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Bifurcation Analysis of Continuous Biochemical Reactor Models

Yongchun Zhang and Michael A. Henson*

Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803-7303

The validity of a biochemical reactor model often is evaluated by comparing transient
responses to experimental data. Dynamic simulation can be a rather inefficient and
ineffective tool for analyzing bioreactor models that exhibit complex nonlinear behavior.
Bifurcation analysis is a powerful tool for obtaining a more efficient and complete
characterization of the model behavior. To illustrate the power of bifurcation analysis,
the steady-state and transient behavior of three continuous bioreactor models
consisting of a small number of ordinary differential equations are investigated. Several
important features, as well as potential limitations, that are difficult to ascertain via
dynamic simulation are disclosed through the bifurcation analysis. The results motivate
the use of dynamic simulation and bifurcation analysis as complementary tools for
analyzing the nonlinear behavior of bioreactor models.

1. Introduction

Biochemical reactors can be viewed as highly complex
dynamic systems. The intracellular and extracellular
environments comprise many chemical components, and
each cell has unique properties. A rigorous mechanistic
model accounting for both these complexities is known
as a structured and segregated model (9, 13, 33). Such
models consist of coupled sets of partial differential
equations and ordinary differential equations. In addition
to being difficult to formulate, these models are not
amenable to systematic analysis as a result of their
complexity. Simplified models can be developed either by
neglecting the intracellular chemical structure (unstruc-
tured segregated models) (6, 12, 17) or by neglecting
heterogeneity of the cell population (structured unseg-
regated models) (8, 20, 32). The simplest models are both
unstructured and unsegregated (10). If the intracellular
environment can be characterized by a few critical
variables (20, 32), then structured unsegregated models
(like unstructured unsegregated models) consist of a
reasonably small number of nonlinear ordinary dif-
ferential equations. Such models are well suited for
rigorous analysis.

Three unsegregated models of different cell cultures
are studied in this paper. First the structured model of
Hybridoma cells proposed by Guardia and co-workers (16)
is considered. This mammalian cell culture is reported
to exhibit multiple steady states under certain operating
conditions (14, 38). The cybernetic modeling paradigm
used to reproduce this behavior involves the maximiza-
tion of cell growth via competition between alternative
pathways that utilize a pair of complementary and
partially substitutable substrates. An unstructured model
proposed by McLellan and co-workers (27) for continuous
fermentation of the microorganism Zymomonas mobiliz
is studied next. Continuous cultures of this microorgan-
ism exhibit oscillatory behavior which adversely affects
ethanol productivity and reactor operability. This behav-
ior is captured in the model by introducing a dynamic
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specific growth rate that accounts for the inhibitory effect
of the past ethanol rate of change on the current state of
the reactor. The last model investigated is a structured
model proposed by Jones and Kompala (20) for the yeast
Saccharomyeces cerevisiae. Continuous cultures of this
microorganism have been shown to exhibit complex
dynamic behavior that includes the sudden appearance
and disappearance of sustained oscillations (29, 34, 35).
The cybernetic model reproduces this behavior through
the competition of three metabolic pathways that are
utilized to maximize the cell growth rate.

Transient bioreactor models often are evaluated by
comparing experimental data and model simulation
results. While dynamic simulation is a very useful tool
for model validation, several limitations can be identi-
fied: (i) it is inefficient and potentially inconclusive,
especially when the model possesses slow dynamic modes;
(i) it is necessarily incomplete since only a limited
number of simulation tests can be performed and impor-
tant dynamic behaviors may not be observed; and (iii) it
does not easily reveal the model characteristics that lead
to certain dynamic behaviors. Therefore, dynamic simu-
lation should not be viewed as the only tool for evaluating
transient bioreactor models.

The purpose of this paper is to demonstrate that
bifurcation analysis is a powerful tool for evaluating
transient models of continuous bioreactor. The objective
of bifurcation theory is to characterize changes in the
gualitative dynamic behavior of a nonlinear system as
key parameters are varied. The model equations are used
to locate steady-state solutions, periodic solutions, and
bifurcation points where the qualitative dynamic behav-
ior changes. Bifurcation analysis can be much more
effective than simply integrating the model equations
over time and comparing the transient responses to
experimental data. Instead a “complete” picture of the
model behavior is obtained in the form of a bifurcation
diagram. This diagram can be used to determine if the
model supports the steady-state and dynamic behavior
observed experimentally. It also can guide the design of
experiments aimed at validating unexpected model pre-
dictions. Numerical bifurcation packages developed by a
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number of researchers (11, 21, 23) make bifurcation
analysis of low-order nonlinear systems reasonably simple.

It is important to note that a number of other inves-
tigators have applied bifurcation analysis to continuous
bioreactor models (1, 26, 30, 37). Many of these studies
focus on the dynamics of two microbial populations
competing for a common rate-limiting substrate (2, 3, 24,
31). In most studies the objective is to provide a very
detailed characterization of the model behavior with
minimal comparison to available experimental data. The
objective of this paper is notably different. We are
concerned primarily with the use of bifurcation analysis
for validation of transient bioreactor models. We empha-
size the comparison of physically meaningful model
behavior with experimental data rather than cataloging
all possible model behaviors. A similar approach has been
pursued by Jones and Kompala (20) to determine un-
known parameters in their cybernetic yeast model. The
present contribution can be viewed as an extension of
our bifurcation studies on unstructured cell population
balance models for continuous yeast bioreactors (37).

