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Abstract 
The filters tuning is a crucial issue due the need to quantify the accuracy of the model in 
terms of the process noise covariance matrix for process characterized by structural 
uncertainties which are time-varying. Thus, approaches to time-varying covariances 
were studied and included to a traditional EKF and an optimization-based state 
estimators constrained EKF (CEKF) formulations. The results for these approaches 
have shown a significant improvement in filters performance. Furthermore, the 
performance of these estimators as a transient data reconciliation technique has been 
appraised and the results have shown the CEKF suitability for this proposes. 
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1. Introduction 
Due to the improvements in computational speed and the development of effective 
solvers for nonlinear optimization problems, optimization-based state estimators, such 
as the Moving Horizon Estimator (MHE) and CEKF, simpler and computationally less 
demanding, has become an interesting alternative to common approaches such as the 
EKF. The benefits of them arise due to the possibility to consider states physical 
constraints into an optimization problem [1, 2]. An important issue in applying state 
estimators is the appropriate choice of the process and measurement noise covariances. 
While the measurement noise covariance can be directly derived form the accuracy of 
the measurement device, the choice of Q is much less straightforward. Some process, 
such as continuous process with grade transitions and batch or semi-batch process, for 
instance, are characterized by structural uncertainties which are time-varying. In [3, 4], 
two systematic approaches are used to calculate Q from the parametric model 
uncertainties and the accuracy of this techniques are compared favorably with the 
traditional methods of trial-and-error tuning of EKF. Moreover, the NMPC algorithm 
proposed by [5] takes parameter uncertainty in account in the state estimation through 
these systematic approaches. Furthermore, the use of data preprocessing and dynamic 
data reconciliation techniques can considerably reduce the inaccuracy of process data 
due to measurement errors, improving the overall performance of the MPC when the 
data is first reconciled prior to being fed to the controller [6]. Moreover, poor 
measurements can lead to estimates that violate the conservation laws used to model the 
system. In their paper, [7] have considered the EKF and MHE formulations, as a 
dynamic data reconciliation technique to the problem of detecting the location and 
magnitude of a leak in a wastewater treatment process. While the constrained estimators 
provide a good estimate of the total losses when there is a leak, MHE and Kalman filter 
provide poor estimates when there are no leaks. The problem stems from an incorrect 
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model of the process (the true model process has no leaks while the model assumes 
leaks) and, for solving this problem; they have just suggested a proper strategy where 
this problem is formulated as a constrained signal-detection problem. However, they 
had not implemented this proposal strategy.  
In order to assess the proposed techniques for state estimators tuning and transient data 
reconciliation of this work, the filters are applied in a case-study: the Sextuple Tank-
Process, which presents a high non-linearity degree and a RHP transmission zero, with 
multivariable gain inversion. 

2. Case Study 
The proposed unit [8], depicted in Figure 1, consists of six interacting spherical tanks 
with different diameters Di. The objective consists in controlling the levels of the lower 
tanks (h1 and h2), using as manipulated variables the flow rates (F1 and F2) and the valve 
distribution flow factors of these flow rates (0≤x1≤1, 0≤x2≤1) that distribute the total 
feed among the tanks 3, 4, 5 and 6. The complemental flow rates feed the intermediary 
tank on the respective opposite side. The levels of the tanks 3 and 4 are controlled by 
means of SISO PI controllers around the set-points given by h3s and h4s. The 
manipulated variable in each loop is the discharge coefficients Ri of the respective 
valve. Under these assumptions, the system can be described by equations and 
parameters showed in Table 1 and 2, respectively.  
 

Table 1. Model Equations 
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Table 2. Model Parameters Value 

F1s, F2s 7500 cm3min-1 D1, D2 25 cm h3s, h4s 15.0 cm 
x1s 0.6 D3, D4 30 cm h1 (t0) 9.41 cm 
x2s 0.7 D5, D6 35 cm h2 (t0) 10.9 cm 
R1 2200 cm2.5min-1 Kp3 -136.36 h3 (t0) 15.0 cm 
R2 2500 cm2.5min-1 Kp4 -112.08 h4 (t0) 15.0 cm 
R3s, R4s 2875.7  cm2.5min-1 Ti3 0.0742 h5 (t0) 5.06 cm 
R5, R6 2000 cm2.5min-1 Ti4 0.0696 h6 (t0) 6.89 cm 
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3. State Estimation 

3.1. Extended Kalman Filter Estimation 
Consider the dynamic systems whose mathematical modeling often yields nonlinear 
differential-algebraic equations as shown below: 

( ) ( ) ( ) ( )[ ]
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w(t)tpt,,tu,txftx
+=

+=&
 (1) 

where x denotes the states, u the deterministic inputs, p the model parameters and z the 
vector of measured variables. The process-noise vector, w(t), and the measurement 
error, are assumed to be a white Gaussian random process with zero mean and 
covariance Q(t) and R(t), respectively. In the continuous-discrete Extended Kalman-
Bucy Filter [9], the prediction stage of the states and the state covariance matrix is 
achieved by integrating the above nonlinear model equations in the time interval [tk-1, 
tk], according to the Equations 2 and 3, respectively:  
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The Kalman gain is then computed in the Equation 4. The measurement update 
equations are then used to estimate the state and the covariance updates, according to 
the Equations 5 and 6, respectively:  
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In the preceding equations, the superscripts (-) and (+) indicate the values before and 
after the measurement update has occurred, respectively. F and H are the Jacobian 
matrices of the functions f and h relative to −

kx̂ .   
 
