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Abstract

Raman and Grossmann [Raman, R., & Grossmann, I.E. (1994). Modeling and computational techniques for logic based integer programming.
Computers and Chemical Engineering, 18(7), 563–578] and Lee and Grossmann [Lee, S., & Grossmann, I.E. (2000). New algorithms for
nonlinear generalized disjunctive programming.Computers and Chemical Engineering, 24, 2125–2141] have developed a reformulation
of Generalized Disjunctive Programming (GDP) problems that is based on determining the convex hull of each disjunction. Although the
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relaxation of the reformulated problem using this method will often produce a significantly tighter lower bound when compared
traditional big-M reformulation, the limitation of this method is that the representation of the convex hull of every disjunction re
the introduction of new disaggregated variables and additional constraints that can greatly increase the size of the problem. I
circumvent this issue, a cutting plane method that can be applied to linear GDP problems is proposed in this paper. The met
on converting the GDP problem into an equivalent big-M reformulation that is successively strengthened by cuts generated fro
or QP separation problem. The sequence of problems is repeatedly solved, either until the optimal integer solution is found, or
there is no improvement within a specified tolerance, in which case one switches to a branch and bound method. The strip-packi
planning and zero-wait job-shop scheduling problems are presented as examples to illustrate the performance of the proposed c
method.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The most commonly used model in discrete/continuous
optimization corresponds to a Mixed Integer Non Linear
Program (MINLP). More recently, however, Generalized
Disjunctive Programming (GDP), which is a generaliza-
tion of disjunctive programming (Balas, 1998), has been
proposed byRaman and Grossmann (1994)as an alter-
native model to the MINLP problem (Grossmann, 2002;
Tawarmalani & Sahinidis, 2002). While the MINLP model
is based entirely on algebraic equations and inequalities,
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E-mail address: grossmann@cmu.edu (I.E. Grossmann).

the GDP model allows a combination of algebraic a
logical equations through disjunctions and logic propo
tions, which facilitates the representation of discrete d
sions. Furthermore,Lee and Grossmann (2000)have shown
that any GDP model can be converted into an equiva
MINLP reformulation. Currently, there are several alg
rithms and different approaches in the literature to tac
GDP problems (Grossmann, 2002), though some perform
inefficiently under certain conditions and for certain clas
of problems. We are thus interested in developing nove
gorithms and solution methods aimed at solving both
ear and non-linear GDP problems more efficiently, althou
we restrict ourselves exclusively to the linear case in
paper.

0098-1354/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
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Lee and Grossmann (2000)have proposed a reformula-
tion to solve convex non-linear GDP problems with multiple
disjunctions based on determining the convex hull of each
disjunction. Although the feasible region of the reformulated
problem does not correspond to the true convex hull of the
problem, we nonetheless have termed that reformulation in
this paper as the “convex hull” reformulation for the sake
of convenience. There exists other GDP to MINLP reformu-
lations of which the traditional big-M reformulation is the
most common.Grossmann and Lee (2003)have shown that
the feasible region of the relaxation resulting from the con-
vex hull reformulation projected onto the space of the big-M
reformulation is always as tight as, or tighter than that of the
big-M reformulation. The tightness of the relaxed feasible
region, which is usually reflected in the lower bound of the
problem (for minimization), is an important criterion when
solving the original Mixed Integer Program, as tighter re-
laxed feasible regions reduce the search space of the solution
algorithm. However, the representation of the convex hull re-
quires the introduction of new disaggregated variables and
additional constraints that can greatly increase the size of the
problem, thus limiting the effectiveness of the method.

In order to circumvent the aforementioned problem, we
present in this paper a cutting plane method that exploits the
potentially tighter convex hull relaxed feasible region without
the additional constraints and variables. This method can be
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Here,x is a vector of continuous variables bounded by
a vector of upper boundsU, Yjk are Boolean variables,
ck ∈R1+ are continuous variables that represent the cost as-
sociated with each disjunction andγ jk are fixed charges.
A disjunction k∈K is composed of several disjunctsj∈Jk,
each containing a set of linear equations and/or inequali-
ties (Ajkx ≤ ajk) representing the constraints of the problem,
connected together by the logical OR operator (∨) that en-
forces the contents of only one disjunct. Discrete decisions
are represented by the Boolean variablesYjk in terms of
disjunctionsk∈K and logic propositionsΩ(Y) that are as-
sumed to be expressed in Conjunctive Normal Form (CNF).
Thus, only the constraints inside disjunctj∈Jk, whereYjk is
true, are enforced; otherwise, the corresponding constraints
are not enforced. Finally,Bx ≤ b are common constraints
that must hold regardless of the discrete decisions that are
selected.

The linear GDP problem (LGDP) can be reformulated as
a Mixed Integer Program (MIP) in different ways, including
the two most common alternatives termed big-M (BM) and
convex hull reformulations (CH). In order to obtain the big-
M reformulation, problem LGDP is transformed into an MIP
by replacing the Boolean variablesYjk by binary variables
yjk and using big-M constraints. The logic constraintsΩ(Y)
are converted into linear inequalities (Williams, 1985), which
leads to the following reformulation (Raman & Grossmann,
1
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applied to linear GDP problems that correspond to MIP pro
lems, or else to master problems that are used in the solu
of non-linear GDP problems (Turkay & Grossmann, 1996).
We present the strip-packing, retrofit planning and zero-w
job-shop scheduling problems to illustrate the computatio
performance of the proposed method in solving these pr
lems and compare all results obtained to those using the c
vex hull and big-M reformulations.

2. Background

Consider the linear generalized disjunctive programmi
problem (LGDP), which is based on the work ofRaman and
Grossmann (1994)and is an extension of the work ofBalas
(1998):

Min Z =
∑

∀k ∈ K

ck + dTx

s.t. Bx ≤ b

∨
∀j ∈ Jk




Yjk

Ajkx ≤ ajk

ck = γjk


 ∀k ∈ K

Ω(Y ) = True

0 ≤ x ≤ U, ck ∈R1+, Yjk ∈ {True, False} ∀j ∈ Jk, ∀k ∈ K

(LGDP)
994):

Min Z =
∑

∀k ∈ K

∑
∀j ∈ Jk

γjkyjk + dTx

s.t. Bx ≤ b

Ajkx − ajk ≤ Mjk(1 − yjk) ∀j ∈ Jk, ∀k ∈ K∑
∀j ∈ Jk

yjk = 1 ∀k ∈ K

Dy ≤ d

x ∈Rn+, yjk ∈ {0, 1} ∀j ∈ Jk, ∀k ∈ K
(BM)

Here,Mjk are the “big-M” parameters that render thejth
ystem of inequalities in thekth disjunction redundant whe
jk = 0 (i.e.Yjk = False). The inequalitiesDy ≤ d can be sys
ematically derived from their logical CNF formΩ(Y) as dis-
ussed byWilliams (1985), Raman and Grossmann (199,
ndHooker (2000).

In order to obtain the convex hull reformulation (C
roblem LGDP is transformed into an MIP by repl

ng the Boolean variablesYjk by binary variablesyjk
nd disaggregating the continuous variablesx ∈Rn+ into
ew variablesν ∈Rn+. Using the convex hull constrain

or each disjunction (Balas, 1998; Raman & Grossman
994), this leads to the following reformulation (Raman &
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Fig. 1. Comparison between (BM) and (CH) relaxed feasible regions.

Grossmann, 1994):

Min Z =
∑

∀k ∈ K

∑
∀j ∈ Jk

γjkyjk + dTx

s.t. Bx ≤ b

Ajkνjk ≤ ajkyjk ∀j ∈ Jk, ∀k ∈ K

x =
∑

∀j ∈ Jk

νjk ∀k ∈ K

νjk ≤ yjkUjk ∀j ∈ Jk, ∀k ∈ K∑
∀j ∈ Jk

yjk = 1 ∀k ∈ K

Dy ≤ d

x, ν ∈Rn+, yjk ∈ {0, 1} ∀j ∈ Jk, ∀k ∈ K
(CH)

The new variablesν ∈Rn+ in (CH) are the disaggregated
variables, while the parametersUjk serve as their upper
bounds. The latter are usually chosen so as to match the up-
per bounds on the continuous variablesx ∈Rn+. Note that
(yjk = 0)⇒ (νjk = 0), and thus thejth system of inequalities
in thekth disjunction is redundant.
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single disjunction [0≤ x ≤ 1]∨[2 ≤ x ≤ 3] that is expressed in
terms of the Boolean variableY to indicate whether the first
term (Y = False) or second term (Y = True) applies. In this
case, it is clear that the convex hull relaxation is tighter than
the big-M relaxation, despite the optimal value ofM having
been chosen (M = 3).

On the other hand, the size of the (CH) reformulation is
considerably larger than the size of the (BM) reformulation,
which leads to an increase in solution time required per itera-
tion at every node, and furthermore, to an increase in the num-
ber of total iterations per node. Hence, in general, it is very
difficult to determine a priori when a given reformulation will
be more effective than the other one in solving the problem
(Vecchietti, Lee, & Grossmann, 2003). Therefore, it would
appear that a desirable objective is to develop a method for
generating cutting planes from the (CH) relaxation in order to
strengthen the looser but smaller (BM) reformulation. In this
fashion, one takes advantage of the tighter (CH) reformula-
tion without incurring an increase in the number of variables
and a significant increase in the number of constraints in the
problem. Such an idea is proposed in the following section.

