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Abstract

Raman and Grossmann [Raman, R., & Grossmann, |.E. (1994). Modeling and computational techniques for logic based integer programming.
Computers and Chemical Engineering, 18(7), 563-578] and Lee and Grossmann [Lee, S., & Grossmann, |.E. (2000). New algorithms for
nonlinear generalized disjunctive programmi@@mputers and Chemical Engineering, 24, 2125-2141] have developed a reformulation
of Generalized Disjunctive Programming (GDP) problems that is based on determining the convex hull of each disjunction. Although the
relaxation of the reformulated problem using this method will often produce a significantly tighter lower bound when compared with the
traditional big-M reformulation, the limitation of this method is that the representation of the convex hull of every disjunction requires
the introduction of new disaggregated variables and additional constraints that can greatly increase the size of the problem. In order to
circumvent this issue, a cutting plane method that can be applied to linear GDP problems is proposed in this paper. The method relies
on converting the GDP problem into an equivalent big-M reformulation that is successively strengthened by cuts generated from an LP
or QP separation problem. The sequence of problems is repeatedly solved, either until the optimal integer solution is found, or else until
there is no improvement within a specified tolerance, in which case one switches to a branch and bound method. The strip-packing, retrofit
planning and zero-wait job-shop scheduling problems are presented as examples to illustrate the performance of the proposed cutting plane
method.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction the GDP model allows a combination of algebraic and
logical equations through disjunctions and logic proposi-
The most commonly used model in discrete/continuous tions, which facilitates the representation of discrete deci-
optimization corresponds to a Mixed Integer Non Linear sions. Furthermord,ee and Grossmann (2008ave shown
Program (MINLP). More recently, however, Generalized that any GDP model can be converted into an equivalent
Disjunctive Programming (GDP), which is a generaliza- MINLP reformulation. Currently, there are several algo-
tion of disjunctive programmingBalas, 1998 has been  rithms and different approaches in the literature to tackle
proposed byRaman and Grossmann (19943 an alter- GDP problems Grossmann, 2002 though some perform
native model to the MINLP problemGrossmann, 2002 inefficiently under certain conditions and for certain classes
Tawarmalani & Sahinidis, 2002While the MINLP model of problems. We are thus interested in developing novel al-
is based entirely on algebraic equations and inequalities,gorithms and solution methods aimed at solving both lin-
ear and non-linear GDP problems more efficiently, although
* Corresponding author. Tel.: +1 41 22683642; fax: +1 41 22687139, ~ We restrict ourselves exclusively to the linear case in this
E-mail address: grossmann@cmu.edu (I.E. Grossmann). paper.
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Lee and Grossmann (200Bave proposed a reformula-
tion to solve convex non-linear GDP problems with multiple
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Here,x is a vector of continuous variables bounded by
a vector of upper bound#/, Y; are Boolean variables,

disjunctions based on determining the convex hull of each ¢ ER}L are continuous variables that represent the cost as-

disjunction. Although the feasible region of the reformulated

sociated with each disjunction ang, are fixed charges.

problem does not correspond to the true convex hull of the A disjunction keK is composed of several disjungisJ,
problem, we nonetheless have termed that reformulation ineach containing a set of linear equations and/or inequali-

this paper as the “convex hull” reformulation for the sake
of convenience. There exists other GDP to MINLP reformu-
lations of which the traditional big-M reformulation is the
most commonGrossmann and Lee (2008ave shown that
the feasible region of the relaxation resulting from the con-
vex hull reformulation projected onto the space of the big-M
reformulation is always as tight as, or tighter than that of the
big-M reformulation. The tightness of the relaxed feasible
region, which is usually reflected in the lower bound of the
problem (for minimization), is an important criterion when
solving the original Mixed Integer Program, as tighter re-

ties @Ajx < aj) representing the constraints of the problem,
connected together by the logical OR operatoy that en-
forces the contents of only one disjunct. Discrete decisions
are represented by the Boolean variablgsin terms of
disjunctionskeK and logic propositiong2(Y) that are as-
sumed to be expressed in Conjunctive Normal Form (CNF).
Thus, only the constraints inside disjuriet/y, whereY; is

true, are enforced; otherwise, the corresponding constraints
are not enforced. FinallyBx <b are common constraints
that must hold regardless of the discrete decisions that are
selected.

laxed feasible regions reduce the search space of the solution The linear GDP problem (LGDP) can be reformulated as

algorithm. However, the representation of the convex hull re- a Mixed Integer Program (MIP) in different ways, including

quires the introduction of new disaggregated variables andthe two most common alternatives termed big-M (BM) and

additional constraints that can greatly increase the size of theconvex hull reformulations (CH). In order to obtain the big-

problem, thus limiting the effectiveness of the method. M reformulation, problem LGDP is transformed into an MIP
In order to circumvent the aforementioned problem, we by replacing the Boolean variablég, by binary variables

present in this paper a cutting plane method that exploits they; and using big-M constraints. The logic constraifag)

potentially tighter convex hull relaxed feasible region without are converted into linear inequalitied/i{liams, 1985, which

the additional constraints and variables. This method can beleads to the following reformulatiorRaman & Grossmann,

applied to linear GDP problems that correspond to MIP prob- 1994):

lems, or else to master problems that are used in the solution

of non-linear GDP_probIemsT@rkay& Gros;mann, 1996 Minz= Z Z Vie ik +dTx

We present the strip-packing, retrofit planning and zero-wait VkeKVied

job-shop scheduling problems to illustrate the computational

performance of the proposed method in solving these prob- S.t. Bx < b

lems and compare all results obtained to those using the con-

vex hull and big-M reformulations. Ajx = aje < Mj(1 = yji) Vi€ Vke K
> k=1 Vke K
2. Background viek
Dy <d
Consider the linear generalized disjunctive programming
problem (LGDP), which is based on the workRéman and ~ x€R’, yi €{0, 1} Vje Jk, Vke K
Grossmann (19949nd is an extension of the work Bflas (BM)

(1998)

Min Z = Z cr+dx Here,Mj; are the “big-M" parameters that render thie

VkeK system of inequalities in thth disjunction redundant when
yjx =0 (i.e.Y; = False). The inequalitieBy < d can be sys-
StBx=b tematically derived from their logical CNF for(Y) as dis-
Yk cussed bywilliams (1985) Raman and Grossmann (1994)
andHooker (2000)
Vj\éjk AjkX = aji Vkek In order to obtain the convex hull reformulation (CH),
R— problem LGDP is transformed into an MIP by replac-
ing the Boolean variables’; by binary variablesyj
2(Y) = True and disaggregating the continuous variabiesR’} into
O<x<Uc eRi, Y € {True Falsg  Vje Ji. Vke K new vanab_lgsweRi. Using the convex hull constraints
for each disjunction Balas, 1998 Raman & Grossmann,
(LGDP) 1994, this leads to the following reformulatiofReman &
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Fig. 1. Comparison between (BM) and (CH) relaxed feasible regions.

Grossmann, 1994 single disjunction [ x < 1]Vv[2 <x < 3] thatis expressed in
terms of the Boolean variabléto indicate whether the first
Min Z = Z Z Yy +d x term (Y="False) or second tern¥ & True) applies. In this
Vke KVjeJy case, it is clear that the convex hull relaxation is tighter than
the big-M relaxation, despite the optimal valueMthaving
St.Bx <b
been choseny = 3).
Ajpvik < apyi Vje i, Vke K On the other hand, the size of the (CH) reformulation is
considerably larger than the size of the (BM) reformulation,
X = Z Vjk Vke K which leads to an increase in solution time required per itera-
Vje i tion atevery node, and furthermore, to an increase in the num-
vie < vl VieJVkeK ber of total iterations per node. Hence, in general, it is very

difficult to determine a priori when a given reformulation will
Z ik =1 Vke K be more effective than the other one in solving the problem
(Vecchietti, Lee, & Grossmann, 2003 herefore, it would

appear that a desirable objective is to develop a method for
Dy <d generating cutting planes from the (CH) relaxation in order to
strengthen the looser but smaller (BM) reformulation. In this
fashion, one takes advantage of the tighter (CH) reformula-
tion without incurring an increase in the number of variables
and a significant increase in the number of constraints in the