The remainder of the paper is organized as follows.
Basic concepts of bifurcation theory and an introduction
to the bifurcation package AUTO are presented in Section
2. The dynamic behavior and bifurcation analysis of the
aforementioned bioreactor models are discussed in Sec-
tions 3—5. A summary and conclusions are presented in
Section 6.

2. Bifurcation Analysis

A nonlinear dynamic system differs from a linear
dynamic system in that its qualitative properties can
change under small perturbations of the model param-
eters. These properties include the number of equilibria,
stability of the equilibria, existence of limit cycles,
multiple modes of behavior, and chaos (22). Below we
provide a very brief introduction to bifurcation analysis.
The textbook by Kuznetsov (22) provides more complete
descriptions of these concepts. A bifurcation is introduced
formally as follows.

Definition 1. Two dynamical system F: R "— R tand
G: R"— R tare called topologically equivalent if there
exists a diffeomorphism h: R" — R " such that h-F =
G-h.

Two topologically equivalent systems have the same
gualitative dynamic behavior in the sense that they can
be mapped to each other.

Definition 2. The appearance of a topologically non-
equivalent phase portrait under variation of a parameter
is called a bifurcation.

Bifurcation analysis is the study of how the qualitative
properties of a nonlinear dynamic system change as key
parameters are varied. Consider a continuous-time non-
linear system depending on a parameter vector o

x=f(x,a), xeR" aecR' (1)
where f is smooth with respect to both the state vector x
and the bifurcation parameter vector o. If Xy is a
hyperbolic equilibrium point where all the real parts of
the eigenvalues of the Jacobian matrix Df (x,) are
nonzero, then a small perturbation in the model param-
eters will not change the qualitative behavior of the
system, i.e., a hyperbolic equilibrium is structurally
stable. Bifurcations occur when some of the eigenvalues
approach the imaginary axis in the complex plane. The
simplest bifurcations are associated with a single real
eigenvalue becoming zero (1, = 0) or a pair of complex
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conjugate eigenvalues crossing the imaginary axis (41
= :l:ia)o, wo > 0)

Definition 3. The bifurcation where 4; = 0 is called a
fold bifurcation.

Definition 4. The bifurcation where 1, , = tiwg, wo >
0 is called a Hopf bifurcation.

These are the most common bifurcations present in
nonlinear systems. Fold bifurcations usually are the
cause of multiple steady states and hysteresis behavior.
Hopf bifurcations are responsible for the appearance and
disappearance of periodic solutions.

While bifurcation theory is a powerful tool for model
characterization, analytical treatment of physically based
models usually is intractable because of the complexity
of the nonlinear model equations. A number of software
packages including AUTO (11), LOCBIF (21), and CON-
TENT (23) have been developed for numerical bifurcation
analysis of low-order nonlinear models. Numerical bi-
furcation analysis involves an iterative procedure known
as continuation. First a stable steady-state or periodic
solution for a particular set of parameter values is located
by dynamic simulation. Then one of the parameters is
varied to allow the continued calculation of solutions as
a function of this bifurcation parameter. At each itera-
tion, a step in the bifurcation parameter is taken and a
predictor-corrector method is utilized to locate the new
solution. The step size of each iteration is controlled by
a convergence criteria. The procedure is repeated until
a desired range of parameter values has been evaluated.
Therefore, continuation can provide a “complete” picture
of the nonlinear dynamic behavior.

The results of the continuation calculations typically
are presented as a bifurcation diagram where the be-
havior of a key model variable is shown as a function of
the bifurcation parameter. The steady-state and periodic
solutions are mapped into this two-dimensional space.
As compared to dynamic simulation, a key advantage of
continuation is that unstable as well as stable solutions
can be located. Because it provides a very concise and
complete description of the system behavior, a bifurcation
diagram is ideal for comparing model predictions to
experimentally observed behavior. For example, the
range of model parameter values that support multiple
steady states or periodic solutions can be determined.
This allows a more meaningful analysis of a nonlinear
model than is possible with dynamic simulation alone.
In the next three sections, the applicability of bifurcation
analysis to continuous bioreactor models is demonstrated
via three example systems.

The AUTO continuation package developed by Doedel
and co-workers (11) is perhaps the most widely used
numerical bifurcation code. AUTO can perform bifurca-
tion analysis of nonlinear systems described by algebraic
equations, ordinary differential equations, and parabolic
partial differential equations. In addition to the simple
fold and Hopf bifurcations described above, AUTO can
locate tori and period doubling bifurcations as a function
of two or more parameters. AUTO also includes a
graphical user interface (GUI) which simplifies specifica-
tion of computational parameters required by the con-
tinuation code. For these reasons, we use AUTO in this
paper. It is important to note that AUTO and other
general purpose bifurcation codes can be expected to work
only for nonlinear models of moderate dimension. There-
fore, they are best suited for analysis of unstructured,
unsegregated and simple structured, unsegregated biore-
actor models.
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3. Hybridoma Cell Bioreactor Model

Background. Hybridoma cells utilize glucose and
glutamine as complementary and partially substitutable
substrates for growth (4, 36). There exists several meta-
bolic pathways, each of which is favored under certain
culture conditions, for cell growth. The existence of these
multiple pathways creates complex behavior when Hy-
bridoma cells are grown in a continuous bioreactor. In
particular, researchers have shown that different steady
states can be reached when cultures with the same
operating conditions but different initial metabolic states
are switched from batch or fed-batch mode to continuous
operation (14, 38).