3. Cutting plane method

The basic idea of the proposed cutting plane method con-
t-
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In comparing the reformulations in (BM) and (CH), th
following trade-offs can be observed. On the one hand,
relaxed feasible region of the (CH) reformulation is at leas
tight, if not tighter, than that of the (BM) reformulation (se
Fig. 1). This is reflected in the lower bounds of the afor
mentioned reformulations, where the lower bound of the
laxation of (CH) is equal to or greater than the lower bou
of the relaxation of problem (BM), as has been proven
Grossmann and Lee (2003). The tightness of the feasible re
gion, and by extension, the quality of the lower bound, affe
the number of nodes being examined within the framew
of a B&B algorithm. Thus a tighter feasible region, and b
extension, a tighter lower bound, leads to a reduction in
search space of a particular problem, which usually transla
into faster solution times. The example inFig. 1illustrates in
the (x, y) space the convex hull and big-M relaxations of t
e
s
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s

sists in solving a sequence of relaxed big-M MILPs with cu
ting planes that are successively generated from the con
hull relaxation projected onto the (x, y) space. More specifi-
cally, the cutting planes are determined by solving an LP (
QP) separation problem, whose feasible region correspo
to that of the convex hull relaxed reformulation. The sep
ration problem has, as an objective, to find a point with
the convex hull relaxed feasible region “closest” to the op
timal solution point yielded by the relaxed big-M MILP. In
essence, the objective of the separation problem consist
finding a cutting plane that corresponds to the most violat
constraint of the convex hull that is projected onto the spa
of the original variables of the big-M MILP. A repeating se
quence of relaxed big-M MILPs (with cuts up to that point
and LP (or QP) separation problems yielding new cuts is ite
atively solved until the optimal solution for the original MILP
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is found or until there is no improvement within a specified
toleranceε, in which case one switches to a B&B method for
solving the resulting big-M MILP with all the cutting planes
that have been generated.

It is interesting to note that the proposed cuts, though re-
lated to a certain extent to some of the work done on lift-and-
project cutting planes originally developed byBalas, Ceria,
and Cornuejols(1993), are different in important ways from
the latter. The major distinction lies in the derivation and gen-
eration of our cuts, which are crucially based on a GDP for-
mulation, as opposed to a 0–1 MIP formulation, as in the case
of lift-and-project cuts. Furthermore, if we were to contex-
tualize their work within a GDP framework, lift-and-project
cuts would be generated through a sequential convexification
procedure that would obtain by taking the convex hull of one
disjunction at a time, as opposed to our proposed method
which generates cuts based on a formulation that considers
the intersection of the convex hulls of every disjunction. Thus,
the elementary closure resulting from our cuts is not equiva-
lent to that of lift-and-project cuts, since the latter’s closure
corresponds to the true convex hull of the original problem,
as opposed to our case, where the elementary closure cor-
responds to the feasible region arising from the aforemen-
tioned strengthened formulation that considers all disjunc-
tions simultaneously. We plan on comparing our cuts, both

e
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the Euclidean norm,φ(z) = ||z − zbm||2 ≡ [(z − zbm)
T

(z − zbm)]1/2,
or the infinity norm,φ(z) = ||z − zbm||∞ ≡ maxi|zi − zbm

i |
can be used. If either the 1-norm or the∞-norm is used,
then the separation problem is an LP; otherwise, using the
Euclidean norm yields a QP.

3.2. Derivation of cutting planes

In this section, we present the derivation of the proposed
cutting planes that are obtained from the separation problem
(SEP). The proofs of the propositions presented can be found
in Appendix A.

The first proposition formalizes the observation inFig. 1
that the feasible region of the separation problem (SEP),
which corresponds to that of the convex hull reformulation,
is contained within the feasible region of problem (BM).

Proposition 1. Let (FR-SEP) be the feasible region of the
separation problem (SEP) in the (z, ν) space, and let (FRP-
SEP) represent the projection of (FR-SEP) onto the z-space.
Then, (FRP-SEP)⊆(FR-BM), where (FR-BM) represents the
feasible region of (BM) in the z-space. Furthermore, (FRP-
SEP) is a convex set.
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at
theoretically and computationally, to other cuts present in th
literature, including lift-and-project cuts, mixed-integer Go
mory cuts and mixed-integer rounding cuts, amongst othe
in a subsequent paper.

3.1. Separation problem

The general form of the separation problem (SEP) is as fo
lows (seeStubbs & Mehrotra, 1999; Vecchietti et al., 2003):

Min φ(z) = ||z − zbm||
s.t. Bx ≤ b

Ajkνjk ≤ ajkyjk ∀j ∈ Jk, ∀k ∈ K

x =
∑

∀j ∈ Jk

νjk ∀k ∈ K

νjk ≤ yjkUjk ∀j ∈ Jk, ∀k ∈ K∑
∀j ∈ Jk

yjk = 1 ∀k ∈ K

Dy ≤ d

x, ν ∈Rn+, z ≡ [x, y] ∈Rn+
×R

∑
∀k ∈ K

|Jk |+ , 0 ≤ yjk ≤ 1 ∀j ∈ Jk, ∀k ∈ K

(SEP)

The objective functionφ(z) corresponds to determining
the pointz ∈Rn+ × R

∑
∀k ∈ K

|Jk |+ within the convex hull relax-
ation “closest” to the pointzbm, which corresponds to the
optimal solution of the relaxed big-M MILP. In order to rep-
resent distance in the functionφ(z),

the 1-norm,φ(z) = ||z − zbm||1 ≡ ∑
i |zi − zbm

i |,
,

The second proposition provides the general form of
valid inequality that corresponds to the cutting plane tha
determined from the separation problem (SEP).

Proposition 2. Let zbm be the optimal solution of (BM) and
zsepbe an optimal solution to (SEP). If zbm/∈(FRP-SEP), then
∃ξ such that ξT(z − zsep) ≥ 0 is a valid linear inequality in z
that cuts away zbm, and such that ξ is a subgradient of φ(z)
at zsep, where φ(z) corresponds to the objective function of
(SEP).

Using the example previously shown inFig. 1, Fig. 2
demonstrates how the proposed cutξT(z − zsep) ≥ 0 cuts away
zbm and slices off part of the feasible region of problem (BM
thus strengthening the formulation. Also, note that the
generated in this case corresponds to a facet of the fea
region of problem (SEP).

The third proposition shows that the subgradient of a
ferentiable function at a specific point corresponds to the
dient of the function at that same point.

Proposition 3. Let (FRP-SEP)⊂S, where S is a convex set.
If φ : S → R is differentiable over its entire domain, then
the collection of subgradients of φ at zsep is the singleton
set ∂sepφ ≡ {ξsep|ξsep= ∇φ(zsep)}, which corresponds to the
gradient of φ at zsep.

The last two propositions provide the specific express
for the subgradientξ in the inequalityξT(z − zsep) ≥ 0 for the
Euclidean and∞-norms, respectively. It should be noted th
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Fig. 2. Graphical representation ofProposition 2.

for the case of the 1-norm, the treatment is entirely similar as
the∞-norm.

Proposition 4. Let (FRP-SEP)⊂S, where S is a convex
set. If φ : S → R is defined as φ(z) = ||z − zbm||22, then the
collection of subgradients of φ at zsep is the singleton set
∂sepφ ≡ {ξsep|ξsep= 2(zsep− zbm)}.

Proposition 5. Let (FRP-SEP)⊂S, where S is a convex set.
If φ : S → R is defined as φ(z) = ||z − zbm||∞, then the col-
lection of subgradients of φ at zsep is the set:

∂sepφ ≡ {ξsep|ξsep= [µsep
+ − µ

sep
− ]}

where µ
sep
+ and µ

sep
− correspond to the optimal Lagrange

multipliers of constraints (1) and (2) respectively, in the fol-
lowing problem (SEP2):

Min u

s.t. u ≥ zi − zbm
i ∀i ∈ M (1)

u ≥ zbm
i − zi ∀i ∈ M (2)

R1z + R2ν ≤ r

The cutting planes generated by the proposed method and
based onPropositions 2, 4 and 5can be used at the root
node of the branch and bound tree in order to strengthen the
corresponding relaxation of problem (BM). It is, of course,
generally not obvious which of the different norms pro-
vides the deepest cut, as this is usually problem depen-
dent. Furthermore, the depth of the cut will be affected,
particularly in the cases of the 1-norm and the∞-norm,
by the selection of a specific set of (non-unique) optimal
Lagrange multipliers, which is usually solver dependent.
The following example provides a geometrical interpretation
of the three different cuts when applied to the example in
Fig. 1.

MaxZ = x − (c1 + c2)

s.t.




Y

2 ≤ x ≤ 3

c1 = 1


 ∨




¬Y

0 ≤ x ≤ 1

c2 = 0




In Fig. 3, the cut generated when the Euclidean norm or
infinity norm is used corresponds to a facet of the convex

E
Fig. 3. Cutting plane generated when
 uclidean or infinity norm are used in (SEP).
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Fig. 4. Cutting plane(s) generated when 1-norm is used in (SEP).

hull of the disjunction. However, inFig. 4, where the 1-norm
is used, there is an infinite set of cutting planes that can be
generated since the set of Lagrange multipliers corresponding
to the optimal solutionzsep is not unique. Clearly then, the
“quality” and depth of the cut generated from our procedure
depends on the norm used in the separation problem. The
difference in quality and depth of the cuts resulting from
the use of different norms in the separation problem will be
examined in more detail and rigor in a subsequent paper.

3.3. Cutting plane algorithm

Given the propositions of the previous section, the steps
of the proposed algorithm are as follows:

(0) Specify a toleranceε for the norm of the distance in the
separation problem (SEP). Setn = 0, wheren represents
the iteration index.

(1) Solve the continuous relaxation of (BM)n termed
(RBM)n, which corresponds to the following problem.
This yields the pointzbm,n ≡ [x, y]bm,n.

Min Z =
∑ ∑

γjkyjk + dTx

nt

zsep,l ≡ [x, y]sep,l.