The new variables € R’} in (CH) are the disaggregated problem. Such an idea is proposed in the following section.
variables, while the parameteid; serve as their upper

bounds. The latter are usually chosen so as to match the up-
per bounds on the continuous variables R’,. Note that 3. Cutting plane method
(jk=0)= (vjx = 0), and thus thgth system of inequalities
in the kth disjunction is redundant. The basic idea of the proposed cutting plane method con-
In comparing the reformulations in (BM) and (CH), the sists in solving a sequence of relaxed big-M MILPs with cut-
following trade-offs can be observed. On the one hand, the ting planes that are successively generated from the convex
relaxed feasible region of the (CH) reformulation is at least as hull relaxation projected onto the,(y) space. More specifi-
tight, if not tighter, than that of the (BM) reformulation (see cally, the cutting planes are determined by solving an LP (or
Fig. 1). This is reflected in the lower bounds of the afore- QP) separation problem, whose feasible region corresponds
mentioned reformulations, where the lower bound of the re- to that of the convex hull relaxed reformulation. The sepa-
laxation of (CH) is equal to or greater than the lower bound ration problem has, as an objective, to find a point within
of the relaxation of problem (BM), as has been proven by the convex hull relaxed feasible region “closest” to the op-
Grossmann and Lee (2003)he tightness of the feasible re- timal solution point yielded by the relaxed big-M MILP. In
gion, and by extension, the quality of the lower bound, affects essence, the objective of the separation problem consists of
the number of nodes being examined within the framework finding a cutting plane that corresponds to the most violated
of a B&B algorithm. Thus a tighter feasible region, and by constraint of the convex hull that is projected onto the space
extension, a tighter lower bound, leads to a reduction in the of the original variables of the big-M MILP. A repeating se-
search space of a particular problem, which usually translatesquence of relaxed big-M MILPs (with cuts up to that point)
into faster solution times. The examplerig. lillustrates in and LP (or QP) separation problems yielding new cuts is iter-
the (x, y) space the convex hull and big-M relaxations of the atively solved until the optimal solution for the original MILP

VjeJi

x,veRY, yix {0, 1} VjeJr,Vke K
(CH)
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is found or until there is no improvement within a specified
tolerances, in which case one switches to a B&B method for
solving the resulting big-M MILP with all the cutting planes
that have been generated.

It is interesting to note that the proposed cuts, though re-
lated to a certain extent to some of the work done on lift-and-
project cutting planes originally developed Bglas, Ceria,
and Cornuejol$1993), are different in important ways from
the latter. The major distinction lies in the derivation and gen-
eration of our cuts, which are crucially based on a GDP for-
mulation, as opposed to a 0—1 MIP formulation, as in the case
of lift-and-project cuts. Furthermore, if we were to contex-
tualize their work within a GDP framework, lift-and-project

cuts would be generated through a sequential convexification

procedure that would obtain by taking the convex hull of one
disjunction at a time, as opposed to our proposed method

N.W. Sawaya, L.E. Grossmann / Computers and Chemical Engineering 29 (2005) 1891-1913

the Euclidean norm,¢(z) = ||z — zP™||2 = [(z — me)T

(z — 2P™]¥2,

or the infinity normeg(z) = ||z — 2°™||c = Max|z; — zP™|

can be used. If either the 1-norm or the-norm is used,
then the separation problem is an LP; otherwise, using the
Euclidean norm yields a QP.

3.2. Derivation of cutting planes

In this section, we present the derivation of the proposed
cutting planes that are obtained from the separation problem
(SEP). The proofs of the propositions presented can be found
in Appendix A

The first proposition formalizes the observatiorfig. 1
that the feasible region of the separation problem (SEP),
which corresponds to that of the convex hull reformulation,

which generates cuts based on a formulation that considerqs contained within the feasible region of problem (BM)

the intersection of the convex hulls of every disjunction. Thus,
the elementary closure resulting from our cuts is not equiva-
lent to that of lift-and-project cuts, since the latter’s closure
corresponds to the true convex hull of the original problem,

as opposed to our case, where the elementary closure cor

responds to the feasible region arising from the aforemen-
tioned strengthened formulation that considers all disjunc-
tions simultaneously. We plan on comparing our cuts, both
theoretically and computationally, to other cuts present in the
literature, including lift-and-project cuts, mixed-integer Go-
mory cuts and mixed-integer rounding cuts, amongst others
in a subsequent paper.

’

3.1. Separation problem

The general form of the separation problem (SEP) is as fol-
lows (seeStubbs & Mehrotra, 1999/ecchietti et al., 2008

Min ¢(z) = ||z — z2°™)|
st.Bx<b

Ajvik < ajyjk Vie i, Vke K
X = Z Vijk Vke K
VjeJi
vik < yixUijk VjeJi, Vke K (SEP)
Z yie=1 Vke K
Vje i
Dy <d

x,veRL, z=[x,y]eR}
xR ek 0 <y <1 Vje, VkeK

The objective functionp(z) corresponds to determining
the pointz e R x R;mxw within the convex hull relax-
ation “closest” to the point®™, which corresponds to the
optimal solution of the relaxed big-M MILP. In order to rep-
resent distance in the functigfz),

the 1-normg(z) = [1z — M1 = 37 27 — 2P,

Proposition 1. Let (FR-SEP) be the feasible region of the
separation problem (SEP) in the (z, v) space, and let (FRP-
SEP) represent the projection of (FR-SEP) onto the z-space.

Then, (FRP-SEP)C(FR-BM), where (FR-BM) represents the

feasible region of (BM) in the z-space. Furthermore, (FRP-

SEP) is a convex set.

The second proposition provides the general form of the
valid inequality that corresponds to the cutting plane that is
determined from the separation problem (SEP).

Proposition 2. Let z°™ be the optimal solution of (BM) and
25%Pbe an optimal solution to (SEP). If :P™¢(FRP-SEP), then
3¢ such that €' (z — 2%%P) > 0 is a valid linear inequality in z
that cuts away 2P™, and such that & is a subgradient of ¢(z)
at 75P, where ¢(z) corresponds to the objective function of

(SEP).

Using the example previously shown kig. 1, Fig. 2
demonstrates how the proposedigut — z¢P) > 0 cuts away
M and slices off part of the feasible region of problem (BM),
thus strengthening the formulation. Also, note that the cut
generated in this case corresponds to a facet of the feasible
region of problem (SEP).

The third proposition shows that the subgradient of a dif-
ferentiable function at a specific point corresponds to the gra-
dient of the function at that same point.

Proposition 3. Let (FRP-SEP)CS, where S is a convex set.
If ¢ : S — R is differentiable over its entire domain, then
the collection of subgradients of ¢ at 7°°P is the singleton
set 35Pp = (£5ERESEP = V (25}, which corresponds to the

gradient of ¢ at 75P.

The last two propositions provide the specific expressions
for the subgradient in the inequalitye " (z — z5¢P) > 0 for the
Euclidean ando-norms, respectively. It should be noted that



N.W. Sawaya, L.E. Grossmann / Computers and Chemical Engineering 29 (2005) 1891-1913

yll

(BM) Relaxed
Feasible Region

1895

(SEP)

Relaxed Projected Feasible Region

Cutting Plane
E(z-2"")20

L,

(BM) Strengthened
Relaxed Feasible Region

Fig. 2. Graphical representation Bfoposition 2

for the case of the 1-norm, the treatment is entirely similar as

the co-norm.

