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Abstract

This paper addresses the relaxations in alternative models for disjunctions, big-M and convex hull model, in order to develop

guidelines and insights when formulating Mixed-Integer Non-Linear Programming (MINLP), Generalized Disjunctive Program-

ming (GDP), or hybrid models. Characterization and properties are presented for various types of disjunctions. An interesting result

is presented for improper disjunctions where results in the continuous space differ from the ones in the mixed-integer space. A

cutting plane method is also proposed that avoids the explicit generation of equations and variables of the convex hull. Several

examples are presented throughout the paper, as well as a small process synthesis problem, which is solved with the proposed cutting

plane method.
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1. Introduction

Developing optimization models with discrete and

continuous variables is not a trivial task. The modeler

has often several alternative formulations for the same

problem, and each of them can have a very different

performance in the efficiency on the problem solution.

In the area of Process System Engineering models
commonly involve linear and nonlinear constraints

and discrete choices. The traditional model that has

been used in the past corresponds to a mixed-integer

optimization program whose representation can be

expressed in the following equation form (Grossmann

& Kravanja, 1997):

min Z�f (x)�dT y

s:t: g(x)50 (PA)

r(x)�Ly50

Ay]a

x � Rn; y � f0; 1gq

where f(x), g (x ) and r(x ) are linear and/or nonlinear

functions. In the model (PA) the discrete choices are
represented with the binary variables y involving linear

terms.

More recently, generalized disjunctive programming

(Raman & Grossmann, 1994; Türkay & Grossmann,

1996) has been proposed as an alternative to the model

(PA). A generalized disjunctive program can be for-

mulated as follows:

min Z�
X
k �K

ck�f (x)

s:t: g(x)50

�
i �Dk

Yik

hik(x)50

ck�gik

2
4

3
5 k � K (GDP)

V(Y )�True

x � Rn; Yik � fTrue; Falsegm
; ck]0

where the discrete choices are expressed with the
Boolean variables Yik in terms of disjunctions, and logic

propositions V(Y ). The attractive feature of General-

ized Disjunctive Programming (GDP) is that it allows a
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symbolic/quantitative representation of discrete and

continuous optimization problems. A modeling lan-

guage for GDP problem has been discussed by Vec-

chietti and Grossmann (2000).
An approach that combines the previous two models

is a hybrid model proposed by Vecchietti and Gross-

mann (1999) where the discrete choices can be modeled

as mixed-integer constraints and/or disjunctions. In this

way we can potentially exploit the advantages of the two

previous formulations by expressing part of it only in

algebraic form, and the other in a symbolic/quantitative

form. The hybrid formulation is as follows:

min Z�
X
k �K

ck�f (x)�dT y

s:t: g(x)50

r(x)�Ly50

Ay]a (PH)

�
i �Dk

Yik

hik(x)50
ck�yik

2
4

3
5 k � K

V(Y )�True

x � Rn; y � f0; 1gq
; Yik � fTrue; Falsegm

; ck]0

where r(x )�/Ly 5/0 are general mixed-integer con-

straints that can be linear/nonlinear equations/inequal-

ities. These terms can be seen as disjunctions

transformed into mixed-integer form. Ay ]/a represents
general integer equalities/inequalities transformed from

former logic propositions.

An issue that is unclear is how the modeler should

express the discrete choices, either as a symbolic

disjunction, or in a mixed-integer form (Bockmayr &

Kasper, 1998). One possible guideline for this decision is

the gap between the optimal value of the continuous

relaxation and the optimal integer value. Since several
algorithms involve the solution of the relaxed problem,

we will investigate in this paper the tightness of different

relaxations for a disjunctive set: the big-M formulation

(Nemhauser & Wolsey, 1988), the Beaumont surrogate

(Beaumont, 1990) and the convex hull relaxation (Balas,

1979; Lee & Grossmann, 2000). The big-M formulation

and the Beaumont surrogate can be regarded as

‘obvious’ constraints. However, the convex hull relaxa-
tion of a disjunction is tighter, and can be transformed

into a set of mixed-integer constraints. The advantage of

the convex hull relaxation is that the tight lower bound

helps to reduce the search effort in the branch and

bound procedure, in both nonlinear and linear problems

(for examples of significant node reductions see Lee &

Grossmann, 2000; Jackson & Grossmann, 2002). But

the drawback with the convex hull formulation is that it
increases the number of continuous variables and

constraints of the original problem. This can potentially

make a problem more expensive to solve, especially in

large problems. The big-M relaxation is more conveni-

ent to use when the problem size does not increase

substantially when compared with the convex hull

relaxation (see Yeomans & Grossmann, 1999, who
found the big-M to be more effective). But generally

the lower bound by the big-M relaxation is weaker,

which may require longer CPU time than the convex

hull relaxation. Therefore, depending on the case, there

is a trade-off between the best possible relaxation and

the problem size. In order to exploit the tightness of the

convex hull relaxation, but without the substantial

increase of the constraints, it will be shown that cutting
planes can be used that correspond to a facet of the

convex hull.

In this paper we first introduce the definition and

properties of a disjunctive set. We then present the

different relaxations and their properties. Finally, a

cutting plane method is discussed, and illustrated with

several small example problems. The goal of this paper

is not to perform a detailed computational study, but
rather to provide insights into the modeling and solution

of disjunctive problems.

2. Definitions and properties of a disjunctive set

A disjunctive set F can be expressed as a set of

constraints separated by the or (�/) operator:

F ��
i �D

[hi(x)50] x � Rn (1)

It is assumed that hi (x ) is a continuous convex

function. F can be considered as a logical expression,

which enforces only one set of inequalities. The feasible

region of each disjunctive term can be expressed as the

set of points that satisfy the inequality.

Ri�fx½hi(x)50g (2)

A disjunctive set can be expressed in other forms that
are logically equivalent. F can also be expressed as the

union of the feasible regions of the disjunctive terms,

which is called Disjunctive Normal Form (DNF):

F �@
i �D

[hi(x)50] x � Rn (3)

F �@
i �D

Ri (4)

If the union of the feasible regions of the disjunctive
terms is equal to one of its terms, Rj , which is the largest

feasible region, then the disjunctive set is called im-

proper . Otherwise the disjunctive set is called proper

(Balas, 1985). The improper disjunctive set can be

written as follows:

F �@
i �D

Ri�Rj (5)

The improper disjunctive set has also the following
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property:

Ri⁄Rj � i" j (6)

which means that the feasible regions i (i "/j) in the

disjunctive set F are included in the jth feasible region.