Min φ(z) = ||z − zbm,n||
s.t. Bx ≤ b

Ajkνjk ≤ ajkyjk ∀j ∈ Jk, ∀k ∈ K

x =
∑

∀j ∈ Jk

νjk ∀k ∈ K

νjk ≤ yjkUjk ∀j ∈ Jk, ∀k ∈ K∑
∀j ∈ Jk

yjk = 1 ∀k ∈ K

Dy ≤ d

x, ν ∈Rn+, z ≡ [x, y] ∈Rn+
×R

∑
∀k ∈ K

|Jk |+ , 0 ≤ yjk ≤ 1 ∀j ∈ Jk, ∀k ∈ K

(SEP)n

(a) If φ(z) = ||z − zbm,n|| ≤ ε, then stop, and proceed to
the LP-based branch-and-bound solution of problem
(BM)n with all the added cutting planes.

(b) Else, generate cutting plane�nT (z − zsep,n) ≥ 0, and
add to (RBM)n. Setn = n + 1, go to 1.

The effectiveness of the above algorithm is dependent on
ut
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pa-
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uts.
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∀k ∈ K ∀j ∈ Jk

s.t. Bx ≤ b

Ajkx − ajk ≤ Mjk(1 − yjk) ∀j ∈ Jk, ∀k ∈ K∑
∀j ∈ Jk

yjk = 1 ∀k ∈ K

Dy ≤ d

ξlT(z − zsep,l) ≥ 0 l = 1, 2, ... n − 1

x ∈Rn+, 0 ≤ yjk ≤ 1 ∀j ∈ Jk, ∀k ∈ K

z ≡ [x, y] ∈Rn+ × R
∑

∀k ∈ K
|Jk |+

(RBM)n

(2) Solve the separation problem (SEP)n, which corre-
sponds to the following problem. This yields the poi
the trade-off between the amount of time spent on the c
generation procedure versus the amount of time “saved”
the B&B tree relative to either the big-M formulation withou
cuts, or to the convex hull formulation. In the former cas
these savings usually result from a tightening of the rel
tively loose big-M feasible region, while in the latter case
these savings result from the smaller number of variab
and constraints in the big-M plus cuts formulation. The c
generation procedure involves solving a sequence of se
ration problems (SEP)n that are LPs or QPs, so it can be
expected that it will take a reasonable amount of time
solve these problems in order to generate the proposed c
It is important to note that the feasible region of the strengt
ened big-M problem will be, at the very best, as tight a
that of the convex hull formulation, and thus, intuitively a
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least, lead us to believe that the cut generation procedure
is finite. In other words, no further cuts will be generated
either when the optimal point of (RBM)n lies within the fea-
sible region of (SEP)n, or when the feasible region of the
strengthened big-M problem is exactly equivalent to that of
(SEP)n. A rigorous proof of the previous claim will be per-
formed in a subsequent paper. The question that remains,
however, is whether these cuts are effective enough in slicing
off parts of the big-M feasible region that are superfluous.
This is examined in detail in the next section, and we apply
the above algorithm to three different problems that highlight
some of the major strengths and weaknesses of the proposed
method.

4. Numerical results

In this section, we present the results of the proposed
cutting plane algorithm on the strip-packing, retrofit plan-
ning and zero-wait job-shop scheduling problems. The strip-
packing problem is an example within a class of problems
suitably solved by the proposed method, while the last two
problems serve to highlight an important characteristic re-
garding the usefulness of the method, notably the degree of
tightness exhibited by the convex hull relaxation.
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problem, where a given set of small rectangles is packed into
a strip of fixed widthW but unknown lengthL. The aim is
to minimize the length of the strip while fitting all rectangles
without any overlap and without rotation. We propose the
following general linear GDP model for problem (SP-GDP):

Min lt (1)

s.t. lt ≥ xi + Li ∀i ∈ N (2)

[
Y1

ij

xi + Li ≤ xj

]
∨

[
Y2

ij

xj + Lj ≤ xi

]
∨

[
Y3

ij

yi − Hi ≥ yj

]

∨
[

Y4
ij

yj − Hj ≥ yi

]
∀i, j ∈ N, i < j (3)

xi ≤ UBi − Li ∀i ∈ N (4)

Hi ≤ yi ≤ W ∀i ∈ N (5)

lt, xi, yi ∈R1
+, Y1

ij, Y
2
ij, Y

3
ij, Y

4
ij ∈ {True, False}

∀i, j ∈ N, i < j

The objective in this problem consists of minimizing the

ry

es
ct

d

d

per

p-
d
(3,
),
y

re
-

We present results for the strip-packing problem using
proposed method with all norms, although the discussio
mostly focused on results obtained using theinfinity norm
as the latter turned out to be the most efficient norm. T
observation also holds true for the retrofit planning and ze
wait job-shop scheduling problems, thus, we only pres
and discuss results obtained using theinfinity norm. All re-
sults obtained using the proposed cutting plane method
discussed and compared with those obtained using the a
mentioned convex hull and big-M reformulations, where o
timal values of the big-M parameters were used (i.e. equ
maxx(Ajkx − ajk)).

All example problems were solved with GAMS (Brooke,
Kendrick, Meeraus, & Raman, 1997) on a 2.8 GHz Pentium
IV PC (512 MB of RAM). The CPLEX solver (v. 8.1) wa
used for the infinity norm for all three problems and f
all comparisons between reformulations with all MIP o
tions turned off and with default options turned on, while t
CPLEX solver (v. 9.0) was used for the 1-norm and Euclid
norm. Note that the LP pre-solver was turned off during
cut-generation procedure for reasons of computational
ciency. Finally, the cuts generated are added only at the
node of the B&B tree.

4.1. Strip-packing problem

Cutting and packing problems belong to a well-kno
family of combinatorial NP-hard optimization problems th
arise in numerous applications of computer science, ind
trial engineering, and operations management (Hifi, 1998).
One important problem in this family is the strip-packi
e
is

s
-
t

re
re-
-
to

n

-
ot

s-

length of the striplt (1)and(2)by representing every rectangle
by its coordinates in the (x, y) space such that no overlap
occurs between rectangles. Thus, every rectanglei∈N has
lengthLi, heightHi, and coordinates (xi, yi), where the point
of reference corresponds to the upper left corner of eve
rectangle. By constraining every pair of rectangles (i, j) where
(i, j∈N, i < j) such that no overlap occurs, we obtain a seri
of disjunctions with four disjuncts each, where each disjun
represents the position of rectanglei in relation to rectanglej
(3). Note that they-coordinate of every rectangle is bounde
from above by the fixed width of the stripW (5), and that
the upper boundUBi, which in a best case scenario woul
correspond to the optimal value oflt, is obtained using a
bottom-left rectangle-placing heuristic and serves as an up
bound for thex-coordinate of every rectangle(4).

We consider first a 12-rectangle instance of the stri
packing problem (SP-GDP) with the following ordere
lengths and heights for every rectangle: (1, 10), (2, 9),
8), (4, 4), (5, 5), (9, 6), (7, 7), (6, 3), (5, 2), (12, 1), (3, 1
(2, 3). The problem was transformed into an MIP model b
using both the big-M and convex hull reformulations that a
given inAppendix B. The problem sizes for both reformula
tions are listed inTable 1, and the graphical solution to this
problem is presented inFig. 5.

Table 1
Problem sizes for 12-rectangle strip-packing problem

Total number
of constraints

Total number
of variables

Number of
discrete variables

Convex hull 1663 1346 264
Big-M 343 290 264
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Fig. 5. Graphical solution for 12-rectangle strip-packing problem.

Table 2
Results for 12-rectangle strip-packing problem (∞-norm, MIP options off)

Relaxation Optimal
solution

Gap (%) Total nodes
in MIP

Solution time for
cut generation (s)

Total solution
timea (s)

Number of nodes
per second

Convex hull 12 27 55.55 682464 0 1286.39 530.52
Big-M 12 – – 54244296 0 >10800 5022.36
Big-M + 40 cuts 12 – – 41831856 2.44 >10800 3873.32
Big-M + 50 cuts 12 27 55.55 10289250 3.05 2986.33 3448.97
Big-M + 60 cuts 12 27 55.55 694596 3.66 191.95 3688.96
Big-M + 70 cuts 12 27 55.55 320535 4.27 97.61 3434.05
Big-M + 80 cuts 12 27 55.55 502727 4.88 154.23 3366.09
Big-M + 87 cuts 12 27 55.55 72677 5.31 27.51 3273.73

a Total solution time includes times for relaxed MIP(s) + LP(s) from separation problem + MIP.

We also solved the problem using the cutting plane method
with the infinity norm, and compared the resulting solutions
to those from the convex hull and big-M reformulations in
Tables 2 and 3. We first examine the results with all MIP
algorithmic options turned off (seeTable 2). This is done
in order to better gauge the effect of the proposed cuts on
solution time and number of nodes examined during the B&B
procedure.