Proposition 4. Let (FRP-SEP)CS, where S is a convex
set. If ¢ : S — R is defined as ¢(z) = ||z — zbm||§, then the
collection of subgradients of ¢ at 7°P is the singleton set
3sep¢ = {ésqusep: Z(Zsep_ me)}'

Proposition 5. Let (FRP-SEP)CS, where S is a convex set.
If¢ : S — Risdefined as ¢(z) = |1z — 2°™||oo, then the col-
lection of subgradients of ¢ at 5P is the set:

0°p = (6%°Rg™P = [P — u*)

where ,uie’) and ,uiep correspond to the optimal Lagrange
multipliers of constraints (1) and (2) respectively, in the fol-
lowing problem (SEP2):

Min  u

st u>z—2"™ VieM (1)
u>PM—z  VieM (2)
Rlz+R2v§r

(BM) Relaxed
Feasible Region

The cutting planes generated by the proposed method and
based ornPropositions 2, 4 and ban be used at the root
node of the branch and bound tree in order to strengthen the
corresponding relaxation of problem (BM). It is, of course,
generally not obvious which of the different norms pro-
vides the deepest cut, as this is usually problem depen-
dent. Furthermore, the depth of the cut will be affected,
particularly in the cases of the 1-norm and thenorm,
by the selection of a specific set of (non-unique) optimal
Lagrange multipliers, which is usually solver dependent.
The following example provides a geometrical interpretation
of the three different cuts when applied to the example in
Fig. 1

MaxZ = x — (c1 + ¢2)

Y —Y
st. |12<x<3|vVv|0<x<1
ca=1 c2=0

In Fig. 3 the cut generated when the Euclidean norm or
infinity norm is used corresponds to a facet of the convex

(SEP)
Relaxed Projected Feasible Region

Cutting Plane
E(z=-2"")20

L,

(BM) Strengthened
Relaxed Feasible Region

Fig. 3. Cutting plane generated when Euclidean or infinity norm are used in (SEP).
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(BM) Relaxed
Feasible Region

Relaxed Projected Feasible Region

(SEP,
) 4 Possible

Cutting Planes

Lbm
4

AT

(BM) Strengthened
Relaxed Feasible Region

Fig. 4. Cutting plane(s) generated when 1-norm is used in (SEP).

hull of the disjunction. However, iRig. 4, where the 1-norm

is used, there is an infinite set of cutting planes that can be

P = [, 500,

generated since the set of Lagrange multipliers corresponding ~ Min ¢(z) = ||z — 2°™"||

to the optimal solutionz>¢Pis not unique. Clearly then, the

“quality” and depth of the cut generated from our procedure
depends on the norm used in the separation problem. The

difference in quality and depth of the cuts resulting from

the use of different norms in the separation problem will be

examined in more detail and rigor in a subsequent paper.

3.3. Cutting plane algorithm

Given the propositions of the previous section, the steps

of the proposed algorithm are as follows:

(0) Specify a tolerance for the norm of the distance in the
separation problem (SEP). Set 0, wheren represents
the iteration index.

(1) Solve the continuous relaxation of (BM)termed
(RBM)", which corresponds to the following problem.
This yields the point®™” =[x, y]P™”.

Min Z = Z Z )/jkyjk—f-de

Vke KVje
St.Bx <b

Ajkx—aijMjk(l—yjk) VieJi,Yke K
Z yik=1 Vke K

Vje g

Dy <d

Mz -z =0 I1=12..n-1
xeR,0<yp <1 VjieJ,Vke K

z=[x,y]eRY x RZVkeK‘JH
(RBM)"

(2) Solve the separation problem (SEPwhich corre-
sponds to the following problem. This yields the point

st.Bx<b
Ajvik < ajeyik Vie i, VkeK
X = Z Vjk Vke K
VjeJk
Vik < YUk VjeJ,Vke K
> yr=1 Vk e K
Vje
Dy <d

x,veR}, z=[x,y] eR}
xR wek! M 0 <y <1 Vjed,VkeK
(SEPY

(@) If¢(z) = ||z — zP™|| < ¢, then stop, and proceed to
the LP-based branch-and-bound solution of problem
(BM)™ with all the added cutting planes.

(b) Else, generate cutting plag&’ (z —z5¢P*) >0, and
add to (RBMY. Setn=n+1,goto 1.

The effectiveness of the above algorithm is dependent on
the trade-off between the amount of time spent on the cut
generation procedure versus the amount of time “saved” in
the B&B tree relative to either the big-M formulation without
cuts, or to the convex hull formulation. In the former case,
these savings usually result from a tightening of the rela-
tively loose big-M feasible region, while in the latter case,
these savings result from the smaller number of variables
and constraints in the big-M plus cuts formulation. The cut
generation procedure involves solving a sequence of sepa-
ration problems (SEP)that are LPs or QPs, so it can be
expected that it will take a reasonable amount of time to
solve these problems in order to generate the proposed cuts.
Itis important to note that the feasible region of the strength-
ened big-M problem will be, at the very best, as tight as
that of the convex hull formulation, and thus, intuitively at
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least, lead us to believe that the cut generation procedureproblem, where a given set of small rectangles is packed into
is finite. In other words, no further cuts will be generated a strip of fixed widthW but unknown lengttL. The aim is
either when the optimal point of (RBMJies within the fea- to minimize the length of the strip while fitting all rectangles
sible region of (SEP) or when the feasible region of the without any overlap and without rotation. We propose the
strengthened big-M problem is exactly equivalent to that of following general linear GDP model for problem (SP-GDP):
(SEPY. A rigorous proof of the previous claim will be per- .

formed in a subsequent paper. The question that remains,'\/IIn It @
however, is whether these cuts are effective enough inslicingst. /r>x; +L; VieN (2)
off parts of the big-M feasible region that are superfluous.

This is examined in detail in the next section, and we apply vl

the above algorithm to three different problems that highlight J Y ] \
some of the major strengths and weaknesses of the proposed ¥ Li=x;

method. v4
Vv 4 Vi,jeN,i<j )
yij— Hj = Vi
4. Numerical results
xiSUBl‘—L,‘ VieN (4)

In this section, we present the results of the proposed
cutting plane algorithm on the strip-packing, retrofit plan- Hi <yi <W VieN (5)
ning and zero-wait job-shop scheduling problems. The strip-
packing problem is an example within a class of problems iz, x;, y; € Ri, YI%, Yl%, YS
suitably solved by the proposed method, while the last two
problems serve to highlight an important characteristic re-
garding the usefulness of the method, notably the degree of
tightness exhibited by the convex hull relaxation. The objective in this problem consists of minimizing the

We present results for the strip-packing problem using the length of the strig (1) and(2) by representing every rectangle
proposed method with all norms, although the discussion is by its coordinates in thex( y) space such that no overlap
mostly focused on results obtained using thgnity norm occurs between rectangles. Thus, every rectaigiehas
as the latter turned out to be the most efficient norm. This |engthL;, heightH;, and coordinates(, y;), where the point
observation also holds true for the retrofit planning and zero- of reference corresponds to the upper left corner of every
wait job-shop scheduling problems, thus, we only present rectangle. By constraining every pair of rectangigd where
and discuss results obtained using tyénity norm. All re- (i, jeN, i <j) such that no overlap occurs, we obtain a series
sults obtained using the proposed cutting plane method areof disjunctions with four disjuncts each, where each disjunct
discussed and compared with those obtained using the aforerepresents the position of rectangle relation to rectanglg
mentioned convex hull and big-M reformulations, where op- (3). Note that the-coordinate of every rectangle is bounded
timal values of the big-M parameters were used (i.e. equal to from above by the fixed width of the stri’ (5), and that
max, (A jxx — aj)). the upper bound/B;, which in a best case scenario would

All example problems were solved with GAM81poke, correspond to the optimal value &f is obtained using a
Kendrick, Meeraus, & Raman, 199@n a 2.8 GHz Pentium  bottom-left rectangle-placing heuristic and serves as an upper
IV PC (512 MB of RAM). The CPLEX solver (v. 8.1) was  bound for thex-coordinate of every rectang(d).
used for the infinity norm for all three problems and for We consider first a 12-rectangle instance of the strip-
all comparisons between reformulations with all MIP op- packing problem (SP-GDP) with the following ordered
tions turned off and with default options turned on, while the lengths and heights for every rectangle: (1, 10), (2, 9), (3,
CPLEX solver (v. 9.0) was used for the 1-norm and Euclidean 8), (4, 4), (5, 5), (9, 6), (7, 7), (6, 3), (5, 2), (12, 1), (3, 1),
norm. Note that the LP pre-solver was turned off during the (2, 3). The problem was transformed into an MIP model by
cut-generation procedure for reasons of computational effi- using both the big-M and convex hull reformulations that are
ciency. Finally, the cuts generated are added only at the rootgiven inAppendix B The problem sizes for both reformula-
node of the B&B tree. tions are listed ifTable 1 and the graphical solution to this

problem is presented ifig. 5.