A structured, unsegregated model has been proposed
by Guardia et al. (16) to capture the observed steady-
state multiplicity. The cybernetic model accounts for the
multiple metabolic pathways created by the complemen-
tary and partially substitutable substrate utilization. The
cybernetic model predicts the existence of multiple
steady-state solutions for some operating conditions.
More specifically, it is shown that different initial condi-
tions established by batch and fed-batch operation can
lead to different steady-state solutions. However, the
authors note that this property is very sensitive to
changes in the model parameters and the region of
operating conditions that support multiplicity is quite
small. It is not clear if this lack of robustness is attribut-
able to the model structure or to the particular choice of
model parameters. Furthermore, a precise characteriza-
tion of the operating range which supports steady-state
multiplicity has not been presented.

Transient Model. Ramkrishna and co-workers (32)
have proposed that microorganisms optimize utilization
of available substrates to maximize their instantaneous
growth rate. While somewhat controversial, this hypoth-
esis has been derived from the analysis of extensive
experimental data. The cybernetic modeling approach
has been used to capture the partially substitutable and
complementary substrate utilization that leads to mul-
tiple metabolic pathways in Hybridoma cultures. A
detailed description of the metabolic pathways can be
found in the original reference (16). The cybernetic model
includes two substrates, glucose and glutamine; three
intermediates; and five enzymes associated with the
various pathways.

The cybernetic model equations are

%—? = (ry = D)X

% = —(rv; Vi + rvi)X + D(S] - S,)

% =—r,\;X +D(S, — S,)

% = Y,rV5 VS Yoreve = (Yo, + Mg = 1,5

% =Y, V5 + Yor,v; — (Y + Mo)rg — rsVe

% = YaraVs — (Y + Ma)rg

% =r, ruu; — (g +be;i=1,..,5 )

where X is the cell mass concentration; S; and S, are the
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Table 1. Hybridoma Cell Reactor Model Parameters

parameter unit value
i g/gdw-h 0.05, 0.03, 0.01, 0.03, 0.01
Ki g/L 0.001, 0.001, 0.001, 0.01, 0.0001
roe g/gdw-h 0.001, 0.0005, 0.001, 0.0005, 0.001
K, g/L 0.001, 0.0001, 0.001, 1e—5, 1e—5

rh g/gdw-h le—6, 1le—6, 1e—6, 1e—6, 1e—6
by gdw/gdw-h  0.05, 0.1, 0.1, 0.1, 0.05

Yi alg 0.9,0.9,0.8,1.0,1.0

Kgm, g/gdw 0.0005, 0.0005, 0.0005

Y mix g/gdw 0.7,0.99,0.1

rmax gdw/gdw-h  0.0575

g

concentrations of glucose and glutamine, respectively; M;
and e; are the concentrations of the three intermediates
and five enzymes, respectively; S{ are the feed substrate
concentrations; D is the dilution rate; Y; are the yield
coefficients; r; is the constitutive synthesis rate of the
enzyme e;; and b; is the degradation rate constant of the
enzyme e;. The cybernetic variables ug, us, v{ and v; are
the synthesis and activity coefficients of the enzymes for
the complementary and substitutable pathways, respec-
tively. The reaction rates r; and r,, are assumed to follow
Monod-type kinetics. Their definitions can be found in
the original reference (16) and are omitted here for sake
of brevity.

We experienced some difficulties producing multiple
steady-state solutions with the model parameter values
reported in ref 16. After modifying several parameter
values, we were able to generate the expected multiple
steady-state behavior. The parameter values used in our

simulation and bifurcation studies are listed in Table 1

where the values of "™ and Yy, are different from

those listed in the original reference. The discrepancy
between the two sets of parameter values further moti-
vates the need for a more detailed investigation of the
model behavior using bifurcation analysis.

Results and Discussion. Several dynamic simulation
tests were performed to study the steady-state behavior
of the cybernetic model in different regions of the operat-
ing space. In the first test, the reactor initially is at a
steady state corresponding to Sfl = 0.95 g/L, sz =0.43
g/L, and D = 0.0295 h~1. The results obtained for step
changes of various magnitudes in the dilution rate are
shown in Figure 1 where the cell mass concentration (X)
is selected as a representative output variable for the
culture. The steady states obtained for D = 0.0300 h™?
and D = 0.0292 h™? are close to the initial steady state,
while those for D = 0.0291 h~* and D = 0.0290 h™! are
very far removed. Also shown is the response obtained
for a step change to D = 0.0300 h™! at t = 2000 h from
the D = 0.0290 h™! steady state. The culture reaches a
different steady state than the one obtained for the D =
0.0300 h™* step change from the initial steady state.

These dynamic simulation results demonstrate that
the cybernetic model predicts the presence of multiple
stable steady states and hysteresis behavior. On the other
hand, this type of analysis provides a rather incomplete
picture of the model behavior. For instance, dynamic
simulation is not a convenient tool for determining the
range of dilution rates over which multiple steady states
exist. This is very valuable information for model valida-
tion. Below we show that bifurcation analysis is a
powerful tool for extracting this knowledge.