The optimal solution of the problem is 27. The lower
bound obtained from the relaxation is equal to 12 for both
(BM) and (CH) reformulations, but the problem was solved
in 682 464 nodes using the (CH) reformulation, as opposed
to the big-M reformulation, which failed to solve the prob-

lem after 54 244 296 nodes. This is due to the tighter relaxed
feasible region of (CH) when compared to that of (BM),
which results in substantial savings in computational time
(1286.39 s versus >10 800 s). Note however that the LP at
every node of the (CH) B&B tree is about 10 times more ex-
pensive to solve than that of the (BM) reformulation as seen
by the amount of nodes computed per second for both refor-
mulations (530.52 versus 5022.36). This is due to the larger
number of variables and constraints present in the (CH) refor-
mulation. After the addition of 50 cutting planes to the (BM)
reformulation, we are able to solve the problem in less than
the self-imposed limit of 3 h (2986.33 s) while examining
10 289 250 nodes in the B&B tree. Upon the successive ad-

Table 3
Results for 12-rectangle strip-packing problem (∞-norm, default options on)

Relaxation Optimal
solution

Gap (%) Total nodes
in MIP

Solution time for
cut generation (s)

Total solution
timea (s)

Number of nodes
per second

Convex hull 12 – – 2887380 0 >10800 267.35
Big-M 12 27 55.55 73225 0 59.00 1241.10
Big-M + 40 cuts 12 27 55.55 13361 2.44 12.21 1368.25
Big-M + 50 cuts 12 27 55.55 9008 3.05 11.01 1131.65
Big-M + 60 cuts 12 27 55.55 20247 3.66 20.61 1194.51
Big-M + 70 cuts 12 27 55.55 11405 4.27 14.05 1166.15
Big-M + 80 cuts 12 27 55.55 10225 4.88 14.41 1072.92
Big-M + 87 cuts 12 27 55.55 6397 5.31 11.12 1101.03

eparat
a Total solution time includes times for relaxed MIP(s) + LP(s) from s
 ion problem + MIP.
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Table 4
Results for 12-rectangle strip-packing problem (1-norm, MIP options off)

Relaxation Optimal
solution

Gap (%) Total nodes
in MIP

Solution time for
cut generation (s)

Total solution
timea (s)

Number of nodes
per second

Convex hull 12 27 55.55 682464 0 1286.39 530.52
Big-M 12 – – 54244296 0 >10800 5022.36
Big-M + 50 cuts 12 – – 17145216 6.0 >10800 1587.52
Big-M + 100 cuts 12 – – 7373700 12.0 >10800 682.75
Big-M + 200 cuts 12 – – 253800 22.0 >10800 23.5

a Total solution time includes times for relaxed MIP(s) + LP(s) from separation problem + MIP.

dition of more cuts, the number of nodes examined is further
reduced, which results in a further decrease in total solution
time. Finally, with 87 cuts, the proposed cutting plane algo-
rithm solves this problem in 72 677 nodes. Although the re-
sulting strengthened MIP is still not as tight as the (CH) MIP,
it has much fewer variables. This compromise is key to the
success of the proposed algorithm and results in improved to-
tal computational times (27.51 s versus 1286.39 s). Note that
the time required to generate the 87 cutting planes was only
5.31 s.

We now examine the results with default options turned
on. This is done in order to demonstrate the effectiveness of
the proposed cuts in aiding the branch-and-cut routine of a
powerful MIP solver like CPLEX (seeTable 3).

We see a noticeable improvement in the number of nodes
examined and solution times upon the addition of the cuts.
After 87 cuts, the problem was solved in 6397 nodes and
11.12 s compared to 73 225 nodes and 59.00 s for the big-M.
However, CPLEX failed to solve the CH reformulation in
less than 3 h, which is odd considering that one would expect
an improvement in nodes examined and solution times when
default options are turned on. This phenomenon could have
been caused by many factors, although we believe that poor
CPLEX-generated cuts are the most likely culprits. As more
CPLEX cuts are generated, they tend to become shallower
and to flatten out, and upon their addition to the matrix of the
p ning
n ies.
T the-
l utting
p op-
t lem
w

he 1-
n

used. Note that while the use of the 1-norm in problem (SEP)
still results in an LP, the use of the Euclidean norm results in
a QP. Also, only results obtained with all MIP options turned
off are presented.

Using the 1-norm or the Euclidean norm for the objec-
tive function in the separation problem does not yield good
results as CPLEX failed to solve the problem to optimality.
Furthermore, and in both cases, the cut generation routine
was terminated after the self-imposed limit of 200 cuts with-
out having reduced the objective function value to zero in
the separation problem. The problem in both cases is that
the cuts generated are weak and do not tighten the feasible
region enough. Moreover, upon the addition of more cuts in
the hope of strengthening the formulation and improving so-
lution times, we observe the same phenomenon that occurred
when we attempted to solve the convex hull formulation with
default MIP options on. In other words, the addition of more
of these “poor” cuts negatively affects the computational per-
formance of the algorithm because of numerical difficulties.
In light of these observations in this case and other cases,
we will only report results using the infinity norm for the
remainder of this paper.

Let us now consider a 21-rectangle instance of the strip-
packing problem (SP-GDP) with the following ordered
lengths and heights for every rectangle: (1, 5), (2, 2), (3, 2),
(2, 7), (5, 1), (6, 6), (5, 10), (4, 3), (3, 2), (9, 5), (4, 2), (1,
1 (1,
1 blem
t r the
(
p

d are
p see
T p-
t

T
R off)

tal nod
IP

C 6824
B 424429
B 59326
B 76042
B 34820

separa
roblem, create dependent rows and affect the conditio
umber of the matrix thus resulting in numerical difficult
his hypothesis will be investigated in future work. None

ess, the results demonstrate the effectiveness of the c
lane algorithm when it is considered that CPLEX (with

ions turned on) may have difficulties in solving this prob
hen posed as a convex hull reformulated MIP.
We now briefly present and discuss the results when t

orm (seeTable 4) and the Euclidean norm (seeTable 5) are

able 5
esults for 12-rectangle strip-packing problem (2-norm, MIP options

Relaxation Optimal
solution

Gap (%) To
in M

onvex hull 12 27 55.55
ig-M 12 – – 5
ig-M + 50 cuts 12 – – 1
ig-M + 100 cuts 12 – –
ig-M + 200 cuts 12 – –
a Total solution time includes times for relaxed MIP(s) + QP(s) from
), (2, 3), (3, 1), (2, 6), (2, 2), (1, 2), (2, 1), (2, 1), (1, 1),
). This was the largest instance of the strip-packing pro

hat was solvable in less than 3 h. The problem sizes fo
BM) and (CH) reformulations are listed inTable 6, and we
resent the graphical solution to this problem inFig. 6.

The results using the proposed cutting plane metho
resented only with default MIP options turned on (
able 7) as CPLEX failed to solve this problem when o
ions were turned off.

es Solution time for
cut generation (s)

Total solution
timea (s)

Number of nodes
per second

64 0 1286.39 530.52
6 0 >10800 5022.36
76 5.4 >10800 1475.03
80 12.0 >10800 704.1
08 28.0 >10800 322.41

tion problem + MIP.
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Fig. 6. Graphical solution for 21-rectangle strip-packing problem.

Table 6
Problem sizes for 21-rectangle strip-packing problem

Total number
of constraints

Total number
of variables

Number of
discrete variables

Convex hull 5272 4244 840
Big-M 1072 884 840

The optimal solution of the problem is 24. Although the
lower bound obtained from the relaxation is equal to 9 for
the (BM) and to 9.1786 for the (CH) reformulations, CPLEX
failed to solve the latter after 968 652 nodes (same reasoning
as previously) while solving the former in 1 416 137 nodes.
Upon the addition of the cuts, we obtain noticeable improve-
ments in the number of nodes examined and total solution
time. The problem is solved in 32 185 nodes and 91.4 s upon
the addition of 62 cutting planes compared to 1 416 137 nodes
and 4093.39 s when no cuts are added. This again demon-
strates the efficiency of the proposed cutting plane algorithm
in solving different instances of the strip-packing problem.

4.2. Retrofit planning problem

The retrofit planning problem essentially consists in the re-
design of existing plants (Jackson & Grossmann, 2002). Pro-
cesses can be retrofitted to achieve goals such as increasing
throughput, reducing energy consumption, improving yields
and reducing waste generation. Work in retrofit design has
been limited because of the difficulties in dealing with the
many constraints of a pre-existing operation, such as layout,

available space, piping and operating conditions, and also
because of the many modification possibilities which causes
the problem to greatly grow in size. For a general review
of retrofit issues, see work byGrossmann, Westerberg, and
Biegler(1987). In this paper, we assume that an existing pro-
cess network is given where each process can possibly be
retrofitted for improvements such as higher yield, increased
capacity, and reduced energy consumption. Given limited
capital investments to make process improvements and cost
estimations over a given time horizon, the problem consists
of identifying those modifications that yield the highest eco-
nomic improvement in terms of economic potential, which is
defined as the income from product sales minus the cost of
raw materials, energy and process modifications. We propose
the following linear model for this problem (RP-GDP), which
is a modification of work done byJackson and Grossmann
(2002):

Min
∑
∀t ∈ T
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∀s ∈ Sprod

PRt
smf t

s −
∑
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Table 7
Results for 21-rectangle strip-packing problem (default options on)

l nodes

C 652
B 137
B 6029
B 7828
B 8611
B 2185

eparat
Relaxation Optimal
solution

Gap (%) Tota

onvex hull 9.1786 – – 968
ig-M 9 24 62.5 1416
ig-M + 20 cuts 9.1786 24 61.75 30
ig-M + 40 cuts 9.1786 24 61.75 54
ig-M + 60 cuts 9.1786 24 61.75 2
ig-M + 62 cuts 9.1786 24 61.75 3
a Total solution time includes times for relaxed MIP(s) + LP(s) from s
.t. mf t
s = f t

s MWs ∀s ∈ S, ∀t ∈ T (7)

f t
s ≥ DEMt

s ∀s ∈ Sprod, ∀t ∈ T (8)

in MIP Solution time for
cut generation (s)

Total solution
timea (s)

Number of nodes
per second

0 >10800 89.69
0 4093.39 345.95
3.74 917.79 334.80
7.48 1063.51 518.76

11.22 79.44 419.32
11.59 91.4 403.27

ion problem + MIP.
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The objective function(6) includes revenues from sales
costs of raw material, utility costs, as well as capital cos
fct

p and energy costs ect over time periodst∈T. Equation(7)
represents an equivalence relation between mass and m
flow rates, equations(8) and(9) ensure that mass flow rates
for products and raw materials are respectively bounded
demand and supply parameters, and equations(10) and(11)
serve as mass balances around nodesn∈N and processesp∈P,
respectively. The first set of disjunctions(12) selects one of
the operating modes for the retrofit projectm∈M, for ev-
ery processp∈P, in every time periodt∈T, where projects
m include modifying either nothing at all (m1∈M), process
conversion (m2∈M), capacity (m3∈M) or both (m4∈M). The
second set of disjunctions(13)enforces the cost of the afore
mentioned modifications, where capital costs are set to z
(fct

p = 0) if nothing is modified. Equations(14) and (15)
serve as equivalence relations between energy and mass
rate variables, while disjunction(s)(16) select the appropri-
ate operating modeXt

j ∀j ∈ J so thatXt
1 corresponds to no

energy integration andXt
2 enforces the transshipment equa

tions (Biegler, Grossmann, & Westerberg, 1997). Through
Boolean variablesV t

j , the set of disjunctions(17)enforce the
cost associated with energy reduction, where these costs
set to zero (ect = 0) if nothing is modified (V t

1 = True). Equa-
tion(18)limits the expenses for the retrofit project. Equation
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(21) and(22), (25) and(26) are logical conditions that con-
nect, respectively, disjunctions(12) to (13) and disjunctions
(16) to (17) with each other, and equations(19) and (20),
(23) and (24) impose logical conditions between disjuncts
in every set of corresponding disjunctions. Essentially, these
logical equations constrain the problem such that costs asso-
ciated with conversion and/or capacity are enforced exactly
once for every processp∈P in every time periodt∈T, and
such that costs associated with energy reduction are enforced
exactly once per time periodt∈T.