Y;; € {True Falsg
Vi, jeN,i < j

4.1. Strip-packing problem

Table 1
Cutting and packing problems belong to a well-known Problem sizes for 12-rectangle strip-packing problem
family of combinatorial NP-hard optimization problems that T?ta' number T]f’ta' T‘Ubrlnber c’;‘,“mber of "
arise in numerous applications of computer science, indus- of constraints __ of variables iscrete variables
trial engineering, and operations managemeétiti,(1998). Convex hull 1663 1346 264
Big-M 343 290 264

One important problem in this family is the strip-packing
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12

A\

Optimal Length: 27

Fig. 5. Graphical solution for 12-rectangle strip-packing problem.

Table 2
Results for 12-rectangle strip-packing problesa-oorm, MIP options off)
Relaxation Optimal Gap (%) Total nodes Solution time for Total solution Number of nodes
solution in MIP cut generation (s) time? (s) per second

Convex hull 12 27 5%5 682464 0 12889 53052
Big-M 12 - - 54244296 0 >10800 50238
Big-M + 40 cuts 12 - - 41831856 24 >10800 38732
Big-M + 50 cuts 12 27 555 10289250 5 298633 344897
Big-M + 60 cuts 12 27 555 694596 6 19195 368896
Big-M + 70 cuts 12 27 555 320535 27 9761 343405
Big-M + 80 cuts 12 27 555 502727 88 15423 336609
Big-M + 87 cuts 12 27 555 72677 531 2751 327373

a Total solution time includes times for relaxed MIP(s) + LP(s) from separation problem + MIP.

We also solved the problem using the cutting plane method lem after 54 244 296 nodes. This is due to the tighter relaxed
with the infinity norm, and compared the resulting solutions feasible region of (CH) when compared to that of (BM),
to those from the convex hull and big-M reformulations in  which results in substantial savings in computational time
Tables 2 and 3We first examine the results with all MIP  (1286.39 s versus >10800s). Note however that the LP at
algorithmic options turned off (se&able 2. This is done every node of the (CH) B&B tree is about 10 times more ex-
in order to better gauge the effect of the proposed cuts onpensive to solve than that of the (BM) reformulation as seen
solution time and number of nodes examined during the B&B by the amount of nodes computed per second for both refor-
procedure. mulations (530.52 versus 5022.36). This is due to the larger

The optimal solution of the problem is 27. The lower number of variables and constraints presentin the (CH) refor-
bound obtained from the relaxation is equal to 12 for both mulation. After the addition of 50 cutting planes to the (BM)
(BM) and (CH) reformulations, but the problem was solved reformulation, we are able to solve the problem in less than
in 682 464 nodes using the (CH) reformulation, as opposedthe self-imposed limit of 3h (2986.33 s) while examining
to the big-M reformulation, which failed to solve the prob- 10289250 nodes in the B&B tree. Upon the successive ad-

Table 3
Results for 12-rectangle strip-packing problesa-form, default options on)
Relaxation Optimal Gap (%) Total nodes Solution time for Total solution Number of nodes
solution in MIP cut generation (s) time? (s) per second

Convex hull 12 - - 2887380 0 >10800 283
Big-M 12 27 55.55 73225 0 500 124110
Big-M + 40 cuts 12 27 55.55 13361 2 1221 136825
Big-M + 50 cuts 12 27 55.55 9008 i©3) 1101 113165
Big-M + 60 cuts 12 27 55.55 20247 .65 2061 119451
Big-M + 70 cuts 12 27 55.55 11405 i 1405 116615
Big-M + 80 cuts 12 27 55.55 10225 .88 1441 107292
Big-M + 87 cuts 12 27 55.55 6397 e 1112 110103

a Total solution time includes times for relaxed MIP(s) + LP(s) from separation problem + MIP.
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Table 4
Results for 12-rectangle strip-packing problem (1-norm, MIP options off)
Relaxation Optimal Gap (%) Total nodes Solution time for Total solution Number of nodes

solution in MIP cut generation (s) time? (s) per second
Convex hull 12 27 55.55 682464 0 1286.39 530.52
Big-M 12 - — 54244296 0 >10800 5022.36
Big-M + 50 cuts 12 - - 17145216 6.0 >10800 1587.52
Big-M + 100 cuts 12 — - 7373700 12.0 >10800 682.75
Big-M + 200 cuts 12 - - 253800 22.0 >10800 235

a Total solution time includes times for relaxed MIP(s) + LP(s) from separation problem + MIP.

dition of more cuts, the number of nodes examined is further used. Note that while the use of the 1-norm in problem (SEP)
reduced, which results in a further decrease in total solution still results in an LP, the use of the Euclidean norm results in
time. Finally, with 87 cuts, the proposed cutting plane algo- a QP. Also, only results obtained with all MIP options turned
rithm solves this problem in 72 677 nodes. Although the re- off are presented.
sulting strengthened MIP is still not as tight as the (CH) MIP, Using the 1-norm or the Euclidean norm for the objec-
it has much fewer variables. This compromise is key to the tive function in the separation problem does not yield good
success of the proposed algorithm and results in improved to-results as CPLEX failed to solve the problem to optimality.
tal computational times (27.51 s versus 1286.39 s). Note thatFurthermore, and in both cases, the cut generation routine
the time required to generate the 87 cutting planes was onlywas terminated after the self-imposed limit of 200 cuts with-
5.31s. out having reduced the objective function value to zero in
We now examine the results with default options turned the separation problem. The problem in both cases is that
on. This is done in order to demonstrate the effectiveness ofthe cuts generated are weak and do not tighten the feasible
the proposed cuts in aiding the branch-and-cut routine of aregion enough. Moreover, upon the addition of more cuts in
powerful MIP solver like CPLEX (se@able 3. the hope of strengthening the formulation and improving so-
We see a noticeable improvement in the number of nodeslution times, we observe the same phenomenon that occurred
examined and solution times upon the addition of the cuts. when we attempted to solve the convex hull formulation with
After 87 cuts, the problem was solved in 6397 nodes and default MIP options on. In other words, the addition of more
11.12 s compared to 73 225 nodes and 59.00 s for the big-M.of these “poor” cuts negatively affects the computational per-
However, CPLEX failed to solve the CH reformulation in  formance of the algorithm because of numerical difficulties.
less than 3 h, which is odd considering that one would expectIn light of these observations in this case and other cases,
an improvement in nodes examined and solution times whenwe will only report results using the infinity norm for the
default options are turned on. This phenomenon could haveremainder of this paper.
been caused by many factors, although we believe that poor Let us now consider a 21-rectangle instance of the strip-
CPLEX-generated cuts are the most likely culprits. As more packing problem (SP-GDP) with the following ordered
CPLEX cuts are generated, they tend to become shallowerlengths and heights for every rectangle: (1, 5), (2, 2), (3, 2),
and to flatten out, and upon their addition to the matrix of the (2, 7), (5, 1), (6, 6), (5, 10), (4, 3), (3, 2), (9, 5), (4, 2), (1,
problem, create dependent rows and affect the conditioning1), (2, 3), (3, 1), (2, 6), (2, 2), (1, 2), (2, 1), (2, 1), (1, 1), (1,
number of the matrix thus resulting in numerical difficulties. 1). This was the largest instance of the strip-packing problem
This hypothesis will be investigated in future work. Nonethe- that was solvable in less than 3 h. The problem sizes for the
less, the results demonstrate the effectiveness of the cutting BM) and (CH) reformulations are listed ifable § and we
plane algorithm when it is considered that CPLEX (with op- present the graphical solution to this problentig. 6.
tions turned on) may have difficulties in solving this problem The results using the proposed cutting plane method are
when posed as a convex hull reformulated MIP. presented only with default MIP options turned on (see
We now briefly present and discuss the results when the 1-Table 7 as CPLEX failed to solve this problem when op-
norm (se€Table 4 and the Euclidean norm (sé&able 5 are tions were turned off.

Table 5
Results for 12-rectangle strip-packing problem (2-norm, MIP options off)
Relaxation Optimal Gap (%) Total nodes Solution time for Total solution Number of nodes
solution in MIP cut generation (s) time? (s) per second
Convex hull 12 27 55.55 682464 0 1286 53052
Big-M 12 - - 54244296 0 >10800 5028
Big-M + 50 cuts 12 - - 15932676 - >10800 14793
Big-M + 100 cuts 12 - - 7604280 » >10800 704
Big-M + 200 cuts 12 - - 3482008 B >10800 3221

a Total solution time includes times for relaxed MIP(s) + QP(s) from separation problem + MIP.
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Fig. 6. Graphical solution for 21-rectangle strip-packing problem.