Figure 2 shows the one-parameter bifurcation diagram
for the cybernetic model where the dilution rate (D) is
chosen as the bifurcation parameter and the cell mass
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Figure 1. Dynamic simulation of the Hybridoma reactor model.
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Figure 2. Bifurcation diagram of the Hybridoma reactor model.

concentration (X) is the output variable. The feed sub-
strate concentrations are held constant at S = 0.95 g/L
and s; = 0.43 g/L. The locus of steady-state operating
points as a function of D is determined using AUTO. The
solid line (—) denotes stable steady-state solutions, while
the dashed line (---) denotes unstable steady-state
solutions. The model exhibits fold bifurcations at D =
0.02917 h™1 (point 1) and D = 0.03068 h~* (point 2), which
delineate the parameter space where multiple steady-
state solutions exists. In this region the model shows
hysteresis behavior due to the S-shaped steady-state
locus. There only is a single stable steady-state solution
outside this region.

1 ! ]
0.000 0.005 0.010 0.015

I ! I
0.020 0.025 0.030 0.035

The bifurcation diagram clearly shows the existence
of multiple steady-state solutions and provides an ex-
planation for the hysteresis behavior observed in Figure
1. Each stable steady state has a domain of attraction
from which all initial conditions converge to that steady
state. Initial conditions corresponding to low dilution
rates converge to the upper steady state while those
corresponding to high dilution rates converge to the lower
steady state. The bifurcation diagram also shows that
the parameter region that supports multiple steady-state
solutions is quite small: D €[0.02917 h?, 0.03068 h™1].
This is much more valuable information for model
validation than simply knowing the model exhibits
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multiple steady states. In particular, experimental de-
termination of the dilution rates that support multiple
steady states can be used to adjust the model parameters
to obtain agreement. If this is not possible, the model
structure may be concluded to be inadequate. Such
conclusions are very difficult to obtain from dynamic
simulation alone.

4. Zymomonas mobilis Reactor Model

Background. Zymomonas mobilis has been proposed
as a more promising microorganism than conventional
baker’s yeast for industrial production of ethanol (5, 7).
A major drawback of this microorganism is that it
exhibits sustained oscillations over a wide range of
operating conditions when grown in continuous culture.
This leads to decreased ethanol productivity and less
efficient use of available substrate (7, 15). Various models
have been proposed to describe the oscillatory dynamics
of continuous Zymomonas mobilis cultures (10, 15, 18,
25). Daugulis et al. (10) present an unstructured, unseg-
regated model based on the concept of a “dynamic specific
growth rate”. The predictive capability of the model has
been evaluated experimentally by McLellan et al. (27).
A variety of simulation tests were performed, and model
predictions were found to be in reasonable agreement
with experimental data. However, a more thorough
analysis of the model dynamics with respect to the
mathematical cause of the oscillations and the range over
which periodic solutions exist has not been presented.
Below we show that bifurcation analysis is well suited
to answer these important questions.

Transient Model. Daugulis et al. (10) argue that
many models for continuous Zymomonas mobilis cultures
require measurements of physiological quantities that are
difficult and time-consuming to obtain. As an alternative,
they propose the concept of a “dynamic specific growth

5000 6000 7000 8000 9000 10000
time (h)

Figure 3. Dynamic simulation of the Zymomonas mobilis reactor model at high dilution rates.

rate” which explicitly accounts for the effect of past
culture conditions on subsequent cell behavior. On the
basis of this concept, a simple transient model that
requires only measurements of extracellular variables
such as ethanol, substrate, and cell mass concentrations
is proposed. The unstructured, unsegregated model con-
sists of material balances on biomass, ethanol and
substrate combined with two additional equations that
describe the inhibition of cell growth caused by the past
rate of change of the ethanol concentration. The model
equations are

X — (s, P, 2) - DIX

‘é—f - —(Yt/s)pr +D(S,— S)

%—f =Q,X — DP

9 _ pw - 2)

aW — p(Qyx ~ DP — W) ©

where X, S and P are the biomass, substrate, and ethanol
concentrations, respectively; W and Z are the first-order
and second-order weighted averages, respectively, of the
ethanol concentration change rate; D is the dilution rate;
Sy is the feed substrate concentration; u(S, P, Z) is the
dynamic specific growth rate; Qp is the specific production
rate; Ypis is the yield coefficient between glucose and
ethanol; and g is a parameter that determines the
magnitude of the time lag for the delayed inhibition
effect. More precise definitions of W, Z, 4, and Qp can be
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Figure 4. Dynamic simulation of the Zymomonas mobilis reactor model at low dilution rates.

found in the original reference (27). The model param-
eters used in the following simulation and bifurcation
analysis are taken from the original reference and are
listed in Table 2.

Results and Discussion. Dynamic simulations were
performed to study the oscillatory behavior of the model
in different regions of the operating space. Figure 3 shows
two simulation tests at high dilution rates. The cell mass
concentration (X) is chosen as the output variable for the
culture. Both simulations start at the steady state
corresponding to D = 0.1120 h™* and S; = 200 g/L. The
feed substrate concentration is maintained at this value
and the dilution rate is changed to a slightly lower value.
For a step change to D = 0.1116 h™1, the culture oscillates
with very small amplitude and the oscillations slowly
decay to a steady-state solution that is close to the initial
point. For D = 0.1115 h™1, the culture exhibits sustained
oscillations of a rather small amplitude. Note that the
change in dynamic behavior for the two dilution rates is
not dramatic. While these tests imply that the model
exhibits a bifurcation in this region, it is a time-consum-
ing task to find by dynamic simulation the dilution rate
at which this bifurcation occurs.