We consider inFig. 7a 10 process instance of the retrofit
planning problem (RP-GDP) that involves the production of
products (G, H, I, J, K, L, M) from raw materials (A, B, C,
D, E).

We use a 1-year planning horizon of four time periods each
consisting of 3 months. Modifications for increased conver-
sion and capacity only are considered, and black-box (in-
put/output) models are used for each process. We do not in-
clude explicit data for this problem because of its size. The
problem was transformed into an MIP model by using both
the big-M and convex hull reformulations given inAppendix
C. Problem sizes for both reformulations are listed inTable 8,
while the graphical solution to this problem is presented in
Fig. 8.

We solved this problem using the proposed cutting plane
algorithm, and compared the resulting solutions to those from

Table 8
Problem sizes for 10-process retrofit planning problem

Total number
of constraints

Total number
of variables

Number of
discrete variables

Convex hull 2505 1417 320
Big-M 1957 697 320

the convex hull and big-M reformulations inTables 9 and 10.
We first examine the results with all MIP algorithmic options
turned off (seeTable 9).

The optimal solution of the problem is US$ 7 868 786.32.
The upper bound obtained from the relaxation is equal to
US$ 11 743 915.93 for the (BM) reformulation and US$
7 868 786.32 for the (CH) reformulation, and the problem
was solved in 1 607 486 nodes using the (BM) reformula-
tion, as opposed to the (CH) reformulation, which required
only 2155 nodes. Clearly, the (CH) feasible region is tighter
than that of the big-M, which results in large savings in com-
putational time (5.8 s versus 1913.67 s). After the addition of
40 cutting planes to the (BM) reformulation, we are able to
reduce the relaxation gap by nearly 40% and solve the prob-
lem in 656.15 s while examining 403 463 nodes in the B&B
tree. Upon the successive addition of more cuts, the number
of nodes examined is further reduced, which results in a fur-
ther decrease in total solution time. Finally, 196 cuts were
Fig. 7. Ten process retrofit pla
nning problem flowsheet.
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Fig. 8. Graphical solution for 10-process retrofit planning problem.

Table 9
Results for 10-process retrofit planning problem (MIP options off)

Relaxation Optimal
solution

Gap (%) Total nodes
in MIP

Solution time for
cut generation (s)

Total solution
timea (s)

Number of nodes
per second

Convex hull 7868786.32 7310873.99 7.63 2155 0 5.8 371.55
Big-M 11743915.93 7310873.99 60.64 1607486 0 1913.67 840.00
Big-M + 40 cuts 8975184.67 7310873.99 22.76 403463 5.6 656.15 620.18
Big-M + 80 cuts 8110107.97 7310873.99 10.93 59601 11.2 134.9 481.81
Big-M + 120 cuts 7930714.76 7310873.99 8.48 46249 16.8 107.96 507.33
Big-M + 160 cuts 7888443.72 7310873.99 7.90 15280 22.4 68.73 329.80
Big-M + 196 cuts 7868786.32 7310873.99 7.63 13669 27.44 60.3 415.97

a Total solution time includes times for relaxed MIP(s) + LP(s) from separation problem + MIP.

generated from the proposed cutting plane algorithm (requir-
ing 27.44 s) and the problem was solved to optimality in a
total of 60.3 s while examining only 13 669 nodes. Further-
more, upon the addition of all cuts generated, the relaxation
gap was reduced to 7.63%, identical to that of the (CH) relax-
ation. Although this demonstrates the efficiency of the cuts,
and allows the problem to be solved in much less time than
without cuts (60.3 s versus 1913.67 s), the solution time re-
quired by the (CH) reformulation is less still (5.8 s). This is
due to the extremely tight region generated by the (CH) re-
formulation, which justifies the additional variables incurred
by the reformulation and allows the problem to be solved
in faster times than our method. This leads us to believe that
classes of problems with extremely tight (CH) reformulations
are solved more efficiently as (CH) MIPs through traditional
B&B solvers without requiring the additional cut generation
technique that we have developed. On the other hand, the
example shows very good improvement of the big-M formu-

lation with the addition of cutting planes. The results when
default MIP options are turned on present similar trends as
previously discussed and are shown inTable 10.

4.3. Zero-wait job-shop scheduling problem

Consider a job-shop scheduling problem where a set of
jobsi∈I must be processed sequentially on a set of consecu-
tive stagesj∈J, where all jobs can be sequenced on a subset
of stagesj∈J(i). Furthermore, zero-wait transfer is assumed
between stages, and the objective is to obtain a schedule that
minimizes the makespan, ms. The following model (JS-GDP)
from Raman and Grossmann (1994)is proposed:

Min ms (27)

s.t. ms≥ ti +
∑

∀j ∈ J(i)

TAUij ∀i ∈ I (28)

Table 10
Results for 10-process retrofit planning problem (default options on)

Relaxation Optimal
solution

Gap (%) Total nodes
in MIP

Solution time for
cut generation (s)

Total solution
timea (s)

Number of nodes
per second

Convex hull 7868786.32 7310873.99 7.63 35 0 0.578 60.55
Big-M 11743915.93 7310873.99 60.64 400612 0 518.64 772.42
B 32686
B 3746
B 7695
B 3391
B 1857

eparat
ig-M + 40 cuts 8975184.67 7310873.99 22.76
ig-M + 80 cuts 8110107.97 7310873.99 10.93
ig-M + 120 cuts 7930714.76 7310873.99 8.48
ig-M + 160 cuts 7888443.72 7310873.99 7.9
ig-M + 196 cuts 7868786.32 7310873.99 7.63
a Total solution time includes times for relaxed MIP(s) + LP(s) from s
4 5.6 591.4 557.97
4 11.2 95.04 446.85

16.8 38.41 356.08
22.4 33.6 302.76
27.44 35.89 219.76

ion problem + MIP.
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Fig. 9. Graphical solution for 9-job/8-stage zero-wait job-shop scheduling problem.
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Equations(27)and(28)correspond to the objective func-
tion and aim to minimize the makespan ms, whereti is the
start time of jobi and TAUij is the processing time of jobi in
stagej. Equation(29)ensures that no clash between jobs oc-
curs at any stage at the same time, where for each pair of jobs
i, k, the stages with potential clashes areCik ={J(i)∩J(k)}.

Table 11
Problem sizes for 9-job/8-stage zero-wait job-shop scheduling problem

Total number
of constraints

Total number
of variables

Number of
discrete variables

Convex hull 681 226 72
Big-M 465 82 72

We consider an instance of the zero-wait job-shop schedul-
ing problem with 9-jobs and 8-stages. We do not include
explicit data for this problem because of its size. The prob-
lem was transformed into an MIP model by using both the
big-M and convex hull reformulations given inAppendix D.
The problem sizes for both reformulations are presented in
Table 11, while the graphical solution to this problem is pre-
sented inFig. 9.

The problem was solved with the proposed cutting plane
algorithm and compared with the results from the convex
hull and big-M reformulations inTables 12 and 13. We first
examine the results with all MIP algorithmic options turned
off (seeTable 12).

Table 12
Results for 10-job/8-stage job-shop scheduling problem (MIP options off)

l nodes Solution time for
cut generation (s)

Total solution
timea (s)

Number of nodes
per second

C 2 0 12.03 2277.81
B 0 0 7.47 4987.95
B 0 0.46 10.43 4610.83
B 3 0.92 9.17 4624.61
B 7 1.38 7.01 4619.7

eparation problem + MIP.

T
R ns on)

tal node
IP

C 99
B 57
B 00
B 40
B 62

eparat
Relaxation Optimal
solution

Gap (%) Tota
in MIP

onvex hull 35.25 66 46.59 2740
ig-M 33 66 50.0 3726
ig-M + 10 cuts 35.25 66 46.59 4597
ig-M + 20 cuts 35.25 66 46.59 3815
ig-M + 30 cuts 35.25 66 46.59 2554
a Total solution time includes times for relaxed MIP(s) + LP(s) from s

able 13
esults for 10-job/8-stage job-shop scheduling problem (default optio

Relaxation Optimal
solution

Gap (%) To
in M

onvex hull 35.25 66 46.59 585
ig-M 33 66 50.0 97
ig-M + 10 cuts 35.25 66 46.59 109
ig-M + 20 cuts 35.25 66 46.59 60
ig-M + 30 cuts 35.25 66 46.59 55
a Total solution time includes times for relaxed MIP(s) + LP(s) from s
s Solution time for
cut generation (s)

Total solution
timea (s)

Number of nodes
per second

0 38.34 1528.4
0 1.75 5575.43
0.46 2.55 5207.84
0.92 2.05 5368.88
1.38 2.44 5247.17

ion problem + MIP.
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The optimal solution of the problem is 66. The lower
bound obtained from the relaxation is equal to 33 for the
(BM) reformulation and 35.25 for the (CH) reformulation,
and the problem was solved in 37 260 nodes using the (BM)
reformulation, as opposed to the (CH) reformulation, which
required 27 402 nodes. It is clear that the (CH) feasible re-
gion is not much tighter than that of the (BM) as seen from
the poor relaxation value and the number of nodes exam-
ined in the B&B tree. This causes the solution time of (CH)
to be larger than that of (BM) due to the greater number of
variables and constraints in the formulation (12.03 s versus
7.47 s). Furthermore, one can conjecture that since the (CH)
feasible region is not much tighter than that of the (BM), the
effect that the cuts will have on overall solution times and
number of nodes examined will be minimal. In fact, after
the addition of 30 cutting planes to the (BM) reformulation,
we are able to solve the problem in 7.01 s while examining
25 547 nodes in the B&B tree, only slight improvements on
the results obtained using the (BM) reformulation. This leads
us to believe that classes of problems with extremely loose
(CH) reformulations are solved efficiently enough as (BM)
MIPs through traditional B&B solvers. The proposed cut-
ting plane algorithm does not improve solution times for this
class of problems since the amount of time required to gen-
erate the cuts does not justify the (loose) tightening the cuts
provide. The results when default MIP options are turned on
p hown
i trip-
p CH)
r

5

d that
a M re-
f sly
d king,
r rob-
l osed
m lax-
a h to
j u-
l rob-
l , we
h thod
r trofit
p here
t ose
r

that
c the
j in-
fi ific
p both
t nt in

the literature and to extend the work to solution methods for
convex non-linear GDP problems.
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Appendix A. Proofs of propositions

Proof of Proposition 1.