Table 6 available space, piping and operating conditions, and also
Problem sizes for 21-rectangle strip-packing problem because of the many modification possibilities which causes
Total number  Total number  Number of the problem to greatly grow in size. For a general review
of constraints __ of variables discrete variables  of retrofit issues, see work bgrossmann, Westerberg, and
Convex hull 5272 4244 840 Biegler(1987). In this paper, we assume that an existing pro-
Big-M 1072 884 840

cess network is given where each process can possibly be
retrofitted for improvements such as higher yield, increased

The optimal solution of the problem is 24. Although the Capacity, and reduced energy consumption. Given limited
lower bound obtained from the relaxation is equal to 9 for capital investments to make process improvements and cost
the (BM) and to 9.1786 for the (CH) reformulations, CPLEX estimations over a given time horizon, the problem consists
failed to solve the latter after 968 652 nodes (same reasoning®f identifying those modifications that yield the highest eco-
as previously) while solving the former in 1416 137 nodes. nomic improvementin terms of economic potential, which is
Upon the addition of the cuts, we obtain noticeable improve- defined as the income from product sales minus the cost of
ments in the number of nodes examined and total solution "@W materials, energy and process modifications. We propose
time. The problem is solved in 32 185 nodes and 91.4 s uponthe following linear model for this problem (RP-GDP), which
the addition of 62 cutting planes compared to 1 416 137 nodes!S & modification of work done byackson and Grossmann
and 4093.39 s when no cuts are added. This again demon{(2002)

strates the efficiency of the proposed cutting plane algorithm , ,. r "
in solving different instances of the strip-packing problem. Min Z Z PRmf; Z Z PRmf;

Vi €T Vs € Sprod VteT Vs e Sraw
4.2. Retrofit planning problem - Z PRSTqst— Z PRWTqwt
VteT VieT

T_he retroﬂtplannlng problem essentially consistsinthere- 3 Z Z fel, — Z od ©)
design of existing plantslackson & Grossmann, 200Pro- P
cesses can be retrofitted to achieve goals such as increasing /€7 VP€P vieT
throughput, reducing energy consumption, improving yields
and reducing waste generation. Work in retrofit design hasst. mf! = f/MW, VseS,VreT (7)
been limited because of the difficulties in dealing with the . .
many constraints of a pre-existing operation, such as layout,”.fs = DEM;  ¥s € Sprog, V1 € T (8)
Table 7
Results for 21-rectangle strip-packing problem (default options on)

Relaxation Optimal Gap (%) Total nodes in MIP Solution time for ~ Total solution Number of nodes
solution cut generation (s) time? (s) per second

Convex hull 91786 - - 968652 0 >10800 4]
Big-M 9 24 62.5 1416137 0 40939 34595
Big-M+20 cuts 91786 24 61.75 306029 B 91779 33480
Big-M+40cuts 91786 24 61.75 547828 48 106351 51876
Big-M+60 cuts 91786 24 61.75 28611 122 7944 41932
Big-M+62cuts 91786 24 61.75 32185 199 914 40327

a Total solution time includes times for relaxed MIP(s) + LP(s) from separation problem + MIP.
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The objective functior{6) includes revenues from sales,
costs of raw material, utility costs, as well as capital costs
fe}, and energy costs eaver time periodse7. Equation(7)
represents an equivalence relation between mass and molar
flow rates, equation@) and(9) ensure that mass flow rates
for products and raw materials are respectively bounded by
demand and supply parameters, and equatibdsand(11)
serve as mass balances around ned@éand processgs:=P,
respectively. The first set of disjunctiofE2) selects one of
the operating modes for the retrofit projeeeM, for ev-
ery procespeP, in every time periodeT, where projects
m include modifying either nothing at alk{yeM), process
conversion i€ M), capacity fuzeM) or both (ngeM). The
second set of disjunctior{$3) enforces the cost of the afore-
mentioned modifications, where capital costs are set to zero
(fcgJ = 0) if nothing is modified. Equationfl4) and (15)
serve as equivalence relations between energy and mass flow
rate variables, while disjunction(§)6) select the appropri-
ate operating moda’f/ Vj € J so thatX’ corresponds to no
energy integration and’, enforces the transshipment equa-
tions Biegler, Grossmann, & Westerberg, 199Through
Boolean variable¥, the set of disjunctionél 7) enforce the
cost associated with energy reduction, where these costs are
set to zero (€& 0) if nothing is modified V; = True). Equa-
tion (18)limits the expenses for the retrofit project. Equations
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(21) and(22), (25) and(26) are logical conditions that con-  Table8 _ _
nect, respectively, disjunctiorf2) to (13) and disjunctions ~ Problem sizes for 10-process retrofit planning problem

(16) to (17) with each other, and equatiofi$9) and (20), Total number  Total number  Number of -
(23) and (24) impose logical conditions between disjuncts of constraints  of variables discrete variables
in every set of corresponding disjunctions. Essentially, these Convex hull 2505 1417 320

1957 697 320

logical equations constrain the problem such that costs assoBig-M
ciated with conversion and/or capacity are enforced exactly
once for every procegseP in every time periodeT, and
such that costs associated with energy reduction are enforcedhe convex hull and big-M reformulationsables 9 and 10
exactly once per time periae 7. We first examine the results with all MIP algorithmic options
We consider irFig. 7a 10 process instance of the retrofit  turned off (serable 9.
planning problem (RP-GDP) that involves the production of ~ The optimal solution of the problem is US$ 7 868 786.32.
products (G, H, I, J, K, L, M) from raw materials (A, B, C, The upper bound obtained from the relaxation is equal to
D, E). US$ 11743915.93 for the (BM) reformulation and US$
We use a 1-year planning horizon of four time periods each 7 868 786.32 for the (CH) reformulation, and the problem
consisting of 3 months. Modifications for increased conver- was solved in 1607 486 nodes using the (BM) reformula-
sion and capacity only are considered, and black-box (in- tion, as opposed to the (CH) reformulation, which required
put/output) models are used for each process. We do not in-only 2155 nodes. Clearly, the (CH) feasible region is tighter
clude explicit data for this problem because of its size. The than that of the big-M, which results in large savings in com-
problem was transformed into an MIP model by using both putational time (5.8 s versus 1913.67 s). After the addition of
the big-M and convex hull reformulations givenAppendix 40 cutting planes to the (BM) reformulation, we are able to

C. Problem sizes for both reformulations are listedable § reduce the relaxation gap by nearly 40% and solve the prob-
while the graphical solution to this problem is presented in lem in 656.15 s while examining 403 463 nodes in the B&B
Fig. 8 tree. Upon the successive addition of more cuts, the number

We solved this problem using the proposed cutting plane of nodes examined is further reduced, which results in a fur-
algorithm, and compared the resulting solutions to those from ther decrease in total solution time. Finally, 196 cuts were
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Fig. 7. Ten process retrofit planning problem flowsheet.
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Fig. 8. Graphical solution for 10-process retrofit planning problem.