Figure 4 shows the results of three simulation tests at
lower dilution rates and the same constant feed substrate
concentration. The initial condition for the first two tests
corresponds to the steady state for D = 0.033 h™%. For a
step change to D = 0.0332 h™%, the culture oscillates with
very small amplitude until a new steady state is reached
after a very long period of time. For D = 0.0333 h™%, the
culture initially oscillates with small amplitude but
eventually exhibits a transition to large amplitude oscil-
lations. In the third test, the simulation is restarted from
an oscillatory initial condition from the last test (D =
0.0333 h™1) and the dilution rate is stepped back to D =
0.0332 h™1. Sustained oscillations are maintained despite

Table 2. Zymomonas mobilis Reactor Model Parameters

parameter value parameter value
Umax 0.41h71t Qp,max 2.613h?!
Pob 50.0 g/L Ks 0.5 g/L
Pma 217.0g/L Kmp 0.59/L
Prb 108.0 g/L Ki 200.0 g/L
Prme 127.0g/L Yeis 0.495 g/g
Si 80.0 g/L p 0.0366 h™*
0 0.8241 A 21.05
o 8.77 a 0.3142
b 1.415

the fact that the same dilution rate produced a steady
state in the first test.

These simulations verify that the model predicts the
appearance and disappearance of sustained oscillation
as observed experimentally. However, the results also
raise questions about (i) the large difference in ampli-
tudes observed when sustained oscillations are initiated
at low and high dilution rates; and (ii) the two different
stable solutions present at the dilution rate D = 0.0332
h=%. Another issue that warrants further investigation
is the use of multiple sets of parameter values for
stationary and oscillatory simulations in the original
reference (27). Below we show that bifurcation analysis
provides a convenient framework to address these ques-
tions.

Figure 5 shows a one-parameter bifurcation diagram
of the Zymomonas mobilis model where the feed sub-
strate concentration (Sy) is held constant at 200 g/L. The
dilution rate (D) is chosen as the bifurcation parameter,
and the cell mass concentration (X) is selected as the
output variable. At low dilution rates there only is a
single stable steady-state solution (—). At point 2, a
bifurcation occurs where the steady-state solution be-
comes unstable (---) and a periodic solution of the
amplitude indicated is created. At point 1, another
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Figure 5. One-parameter bifurcation diagram of the Zymomonas mobilis reactor model.

bifurcation occurs where the periodic solution disappears
and the steady-state solution becomes stable. At higher
dilution rates, there is a single stable steady-state
solution.

The bifurcation that occurs at point 1 (D = 0.11151
h~1) is known as a supercritical Hopf bifurcation where
loss of stability of the steady-state solution is accompa-
nied by the appearance of very small amplitude oscilla-
tions. For the range of dilution rates between points 1
and 2, a stable periodic solution coexists with an unstable
steady-state solution. The bifurcation that occurs at point
2 (D = 0.03322 h™1) is known as a subcritical Hopf
bifurcation where large amplitude oscillations appear
when the steady-state solution becomes unstable. Points
3 and 4 (D = 0.03095 h™1) represent a fold bifurcation of
limit cycles. They denote the dilution rate at which the
periodic solution changes stability. For dilution rates
between points 2 and 3, stable and unstable periodic
solutions coexist. Below point 3, the steady-state solution
is the only stable solution of the model.

The one-parameter bifurcation diagram shows that the
appearance and disappearance of periodic solutions is due
to the existence of two Hopf bifurcation points. The
analysis also answers the questions raised about the
different amplitudes of sustained oscillations at low and
high dilution rates. Since the Hopf bifurcation at the
lower dilution rate is subcritical, stable periodic solutions
are characterized by large magnitude oscillations and the
stable periodic solution coexists with a stable steady-state
solution over a very small range of dilution rates. By
contrast, the Hopf bifurcation at the higher dilution rates
is supercritical and the associated periodic solutions have
very small amplitude.

Further characterization of the model behavior can be
obtained by computing the locus of each Hopf bifurcation
point in the D and S¢ plane. This is known as a
two-parameter bifurcation diagram, and it allows the
range of operating conditions under which periodic solu-
tions exist to be determined. The two-parameter bifurca-
tion diagram is shown in Figure 6. The upper branch
between points 1 and 4 represents the locus of the
supercritical bifurcation point, while the lower branch
between points 5 and 6 is the locus of the subcritical
bifurcation point. These two branches define a closed
region in the D—S; plane in which stable periodic solu-
tions exist and stable steady-state solutions cannot exist.
Outside this region, sustained oscillations occur over a

very small range of operating conditions and coexist with
stable steady-state solutions. The diagram allows concise
determination of the operating conditions that support
sustained oscillations and is well suited for validating
the model against data. It is very difficult to obtain this
type of information using only dynamic simulation.

The two-parameter bifurcation analysis also provides
insights into the structural limitations of the model. In
the original reference (27), three sets of model parameters
were estimated to fit data when either the steady-state
solution or the periodic solution was stable. The param-
eter values used in this study were obtained in ref 27
from oscillatory data. While each set of parameters
provides a reasonable fit to the corresponding data, the
lack of validation tests raises concerns about the simple
model structure. In one set of experiments (27), the
culture reaches a steady state for D = 0.133 h™! and S¢
= 150 ¢g/L. By contrast, the two-parameter bifurcation
diagram in Figure 6 indicates that a periodic solution is
expected for these values. This indicates that the model
cannot be reconciled against experimental data and a
more sophisticated model structure is needed. In fact, the
authors (27) note that oscillatory behavior is associated
with a change in cell morphology. This suggests that a
segregated model may be more appropriate.