Since F is expressed as the union of the different terms,

an improper disjunctive set can be reduced to:

F �fx½hj(x)50g (7)

On the other hand, a proper disjunctive set is the one
in which either the intersection of the feasible regions is

empty, or else it is non-empty, but Eq. (5) does not

apply. Therefore, for a proper disjunctive set, either

there is no intersection among the feasible regions:

S
i �D

Ri�¥ (8)

or else, there is some intersection, but no set Rj contains

all of them:

S
i �D

Ri"¥; @
i �D

Ri"Rj (9)

3. Relaxations of a disjunctive set

Given a disjunctive set as condition Eq. (1) there are a
number of relaxations that can be derived, the big-M,

the Beaumont surrogate and the convex hull relaxations.

We consider below the case of convex nonlinear con-

straints, which easily simplifies to the linear case.

3.1. Big-M relaxation

Consider the following nonlinear disjunction:

F ��
i �D

[hi(x)50] x � Rn (10)

where hi(x ) is a nonlinear convex function. For simpli-

city, and without loss of generality, it is assumed that

each term in the disjunction Eq. (10) has only one
inequality constraint. The big-M relaxation of Eq. (10)

is given by:

hi(x)5Mi(1�yi) i � D

X
i �D

yi�1

05yi51; i � D (11)

The tightest value for Mi can be calculated from:

Mi �maxfhi(x)½xL5x5xUg (12)

3.2. Beaumont relaxation

Beaumont (1990) proposed a valid inequality for the

disjunctive set Eq. (10). A valid Mi value must be
calculated as in Eq. (12). By dividing each constraint i � /

D in Eq. (11) by Mi and summing over i � /D , the

Beaumont surrogate, which interestingly does not in-

volve binary variables is given as follows:

X
i �D

hi(x)

Mi

5N�1 (13)

where N�/jD j in Eq. (10). Beaumont showed that Eq.

(13) yields an equivalent relaxation as the big-M

relaxation Eq. (11) projected onto the continuous x

space when the constraints in Eq. (10) are linear.

3.3. Convex hull relaxation

The convex hull relaxation for the disjunctive set Eq.

(10) can be written as follows (Lee & Grossmann, 2000):

x�
X
i �D

vi�0 x; vi � Rn

yihi

�
vi

yi

�
50; i � D

X
i �D

yi�1

05yi51 i � D

05vi5vU
i yi; i � D (14)

where vi
U is a valid upper bound for the disaggregated

variables vi , usually chosen as xU . The Eq. (14) define a

convex set in the (x , v , y) space provided the inequalities

hi (x )5/0, i � /D are convex and bounded. The convex

hull in Eq. (14) can be proved to be tighter or at least as

tight as the big-M relaxation (see Appendix A). Also, for

case of linear disjunctions, F ��i �D[aT
i x5bi] x � Rn;

Eq. (14) reduces to the equations by Balas (1979, 1988):

x�
X
i �D

vi�0 x; vi � Rn

aT
i vi�biyi50; i � D

X
i �D

yi�1

05yi51; i � D

05vi5yiv
up
i ; i � D (15)
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3.4. Example 1

Consider the following nonlinear disjunction:

[(x1�1)2�(x2�1)251]� [(x1�4)2�(x2�2)251]

� [(x1�2)2�(x2�4)251]

where 05/x15/5 and 05/x25/5. The feasible region is

shown in Fig. 1. Figs. 2 and 3 show the feasible region of

the big-M and the convex hull relaxations, respectively.

The big-M relaxation is given by:

(x1�1)2�(x2�1)251�31(1�y1)

(x1�4)2�(x2�2)251�24(1�y2)

(x1�2)2�(x2�4)251�24(1�y3)

y1�y2�y3�1

05x1; x255; 05yi 51; i�1; 2; 3 (16)

where the big-M parameters are calculated by Eq. (12).
The convex hull of Fig. 3 is given by the equations:

x1�v11�v12�v13

x2�v21�v22�v23

(y1�o)

��
v11

y1 � o
�1

�2

�
�

v21

y1 � o
�1

�2

�1

	
50

(y2�o)

��
v12

y2 � o
�4

�2

�
�

v22

y2 � o
�2

�2

�1

	
50

(y3�o)

��
v13

y3 � o
�2

�2

�
�

v23

y3 � o
�4

�2

�1

	
50

y1�y2�y3�1

05yi51; i�1; 2; 3

05vji55yi � i; � j (17)

Note that to avoid division by zero o is introduced in

the nonlinear inequalities as a small tolerance (Lee &

Grossmann, 2000). Typical values for o are 0.001�/

0.0001. From Figs. 2 and 3 it is clear that the convex

hull relaxation of the disjunctive set is tighter than the

big-M relaxation for this example.

4. Impact of nature of disjunctions on relaxations in x
space

Our aim in this section is to analyze different types of

disjunctions for which it may be convenient or not to

transform them into the convex hull formulation or a
big-M formulation or a Beaumont surrogate. Since the

big-M formulation is as tight as the Beaumont surro-

gate, and it is more frequently used, we will compare theFig. 1. Feasible region of example 1.

Fig. 2. Big-M relaxation of example 1.

Fig. 3. Convex hull relaxation of example 1.
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convex hull with only the big-M formulation. We will

analyze the following cases: (a) improper disjunction; (b)

proper disjunction. Within this last case we will analyze

when the intersection of the feasible regions is empty
and when it is non-empty.

If we denote the feasible region of the convex hull

relaxation in the continuous x space as RCH, the feasible

region of the big-M relaxation as RBM, and the feasible

region of the Beaumont surrogate as RB, then according

to the properties shown in the previous section, the

following can be established:

RCH⁄RBM (18)

Beaumont (1990) has shown for the linear case that

RBM�/RB where RB is defined by constraint Eq. (13). In

the Appendix A we show that RBM⁄/RB for nonlinear

case. Therefore, the following property holds:

RBM⁄RB (19)

It should be noted that properties Eqs. (18) and (19)

apply in the space of the continuous variables x .