3.2. Constrained Extended Kalman Filter Estimation 
CEKF is an alternative state estimator based on optimization, originated from MHE, 
introduced by [10], for a horizon length equals to zero [1]. The basic equations of CEKF 
can be divided, like in the EKF, in prediction and updating stages [2].  However, the 
integration of state covariance matrix is not carried through into the prediction stage.  
Furthermore, instead of a simple algebraic calculation of a gain (Kalman gain) as in the 
EKF, a resolution of a quadratic optimization problem is performed and the system 
constrains directly appears in the optimization problem in the updating stage.  
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subject to the equality and inequality constraints: 
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If the measurement equation is linear, the resulting problem is a quadratic program 
which can be solved with small computational effort. The measurement updating 
equations are then used to estimate the state and the state covariance matrix updates, 
according to Equations 5 and 6, respectively:  
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where kϕ is the discrete states transition, carried through the Jacobian matrix F.  

4. Systematic Tuning Approach  
The two methods proposed in [3, 4] differ in the way the w(t) statistics of Equation 1 
are calculated from the known statistics of the plant parameters p.   

( ) ( ) ( )[ ] ( ) ( )[ ]nomnom p,t,tu,txfp,t,tu,txftw −=  (12) 

where xnom and pnom are the nominal state and nominal parameters vectors, respectively. 
 
4.1. Linearized Approach 

Performing a first-order Taylor’s series expanson of the righthand side of Equation 12 
around xnom and pnom, and computing the covariance of the resulting w(t), Q(t) is given 
by 

( ) ( ) ( )tJCtJtQ T
nom,ppnom,p=  (13) 

where pp nn
pC ×ℜ∈  is the parameter covariance matrix and ( )tJ nom,p  is the Jacobian 

computed using the nominal parameters and estimated states.  
 
4.2. Monte Carlo Approach 
For the kth Monte Carlo simulation, the process noise is given by 
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and the process noise deviation from the noise process mean ( )tw k is defined as  

( ) ( ) ( )twtwtw~ kk −=  (15) 

Q is obtained as the covariance of these process noise deviation values assuming a 
normally distributed data set. The process noise mean is utilized in the prediction step 
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where Ts is the filter sample time.  
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5. Results and Discussions 
Both formulations EKF and CEKF were implemented in MatLab 7.3.0.267 (R2006b) 
and applied in the process dynamic model, previously presented. The system initial 
condition is an operating point that presents a minimum-phase behavior (1<x1+x2<2). 
However, due to step changes in the valve distribution flow factors during the process 
simulation the system moves to an operating region presenting non-minimum phase 
behavior (1<x1+x2<0) in t = 50 minutes. 
It was considered that R is a diagonal matrix with an uncertainty in the measurements: 
R= 10.Imxm, where m is the measured states number. The measured states are the lower 
tanks levels (1 and 2), generated from the model simulation with a band-limited white 
noise addition. All the others state are estimated. 
 
5.1.  Systematic Tuning Approaches  for EKF  and CEKF 
The systematic tuning approaches of [3, 4] are implemented not only for EKF, but also 
for CEKF formulation and compared with the traditional trial-and-error tuning. 
The parameter covariance matrix is assumed to be diagonal, with the diagonal values 
given by 2

iiip σC =  , where σ  denotes the standard deviation between nominal and plant 

parameters values. For the Monte Carlo simulations, the plant parameters were assumed 
to be normally distributed with mean value equal to the nominal parameters and 
standard deviation obtained from the parameter covariance matrix. The plant-model 
mismatch is assumed to be in the form of both a fixed and randomly varying parametric 
uncertainty:  5% of nominal parameter value. 
500 Monte Carlo simulations of different parameters value were used, resulting in 500 
evaluation of the process noise, as suggested by [3, 4].  
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Figure 1. State estimation using EKF (upper graphics) and CEKF (lower graphics): Plant model 
(solid line), constant diagonal, fixed Q (dotted line), linearized approach (dashed line), and Monte 
Carlo approach (dashdotted line). 

The state estimations that use a time-varying full matrix Q lead to a better performance 
than the constant diagonal matrix, as it is shown in Figure 1. Although the linearized 
approach performance has not been as good as the Monte Carlo approach performance, 
it can be improved whether the parameter covariance matrix Cp is available from 
parameter estimation [5]. Besides, the CEKF has presented the best performance for the 
state estimation for all the tuning techniques. 



6  N.P.G.  Salau et al. 

5.2. EKF  and CEKF as a transient data reconciliation technique  
Supposing a leak in the process, it was considered an error of 1000 cm3.min-1 in the 
manipulated inlet flow rate 1 (Δ1) and no error in the manipulated inlet flow rate 2 (Δ2).  
For this case, the actual parameters of the plant were used. According to Figure 2, 
CEKF provides a good estimate of the total losses for the leak, can identify the error in 
the inlet flow rate 1, and that there is no error in the inlet flow rate 2. On the other hand, 
EKF provides poor estimates for both the cases.  
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Figure 2 Transient Data Reconciliation. Model (solid line), EKF (dashdotted line), and CEKF 
(dashed line).  

6. Conclusions and future work 
It was shown that the overall performance of the state estimation was improved with a 
constrained EKF, a time-varying process covariance matrix Q and the use of the proper 
estimator as a transient data reconciliation technique. In a further work, the proposals of 
this work will be also evaluated and compared through the MHE formulations proposed 
by [12]. Besides, an algorithm for automatic selection and estimation of model 
parameters proposed by [11] will be used to estimate the parameter covariance matrix.  
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