5. Saccharomyces cerevisiae Reactor Model

Background. Saccharomyces cerevisiae (baker’s yeast)
is an important microorganism in a number of industries
including brewing, baking, food manufacturing, and
genetic engineering. Many investigators have shown that
continuous cultures of Saccharomyces cerevisiae exhibit
sustained oscillations in glucose limited environments
under aerobic growth conditions (28, 29, 34, 35). The
underlying cellular mechanisms that cause oscillatory
yeast dynamics are controversial and have been a subject
of three decades of intensive research. A large number
of transient models have been proposed to explain the
existence of sustained oscillations (20, 34, 39). Jones and
Kompala (20) have proposed a cybernetic model that is
able to predict the appearance and disappearance of
sustained oscillations in continuous yeast bioreactors. A
variety of simulation tests were performed to evaluate
the dynamic behavior of the model. Such tests provide
an incomplete characterization of the model properties
that is biased toward the specific behaviors being inves-
tigated. Below we show that a detailed bifurcation
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Figure 6. Two-parameter bifurcation diagram of the Zymomonas mobilis reactor model.

analysis can reveal complex dynamic behavior that is
unlikely to be discovered using dynamic simulation alone.

Transient Model. On the basis of the cybernetic
modeling framework (32), Jones and Kompala (20) have
developed a structured, unsegregated model for continu-
ous yeast bioreactors. Sustained oscillations are viewed
as the result of competition between three metabolic
pathways: glucose fermentation, ethanol oxidation, and
glucose oxidation. Detailed modeling of the intracellular
regulatory processes is replaced by cybernetic variables
u; and v; representing the optimal strategies for enzyme
synthesis and activity, respectively. Denoting the instan-
taneous growth rate along the i-th pathways as r;, the
optimal strategies for u; and v; are

r.I
ui [ —
erj
r
v, =
max;r;

If the growth rate along the i-th pathway is large, then
the associated synthesis (u;) and activity (v;) will be large.
The growth rate r; along each pathway is modeled with
modified Monod rate equations in which the rate is
proportional to the intracellular concentration of a key
enzyme e; controlling the i-th pathway:

=M ¥ G

r=pe—Et—— 9
2T, EK,, + O

3T K+ GK,, + O

where G, E, and O represent the concentrations of
glucose, ethanol and dissolved oxygen, respectively; u; are
maximum growth rate constants; K; and Ko, are satura-
tion constants for the substrate and dissolved oxygen,
respectively.

The cybernetic model equations presented in the
original reference (20) contain several typographical

errors. The corrected mass balances are written as:

dX

E = (Z(rivi) — D)X

ac ( + )C (rv)C
at V3l3Vs YaliVa T ValoVs Z

dG _ _ rvy dC
2 =D(G, ~ G) - (Y +Y)x ¢4(C +th)

r,v r,v
d—E=—DE+( Vi 22)

dt

&2 — k(0% - 0) - ( 22y ¢3r\3(V3)

de,

m = + o

de,

o onuzK2 = (Z(rivi) + Be, + a*

de,

m = +o* (4)

where X and C are the cell mass concentration and
intracellular storage carbohydrate mass fraction, respec-
tively; D is the dilution rate; Gy is the glucose feed
concentration; k_a is the dissolved oxygen mass transfer
coefficient; O* is the saturation concentration of oxygen;
Y; are yield coefficients; ¢; and y; are stoichiometric
coefficients for substrate and intracellular storage car-
bohydrate synthesis and consumption, respectively; a and
B are enzyme synthesis and decay rate constants, re-
spectively; and a* is a constant parameter associated
with constitutive enzyme synthesis. A more detailed
description of the model can be found in ref 20. It is worth
noting that the cybernetic model does not generate
sustained oscillations with the parameter values exactly
as given in ref 20. The parameter values used in the
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Figure 7. Dynamic simulation of the Saccharomyces cerevisiae reactor model at high dilution rates.

subsequent simulation and bifurcation studies are given
in Table 3. The parameters are obtained from ref 20 with
the exception that a* = 0.03 g/g-h.

Results and Discussion. As mentioned previously,
the cybernetic model does not produce sustained oscil-
lations with the parameter values given exactly as in ref
20. Because the value of the parameter o* is not specified
in the original reference, a primitive search was con-
ducted to determine combinations of the parameters that
support periodic solutions. The following combinations
of D and G, were found by dynamic simulation to produce
sustained oscillations when o* = 0.03 g/g-h:

«D=0.16 h"tand G, € [9.5 g/L, 10.5 g/L]
«D=0.14h"and G, € [9.7 g/L, 12.3 g/L]
«G,=10g/Land D € [0.14 h™}, 0.16 h™!]
«G,=123g/Land D €[0.118 ™%, 0.14 h™!]

Clearly this is a very inefficient method for determining
the range of parameter values. Below we show that
bifurcation analysis is a much more powerful tool for
determining such information. It is worth noting that in
the original reference (20) bifurcation analysis is used
to determine the range of four unknown parameters (us,
Ks, Ko,, Ko,) that support periodic solutions.