4.1. Improper disjunction

When the disjunctive set is improper , the property in

Eq. (6) holds. Since the feasible region of one term
contains the feasible regions of the other terms, the

relaxations of the convex hull and of the big-M can be

selected to be identical. The reason is that the redundant

terms can be dropped and the disjunctive set can be

represented by the term with the largest feasible region

Rj . For example, suppose we have the following

problem:

min Z�(x1�3:5)2�(x2�4:5)2

s:t:
Y1

15x153

25x254

2
4

3
5�

Y2

25x153

35x254

2
4

3
5 (20)

The feasible region is shown in Fig. 4. Choosing the

term with the largest feasible region, which is the first

one, and solving the problem as an NLP we obtain the

optimal solution x�/(3,4) and Z�/0.5. If we are not
aware that the feasible regions are overlapped we can

generate the big-M relaxation for this problem. If we use

Mi �/0.5, i�/1, 2, and solve the relaxed Mixed-Integer

Non-Linear Programming (MINLP) problem, the solu-

tion is x�/(3.25,4.25), Z�/0.125, y�/(0.5,0.5). If we

choose Mi �/1 and solve the relaxed MINLP then the

solution is x�/(3.5,4.5), Z�/0, y�/(0.5,0.5). Therefore,

it is clear that arbitrary choice of Mi can yield a
relaxation whose feasible region is larger than the

disjunctive term with the largest feasible region. For

the convex hull formulation it is clear that the resulting

relaxation coincides with the region of the largest term

in the x space, but at the expense of expressing it

through disaggregated variables and additional con-

straints.

4.2. Proper disjunction

4.2.1. Non-empty intersecting feasible regions

When the feasible regions of the disjunctive terms

have an intersection, it is not clear whether or not the

convex hull and the big-M formulation could yield the

same relaxation. Suppose we have disjunctions whose

feasible regions are shown in Figs. 5 and 6. In Fig. 5 it is
clear that the big-M relaxation, with a good selection of

the Mi values can yield the same relaxation as the

convex hull. For the case of Fig. 6 the convex hull will

yield a tighter relaxation.

4.2.2. Disjoint disjunction

If the feasible region defined by each term in the

disjunction has no intersection with others, then the
disjunction is disjoint and proper . Fig. 7 shows an

example of disjoint disjunction. In this case, it is clear

that the convex hull relaxation should generally be

Fig. 4. Feasible region of disjunctive set Eq. (20). Fig. 5. Intersecting disjunction.
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tighter than the big-M relaxation (an exception is the

particular case shown in Fig. 8). Also, in the special case

shown in Fig. 9, where a disjunction has two terms with

linear constraints and one of them yields zero point as a

feasible region, the convex hull yields a cone with the

zero point as the vertex. In this case, the convex hull

relaxation can be simplified by not requiring disaggre-

gated variables as given by the following:

y1h1

�
x

y1

�
50

05x5xU y1

05y151 (21)

which includes the zero point as a feasible point. The

above also applies to linear case.

5. Relaxation in x �/y space

The previous section analyzed the relation of relaxa-
tions for different types of disjunctions in the x space.

When applying the big-M constraints Eq. (11) or the

convex hull Eq. (14) these are written in the x �/y space.

Therefore, an interesting question is whether or not the

properties we noted in the previous section still apply in

the x �/y space. Let us consider the following example,

which has an improper disjunction.

5.1. Example 2

min Z�(x1�1:1)2�(x2�1:1)2�c1

s:t:
Y1

x2
1�x2

251

c1�1

2
4

3
5�

�Y1

x1�x2�0

c1�0

2
4

3
5

05x1; x251; 05c1

Y1 � ftrue; falseg (22)

The optimal solution is x�/(0.707,0.707), Y1�/true

and Z�/1.309. The feasible region is shown in Fig. 10

and the feasible region of the second term, which is (0,0),

is included in the feasible region of the first term.
According to the previous section since this is an

improper disjunction in the x space, it ought to be

sufficient to use the first term only. However, when

Fig. 6. Intersecting disjunction.

Fig. 7. Disjoint disjunction (general case).

Fig. 8. Disjoint disjunction (particular case).

Fig. 9. Disjoint disjunction with zero point.
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expressed algebraically, the big-M relaxation and the

convex hull relaxation of the disjunction in Eq. (22)

involve the additional variable y1 as a continuous

variable. In the case of the convex hull, we apply Eq.

(21) to the first term. Rearranging the inequality y1[(x1/

y1)2�/(x2/y1)2�/1]5/0 yields:

min Z�(x1�1:1)2�(x2�1:1)2�y1

s:t: x2
1�x2

25y2
1

05x15y1

05x25y1

05y151 (23)

The big-M relaxation of Eq. (21) for the first term is

given by:

min Z�(x1�1:1)2�(x2�1:1)2�y1

s:t: x2
1�x2

25y1

05x1; x251; 05y151 (24)

Figs. 11 and 12 show the convex hull relaxation and

the big-M relaxation of Eq. (21) in the x �/y space,

respectively. It is clear that Eqs. (23) and (24) are not

identical due to the difference in the right hand side of
the nonlinear inequality. In fact, the solution of Eq. (23)

is (x , y)�/(0.707, 0.707, 1) and Z�/1.309. Since the

relaxed value of y1 is 1, this solution is the optimal

solution of Eq. (22), which is also shown in Fig. 11. On

the other hand, the solution of Eq. (24) is (x , y )�/(0.55,

0.55, 0.605) and Z�/1.21 which is weaker than the

convex hull relaxation. This result can be seen by

comparing Figs. 11 and 12. There is no difference
between the feasible set of Eq. (23) and the feasible set

of Eq. (24) projected in the x space as shown in Fig. 10.

The difference, however, takes place in the x �/y space.

Note that the nonlinear constraint in Eq. (24), x1
2�/x2

25/

y1, which is shown in Fig. 12, is weaker than x1
2�/x2

25/y1
2

in Eq. (23) for 05/y15/1. Therefore, even though the

disjunction in Eq. (22) is improper in x space, the convex

hull yields tighter relaxation than big-M relaxation in

the x �/y space. Thus, this example demonstrates that for

the case of improper nonlinear disjunctions, the convex

hull may be tighter than the big-M constraint in the x �/y

space even if they are identical in the projected x space.