(1) (FR-SEP)⊆(FR-BM): SeeGrossmann and Lee (2003),
Proposition 4.

(2) (FRP-SEP) is convex: FromCeria and Soares (1999)and
Grossmann and Lee (2003), we know that (FR-SEP) is
a convex set. Thus, since (FRP-SEP) is the projection
of (FR-SEP) from the (z,v) space onto thez space, and
projection preserves convexity, then (FRP-SEP) is also
convex. �

Proof of Proposition 2.

(1) Let φ : Rn → R be defined as||z − zbm||. Thenφ is a

-

s of
1),

-

(
an
w

-

i

resent similar trends as previously discussed and are s
n Table 13(note once again, as in the case of the s
acking problem, the poor results obtained using the (
eformulation).

. Conclusion

We have presented in this paper a cutting plane metho
dds cuts generated from a separation problem to a big-

ormulation of a linear GDP problem. We have rigorou
erived the cuts, and applied the method to the strip-pac
etrofit planning and zero-wait job-shop scheduling p
ems. The results demonstrate the efficiency of the prop

ethod for a class of problems where the convex hull re
tion is tighter than that of the big-M, but not tight enoug

ustify the additional variables required by the (CH) reform
ation. An example within that class is the strip-packing p
em where excellent results were obtained. Furthermore
ave also highlighted some of the drawbacks of the me
egarding other classes of problems which include the re
lanning and zero-wait job-shop scheduling problems, w

he convex hull relaxation was either too tight or too lo
espectively.

We intend to examine in the future different methods
ould improve the algorithm, specifically as pertaining to
udicious selection of those Lagrange multipliers (for the
nity norm) that generate the “best” cuts for our spec
roblem. We also intend to compare the proposed cuts,

heoretically and computationally, to those already prese
convex function for the 1, 2 and∞ norms over all its
domain. Also, fromProposition 1, we know that (FRP
SEP) is a convex set. Furthermore, let (zsep, vsep) be the
optimal solution of (SEP). Clearly, from the propertie
projection,zsepwould be the optimal solution of (SEP
where (SEP1) is as follows:

Min φ(z) = ||z − zbm||
s.t. z ∈ (FRP-SEP)

From Theorem 3.4.3 inBazarra and Shetty (1979), if
zsep is an optimal solution to (SEP1), thenφ has a sub
gradientξ at zsepsuch thatξT(z − zsep) ≥ 0 ∀ z∈(FRP-
SEP).

2) FromProposition 1, we know that (FR-SEP)⊆(FR-BM).
In the case wherezbm∈(FRP-SEP), obviously no cut c
be generated. Otherwise,zbm/∈(FRP-SEP) and we sho
that the above inequality cuts offzbm. From (1) we know
that ξT(z − zsep) ≥ 0 ∀ z ∈ (FRP-SEP). Furthermore,ξ
is a subgradient ofφ(z) at zsep. By definition of subgra
dient (Nemhauser & Wolsey, 1999), for convexφ(z), we
have:

φ(z) − φ(zsep) ≥ ξT(z − zsep) ∀z ∈ (FR-SEP)

⇔ ∥∥z − zbm
∥∥ − ∥∥zsep− zbm

∥∥ ≥ ξT(z − zsep)

∀z ∈ (FR-SEP)

f z ≡ zbm, then

||zbm − zbm|| − ||zsep− zbm|| ≥ ξT(zbm − zsep)

⇔ ξT(zbm − zsep) ≤ −||zsep− zbm|| < 0
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Thus,zbm does not satisfyξT(z − zsep) ≥ 0 and is therefore
cut off by the inequality. �

Proof of Proposition 3. If φ is differentiable overS, thenφ is
differentiable atzsep. It follows from Lemma 3.3.2 inBazarra
and Shetty (1979)that the only element of the subdifferential
of φ is {�φ(zsep)}. �

Proof of Proposition 4. If φ is defined asφ(z) = ||z −
zbm||22, thenφ is differentiable and fromProposition 3, the
collection of subgradients ofφ at zsep is the singleton set
{�φ(zsep)}. Thus,

φ(zsep) = (zsep− zbm)
T
(zsep− zbm) and

∇φ(zsep) = 2(zsep− zbm) �

Proof of Proposition 5. Let φ : S → R be defined as
φ(z) = ||z − zbm||∞ in (SEP). Then (SEP) can be rewritten
as:

Min u

s.t. u ≥ zi − zbm
i ∀i ∈ M

u ≥ zbm
i − zi ∀i ∈ M

(FR-SEP)

(A.1)

From Proposition 1, we know that (FR-SEP) is convex.
F hus,
(
m
n

v nts
f
R

l

L

a
a

0 ⇒
i

|(u =

Now let us define the following matrixH with columnshi

asH ≡ [I| − I] and the following vectorµ asµ ≡
[

µ+
µ−

]
.

We claim that ifξ = Hµ, then the existence of a vector

µsep≡
[

µ
sep
+

µ
sep
−

]
≡

[
µi+
µi−

]
∀i ∈ Msepin (A.3) is equivalent

to the existence of a vectorξsepin the set:

∂sepφ ≡ {ξsep|ξsep∈ conv
i ∈ Nsep

hi} (A.4)

such that

ξ + R1Tρsep= 0

R2Tρsep= 0

ρsep≥ 0

where(A.4) is the subdifferential ofφ, ξsepis a subgradient of
φ(zsep) andNsep≡ {i : |zi − zbm

i | is maximized}, according
to Section 14.1 and Lemma 14.2.2 inFletcher (1987).

In essence, we are claiming that in order to obtain a subgra-
dient vectorξsepof φ(zsep) in (A.4), one needs only to obtain
a set of Lagrange multipliersµsepfrom (A.3) (thus, the exis-
tence of one is equivalent to the existence of the other). We
prove the claim as follows.

∂

s

ξ

R

ρ

⇔

s

ξ

R

urthermore, all the constraints in (FR-SEP) are linear. T
FR-SEP) corresponds to a polytope in the (z, ν) space, and∃
atricesR1,R2 with dimensionsm × (n × ∑

k ∈ K |Jk|), m ×
, respectively, and vectorr ∈Rm such that (FR-SEP)≡ {(z,
)|R1z + R2ν ≤ r}. Note that the non-negativity constrai
or z andv are taken into account in the construction ofR1,
2.

We can thus write(A.1) as:

Min u

s.t. u ≥ zi − zbm
i ∀i ∈ M

u ≥ zbm
i − zi ∀i ∈ M

R1z + R2ν ≤ r

(A.2)

The appropriate Lagrangean function of(A.2) is as fol-
ows:

= u +
∑
i ∈ M

µi+(zi − zbm
i − u) +

∑
i ∈ M

µi−(zbm
i − zi − u)

+ ρT(R1z + R2ν − r)

nd it is implied at (zsep, νsep, usep) that multipliersµsep
+ , µ

sep
− ,

ndρsepexist such that:

∂L

∂u
(zsep, νsep, usep) = 0 ⇒ 1 −

∑
i ∈ Msep

µi+ −
∑

i ∈ Msep

µi− =

∇zL(zsep, νsep, usep) = 0 ⇒ [µ+ − µ−] + R1Tρsep= 0

∇νL(zsep, νsep, usep) = 0 ⇒ R2Tρsep= 0

µ+
i , µ−

i , ρsep≥ 0 ∀i ∈ Msep, whereMsep≡ activeM ≡ {i
∑
∈ Msep

(µi+ + µi−) = 1

zi − zbm
i ) ∨ (u = zbm

i − zi)∀i ∈ M}

(A.3)

From(A.4), we have,
sepφ ≡ {ξsep|ξsep∈ conv

i ∈ Nsep
hi}

uch that

+ R1Tρsep= 0

2Tρsep= 0

sep≥ 0

ξsep=
∑

i ∈ Nsep

αihi with
∑

i ∈ Nsep

αi = 1,

αi ≥ 0 from the convex hull definition

uch that

+ R1Tρsep= 0

2Tρsep= 0
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ρsep ≥ 0

⇔ ξsep= Hsepαsep= [Isep| − Isep]

[
α

sep
+

α
sep
−

]

= [αsep
+ − α

sep
− ]

such that∑
i ∈ Nsep

αi+ + αi− = 1, αsep≥ 0

ξ + R1Tρsep= 0

R2Tρsep= 0

ρsep≥ 0

(A.5)

If ξ = Hµ ⇔ ξ = [I| − I]

[
µ+
µ−

]
= [µ+ − µ−]

then

ξsep= [µsep
+ − µ

sep
− ] and ξi = [µi+ − µi−] ∀i ∈ Nsep

but from (A.5) we know thatξsep= [αsep
+ − α

sep
− ],so α =µ

and(A.5) becomes:

ξsep= [µsep
+ − µ

sep
− ]

∑

a
[

A
p

B

xj + Lj ≤ xi + BIGM2
ij(1 − w2

ij) ∀i, j ∈ N, i < j

yi − Hi ≥ yj − BIGM3
ij(1 − w3

ij) ∀i, j ∈ N, i < j

yj − Hj ≥ yi − BIGM4
ij(1 − w4

ij) ∀i, j ∈ N, i < j∑
d ∈ D

wd
ij = 1 ∀i, j ∈ N, i < j

xi ≤ UBi − Li ∀i ∈ N

Hi ≤ yi ≤ W ∀i ∈ N

lt, xi, yi ∈R1+, wd
ij ∈ {0, 1} ∀d ∈ D, ∀i, j ∈ N, i < j

whereD ={1, 2, 3, 4}.