First the transient behavior of the model is studied via
dynamic simulation. Figure 7 shows two simulation tests
at high dilution rates. The cell mass concentration (X) is
chosen as the output variable for the culture. Both
simulations are initiated with the steady-state solution
corresponding to D = 0.165 h ! and G, = 10 ¢g/L. The

Table 3. Saccharomyces cerevisiae Reactor Model
Parameters

parameter unit value
Ui, max ht 0.44,0.19, 0.36
Ki g/L 0.05, 0.01, 0.001
Yi 9/g 0.16, 0.75, 0.60
oi 9/g 0.403, 2.0, 1.0, 0.95
Vi a/g 10, 10, 0.8
a g/g-h 0.3
o* g/g-h 0.03
s ht 0.7
Ko, mg/L 0.01
Ko, mg/L 2.2
kLa h=t 225
o* mg/L 7.5

feed glucose concentration is maintained at this value
while the dilution rate is changed slightly. When the
dilution rate is changed to D = 0.1648 h! the model
moves to a new steady-state solution, while for D =
0.1646 h~! the model exhibits sustained oscillations of a
small amplitude. Figure 8 shows some simulation results
at lower dilution rates and the same feed glucose
concentration. The simulations are initiated with the
steady-state solution for D = 0.13 h~1. When the dilution
rate is changed to D = 0.1366 h~1, the model initially
oscillates and then reaches a new steady state at ap-
proximately 200 h. When D = 0.1367 h™!, the model
exhibits sustained oscillations with a considerably larger
amplitude than that shown in Figure 7. At t = 200 h,
the dilution rate of the latter simulation is reduced to D
= 0.1366 h™. While the amplitude is decreased, sus-
tained oscillations are maintained even though the same
dilution rate previously produced a steady-state solution.

These simulation results demonstrate the cybernetic
model is capable of predicting the appearance and
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Figure 9. One-parameter bifurcation diagram of the Saccharomyces cerevisiae reactor model with D as the bifurcation parameter

and Go = 10 g/L.

disappearance of sustained oscillation over a range of
operating parameters. However, the results indicate
significant differences between experiment and simula-
tion with respect to the oscillation amplitude at low and
high dilution rates as well as the hysteresis behavior
observed at low dilution rates. We propose to investigate
these issues via bifurcation analysis. It is well-known
that continuous yeast bioreactors exhibit sustained oscil-
lations only for a specific range of dilution rates (29). This
suggests that the dilution rate (D) is a reasonable choice
for the bifurcation parameter. In this case, the feed
glucose concentration Gy is fixed at 10 g/L.

The one-parameter bifurcation diagram with D as the
bifurcation parameter is shown in Figure 9 where the
glucose concentration (G) is chosen as the output vari-
able. The solid lines represent stable steady-state and
periodic solutions, and the dashed lines represent un-
stable solutions. The middle branch between points 1—4
represents steady-state solutions for different dilution
rates. The upper branch defined by points 1, 5, and 2
represents the largest G value obtained for the periodic
solution at the given dilution rate. The lower branch
consisting of points 1, 6, and 2 defines the lower G limit
of the periodic solutions. There is a single stable steady-
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state solution at low dilution rates. When D is increased
to 0.13664 h™! (point 1), a subcritical Hopf bifurcation
occurs and the steady-state solution becomes unstable.
The periodic solution generated initially is unstable and
bends back toward low dilution rates until a fold bifurca-
tion occurs at D = 0.13654 h™! (point 5). Past this point
the periodic solution is stable.

For a wide range of dilution rates, the stable periodic
solution coexists with an unstable steady-state solution.
When D is increased to 0.16496 h™! (point 2), a super-
critical Hopf bifurcation occurs, which causes the periodic
solution to disappear and the steady-state solution to
regain its stability. The steady-state solution maintains
its stability until a branching point (22) at D = 0.20901
h=! (point 3) is reached. Then the steady-state solution
turns back in the direction of decreasing dilution rate
and become unstable. Another fold bifurcation occurs at
D = 0.18341 h™* (point 4) where the steady-state solution
becomes stable once again. Although not shown, higher
dilution rates will cause the steady state to lose stability
and the wash-out steady state to become stable.

The bifurcation structure shown in Figure 9 provides
a concise explanation of the previous dynamic simulation
results. The appearance and disappearance of sustained
oscillations is attributable to two Hopf bifurcations, as
also was noted by Jones et al. (19). However, considerably
more information can be extracted from the bifurcation
diagram:

e The first Hopf bifurcation is subcritical, and the
associated periodic solution undergoes a fold bifurcation.
Consequently, there exists a very small range of dilution
rates [0.13654 h™t, 0.13664 h~1] where there coexists a
stable steady state, an unstable periodic solution, and a
stable periodic solution. For these parameter values, the
range is too small for the multiple stable solutions to be

observed experimentally. Nevertheless, the subcritical
form of the bifurcation agrees with the experimental
observation, and the simulation results (Figure 8) that
sustained oscillations at lower dilution rates have a large
amplitude once established.

e The second Hopf bifurcation point is supercritical.
Therefore, the periodic solution that emanates from this
bifurcation has very small amplitude. This explains the
dynamic simulation results in Figure 7. To our knowledge
there are no experimental studies that demonstrate a
difference between the oscillation amplitudes that arise
from bifurcations at low and high dilution rates. How-
ever, this model prediction could be investigated experi-
mentally.

e There is hysteresis for dilution rates in the range of
D < [0.18341 h™1, 0.20901 h'] due to the presence of
multiple stable steady-state solutions. Hysteresis could
have an adverse effect on the reactor operability. It
appears that such behavior has not been reported by
other theoreticians or experimentalists; further experi-
mental studies are required to test this model prediction.