For the linear case, we change the nonlinear con-
straint in the first term of the disjunction Eq. (22) by the

following linear constraint:

min Z�(x1�1:1)2�(x2�1:1)2�c1

s:t:
Y1

x1�x251

c1�1

2
4

3
5�

�Y1

x1�x2�0

c1�0

2
4

3
5

05x1; x251; 05c1

Y1 � ftrue; falseg (25)

where the disjunction is improper in the x space. The

optimal solution is x�/(0.5,0.5), Y1�/true and Z�/1.72.

Fig. 10. Feasible region of example 2 in the x space.
Fig. 11. Convex hull relaxation of example 2 in the x �/y space.

Fig. 12. Big-M relaxation of example 2 in the x �/y space.
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The convex hull of the disjunction Eq. (25) yields a

linear constraint:

x1�x25y1 (26)

After replacing the disjunction Eq. (25) with convex

hull relaxation Eq. (26), the solution is x�/(0.5,0.5),

y1�/1 and Z�/1.72, which is exactly the optimal

solution of Eq. (25). Since the disjunction Eq. (25) is

improper in x space, only the first term is sufficient for

the relaxation. The big-M relaxation of Eq. (25) is given

by:

x1�x2�15M1(1�y1) (27)

This relaxation clearly depends on M1 value. For

example, if M1�/1 is used, then the relaxation yields

x�/(0.67,0.67), y1�/0.67 and Z�/1.042, which is weaker

than the convex hull relaxation. The best M1 value in

this case is �/1, which yields exactly the same solution as
the convex hull relaxation. As shown with this example,

even for the linear improper disjunction the big-M

relaxation may have weaker relaxation than the convex

hull depending on the big-M parameter value.

6. Cutting plane method

The two previous sections have analyzed the issue of

determining in what cases it is worth to formulate

disjunctions with the convex hull relaxation in order to

obtain tighter relaxations when compared with the big-
M relaxation. In this section, we present a numerical

procedure for generating cutting planes, which poten-

tially has the advantage of requiring much fewer

variables and constraints than the convex hull relaxa-

tion. Cutting planes, which correspond to facets of the

convex hull, can improve the tightness of the big-M

relaxation. The proposed cutting planes can be used

within a branch and cut enumeration procedure (Stubbs
& Mehrotra, 1999), or as a way to strengthen an

algebraic MINLP model before solving it with one of

the standard methods.

Using as a basis the GDP model, the general form of

the strengthened MINLP model (PCn ) at any iteration n

will be as follows:

min Z�
X
k �K

X
i �Dk

gikyik�f (x)

s:t: g(x)50

hik(x)5Mik(1�yik); i � Dk; k � K (PCn)X
i �Dk

yik�1; k � K

Ay5a

bT
n x5bn; n�1; 2; . . . ; N

x � Rn; yik � f0; 1g

where bn
Tx 5/bn is the cutting plane at the iteration n .

Let us denote the solution of the continuous relaxation

of (PCn ) as xR
BM,n . In order to generate the cutting plane

we consider the following separation problem, which
has as an objective to find the point within the convex

hull that is closest to the point xR
BM,n . This separation

problem is given by the NLP:

min f(x)� (x�xBM;n
R )T (x�xBM;n

R )

s:t: g(x)50

x�
X
i �Dk

vik; k � K

yikhik

�
vik

yik

�
50; i � Dk; k � K (SPn)

X
i �Dk

yik�1; k � K

Ay5a

bT
n x5bn; n�1; 2; . . . ; N

x; vik � Rn; 05yik51

Let the solution of the separation problem (SPn ) be

xS,n . A cutting plane bn
Tx 5/bn can then be obtained

from:

(xS;n�xBM;n
R )T (x�xS;n)]0 (28)

where the coefficient of x is a subgradient of the

objective function of (SPn ) at xS,n (for derivation, see

Stubbs & Mehrotra, 1999). Fig. 13 shows an example of

a cutting plane generated with the points xS,n and xR
BM,n .

The cutting plane method can then be stated as

follows:

1) Solve continuous relaxation of (PCn).

2) Solve separation problem (SPn).

a) If jjxS,n�/xR
BM,n jj5/o , stop.

Fig. 13. Cutting plane generated by separation problem.
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b) Else set bn�1�/�/(xS,n�/xR
BM,n ) and bn�1�/�/

(xS,n�/xR
BM,n)xS,n . Set n�/n�/1, return to Step

1.

This procedure can be used either in a Branch and Cut

enumeration method where a special case is to solve the

separation problem only at the root node, or else it can

be used to strengthen the MINLP model before apply-

ing methods such as Outer-Approximation (OA), Gen-

eralized Benders Decomposition (GBD), and Extended

Cutting Plane (ECP). It is also interesting to note that

cutting planes can be derived in the x �/y space. In

example 2, when we consider the cutting plane in the x

space, the big-M relaxation solution, x�/(0.55, 0.55)

cannot be separated from the convex hull since it is

feasible to the convex hull onto the x space. But when

we consider the cutting plane in the x �/y space, then the

big-M relaxation solution, (x , y )�/(0.55, 0.55, 0.605)

can be separated from the convex hull since this point is

infeasible to the convex hull relaxation Eq. (23). This

suggests that the application of cutting planes in the x �/

y space may be more effective than in the x space only

for cutting off the big-M relaxation point from the

convex hull.

Another application of the separation problem is for

deciding whether it is advantageous to use the convex

hull formulation. If the value of jjxS,n�/xR
BM,n jj is large,

then it is an indication that this is the case. A small

difference between xS,n and xR
BM,n would indicate that it

might be better to use the big-M relaxation.

It should be also noted that the proposed cutting

plane method can be extended to nonconvex disjunctive

constraints using the global optimization procedure by

Lee and Grossmann (2001). In this method the non-

convex constraints are replaced by convex under/over-

estimators, with which the convex hull relaxation or big-

M relaxation can be used. Therefore, one can use the

cutting plane method to tighten the relaxation of the

bounding convex constraints.

7. Disjunctive programming examples

In this section we present a number of examples to

illustrate the application of the main concepts in this

paper.