B.2. Convex hull reformulation of (SP-GDP)

Min lt

s.t. lt ≥ xi + Li ∀i ∈ N

xk =
∑
d ∈ D

νd
kij ∀i, j, k ∈ N, i < j, k = i ∨ j

yk =
∑
d ∈ D

ωd
kij ∀i, j, k ∈ N, i < j, k = i ∨ j

ν1
iij − ν1

jij ≤ −Liw
1
ij ∀i, j ∈ N, i < j
s.t.
i ∈ Nsep

µi+ + µi− = 1, µi ≥ 0

[µ+ − µ−] + R1Tρsep= 0

R2Tρsep= 0

ρsep≥ 0

(A.6)

Clearly, Nsep≡ Msep and we have thus recovered(A.3)
nd shown that the form of the subgradient is indeedξsep=
µ

sep
+ − µ

sep
− ]. �

ppendix B. Reformulations of strip-packing
roblem (SP-GDP)

.1. Big-M reformulation of (SP-GDP)

Min lt

s.t. lt ≥ xi + Li ∀i ∈ N

xi + Li ≤ xj + BIGM1
ij(1 − w1

ij) ∀i, j ∈ N, i < j
ν2
jij − ν2

iij ≤ −Ljw
2
ij ∀i, j ∈ N, i < j

ω3
iij − ω3

jij ≥ Hiw
3
ij ∀i, j ∈ N, i < j

ω4
jij − ω4

iij ≥ Hjw
4
ij ∀i, j ∈ N, i < j∑

d ∈ D

wd
ij = 1 ∀i, j ∈ N, i < j

νd
kij ≤ UBd

kijw
d
ij ∀d ∈ D, ∀i, j, k ∈ N, i < j, k = i ∨ j

ωd
kij ≤ UBd

kijw
d
ij ∀d ∈ D, ∀i, j, k ∈ N, i < j, k = i ∨ j

xi ≤ UBi − Li ∀i ∈ N

Hi ≤ yi ≤ W ∀i ∈ N

lt, xi, yi, ν
d
kij, ω

d
kij

∈R1+, wd
ij ∈ {0, 1} ∀d ∈ D, ∀i, j, k ∈ N, i < j, k = i ∨ j

whereD ={1, 2, 3, 4}.
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Appendix C. Reformulations of retrofit planning problem (RP-GDP)

C.1. Big-M reformulation of (RP-GDP)

Min Z =
∑
t ∈ T

∑
s ∈ Sprod

PRt
smf t

s −
∑
t ∈ T

∑
s ∈ Sraw

PRs
tmf t

s −
∑
t ∈ T

PRSTqstt

−
∑
t ∈ T

PRWTqwtt −
∑
t ∈ T

∑
m ∈ M

∑
p ∈ P

FCt
pmwt

pm −
∑
t ∈ T

∑
j ∈ J

EFCt
j

s.t. mf t
s = f t

s MWs ∀s ∈ S, ∀t ∈ T

mf t
s ≥ DEMt

s ∀s ∈ Sprod, ∀t ∈ T

mf t
s ≤ SUPt

s ∀s ∈ Sraw, ∀t ∈ T∑
s ∈ Snin

mf t
s =

∑
s ∈ Snout

mf t
s ∀n ∈ N, ∀t ∈ T

∑
s ∈ Spin

mf t
s =

∑
s ∈ Spout

mf t
s + unrcttp ∀p ∈ P, ∀t ∈ T

f t
s ≤ f t

plmt

(
GMAt

s

GMAplmt

)
ETAt

pm + BIGMt
pm(1 − yt

pm) ∀s ∈ Spout, ∀p ∈ P, ∀m ∈ M, ∀t ∈ T

f t
s ≥ f t

plmt

(
GMAt

s

GMAplmt

)
ETAt

pm − BIGMt
pm(1 − yt

pm) ∀s ∈ Spout, ∀p ∈ P, ∀m ∈ M, ∀t ∈ T

∑
mf t

s ≤ CAPt
pm + BIGMt

pm(1 − yt
pm) ∀p ∈ P, ∀m ∈ M, ∀t ∈ T
s ∈ Spin

fct
p ≤ FCt

pm + BIGMt
pm(1 − wt

pm) ∀p ∈ P, ∀m ∈ M, ∀t ∈ T

fct
p ≥ FCt

pm − BIGMt
pm(1 − wt

pm) ∀p ∈ P, ∀m ∈ M, ∀t ∈ T

qt
sk = mf t

s CPs(T t
soutk

− T t
sink

) ∀s ∈ Scold, ∀k ∈ K, ∀t ∈ T

qt
sk = mf t

s CPs(T t
sink

− T t
soutk

) ∀s ∈ Shot, ∀k ∈ K, ∀t ∈ T

qstt ≤
∑
k ∈ K

∑
s ∈ Scold

qt
sk + BIGMt

1,1(1 − xt
1) ∀t ∈ T

qstt ≥
∑
k ∈ K

∑
s ∈ Scold

qt
sk − BIGMt

1,1(1 − xt
1) ∀t ∈ T

qwtt ≤
∑
k ∈ K

∑
s ∈ Shot

qt
sk + BIGMt

2,1(1 − xt
1) ∀t ∈ T

qwtt ≥
∑
k ∈ K

∑
s ∈ Shot

qt
sk − BIGMt

2,1(1 − xt
1) ∀t ∈ T

rt
k − rt

k−1 − qsttk + qwttk ≤
∑

s ∈ Shot

qt
sk −

∑
s ∈ Scold

qt
sk + BIGMt

1,2(1 − xt
2) ∀k ∈ K, ∀t ∈ T

rt
k − rt

k−1 − qsttk + qwttk ≥
∑

s ∈ Shot

qt
sk −

∑
s ∈ Scold

qt
sk − BIGMt

1,2(1 − xt
2) ∀k ∈ K, ∀t ∈ T
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qstt ≤
∑
k ∈ K

qsttk + BIGMt
2,2(1 − xt

2) ∀t ∈ T

qstt ≥
∑
k ∈ K

qsttk − BIGMt
2,2(1 − xt

2) ∀t ∈ T

qwtt ≤ rt
|K| +

∑
k ∈ K

qwttk + BIGMt
3,2(1 − xt

2) ∀t ∈ T

qwtt ≥ r|K|t +
∑
k ∈ K

qwttk − BIGMt
2,2(1 − xt

2) ∀t ∈ T

ect ≤ EFCt
j + BIGMt

j(1 − vt
j) ∀j ∈ J, ∀t ∈ T

ect ≥ EFCt
j − BIGMt

j(1 − vt
j) ∀j ∈ J, ∀t ∈ T∑

p ∈ P

fct
p + ect +

∑
s ∈ Sraw

PRt
s mfts + PRST qstt + PRWT qwtt ≤ INV t ∀t ∈ T

∑
m ∈ M

yt
pm = 1 ∀p ∈ P, ∀t ∈ T

∑
m ∈ M

wt
pm = 1 ∀p ∈ P, ∀t ∈ T

∑
j ∈ J

xt
j = 1 ∀t ∈ T
∑
j ∈ J

vt
j = 1 ∀t ∈ T

yt
pm ≤ yτ

pm ∀p ∈ P, ∀t < τ ∈ T, ∀m ∈ M\m1

wt
pm ≤ wτ

p1 ∀p ∈ P, ∀t �= τ ∈ T, ∀m ∈ M\m1

yt
p1 ≤ wt

p1 ∀p ∈ P, ∀t ∈ T

yt
pm ≤ wt

pm +
|T |−1∑
τ=1

yt−τ
pm ∀p ∈ P, ∀t ∈ T, ∀m ∈ M\m1

xt
2 ≤ xτ

1 ∀t < τ ∈ T

vt
2 ≤ vτ

1 ∀t �= τ ∈ T

xt
1 ≤ vt

1 ∀t ∈ T

xt
2 ≤ vt

2 +
|T |−1∑
τ=1

xt−τ
2 ∀t ∈ T

mf t
s , f

t
s ∈R1+ ∀s ∈ S, ∀t ∈ T

f t
plmt

, unrcttp, fct
p ∈R1+ ∀p ∈ P, ∀t ∈ T

qsk
t ∈R1+ ∀s ∈ S, ∀k ∈ K, ∀t ∈ T

qstt , qwtt , ect ∈R1+ ∀t ∈ T

qsttk, qwttk, r
t
k ∈R1+ ∀k ∈ K, ∀t ∈ T

yt
pm, wt

pm ∈ {0, 1} ∀p ∈ P, ∀t ∈ T, ∀m ∈ M

xt
j, v

t
j ∈ {0, 1} ∀j ∈ J, ∀t ∈ T
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C.2. Convex hull reformulation of (RP-GDP)