Additional knowledge can be obtained by investigating
the bifurcation behavior with respect to two parameters
simultaneously. Figure 10 shows the two-parameter
bifurcation diagram with dilution rate (D) and feed
glucose concentration (Go) as the bifurcation parameters.
The figure depicts the locus of the Hopf bifurcation points
where HB1 and HB2 refer to points 1 and 2, respectively,
in Figure 9. The region contained inside these two loci
represents the operating space that supports sustained
oscillations. Unlike the two-parameter bifurcation dia-
gram for the Zymomonas mobilis model in Figure 6, the
parameter region is not closed and there is a multiplicity
phenomena as shown in the inset. The locus for HB2 is
monotonic, while the locus for HB1 has an “S” shape. This
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the dilution rate.

implies that for a certain region of operating conditions,
HB1 bifurcates into multiple bifurcation points at a fixed
Gy or a fixed D. Therefore, a one-parameter bifurcation
analysis with the other parameter fixed at an appropriate
value will yield two or three bifurcation points that
originate from point 1 in Figure 9. As shown in Figure
10, there is a single bifurcation point for Go = 10 g/L.

The one-parameter bifurcation diagram with D as the
bifurcation parameter and Gy, = 9.25 g/L is shown in
Figure 11. Similar to Figure 9, the branch between points
1—-4 represents a steady-state solution contained within
a periodic solution appearing from the subcritical Hopf
bifurcation point (point 1) and disappearing at the
supercritical Hopf bifurcation (point 4). The periodic
solution emanating from point 1 is unstable until the fold
bifurcation (point 6).

Unlike Figure 9, there now exists an unstable periodic
solution within the large-amplitude stable periodic solu-
tion. The unstable periodic solution emanates from a
supercritical Hopf bifurcation (point 2) and ends at
another supercritical Hopf bifurcation (point 3). Within
this periodic solution, the steady-state solution regains
its stability. Therefore, within the range D € [0.15100
h~1, 0.15883 h™1] there is a stable steady-state solution,
an unstable periodic solution, and a stable periodic
solution. The cybernetic model can predict the coexistence

of a stable steady-state solution and a stable periodic
solution over a meaningful range of dilution rates. It is
important to emphasize that the existence of multiple
attractors would be quite difficult to observe using
dynamic simulation alone. This again supports our
contention that bifurcation analysis is a very powerful
tool for model analysis and validation.

The behavior shown in Figure 11 is particularly
interesting as we have observed experimentally multiple
attractors in continuous cultures of Saccharomyces cer-
evisiae (37). Figure 12 shows the results of an experiment
designed to examine this phenomenon. The evolved
carbon dioxide signal is used as a representative output
variable for the culture. The experiment starts with
oscillatory dynamics that are obtained by switching the
culture from batch to continuous operation. Att = 20 h
the dilution rate is slowly ramped down over a 24 h
period until the oscillations disappear. The stationary
state is preserved for 2 days while the dilution rate is
maintained at the low value. At t = 92 h the dilution
rate is slowly ramped up at the same rate as was used
for the negative ramp. Oscillations are not observed when
the dilution rate is maintained at the high value despite
the fact that a slightly lower dilution rate produced
oscillations at the beginning of the experiment. An
enlarged view of the dynamic behavior during the first
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Figure 13. Experimentally observed multiple attractors in a
continuous culture of Saccharomyces cerevisiae.

and last parts of the experiment is shown in Figure 13.
The upper plot shows the large amplitude oscillations
obtained at the beginning of the experiment, while the
lower plot shows the stationary response observed at the
end of the experiment. The bifurcation analysis in Figure
11 suggests that the cybernetic model can predict the
existence of such multiple attractors.

A one-parameter bifurcation diagram with D as the
bifurcation parameter and Gy, fixed at 8.7 g/L is presented
in Figure 14. As shown in Figure 10, there are two
bifurcation points that emanate from point 1 in Figure

0.05Q
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9. In this case, both of the Hopf bifurcations are subcriti-
cal. The range of dilution rates that support periodic
solution is quite small, and sustained oscillations might
be difficult to observe experimentally. The bifurcation
structure for dilution rates outside the region shown is
very similar to that in Figure 9 and has been omitted.

6. Summary and Conclusions

We have studied the dynamic behavior of three con-
tinuous bioreactor models that exhibit complex steady-
state and transient behavior. Bifurcation analysis is
shown to provide a more complete picture of model
behavior than is possible with dynamic simulation alone.
The determination of bifurcation points when the quali-
tative model behavior changes and the characterization
of the range of parameter values that supports certain
behaviors is valuable information for model validation.
Several important characteristics of the three models
studied that are not observed in previous simulation
studies are revealed through bifurcation analysis. These
characteristics include lack of model robustness to small
parameter variations, apparent inconsistencies between
model structure and experimental data, and the coexist-
ence of multiple stable solutions under the same operat-
ing conditions. These case studies suggests that bifur-
cation analysis is a very powerful tool for analyzing low-
dimensional bioreactor models and should be used in
conjunction with dynamic simulation for model valida-
tion.
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