Table 9
Results for 10-process retrofit planning problem (MIP options off)

Relaxation Optimal Gap (%) Total nodes Solution time for Total solution Number of nodes

solution in MIP cut generation (s) time? (s) per second

Convex hull 78687882 7310873.99 B3 2155 0 58 371.55
Big-M 1174391593 7310873.99 664 1607486 0 19187 840.00
Big-M + 40 cuts 89751847 7310873.99 226 403463 % 65615 620.18
Big-M + 80 cuts 811010B7 7310873.99 103 59601 112 1349 481.81
Big-M + 120 cuts 79307146 7310873.99 a8 46249 168 10796 507.33
Big-M + 160 cuts 78884432 7310873.99 BO 15280 22 6873 329.80
Big-M + 196 cuts 78687882 7310873.99 B3 13669 2744 603 415.97

a Total solution time includes times for relaxed MIP(s) + LP(s) from separation problem + MIP.

generated from the proposed cutting plane algorithm (requir- lation with the addition of cutting planes. The results when
ing 27.44 s) and the problem was solved to optimality in a default MIP options are turned on present similar trends as
total of 60.3 s while examining only 13 669 nodes. Further- previously discussed and are showTable 10

more, upon the addition of all cuts generated, the relaxation
gap was reduced to 7.63%, identical to that of the (CH) relax-
ation. Although this demonstrates the efficiency of the cuts,
and allows the problem to be solved in much less time than
without cuts (60.3 s versus 1913.67 s), the solution time re-
quired by the (CH) reformulation is less still (5.8s). This is
due to the extremely tight region generated by the (CH) re-
formulation, which justifies the additional variables incurred
by the reformulation and allows the problem to be solved
in faster times than our method. This leads us to believe that
classes of problems with extremely tight (CH) reformulations
are solved more efficiently as (CH) MIPs through traditional
B&B solvers without requiring the additional cut generation
technique that we have developed. On the other hand, the

4.3. Zero-wait job-shop scheduling problem

Consider a job-shop scheduling problem where a set of
jobsiel must be processed sequentially on a set of consecu-
tive stagegeJ, where all jobs can be sequenced on a subset
of stagegeJ(i). Furthermore, zero-wait transfer is assumed
between stages, and the objective is to obtain a schedule that
minimizes the makespan, ms. The following model (JS-GDP)
from Raman and Grossmann (1994 proposed:

Min  ms 27)

example shows very good improvement of the big-M formu- St-MS=fi + Y. TAU; Viel (28)
VjeJ(i)
Table 10
Results for 10-process retrofit planning problem (default options on)
Relaxation Optimal Gap (%) Total nodes Solution time for Total solution Number of nodes
solution in MIP cut generation (s) time? (s) per second
Convex hull 78687882 7310873.99 B3 35 0 0578 6055
Big-M 1174391593 7310873.99 664 400612 0 5184 77242
Big-M + 40 cuts 897518467 7310873.99 2726 326864 <9) 5914 55797
Big-M + 80 cuts 81101087 7310873.99 103 37464 12 9504 44685
Big-M + 120 cuts 79307146 7310873.99 48 7695 168 3841 35608
Big-M + 160 cuts 78884432 7310873.99 B 3391 224 336 30276
Big-M + 196 cuts 78687882 7310873.99 B3 1857 2744 3589 21976

a Total solution time includes times for relaxed MIP(s) + LP(s) from separation problem + MIP.
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Fig. 9. Graphical solution for 9-job/8-stage zero-wait job-shop scheduling problem.
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Equationg27) and(28) correspond to the objective func-
tion and aim to minimize the makespan ms, wheiis the
start time of joki and TAU; is the processing time of jatin

Table 11
Problem sizes for 9-job/8-stage zero-wait job-shop scheduling problem

Total number Total number Number of

of constraints of variables discrete variables
Convex hull 681 226 72
Big-M 465 82 72

We consider aninstance of the zero-wait job-shop schedul-
ing problem with 9-jobs and 8-stages. We do not include
explicit data for this problem because of its size. The prob-
lem was transformed into an MIP model by using both the
big-M and convex hull reformulations given Appendix D
The problem sizes for both reformulations are presented in
Table 11 while the graphical solution to this problem is pre-
sented irFig. 9.

The problem was solved with the proposed cutting plane
algorithm and compared with the results from the convex

stagg. Equation(29) ensures that no clash between jobs oc- hull and big-M reformulations iTables 12 and 13MVe first
curs at any stage at the same time, where for each pair of jobsexamine the results with all MIP algorithmic options turned

i, k, the stages with potential clashes @ye={J(i)NJ(k)}.

off (seeTable 12.

Table 12
Results for 10-job/8-stage job-shop scheduling problem (MIP options off)
Relaxation Optimal Gap (%) Total nodes Solution time for Total solution Number of nodes
solution in MIP cut generation (s) time? (s) per second
Convex hull 3525 66 4659 27402 0 123 2271781
Big-M 33 66 500 37260 0 “mr 498795
Big-M + 10 cuts 3525 66 4659 45970 6 1043 461083
Big-M + 20 cuts 3525 66 4659 38153 2 917 462461
Big-M + 30 cuts 3525 66 4659 25547 138 701 46197

a Total solution time includes times for relaxed MIP(s) + LP(s) from separation problem + MIP.

Table 13
Results for 10-job/8-stage job-shop scheduling problem (default options on)
Relaxation Optimal Gap (%) Total nodes Solution time for Total solution Number of nodes
solution in MIP cut generation (s) time? (s) per second
Convex hull 3525 66 4659 58599 0 384 15284
Big-M 33 66 500 9757 0 175 557543
Big-M + 10 cuts 3525 66 4659 10900 046 255 520784
Big-M + 20 cuts 3525 66 4659 6040 092 205 536888
Big-M + 30 cuts 3525 66 4659 5562 138 244 524717

a Total solution time includes times for relaxed MIP(s) + LP(s) from separation problem + MIP.
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The optimal solution of the problem is 66. The lower the literature and to extend the work to solution methods for
bound obtained from the relaxation is equal to 33 for the convex non-linear GDP problems.

(BM) reformulation and 35.25 for the (CH) reformulation,
and the problem was solved in 37 260 nodes using the (BM)

reformulation, as opposed to the (CH) reformulation, which Acknowledgement

required 27 402 nodes. It is clear that the (CH) feasible re-
gion is not much tighter than that of the (BM) as seen from
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the poor relaxation value and the number of nodes exam-cial support from the National Science Foundation under
ined in the B&B tree. This causes the solution time of (CH) Grant ACI-0121497.

to be larger than that of (BM) due to the greater number of
variables and constraints in the formulation (12.03 s versus
7.47 s). Furthermore, one can conjecture that since the (CH)
feasible region is not much tighter than that of the (BM), the

Appendix A. Proofs of propositions

effect that the cuts will have on overall solution times and Proof of Proposition 1.

number of nodes examined will be minimal. In fact, after
the addition of 30 cutting planes to the (BM) reformulation,
we are able to solve the problem in 7.01 s while examining
25547 nodes in the B&B tree, only slight improvements on
the results obtained using the (BM) reformulation. This leads
us to believe that classes of problems with extremely loose
(CH) reformulations are solved efficiently enough as (BM)
MIPs through traditional B&B solvers. The proposed cut-
ting plane algorithm does not improve solution times for this

(1) (FR-SEP)C(FR-BM): SeeGrossmann and Lee (2003)

Proposition 4

(2) (FRP-SEP) is convex: FromCeria and Soares (1998nd

Grossmann and Lee (2003)e know that (FR-SEP) is

a convex set. Thus, since (FRP-SEP) is the projection
of (FR-SEP) from the (zy) space onto the space, and
projection preserves convexity, then (FRP-SEP) is also
convex. U

class of problems since the amount of time required to gen- p.oof of Proposition 2.

erate the cuts does not justify the (loose) tightening the cuts

provide. The results when default MIP options are turned on (1) Let¢ : R" — R be defined ag|z —"™||. Then¢ is a

present similar trends as previously discussed and are shown

in Table 13(note once again, as in the case of the strip-
packing problem, the poor results obtained using the (CH)
reformulation).

5. Conclusion

We have presented in this paper a cutting plane method that
adds cuts generated from a separation problem to a big-M re-
formulation of a linear GDP problem. We have rigorously
derived the cuts, and applied the method to the strip-packing,
retrofit planning and zero-wait job-shop scheduling prob-

lems. The results demonstrate the efficiency of the proposed(2)

method for a class of problems where the convex hull relax-
ation is tighter than that of the big-M, but not tight enough to
justify the additional variables required by the (CH) reformu-
lation. An example within that class is the strip-packing prob-
lem where excellent results were obtained. Furthermore, we
have also highlighted some of the drawbacks of the method
regarding other classes of problems which include the retrofit
planning and zero-wait job-shop scheduling problems, where
the convex hull relaxation was either too tight or too loose
respectively.

We intend to examine in the future different methods that
could improve the algorithm, specifically as pertaining to the

convex function for the 1, 2 ando norms over all its
domain. Also, fromProposition 1we know that (FRP-
SEP) is a convex set. Furthermore, €€ v5P) be the
optimal solution of (SEP). Clearly, from the properties of
projection z5¢Pwould be the optimal solution of (SEP1),
where (SEP1) is as follows:

Min  ¢(z) = |lz — z2°™|
st. ze(FRP-SEP)

From Theorem 3.4.3 iBazarra and Shetty (1979
7°®Pis an optimal solution to (SEP1), thenhas a sub-
gradientt atz%*Psuch thatT(z — 5% >0 Vze(FRP-
SEP).