Min Z =
∑
t ∈ T

∑
s ∈ Sprod

PRt
smf t

s −
∑
t ∈ T

∑
s ∈ Sraw

PRt
smf t

s −
∑
t ∈ T

PRSTqstt −
∑
t ∈ T

PRWTqwtt

−
∑
t ∈ T

∑
m ∈ M

∑
p ∈ P

FCt
pmwt

pm −
∑
t ∈ T

∑
j ∈ J

EFCt
j

s.t. mf t
s = f t

s MWs ∀s ∈ S, ∀t ∈ T

mf t
s ≥ DEMt

s ∀s ∈ Sprod, ∀t ∈ T

mf t
s ≤ SUPt

s ∀s ∈ Sraw, ∀t ∈ T∑
s ∈ Spin

mf t
s =

∑
s ∈ Spout

mf t
s ∀n ∈ N, ∀t ∈ T

∑
s ∈ Spin

mf t
s =

∑
s ∈ Spout

mf t
s + unrcttp ∀p ∈ P, ∀t ∈ T

f t
s =

∑
m ∈ M

zf t
sm ∀s ∈ Spout, ∀p ∈ P, ∀t ∈ T

f t
Plmt =

∑
m ∈ M

zf t
Plmtm

∀p ∈ P, ∀t ∈ T

mf t
s =

∑
m ∈ M

zmf t
sm ∀s ∈ Spin , ∀p ∈ P, ∀t ∈ T

∑

fct

p =
m ∈ M

zfct
pm ∀p ∈ P, ∀t ∈ T

qstt =
∑
j ∈ J

zqsttj ∀t ∈ T

qwtt =
∑
j ∈ J

zqwttj ∀t ∈ T

qt
sk =

∑
j ∈ J

zqt
skj ∀s ∈ Scold ∪ Shot, ∀k ∈ K, ∀t ∈ T

rt
k =

∑
j ∈ J

zrt
kj ∀k ∈ K, ∀t ∈ T

qsttk =
∑
j ∈ J

zqsttkj ∀k ∈ K, ∀t ∈ T

qwttk =
∑
j ∈ J

zqwttkj ∀k ∈ K, ∀t ∈ T

ect =
∑
j ∈ J

zectj ∀t ∈ T

zf t
sm = zf t

plmtm

(
GMAt

s

GMAplmt

)
ETAt

pm ∀s ∈ Spout, ∀p ∈ P, ∀m ∈ M, ∀t ∈ T∑
s ∈ Spin

zmf t
sm ≤ CAPt

pmyt
pm ∀p ∈ P, ∀m ∈ M, ∀t ∈ T

zfct
pm = FCt

pmwt
pm ∀p ∈ P, ∀m ∈ M, ∀t ∈ T

qt
sk = mf t

s CPs(T t
Soutk

− T t
Sink

) ∀s ∈ Scold, ∀k ∈ K, ∀t ∈ T

qt
sk = mf t

s CPs(T t
Sink

− T t
Soutk

) ∀s ∈ Shot, ∀k ∈ K, ∀t ∈ T
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zqstt1 =
∑
k ∈ K

∑
s ∈ Scold

zqt
sk1 ∀t ∈ T

zqwtt1 =
∑
k ∈ K

∑
s ∈ Shot

zqt
sk1 ∀t ∈ T

zrt
k2 − zrt

k−1,2 − zqsttk2 + zqwttk2 =
∑

s ∈ Shot

zqt
sk2 −

∑
s ∈ Scold

zqt
sk2 ∀k ∈ K, ∀t ∈ T

zqstt2 =
∑
k ∈ K

zqsttk2 ∀t ∈ T

zqwtt2 = zrt
|K|2 +

∑
k ∈ K

zqwttk2 ∀t ∈ T

zectj = EFCt
jv

t
j ∀j ∈ J, ∀t ∈ T∑

p ∈ P

fct
p + ect +

∑
s ∈ Sraw

PRt
smf t

s + PRSTqstt + PRWTqwtt ≤ INV t ∀t ∈ T

zf t
sm ≤ BNDt

smyt
pm ∀s ∈ Spout, ∀p ∈ P, ∀m ∈ M, ∀t ∈ T

zf t
Plmtm

≤ BNDt
Plmtm

yt
pm ∀p ∈ P, ∀m ∈ M, ∀t ∈ T

zmf t
sm ≤ BNDt

smyt
pm ∀s ∈ Spin , ∀p ∈ P, ∀m ∈ M, ∀t ∈ T

zfct
pm ≤ BNDt

pmwt
pm ∀p ∈ P, ∀m ∈ M, ∀t ∈ T

zqstt ≤ BNDt xt ∀j ∈ J, ∀t ∈ T
j j j

zqwttj ≤ BNDt
jx

t
j ∀j ∈ J, ∀t ∈ T, ∀t ∈ T

zqt
skj ≤ BNDt

skjx
t
j ∀s ∈ Scold ∪ Shot, ∀k ∈ K, ∀j ∈ J, ∀t ∈ T

zrt
kj ≤ BNDt

kjx
t
j ∀k ∈ K, ∀j ∈ J, ∀t ∈ T

zqsttkj ≤ BNDt
kjx

t
j ∀k ∈ K, ∀j ∈ J, ∀t ∈ T

zqwttkj ≤ BNDt
kjx

t
j ∀k ∈ K, ∀j ∈ J, ∀t ∈ T

zectj ≤ BNDt
jv

t
j ∀j ∈ J, ∀t ∈ T∑

m ∈ M

yt
pm = 1 ∀p ∈ P, ∀t ∈ T

∑
m ∈ M

wt
pm = 1 ∀p ∈ P, ∀t ∈ T

∑
j ∈ J

xt
j = 1 ∀t ∈ T

∑
j ∈ J

vt
j = 1 ∀t ∈ T

yt
pm ≤ yτ

pm ∀p ∈ P, ∀t < τ ∈ T, ∀m ∈ M\m1

wt
pm ≤ wτ

p1 ∀p ∈ P, ∀t �= τ ∈ T, ∀m ∈ M\m1
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yt
p1 ≤ wt

p1 ∀p ∈ P, ∀t ∈ T

yt
pm ≤ wt

pm +
|T |−1∑
τ=1

yt−τ
pm ∀p ∈ P, ∀t ∈ T, ∀m ∈ M\m1

xt
2 ≤ xτ

1 ∀t < τ ∈ T

vt
2 ≤ vτ

1 ∀t �= τ ∈ T

xt
1 ≤ vt

1 ∀t ∈ T

xt
2 ≤ vt

2 +
|T |−1∑
τ=1

xt−τ
2 ∀t ∈ T

mf t
s , f

t
s ∈R1+ ∀s ∈ S, ∀t ∈ T

f t
Plmt

, unrcttp, fct
p ∈R1+ ∀p ∈ P, ∀t ∈ T

qt
sk ∈R1+ ∀s ∈ S, ∀k ∈ K, ∀t ∈ T

qstt , qwtt , ect ∈R1+ ∀t ∈ T

qsttk, qwttk, r
t
k ∈R1+ ∀k ∈ K, ∀t ∈ T

zmf t
sm, zf t

sm ∈R1+ ∀s ∈ S, ∀m ∈ M, ∀t ∈ T

zf t
Plmtm

, zfct
pm ∈R1+ ∀p ∈ P, ∀m ∈ M, ∀t ∈ T

zqt
skm ∈R1+ ∀s ∈ S, ∀k ∈ K, ∀m ∈ M, ∀t ∈ T

A

D

zqsttm, zqwttm, zectm ∈R1+ ∀m ∈ M, ∀t ∈ T

zqsttkm, zqwttkm, zrt
km ∈R1+ ∀k ∈ K, ∀m ∈ M, ∀t ∈ T

yt
pm, wt

pm ∈ {0, 1} ∀p ∈ P, ∀t ∈ T, ∀m ∈ M

xt
j, v

t
j ∈ {0, 1} ∀j ∈ J, ∀t ∈ T

ppendix D. Reformulations of zero-wait job-shop scheduling problem (JS-GDP)

.1. Big-M reformulation of (JS-GDP)

Min ms

s.t. ms≥ ti +
∑

j ∈ J(i)

TAUij ∀i ∈ I

ti +
∑

m ∈ J(i)
m≤j

TAUim ≤ tk +
∑

m ∈ J(k)
m≤j

TAUkm + BIGM(1 − y1
ik) ∀j ∈ Cik, ∀i, k ∈ I, i < k

tk +
∑

m ∈ J(k)
m≤j

TAUkm ≤ ti +
∑

m ∈ J(i)
m≤j

TAUim + BIGM(1 − y2
ik) ∀j ∈ Cik, ∀i, k ∈ I, i < k

∑
d ∈ D

yd
ik = 1 ∀i, k ∈ I, i < k

ms, ti ∈R1+, yd
ik ∈ {0, 1} ∀i, k ∈ I, i < k, ∀d ∈ D
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D.2. Convex hull reformulation of (JS-GDP)

Min ms

s.t. ms≥ ti +
∑

j ∈ J(i)

TAUij ∀i ∈ I

tn =
∑
d ∈ D

vd
nik ∀i, k ∈ I, i < k, ∀n ∈ I, n = i ∨ k

v1
iik − v1

kik ≤




∑
m ∈ J(k)

m<j

TAUkm −
∑

m ∈ J(i)
m≤j

TAUim


 y1

ik ∀j ∈ Cik, ∀i, k ∈ I, i < k

v2
kik − v2

iik ≤




∑
m ∈ J(k)

m<j

TAUim −
∑

m ∈ J(i)
m≤j

TAUkm


 y2

ik ∀j ∈ Cik, ∀i, k ∈ I, i < k

vd
nik ≤ UBd

iky
d
ik ∀i, k ∈ I, i < k, ∀n ∈ I, n = i ∨ k∑

d ∈ D

yd
ik = 1 ∀i, k ∈ I, i < k

ms, ti ∈R1+, yd
ik ∈ {0, 1} ∀i, k ∈ I, i < k, ∀d ∈ D

R
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B

B age
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H ing

H
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