7.1. Example 3

min Z�(x1�6)2�(x2�4)2

s:t:

Y1

(x1�4)2�(x2�2)250:5

� 	

�
Y2

(x1�3)2�(x2�4)2
51

� 	

�
Y3

(x1�1)2�(x2�1)251:5

� 	

05x1; x255 (29)

The feasible region is shown in Fig. 14. Note that the

point (6,4), which is the minimizer of the objective

function, lies outside the convex hull of the disjunction.

The optimal solution is x�/(4,4), Z�/4.0, Y�/(false,

true, false).

To illustrate the cutting plane procedure, first we

solve the big-M relaxation of Eq. (29) with M�/(19.5,

24, 30.5) from Eq. (12). The solution is xBM�/(5, 4),
ZBM�/1.0, yBM�/(0.209, 0.561, 0.230). Then we solve

the separation problem (SPn ) with the relaxation point

xBM�/(5, 4):

min Z�(x1�5)2�(x2�4)2

s:t: x1�v11�v12�v13

x2�v21�v22�v23

(y1�o)

��
v11

y1 � o
�4

�2

�
�

v21

y1 � o
�2

�2

�0:5

	
50

(y2�o)

��
v12

y2 � o
�3

�2

�
�

v22

y2 � o
�4

�2

�1

	
50

(y3�o)

��
v13

y3 � o
�1

�2

�
�

v23

y3 � o
�1

�2

�1:5

	
50

y1�y2�y3�1

05yi51; i�1; 2; 3

Fig. 14. Feasible region of example 3.
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05vji55yi � i; � j

05x1; x255 (30)

The solution of problem Eq. (30) is xS�/(4.16, 3.70)
with the objective value of 0.791. Therefore, the cutting

plane is given as follows:

4:16�5:0
3:70�4:0

� 	T
x1�4:16
x2�3:70

� 	
]0 (31)

which can be simplified as �/0.84(x1�/4.16)�/0.3(x2�/

3.70)]/0. We add Eq. (31) to the big-M relaxation

and solve it again. The solution of this augmented big-M

relaxation is xCP�/(4.27, 3.4), ZCP�/3.37, yCP�/(0.294,

0.676, 0.029). For comparison, we solve the convex hull

relaxation, obtaining xCH�/(4.27, 3.4), ZCH�/3.37,
yCH�/(0.442, 0.558, 0). Note that the solution xCP and

the objective value ZCP are identical to xCH and ZCH.

The difference in (xBM, ZBM) and (xCH, ZCH) is a clear

indication that the convex hull is significantly tighter

than big-M relaxation. For this example, only one

cutting plane yields the same tightness of the relaxation

as the convex hull. The numerical results are shown in

Table 1. Note that the big-M relaxation yields the lowest
objective value to the optimal solution, 4.0. Fig. 15

shows the convex hull and cutting plane. As shown in

Fig. 15, the cutting plane is a facet of the convex hull.

From Table 1 it can be seen that the big-M relaxation

with a cutting plane yields a competitive relaxation

compared with the convex hull.

7.2. Cutting planes in x �/y space: example 2

Let us revisit example 2. If we apply the separation
problem (SPn ) to the big-M relaxation solution xR

BM�/

(0.55,0.55), the objective value of the separation pro-

blem is zero since xR
BM is feasible to the convex hull

relaxation of Eq. (22) in the x space. However, if we

treat the binary variable y as continuous variable and

then extend the dimension of the solution to the x �/y

space, we have the following separation problem with

(x , y)R
BM�/(0.55, 0.55, 0.605):

min Z� [(x1�0:55)2�(x2�0:55)2�(y1�0:605)2]

s:t:

x2
1�x2

25y2
1 (SP1)

05x15y1

05x25y1

05y151

The solution is Z�/0.015 and (x , y)S�/(0.489, 0.489,

0.691), which means that (x , y )R
BM is infeasible in the

convex hull relaxation Eq. (23) in the x �/y space. The

cutting plane is now given by (0.489�/0.55)(x1�/0.489)�/

(0.489�/0.55)(x2�/0.489)�/(0.691�/0.605)(y1�/0.691)]/

0.When this cutting plane is added to the big-M

relaxation Eq. (24), the optimal solution is (x , y )�/

(0.707, 0.707, 1) and Z�/1.309, which is identical to
the solution of the convex hull relaxation Eq. (23) and is

also the optimal solution of Eq. (22). This shows that the

cutting plane method applied to the x �/y space can yield

tighter relaxations than the cutting plane in the x space

only.

7.3. Example 4

Consider the synthesis of a process network (Türkay

& Grossmann, 1996) where the following disjunctive set

is used to model the problem:

Yk

hik(x)�0

ck�gk

2
4

3
5�

�Yk

Bikx�0

ck�0

2
4

3
5 i � Dk; k � K (32)

It means that if the k th unit is selected (Yk �/true)

then the first term of the disjunction applies, if it is not

(�/Yk) then a subset of the x variables is set to zero.

Table 1

Comparisons of the relaxations for example 3

Relaxation M x1 x2 y1 y2 y3 Z

Big-M (19.5, 24, 30.5) 5.0 4.0 0.209 0.561 0.023 1.0

Convex hull �/ 4.27 3.40 0.442 0.558 0.0 3.37

Cutting plane �/ 4.27 3.40 0.294 0.676 0.029 3.37

Optimal solution �/ 4.0 4.0 0 1 0 4.0

Fig. 15. Convex hull and cutting plane for example 3.
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Fig. 16 shows the superstructure of example 4, which

has eight units. The corresponding GDP model is as
follows:

min Z�
X8

k�1

ck�aT x�122

s.t. Mass balances:

x1�x2�x4; x6�x7�x8

x3�x5�x6�x11

x11�x12�x15; x13�x19�x21

x9�x16�x25�x17

x20�x22�x23; x23�x14�x24

Specifications:

x10�0:8x1750; x10�0:4x17]0

x12�5x1450; x12�2x14]0

Disjunctons:

Y1

exp(x3)�1�x250

c1�5

2
4

3
5�

�Y1

x3�x2�0

c1�0

2
4

3
5

Y2

exp

�
x5

1:2

�
�1�x450

c2�5

2
664

3
775�

�Y2

x4�x5�0

c2�0

2
4

3
5

Y3

1:5x9�x10�x8�0

c3�6

2
4

3
5�

�Y3

x9�0; x8�x10

c3�0

2
4

3
5

Y4

1:25(x12�x14)�x13�0

c4�10

2
4

3
5�

�Y4

x12�x13�x14�0

c4�0

2
4

3
5

Y5

x15�2x16�0

c5�6

2
4

3
5�

�Y5

x15�x16�0

c5�0

2
4

3
5

Y6

exp

�
x20

1:5

�
�1�x1950

c6�7

2
664

3
775�

�Y6

x19�x20�0

c6�0

2
4

3
5

Y7

exp(x22)�1�x2150

c7�4

2
4

3
5�

�Y7

x21�x22�0

c7�0

2
4

3
5

Y8

exp(x18)�1�x10�x1750
c8�5

2
4

3
5�

�Y8

x10�x17�x18�0
c8�0

2
4

3
5

(33)

Logic propositions:

Y1[/Y3�/Y4�/Y5 Y5[/Y8

Y2[/Y3�/Y4�/Y5 Y6[/Y4

Y3[/Y1�/Y2 Y7[/Y4

Y3[/Y8 Y8[/Y3�/Y5�/(�/Y3ffl/�/Y5)

Y4[/Y1�/Y2 Y1
/Y2

Y4[/Y6�/Y7 Y4
/Y5

Y5[/Y1�/Y2 Y6
/Y7

Problem data:
aT �/(a1�/0, a2�/10, a3�/1, a4�/1, a5�/�/15, a6�/0,

a7�/0, a8�/0, a9�/�/40, a10�/15, a11�/0, a12�/0, a13�/

0, a14�/15, a15�/0, a16�/0, a17�/80, a18�/�/65, a19�/

Fig. 16. Process superstructure of example 4.
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25, a20�/�/60, a21�/35, a22�/�/80, a23�/0, a24�/0,

a25�/�/35); xj
lo�/0, �/j .

Before introducing the big-M relaxation, it should be

noted that in the disjunctions we have the following
properties:

i) The disjunctions are improper since the feasible
region of the second term belongs to the feasible

region of the first term in x space (except the cost

term).

ii) In the second term of the disjunctions a subset of

the continuous variables x are zero.

Because of these properties, it is possible to rewrite the

disjunctions as follows:

exp(x3)�1�x250

exp

�
x5

1:2

�
�1�x450

1:5x9�x10�x8�0

1:25(x12�x14)�x13�0

x15�2x16�0

exp

�
x20

1:5

�
�1�x1950

exp(x22)�1�x2150

exp

�
x18

1:5

�
�1�x10�x1750

Disjunctions:

Y1

05x25x
up
2

05x35x
up
3

c1�5

2
664

3
775�

�Y1

x3�x2�0

c1�0

2
4

3
5

Y2

05x45x
up
4

05x55x
up
5

c2�5

2
664

3
775�

�Y2

x4�x5�0

c2�0

2
4

3
5

Y3

05x95x
up
9

c3�6

2
4

3
5�

�Y3

x9�0

c3�0

2
4

3
5

Y4

05x125x
up
12

05x135x
up
13

05x145x
up
14

c4�10

2
66664

3
77775�

�Y4

x12�x13�x14�0

c4�0

2
4

3
5

Y5

05x155x
up
15

05x165x
up
16

c5�6

2
664

3
775�

�Y5

x15�x15�0

c5�0

2
4

3
5

Y6

05x195x
up
19

05x205x
up
20

c6�7

2
664

3
775�

�Y6

x19�x20�0

c6�0

2
4

3
5

Y7

05x215x
up
21

05x225x
up
22

c7�4

2
664

3
775�

�Y7

x21�x22�0

c7�0

2
4

3
5

Y8

05x105x
up
12

05x175x
up
13

05x185x
up
14

c8�5

2
66664

3
77775�

�Y8

x10�x17�x18�0

c8�0

2
4

3
5 (34)

It should be noted that constraints Eq. (34) consist of
global constraints (nonlinear) and disjunctions (linear).

The convex hull of the above disjunctions can be

reduced to linear constraints yielding the tight big-M

relaxation:

05xj 5x
up
j yk; j � J; k � K (35)

ck�gkyk; k � K

05yk51; k � K

which means that if the first term of the disjunction is

true (yk �/1) then the continuous variables xj can have a

value between its bounds and the fixed cost is activated,

else if the second term is true (yk �/0) then the
continuous variables become zero that still satisfies the

global constraints (condition i).

The GDP problem Eq. (33) is solved with the convex

hull relaxation. The upper bounds used are x3
up�/2,

x5
up�/2, x9

up�/2, x10
up�/1, x14

up�/1, x17
up�/2, x19

up�/2, x21
up�/

2, x25
up�/3, and for the rest of the variables, xj

up�/6.5.

The objective function value Z�/64.8 was obtained

from the convex hull relaxation, and the corresponding
NLP requires 0.07 CPU s with CONOPT/GAMS.

Applying the big-M relaxation to the modified GDP

formulation Eq. (34) and the same bounds, we obtained

Z�/49.9 as the solution value. Therefore, the convex

hull relaxation of the original GDP model yields a much

tighter lower bound. The difference between these two

relaxation values comes from the fact that the feasible

region by the convex hull relaxation of nonlinear
disjunctions Eq. (33) in the x �/y space is tighter than

the feasible region by big-M relaxation of Eq. (34).

However, it should be noted that their projections onto

the x space are identical since the disjunctions are

improper . If the disjunctions are linear, then both

relaxations can be identical in the x �/y space if appro-

priate big-M parameters are used.

Since the convex hull relaxation yields a significant
increase in the number of additional constraints and

variables, we consider the generation of cutting planes

to strengthen the big-M relaxation. As outlined in
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Section 6, a separation problem is solved. And the

solution of the separation problem is used to build a

cutting plane as in example 4. The big-M relaxation of

Eq. (34) is then solved again with this cutting plane.
Since the cutting plane is a facet of the convex hull, it

will tighten the lower bound. Table 2 shows the increase

of the lower bound as cutting planes are added to the

big-M relaxation. The first column shows the number of

cutting planes added. The second column shows the

relaxation value. Note that the optimal solution of

example 4 is 68.01. The third column shows the objective

value of the separation problem. As more cutting planes
are added, the objective value of the separation problem

decreases, implying that the solution point of the

augmented big-M relaxation gets closer to the convex

hull. The fourth column shows the CPU time of the

separation problem. The fifth and sixth column show

the MINLP solution results by DICOPT�/�/ with the

corresponding cuts. In all cases, the optimal solution is

found in the second major iteration. Since this problem
is a convex MINLP, the Outer-Approximation (OA)

algorithm stops when the crossover occurs. The CPU

time is less than 1 s on a Pentium III PC 600 MHz with

128 Mbytes RAM memory. After adding seven cutting

planes, the lower bound improved significantly com-

pared with the case when no cutting plane is used (62.5

vs. 49.9). The advantage of the cutting plane method is

that only one linear constraint is added to the big-M
relaxation at each step. However, there is a cost for

building a cutting plane and that is to solve a separation

problem, which is a convex NLP problem (SPn).