FromProposition 1we know that (FR-SER)(FR-BM).

In the case wheré™e(FRP-SEP), obviously no cut can
be generated. Otherwis@™¢(FRP-SEP) and we show
that the above inequality cuts aff™. From (1) we know
thatT(z — 259 >0 Vze (FRP-SEP). Furthermorg,

is a subgradient op(z) atz3¢P. By definition of subgra-
dient Nemhauser & Wolsey, 199%or convex¢(z), we
have:

P(z) — p(z%%M) > £T(z — 2%°) Vz e (FR-SEP)

& HZ _ me” _ ||Zsep_ meH > §T(Z _ ZSGF)
vz € (FR-SEP)

judicious selection of those Lagrange multipliers (for the in- if z=z"™, then

finity norm) that generate the “best” cuts for our specific
problem. We also intend to compare the proposed cuts, both
theoretically and computationally, to those already presentin

||me _ me|| _ ||Zsep_ me|| > ST(me _ Zsep)

N gT(me o Zser’ < _”Zsep_ me” <0
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Thus,z°™ does not satisfy’ (z — 59 > 0 and is therefore
cut off by the inequality. [

Proof of Proposition 3. If ¢ isdifferentiable oves, thengis
differentiable at>®P. It follows from Lemma 3.3.2 ilBazarra
and Shetty (197%hat the only element of the subdifferential

of pis{vep(z**P}. O

Proof of Proposition 4. If ¢ is defined asp(z) = ||z —
zbml|§, theng is differentiable and fronProposition 3 the
collection of subgradients af at z5¢P is the singleton set
{ve(z°®P}. Thus,

H(5P) = (5P — me)T(Zsep_ me) and

V¢(Zse;) — Z(Zsep_ me) 0

Proof of Proposition 5. Let ¢:S — R be defined as
(@) =11z— M| in (SEP). Then (SEP) can be rewritten
as:

Min

u
st. >z =7 VieM
deE s (A1)
u>z; ' —z; vieM
(FR-SEP)

From Proposition 1 we know that (FR-SEP) is convex.
Furthermore, all the constraints in (FR-SEP) are linear. Thus,
(FR-SEP) corresponds to a polytope in thef space, and
matricesRl, R? with dimensions: x (n x 3" < g |Jkl), m x
n, respectively, and vectere R™ such that (FR-SER {(z,
v)|R'z+R?v <r}. Note that the non-negativity constraints
fozr z andv are taken into account in the constructionrdf
R-.

We can thus writ€A.1) as:

Min
s.t.

u

bm  vieM
) (A.2)
-z VieM

Rz + R?y <r

U=z —7z

uzzlbm

The appropriate Lagrangean function(éf.2) is as fol-
lows:

L=u+ ) pis—gm—u)+ Y i@ =z —u)
ieM ieM
+p"(RYz 4+ R%v — 1)
p

and itis implied at{>eP, vSeP, 4R that multipliersu S, 1°F,
andpS¢Pexist such that:

oL

a7(Zsep’ VSeP S — 0 = 1 — Z Hit — Z wi—-=0=
! i€ MSeP i € Msep

VZL(Zsep, pSeP 58N = 0 = [y — -]+ RlTpsepz 0

VyL(z5%P, v°P, u%%F) = 0 = R?Tp P =0
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Now let us define the following matrii with columnsh;

asH =[I| — I] and the following vectop asu = Ha

We claim that if¢ = Hu, then the existence of a vector

sep ‘
user= | Mo | = Zf* Vi € M5%Pin (A.3)is equivalent
— 11—

to the existence of a vectg®Pin the set:

35Pp = (£5€RESPe .C‘?V”Vphi} (A.4)
i€ Nse

such that
£+ RlTpsep: 0

R2T psep -0

psep > 0

where(A.4) is the subdifferential ap, £5¢Pis a subgradient of
#(z%%) and NS®P= (i : |z; — zP™|is maximized, according
to Section 14.1 and Lemma 14.2.2Rtetcher (1987)

In essence, we are claiming thatin order to obtain a subgra-
dient vectorgSePof ¢(z5P) in (A.4), one needs only to obtain
a set of Lagrange multipliergS®Pfrom (A.3) (thus, the exis-
tence of one is equivalent to the existence of the other). We
prove the claim as follows.

From(A.4), we have,

Sep; — [gSep sep .
0> = (£>5>Pe cony hi)
such that

€+R1Tpsep= 0

R2Tpsep: 0

IOSepZ 0

< Esep= Z a;h; with Z o =1,
i€ NSepP i e Nsep

a; > 0fromthe convex hull definition
such that

£+ RlTpsep: 0

R2Tpsep= 0
> (uis +pin)=1
i € Msep

(A.3)

w7, p%P> 0 Vie M3, whereMS®P = activeM = {i|(u = z; — 2™ V (u = 2™ — z;)Vi € M}
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05 > 0

sep
ot
N Esep: SeR,sep [Iseﬁ _ Isep] [asep]

- [asep ase;ﬂ
such that
Z aip +ai- =1,a5P>0
i € Nsep
§+ RTp>P=0 (A.5)
RZTpsep =0
psepz 0

If& = Hu & &=[1| - 1] [Z*] = [p4 — -]

then
5P = [P — 1N and & =[uir — -] Vie NP

but from (A.5) we know thatsseP = [a5P — «**H,s0 0= 1t
and(A.5) becomes:
59— [ i
st > mip+mi-=Lpi=0
i€ Nsep
[ur — ]+ R pSP=0 (A.6)
RZTpsep =0
pSeP> 0

Clearly, N5¢P= M5€P and we have thus recoverd4.3)

and shown that the form of the subgradient is indg€=
sep se
My — M ﬁ O

Appendix B. Reformulations of strip-packing
problem (SP-GDP)

B.1. Big-M reformulation of (SP-GDP)

Min It
st. lt>x;+L; VieN
xi+ L; <xj+BIGM (1— wl) Vi,jeN,i < j

Xj+Lj<xi+BIGMZ(1—w?) Vi, jeN,i<j
yi — H; = yj — BIGM3 (1 — w) Vi,jeN,i < j
— Hj >y —BIGM}(1 —w}) Vi, jeN,i<j

J
waé-:l

Vi,jeEN,i <
deD

xi <UB;—L; Vie N

H <y <W YieN

It, xi, yi € RY, wif; €40, 1) VYdeD,Vi, jeN,i < j

whereD={1, 2, 3, 4.

B.2. Convex hull reformulation of (SP-GDP)

Min [t
st. lt>x;i+L;

d
e = Z Viij

deD

d
Yk = E:wki/’
deD
1 1 1
Viii = Vi < —L,wij
2 2
Viij = "iz’/

IA

3
wf; — 0%y = Hiw)

4
Wi — ”] > H; u)

d _
sz’j—

deD

"zij = UBiijwd‘

wf; < UB w;

x; <UB; — L;

H <y =<W

It, xi, vi, vfij, wfij
eRY, w€{0,1)

whereD={1, 2, 3, 4.

