit [12], depicted in Figure 1, consists of six interacting 
spherical tanks with different diameters Di. The objective consists in controlling 
the levels of the lower tanks (h1 and h2), using as manipulated variables the flow 
rates (F1 and F2) and the valve distribution flow factors of these flow rates 
(0≤x1≤1, 0≤x2≤1) that distribute the total feed among the tanks 3, 4, 5 and 6. 
The complemental flow rates feed the intermediary tank on the respective 
opposite side. The levels of the tanks 3 and 4 are controlled by means of SISO 
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PI controllers around the set-points given by h3s and h4s. The manipulated 
variable in each loop is the discharge coefficients Ri of the respective valve. 
Under these assumptions, the system can be described by equations showed in 
Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig:1 The Sextuple-Tank Process 

Table 2. Model Equations 

Tanks Levels Control Actions Supporting Equations 
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4. Results and Discussions  

The EKF formulations were implemented in MATLAB and applied in the 
process dynamic model, previously presented, using SIMULINK [13]. The goal 
is the estimation of intermediary tanks level, since these levels are the 
controlled variables of this process. The estimation of superior tanks levels also 
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is verified. In this case, the inferior tanks levels are measured directly in the 
process, and the filtration of these variables is carried out by the Kalman filters. 
All the evaluated simulations were made in 100 minutes and the system initial 
condition is an operating point that presents a minimum-phase behavior 
(1<x1+x2<2). However, due to step changes in the valve distribution flow 
factors during the process simulation the system moves to an operating region 
presenting non-minimum phase behavior (1<x1+x2<0) in t = 50 minutes.  
A studied case had been simulated to evaluate the quality of prediction and 
robustness for all the filters formulations, considering the aforementioned 
important areas related directly with the advanced control strategies. 
Furthermore, the following conditions and settings were imposed: 
1. A PRBS (Pseudo-Random Binary Signal) is used in the manipulated inlet 

flow rates (F1 and F2), which is initialized at the simulation beginning. 
Hence, this situation characterizes that different initial conditions are used in 
the filters. 

2. Q is considered as a diagonal matrix: Q=Inxn, where n is the states number 
and R is considered as a diagonal matrix with an uncertainty in the 
measurements: R= (10)Imxm, where m is the measured variables number. 

3. The measured variables are the inferior tanks levels. These variables are 
generated from the model simulation with a band-limited white noise 
addition.  

Supposing a leak in the process, it was considered an error of 1000 cm3.min-1 in 
the manipulated inlet flow rate 1 (Δ1). Errors of 10% in the outlet flow 
coefficients of tank 1 (R1) and tank 2 (R2) were also considered. The filters 
performances are evaluated using an error criterion: Integral Time Absolute 
Error (ITAE) and are shown in Table 3.  
Table 3. Filters Performance - ITAE values 

 h1 h2 h5 h6 R1 R2 Δ1 Δ2 

EKF 1023.6 1137.5 4070.2 222.4 - - - - 
CEKF 2185.8 2489.0 4040.7 83.5 - - - - 
DEKF 2185.8 2488.8 4040.6 83.5 - - - - 
MDEKF 2185.9 2489.3 4040.6 83.3 - - - - 
CtEKF 795.5 864.0 4074.5 266.4 - - - - 
EKFest 81.3 91.6 112.7 24.5 157009 13972 19654 23733 
CEKFest 151.8 123.1 547.1 39.9 668100 35161 113071 97109 
DEKFest 151.7 123.2 547.4 40.0 668511 35276 113111 97197 
MDEKFest 151.1 122.7 545.5 39.6 666250 34903 112818 96851 
CtEKFest 95.1 107.5 28.2 34.6 37947 23168 10147 11143 

The EKF continuous formulations have presented the best performance in 
inferior tanks levels estimation and the EKF discrete formulations have 
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presented the best performance in superior tanks levels estimation when only 
state estimation was applied. On the other hand, when unknown process 
parameters estimation and dynamic data reconciliation, considering the state 
observability analysis, were applied (subscript “est” in Table 1), all filters 
performances were improved. Furthermore, the EKF continuous formulations 
have presented the best performance in all state, parameter and leak estimation. 

5. Conclusions and future work 

The performances of different Extended Kalman Filter formulations were 
evaluated, not only for the state estimation, but also for unknown process 
parameters estimation and dynamic data reconciliation. It was shown that when 
the unknown process parameters estimation and dynamic data reconciliation 
were implemented together with the state estimation, the EKF continuous 
formulations always have presented the best performance. In these case studies 
no constrains were imposed to the state variables, which could improve the 
relative performance of CEKF against the others evaluated filters. Moreover, 
the effects of the filters design parameters (Q and R matrices) were evaluated 
through some different values and the results have not presented a consistent 
conclusion because the results for the filters performance were very similar for 
any chosen filters design parameters. Hence, a deeper analysis of this 
parameters effect need to be performed in a further work. 
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