7.4. Example 5

To illustrate the application of the cutting plane

method with a branch and bound algorithm, we have

constructed the following GDP problem with linear/

nonlinear proper disjunctions.

min Z�
X9

k�1

ck�aT x

�0:6 log(x12�1)�0:8(x13�8)2�0:7 exp(�x14�1)

�0:5 log(x15�2)

s.t. Mass balances:

x1�x5�x6; x4�x7�x8

x10�x19�x20; x11�x17�x18

x14�x21�x22; x9�x23�x24

x12�x25�x26

Specifications:

x1�x2�x3�x4530

x9�x10�x11525

x12�x13�x14�x15�x16520

Y1

x951:7 log(x2�x5�1)

x9]0:1�0:2x5

x5]2x2

c1�2

2
66664

3
77775�

�Y1

x2�x5�x9�0

c1�0

2
4

3
5

Y2

x10�0:9x3�0:8x7

15x3�x7

x7]x3

c2�1

2
66664

3
77775�

�Y2

x3�x7�x10�0

c2�0

2
4

3
5

Y3

1:5x11�x6�x8

x6�x8

x11]1

c3�9

2
66664

3
77775�

�Y3

x6�x8�x11�0

c3�0

2
4

3
5

Y4

x255 log(x23�1)�0:1
x25]1

c4�1:5

2
664

3
775�

�Y4

x23�x25�0

c4�0

2
4

3
5

Y5

x2651:5 log(x24�1)

x26]1

c5�4

2
664

3
775�

�Y5

x24�x26�0

c5�0

2
4

3
5

Table 2

Numerical results of cutting plane method for example 4

Number of cutting planes Big-M relaxation Separation problem solution Separation CPU (s) DICOPT�/�/ major iterations CPU (s)

0 49.9 0.545 0.043 2 0.139

1 51.7 0.701 0.078 2 0.129

2 52.2 0.576 0.078 2 0.121

3 53.2 0.163 0.027 2 0.139

4 61.2 0.010 0.039 2 0.248

5 61.9 0.004 0.051 2 0.151

6 62.4 0.005 0.051 2 0.143

7 62.5 0.002 0.051 2 0.157

A. Vecchietti et al. / Computers and Chemical Engineering 27 (2003) 433�/448 445



Y6

(x17�4)2�(x21�4)2512

x21]1

c6�3:7

2
664

3
775�

�Y6

x17�x21�0

c6�0

2
4

3
5

Y7

x1357�1:2(x20�3)2

x2258�(x20�3)2

x20]1

c7�7:4

2
66664

3
77775�

�Y7

x13�x20�x22�0

c7�0

2
4

3
5

Y8

x1551:2 log(x19�2)

x15]1�0:2x19

x19]1

c8�6:5

2
66664

3
77775�

�Y8

x15�x19�0

c8�0

2
4

3
5

Y9

x16�x18]5

x1656�2 log(x18�1)

x18]1

c9�5:2

2
66664

3
77775�

�Y9

x16�x18�0

c9�0

2
4

3
5 (36)

Logic proposition:

Y1�Y2�Y3

� (Y1fflY2fflY3)

�Y4��Y5

Y1[Y4�Y5

Y4[Y1

Y5[Y1

Y2[Y7�Y8

Y3[Y6�Y9

Y6[Y3

�Y8��Y9

Y9[Y3

[Y4�Y5][ [Y7�Y8�Y9]

[�Y4ffl�Y5][ [Y7fflY8]� [Y8fflY9]� [Y7fflY9]

05xj 59 j�1; . . . ; 26; 05ck; Yk � ftrue; falseg;
k�1; . . . ; 9

The optimal solution is Z�/�/197.3,

Y2,Y3,Y6,Y7,Y9�/true and x�/(1.15,0,1.56, 2.72,0,
1.15,1.56,1.15,0,2.67,1.53,0,6.87,9,0,7.38,0.53,1,0,2.67,

4.02,4.98,0,0,0,0). The big-M relaxation of Eq. (36)

yields a lower bound of �/326.4. The convex hull

relaxation of problem Eq. (36) yields a lower bound of

�/209. Table 3 shows the results of cutting plane method

applied to big-M relaxation of Eq. (36). As more cutting

planes are added, the lower bound of big-M relaxation

increases and the objective value of the separation
problem decreases. After adding ten cutting planes, the

lower bound significantly improved (�/219.7). Table 4

shows the branch and bound search results when cutting

planes are added before starting the branch and bound

search. First, the big-M MINLP problem is solved with

branch and bound search. Nineteen nodes are searched

and the optimal solution �/197.3 is found. Secondly,

four cutting planes are added to big-M MINLP problem

at the root node of branch and bound tree. Note that the

relaxation value, which is the objective value at the root

node, is �/239.5 and 13 nodes are searched to find the
optimal solution. The decrease in the number of search

nodes is due to the tighter relaxation value. When eight

cutting planes are added, the relaxation value is �/221.4

and only seven nodes are searched. For comparison, the

convex hull relaxation of Eq. (36) is solved and the

number of nodes is seven, which is same as in the case of

eight cutting planes. The CPU time for each case is also

shown in Table 4 and less CPU time is spent with fewer
number of nodes. The CPU time for generating eight

cutting planes is about 2 s. This example clearly shows

that the cutting planes can tighten the relaxation and

thus reduce the number of search nodes in branch and

bound method. Although the example presented is

rather small, the proposed cutting plane method should

be promising for solving larger problems. This will be

the subject of our future work.