2
—L]w~

VieN
Vi, jkeN,i< jjk=iVv]

vi»jvkENgi<j,k=i\/j

Vi,jeN,i<j
Vi,jeEN,i<j
Vi,jeN,i<j
Vi,jeN,i<j
Vi,jeN,i<j
VdeD,Vi, jkeN,i< jk=iVj
VdeD,Vi, jkeN,i< jk=iVj

VieN
VieN

VdeD,Vi, jkeN,i< jk=iVj
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Appendix C. Reformulations of retrofit planning problem (RP-GDP)

C.1. Big-M reformulation of (RP-GDP)

MinZ=>" 3" PRmfl—> > PR'mfl—> PRSTqst

t€T s € Sprod teT se Sraw teT

- Z PRWTqwt — Z Z Z FC,,, W,

teT teTmeMpeP
st. mf! = fIMW,
mf! > DEM}

mf; < SUF|
Yomfi=Y mf
s€E S"in 5 € Sngut
S omfl=>" mf! +unrct,
s€ S[’in s€ Sl’out
GMA!
5= Fou <GI\/IA,,,> ETA!, +BIGM!, (1 —y',)

. . GMA!
12 Jon\ Gun,,,

Pimt

) ETA!,, — BIGM’, (1 - y,,)

> mfl <CAP}, +BIGM!, (1-y,,)
Sesl’in
fc, <FC,, +BIGM! (1 —w',)
fe\, > FC,, —BIGM' (1 —w',)
gy = mfICP(TL, —Ti )

Souty Sing
gy = mfICR(TY, ~TL.)
gst <> > gl +BIGM] 3(1 - x))
ke K s € Scold
ast > Z Z qy — BIGM] 1(1 — x7)
ke K s e Scold
awt' < Z Z qy +BIGMY 1 (1 — 1)
k€K s € Shot
awt' > > > gl — BIGMY 4(1 - x9)
k €K s € Shot

re—ri —ash+awt < > g — > gl +BIGMY 5(1 - x5)

§ € Shot s € Scold

h— Ty SR OWE = Y gy — Y gy — BIGMY (1 — x)

s € Shot s € Scold

-y Yer,

Vse S, VteT
Vs e Sprod, VieT
Vs e Sraw, VteT

Vne N,VteT

Vpe PVteT

Vs€ Sy, YVPEP,YmeM,VteT

Vs€Spo, VPEP,YmeM,VteT

Vpe PYmeM,NteT

Vpe P,YmeM,VteT
Vpe PPYme M,VteT
Vse Scold, Vke K, VteT
Vs € Shot, Vke K, VteT

VieT

VieT

VieT

VieT

Vke K,VteT

Vke K,VteT
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gst < ) dst + BIGMj 5(1 — x5)
ke K

gst > > gst — BIGMY (1 — xb)
ke K

qWt' < g+ > qwti + BIGMS 5(1 — x5)
ke K

qwt' > rix" + > qwt; — BIGMS 5(1 — xb)
keK

ec < EFC'j + BIGM’j(l — vtj)
ec > EFC; — BIGM’(1 - v})

3 s +ed+ S PRmf + PRSTgst+ PRWT qwt < INV'

pepP 5 € Sraw

> V=1

meM

D whpn=1

meM

Zx?:l

jeJ

mfl, fl e R}L
1

hy UG, ) € B
‘Iskt € Ri
gst, qwt', ed e R1
ast,, qwt,, i e RL
Vos Why € (0, 1)
x, v €0, 1)

VteT

VieT

VieT

VieT

VjeJVteT
VjeJVteT

VieT

Vpe PVteT

Vpe PVYteT

VieT

VieT

Vpe PVt <te€T,Yme M\mq
Vpe PNt #t1eT,Vme M\m1
Vpe PVteT

Vpe P,NYteT,Ym e M\m1

Vi<teT
Vi#teT
VteT

VieT

VseS,VteT

Vpe PVteT
VseS,Vke K,VteT
VieT

VkeK,VteT

Vpe PYteT,N5meM
VjeJ VteT
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C.2. Convex hull reformulation of (RP-GDP)

MinZ=>" > PRmfl-> > PRmfl—> PRSTqst— > PRWTqwt

t€T s € Sprod teT se Saw

=22 D FCuuhn -

teTmeMpeP

st. mf! = fIMW,

s

mf! > DEM}

mf; < SUF|
d.omfi= ) mf
SE€ Spin S € Spout
> omfl=>" mfl+unrct,
SE€Spin S € Spout
fst = Z Z Stm
meM
f;’lmt = Z Zf;’,m,m
meM
mfl =3 wmfl,
meM
fep=">_ fcpm
meM
gst = ) _ zast;
jeJ
awt' = > _ zqw;
jeJ
Ay = Z zqik,-
jelJ
o=
jelJ
ast = Z qu';q'
jeJ
awt, = > _ zawt
jelJ
ed =) zeq
jeJ
GMA!
fsm = 2 ppm <GMA;) ETA,,
> mfl, <CAP, ¥,
s€e Sl’in
zfel,, = FC,,wh,,

dly = mfCR(TY, —Th,,)

>y R

teT jelJ

teT

VseS,VteT
Vs e Sprod, VieT
Vs e Sraw, VieT

VneN,VteT

Vpe PVteT

Vs € Spo YPEPVIET

Vpe P VteT

Vs€Sp,,Ype P,VteT

Vpe PVteT

VieT

VieT

Vs e Sco|d @) Shot, Vk e K,VteT

Vke K,VteT

Vke K,VteT

Vke K,VteT

VteT

Vs€Spo YPEP,Yme M, VteT
Vpe PbYme M,VteT

Vpe PbYme M,VteT
VSESCokj, VkGK,VtGT

Vs € Shot, Vke K, VteT
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zgst = Z Z 2441 vteT

ke K s e Scold
awti = > Y gl VieT

k€ K s € Shot
Iy = Ui_1.2 — 20Sho + 2QWE, = Z G0 — Z 2G40 Vke K,VteT

s € Shot s € Scold

zqst, = Z zgst., vieT

keK
Wty = zrlg i+ > gty VieT

ke K
zec; = EFCyv, VjeJVteT
> fel,+ed+ > PRmf! + PRSTqgst+ PRWTqwt <INV VreT
pepP s € Sraw
zfl, < BND’mepm Vs €Sy VP EP,Yme M, NteT

2fp,m < BNDp ¥ Vpe PbYmeM,VteT
amfl, < BNDL,Y, Vse Sy, .VpeP.YmeM,VteT
zfc;,m < BND;m om Vpe P,Vme M, NteT
zqst; < BND'x/ VjeJVvteT
zqwt; < BNDx' VjeJ VteT,VteT
2qly; < BND x| Vs € Scold U Shot, Yk € K, Vje SVt T
zrkj<BND§q ’ VkeK,VjeJVteT
zgst; < BNDj;x’ VkeK,VjeJVteT
zqwt‘ <BND§{] l VkeK,VjeJNteT
zedjfBND;vﬁ VjeJVteT
> =1 VpePVieT
meM
> o, =1 VpeP,V1eT
meM
Zx; =1 VieT
jelJ
Zv’j =1 VteT
jeldJ
y;,mfy;m Vpe PVt <teT,Vme M\m
w;mfwzl Vpe PVt #teT,Vme M\m1



mfl, fleRL

b, unrct,, fc e RY
gy €RY

gst, qwt’, ed e R

ast, qwt,, i e R
amfly, 2ty € R

by mr Sty €RY

24y, €RY

zqst,, zgqwt,,, zed, e RT
zqst,,, zoqwt,,,, zrt, e R
Yoms W €10, 1}

x’j, US- €10, 1}
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VpePVieT

Vpe P,YNteT,Ym € M\m1

Vi<teT
Vi#teT

VieT

VieT

Vse§,VteT
Vpe P VteT
VseS,Vke K,VteT
VteT

VkeK,VteT
VseS,VYmeM,NteT
Vpe PbPYme M,VteT
VseS, Vke K, Vme M, NteT
VYme M,NteT

Vke K, Vme M,NteT
Vpe PbVYteT,YNmeM

VielVteT

Appendix D. Reformulations of zero-wait job-shop scheduling problem (JS-GDP)

D.1. Big-M reformulation of (JS-GDP)

Min ms
st. ms>1¢ + Z TAU,'/‘ Viel
je )
i+ Y TAUiw<ti+ Y TAUpy +BIGM(1—y}) VjeCu.Vikeli<k
m e J(i) m e J(k)
m<j m<j
i+ Y TAUmm <ti+ »_ TAU, +BIGM(1—y3) VjeCu.Vikeli<k
m e J(k) m e J(i)
m<j m<j
> k=1 Vikeli<k
deD

ms ; Ry, y4 €10, 1}

Viikel,i <k VdeD
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D.2. Convex hull reformulation of (JS-GDP)
Min  ms
st. ms> ¢+ Z TAU;

jeJ)

In= Z Vi

deD
vk, — vk, < Z TAU,, — Z TAU; | vk
m € J(k) m e J(i)
m<j m<j
V2, — v, < Z TAU;,, — Z TAUgn | 2
m e J(k) m e J(i)
m<j m<j

d d.d
Unik = UBG ik

d k=1

deD

ms 1 eRY, y4 €{0, 1)
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