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Abstract 
In this work we performed a comprehensive evaluation between MHE and Kalman 
filter-based estimators, where the estimators were applied to the classical four-
cylindrical tanks model and two nonlinear reaction systems. From the results, the 
advantages and drawbacks of the moving horizon formulation are brought up to justify 
the high effort spent in the design and evaluation phases, compared to the EKF and 
CEKF estimators, when the system has relatively high nonlinearities and the 
disturbances are bounded. 
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1. Introduction 
The estate estimation is an integral part o many process modeling, monitoring, and 
control strategies [1]. The success of many estimation methods depends on the accuracy 
of the process models. Take in account that many process uncertainties, such as model 
parameters and process disturbances are bounded, including constraints may improve 
the state estimation by the reconciliation of the approximated model with the process 
measurements [2]. 
Most of the process models has non-measured parameters and variables and/or present 
process-model mismatches, bringing difficulties to control and monitor the process by 
the available model-based techniques. Furthermore, nonlinear systems and gain sign 
inversion still represent challenging problems in that scenery. Using examples of 
classical control problems typically involving approximate models, high nonlinearity, 
gain sign inversion, uncertain initial estimate, and bounded disturbances, we want to 
evaluate the Kalman-based estimators and the moving horizon formulation, with respect 
to accurate and meaningful state estimates. At once, we rely that MHE formulation is a 
superior estimation technique, due its capability to deal with constraints, nonlinear 
systems, and gain sign inversion. At same time we expect the classical estimators 
(Kalman-based), like the Extended Kalman Filter (EKF) and the Constrained Extended 
Kalman Filter (CEKF), may fail when they are in face with this class of control 
problems. 

2. Estimators formulation 
The mathematical model of dynamic systems often yields in nonlinear differential-
algebraic equations of the form [3]: 
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w
vector a  model and measurement disturbances, respectively. In sampled systems 
these continuous equations have to be transformed to a discrete time form [3]. Also here 
all the estimators assume the process or system model form described by Eq. (1). 

2.1. Extended Kalman Filter (EKF) 
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2.2. Moving Ho zon Estimation (MHE) 
he Moving Horizon Estimator (MHE) was introduced by [4] and [1]. The advantages 

he possibility to incorporate physical 
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of MHE compared to the classical estimators are t

ints on the states, e.g. mass fraction that rconstra anges between 0 and 1, and the fact that 
over the considered horizon no information is lost. According to [3], the disadvantage 
comes to the necessity to solve a nonlinear dynamic optimization problem. 
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The covariance matrix ଵ also is up-dated by the solution of the discrete-time Ricatti 
equation: 
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2.3. Constrained Extende alman Filter (CEKF) 
The CEKF formulation describ d below is basically the MHE resolution with an 
estimation horizon of length ze  (ܰ ൌ 0ሻ and is similar to the conv nal EKF that 
also contains a zero-length ati
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anding of ܲ, ܲିே, ܳ and ܴ is identical for the EKF, CEKF and MHE 
here they are the basic parameters of the filter adjustment.  

3. Application Examples 
3.1. Four cylindrical tanks model 
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Presented by [5], this p ain sign inversion, and we modified it by adding a 
nonlinear measurement equation provided by Eq. (12), where ݊ is the
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nonlinearity and ܥ is a constant. Thus, our goal here is to estimate the four tank levels 
e inferior tanks (1 and 2). In order to include a 

it stu | ators capability 
k the real state value since the first estimations. 

A comparison of the estimators, for the four cylindrical tanks model, is shown in
) below (only the states ݔ  and ݔ  are shown). 

Figure 1. Simulation results to EKF, CEKF and MHE estimators, for the four cylindrical tanks 
model. 

Except for the “peak” that appeared in estimation of the state ݔଵ, as a consequence of 
the notable initial disturbance (ߦ|) and by the fact it is constrained, MHE performance

he
ith 

ition of inequality constraints, the proper statistics of the disturbance sequence 

sion, based on work of  [7]. Our goal here is to estimate the B product 
concentration (ݔଶ), by the measurement of the A reactant concentration (ݔଵ). Once again 

by the measurement of the flows (ݕ) of th
process-model mismatch, we also considered a different measurement equation for the 
real process (݊ ൌ 0.3) and for the estimators (݊ ൌ 0.5). This mismatch may 
compromise the state estimation, and we want to show that the addition of constraints 
on the state disturbance (ߦ  0) can improve it.  Once, for simulations a white noise 
(߮) of amplitude or covariance (ܰܣ) was added on the measurements.  
 