8. Conclusions

The purpose of this paper has been to analyze the

different alternatives of modeling the discrete choices as

disjunctions or as mixed-integer (0�/1) inequalities, in

order to provide guidelines on this decision. The

resulting model can correspond to one of the three

formulations: mixed-integer constraints (PA), disjunc-
tive constraints (GDP) or hybrid (PH). For the analysis,

we considered three different possible relaxations of a

disjunctive set, the convex hull, the big-M relaxation and

Table 3

Numerical results of cutting plane method for example 5

Number of cutting

planes

Big-M relaxation

solution

Separation problem

solution

0 �/326.4 91.2

1 �/265.6 5.97

2 �/255.8 9.76

3 �/245.5 7.12

4 �/239.5 4.34

5 �/238.0 4.35

6 �/224.4 2.39

7 �/223.4 1.31

8 �/221.4 0.91

9 �/220.8 0.25

10 �/219.7 0.19

Convex hull relaxation �/209.0 0
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the Beaumont surrogate. The analysis was performed

mainly on the first two since the big-M formulation is

widely used.

Although it was proved that the convex hull relaxa-

tion yields a tighter relaxation than the traditional 0�/1

big-M relaxation, there are several cases when the big-M

relaxation can compete with the convex hull relaxation.

As a general rule, the big-M model is competitive when

good bounds can be provided for the variables, and for

large problems where it is important to keep the number

of equations and variables as small as possible. For

convex improper disjunction both the convex hull and

the big-M model give the same relaxation in the x space,

but this may not be true in the x �/y space as was

demonstrated with examples. For proper disjunctions

where the feasible regions have some intersection, the

objective function plays an important role, if the

minimizer of the objective function is inside the feasible

region of the disjunctive set, both the big-M and the

convex hull relaxation may yield the same relaxation

value. Otherwise the convex hull should be generally

better, but the big-M constraints with appropriate

bounds can be competitive. For proper disjunctions

with an empty intersection on the feasible regions

(disjoint terms) the convex hull is generally better than

the big-M relaxation. Although these conclusions are

not general, we believe they help to provide some insight

in the modeling of discrete/continuous optimization

problems.

Finally, to address the problem of formulating tight

models without generating the explicit equations of the

convex hull, a cutting plane algorithm has been pro-

posed. A number of examples have been presented to

illustrate the various ideas in this paper as well as the

cutting plane method.
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Appendix A: Property of relaxations

Property 1. Let RBM be the feasible set of big-M

relaxation of a given disjunctive set projected onto the x

space. Let RCH be the feasible set of convex hull
relaxation projected onto the x space. Let RB be the

feasible set of the Beaumont surrogate that is defined in

the x space. Then RCH⁄/RBM⁄/RB.

Proof. First consider RBM⁄/RB. For the linear case,

Beaumont (1990) proved that RBM�/RB. Therefore,

RBM⁄/RB holds. For the nonlinear case, we consider

one disjunction for simplicity. Given a nonlinear dis-

junctive set:

F ��
i �D

[hi(x)50] x � Rn (A1)

where hi(x ) are assumed to be convex bounded func-

tions. The big-M relaxation of Eq. (A1) is as follows:

hi(x)5Mi(1�yi); i � D (A2)X
i �D

yi�1 (A3)

05yi51; i � D (A4)

where Mi �/max{hi(x )jxL 5/x 5/xU}. Let RBM
F (x , y) be

the feasible set defined by Eqs. (A2), (A3) and (A4). The

Beaumont surrogate of Eq. (A1) is given by:

X
i �D

hi(x)

Mi

5N�1 (A5)

where N�/jD j and Mi are assumed to be same as in Eq.

(A2). Let RB
F(x , y) be the feasible set defined by Eqs.

(A5) and (A4). Since Eq. (A5) is given by a linear

combination of Eqs. (A2) and (A3), any feasible point

(x* , y* ) � /RBM
F (x , y ) also satisfies Eqs. (A5) and (A4).

Hence, (x* , y* ) � /RB
F(x , y). Therefore, RBM

F (x , y )⁄/

RB
F(x , y ). Since RBM and RB are the projection of

RBM
F (x , y) and RB

F(x , y ) onto the x space, it follows that:

RBM⁄RB (A6)

Secondly, we consider RCH⁄/RBM for linear and

nonlinear case. The convex hull relaxation of Eq. (A1)

is given by:

Table 4

Comparisons of branch and bound search results for example 5

Model Big-M MINLP no cutting planes Big-M MINLP �/4 cutting planes Big-M MINLP �/8 cutting planes Convex hull relaxation

Relaxation value �/326.4 �/239.5 �/221.4 �/209.0

Optimal solution �/197.3 �/197.3 �/197.3 �/197.3

Number of nodes 19 13 7 7

CPU s 3.39 2.53a 1.56a 1.62

a CPU time for generating cutting planes is not included.
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x�
X
i �D

vi�0 x; vi � Rn (A7)

yihi

�
vi

yi

�
50; i � D (A8)

X
i �D

yi�1 (A9)

05yi51; i � D (A10)

05vi5vU
i yi; i � D (A11)

Let RCH
F (x , y , n ) be the feasible set defined by Eqs.

(A7), (A8), (A9), (A10) and (A11). Consider any feasible

point (x* , y* , n*) � /RF
CH(x , y , n). From Eq. (A7), there

exist mi such that:

yimi�vi; i � D (A12)

hi(mi)50; i � D (A13)

Since hi(x) are convex functions, for any l � /D :

hl(x)�hl

�X
i �D

yimi

�
5

X
i �D

yihi(mi) (A14)

For hl(ml )5/0 and hl (mi)i"l 5/Ml , it follows from

Eqs. (A14), (A9) and (A10):

hl(x)5
X

i �D;i"l

yiMl �Ml(1�yl) (A15)

Eq. (A15) is identical to Eq. (A2) in the big-M

relaxation for l � /D . Hence, any feasible point (x* , y* ,

n*) � /RCH
F (x , y , n ) has a corresponding feasible point

(x* , y* ) which satisfies Eqs. (A2), (A3) and (A4).

Therefore, (x* , y* ) � /RBM
F (x , y). Since RBM and RCH

are the projection of RBM
F (x , y ) and RCH

F (x , y , n ) onto

the x space, it follows that:

RCH⁄RBM (A16)

From Eqs. (A6) and (A16), RCH⁄/RBM⁄/RB. This

completes the proof.
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