ݕ ൌ   (12)ݔܥ 
 
The estimated initial conditions for the states ݔଵ and ݔଶ were given far from the real 
n ial conditions (a large initial di rbance ߦ ) to investigate the estimi
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 was superior. As expect the performance of the constrained estimators is superior to t

unconstrained estimators (e.g. EKF), because the constrained estimators acquired, w
the add
  [6]. Although the constrained CEKF estimator also incorporates constraints explicitlyߦ
ߦ)  0), the estimation of the state ݔଵ failed, because quadratic problem (QP) did not 
provide a feasible solution for the optimization problem involved in this application 
example. 

3.2. Isothermal CSTR reactor – van de Vusse reaction 
Aiming to explore a more nonlinear system, we investigated the peculiar behavior of the 
classical van de Vusse reaction accomplished in an isothermal CSTR reactor, where 
simulations changing the operation points were carried out, in order to obtain the gain 
sign inver
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in this example, the estimated initial condition for the state ݔଵ ሺݔො ሻ was given far from 

sion, ev

lue

Figure 2. Simulation results to EKF, CEKF and MHE estimators, for the isothermal CSTR. 

3.3. Exothermic CSTR reactor - Irreversible First-Order Reactions 
Here we have a complex nonlinear behavior of a CSTR presented by [8]. The states ݔଵ 
and ݔଶ are the measured states with a white noise of amplitude (ܰܣ), and their initial 
conditions were given near to the real initial conditions (small ߦ|) to avoid that the

 that

Figure 3. Simulation results to the EKF, CEKF and MHE estimators, exothermic CSTR. 

|
the real initial condition to investigate the estimators capability to track the real state 
value and to eliminate the initial disturbance (ߦ|) since at the first estimations. The 
measured variable is the state ݔଵ, with a white noise (߮) of amplitude (ܰܣ). 
A comparison of the estimators, for the isothermal CSTR model, is shown in Fig. (2) 
below. Differently of what we had been previously relied, this example show that the 
Kalman-based estimators can also deal with gain sign inver en for systems with 
reasonable nonlinearity. In spite of ߦ| being large, all estimators brought the 
estimation, in a fast way, near to the real state va  since the first estimations. 

 

 
 estimation loses or goes toward to another one of the several steady states

concerning this model.   
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In Fig. (3) we showed only the states ݔଵ and ݔଷ from the estimation using the 
exothermic CSTR model. Once again, the Kalman-based estimators failed. Note that the 
real state ݔଷ has an oscillatory behavior, and for the estimation it is a hard task to track 
the real profile. This effect was felt more by the CEKF than the EKF, but both 
estimators diverged in their estimation, even for the filtered state (ݔଵ). Although MHE 
results are equal to the CEKF estimator when performed with a zero horizon (ܰ ൌ 0), 
by increasing the horizon length to ܰ ൌ 1 the MHE was successful (when compared 
with EKF and CEKF) on tracking the real state value, even for the estimated state ݔଷ. 

4. Conclusions 
Kalman-based estimators (EKF and CEKF) and MHE formulation were evaluated. 
From the application of the considered estimation to the industrial importance of the 
examples studied here, it can be concluded that the high computational efforts of 
moving horizon formulation, when compared with EKF and CEKF estimators, are 
justified since the problems have high nonlinearities associated and bounded
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 disturbances. Also we concluded that Kalman-based estimators still lead to good resu

when we have models that present gain sign inversion. The other point that des
be emphasized is that MHE can lead to good resul s, when compared with EKF and 
CEKF, even for short horizon lengths reducing its CPU-time consuming. Although 
MHE dem nds higher computational effort, the computing power advances, as well as 
the development of efficient methods for solving nonlinear optimization problems, 
encourage us to say that MHE is presently an interesting advanced t ol to use in on-line 
processes applications. 
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