

USER'S MANUAL

Aldo Vecchietti aldovec@santafe-conicet.gov.ar LogMIP User's Manual

1

		INDEX	
1.	Intro	oduction	2
2.	Disj	unctive model formulation	2
	2.1.	SMALL EXAMPLE 1	3
	2.2.	SMALL EXAMPLE 2	7
	2.3.	NONLINEAR EXAMPLE	9
3.	How	v to write a disjunctive model for LogMIP	14
4.	Declara	ation and Definition of Disjunctions	14
	4.1.	Declaration Sentence	14
	4.2.	Definition Sentence for single domain disjunctions	15
	4.3.	Definition Sentence for disjunctions defined over a domain	17
	4.4.	Controlling disjunction's domain	19
		4.4.1. Example 1	20
		4.4.2. Example 2	20
		4.4.3. Example 3	21
		4.4.4. Example 4 - Using Subsets and the GAMS GDX Facilities	22
	4.5.	Using the operator IN	25
	4.6.	Use of a DUMMY Equation	26
5. I	Logic P	ropositions	27
6. \$	Special	Sentences	27
	-	compilation errors	28
8.	Solvers	\$	28
	8.1	Linear Solvers	29
		8.1.1. Options in LMBIGM Solver	29
	8.2	Nonlinear Solver	30
		8.2.1 Initializations	31
		8.2.2 Termination options	32
9.	Recom	mendations and limitations	32
10.	Refere	ences	33

1. Introduction

LogMIP 1.0 is a program for solving linear and nonlinear disjunctive programming problems involving binary variables and disjunction definitions for modeling discrete choices. While the modeling and solution of these disjunctive optimization problems has not yet reached the stage of maturity and reliability as LP, MIP and NLP modeling, these problems have a rich area of applications.

LogMIP 1.0 has been developed by A. Vecchietti, J.J. Gil and L. Catania at INGAR (Santa Fe-Argentina) and Ignacio E. Grossmann at Carnegie Mellon University (Pittsburgh-USA).

LogMIP is composed of:

- a language compiler for the declaration and definition of disjunctions and logic constraints,
- solvers for linear and non-linear disjunctive models.

Those components are linked to **GAMS**. Both parts are supersets of GAMS language and solvers respectively. LogMIP is not independent of GAMS. Besides the disjunction and logic constraints declaration and definition, LogMIP needs the declaration and definitions of scalars, sets, tables, variables, constraints, equations, etc. made in GAMS language for the specifications and solution of a disjunctive problem.

2. Disjunctive model formulation

The models for LogMIP have the following general formulation:

$$\min \ Z = \sum_{k} c_{k} + f(x) + d^{t} y$$

s.t.
$$g(x) \le 0$$

$$r(x) + D \ y \le 0$$

$$A \ y \le a$$

$$\bigvee_{i \in D_{k}} \begin{bmatrix} Y_{ik} \\ h_{ik}(x) \le 0 \\ c_{k} = \gamma_{ik} \end{bmatrix} k \in SD$$

$$\Omega(Y) = True$$

 $x \in \mathbb{R}^n$, $y \in \{0,1\}^q$, $Y \in \{True, False\}^m$, $c_k \ge 0$

- x, c_k are continuous variables,
- *y* are binary variables (0-1),
- Y_{ik} are Boolean variables, to establish whether a disjunction term is true or false
- $\Omega(Y)$ logic relationships between Boolean variables,
- f(x) objective function, which can be linear or non-linear,
- g(x) linear or non-linear inequalities/equalities independent of the discrete choices,
- $r(x)+Dy \le 0$ mixed-integer inequalities/equalities that can contain linear or non-linear continuous terms (integer terms must be linear),
- $Ay \le a$ linear integer inequalities/equalities
- $d^{T}y$ linear fixed cost terms.

We present three small examples in order to illustrate the meaning of the previous disjunctive/hybrid formulation. The first two corresponds to linear models, the later to a nonlinear disjunctive model.

2.1. SMALL EXAMPLE 1

$minZ = T$ s.a. $T \ge x_A + 8$ $T \ge x_B + 5$ $T \ge x_C + 6$	This example corresponds to a Jobshop (Jobshop scheduling) problem, having three jobs (A,B,C) that must be executed sequentially in three steps (1,2,3), but not all jobs require all the stages, meaning that the jobs will be executed in a subset of stages. The processing time for each stage is given by the following table:
$\begin{bmatrix} Y_{I} \\ x_{A} - x_{C} + 5 \le \theta \end{bmatrix} \lor \begin{bmatrix} \neg Y_{I} \\ x_{C} - x_{A} + 2 \le \theta \end{bmatrix}$ $\begin{bmatrix} Y_{2} \\ x_{B} - x_{C} + I \le \theta \end{bmatrix} \lor \begin{bmatrix} \neg Y_{2} \\ x_{C} - x_{B} + 6 \le \theta \end{bmatrix}$	Job/stage 1 2 3 A 5 - 3 B - 3 2 C 2 4 -
$\begin{bmatrix} Y_3 \\ x_A - x_B + 5 \le 0 \end{bmatrix} \lor \begin{bmatrix} \neg Y_3 \\ x_B - x_A \le 0 \end{bmatrix}$ $T, x_A, x_B, x_C \ge 0$ $Y_k \in \{true, false\}, k = 1, 2, 3.$	The objective is to obtain the sequence of task, which minimizes the completion time T. In order to obtain a feasible solution the clashes between the jobs must be eliminated. For more details about this formulation see <u>Raman y Grossmann (1994).</u>

LogMIP input file for this example

First Version – Usir SET I /1*3/; SET J /A,B,C/; BINARY VARIABLES POSITIVE VARIABLE VARIABLE Z; EQUATIONS	ES X(J),T; EQUAT1, EQUAT2, EQUAT3, EQUAT4, EQUAT5, EQUAT6, EQUAT7, EQUAT8, EQUAT9, DUMI	GAMS components declaration section. MY,
EQUAT1 T =G= X EQUAT2 T =G= X EQUAT3 T =G= X	Constraints independent('A') + 8;('B') + 5;('B') + 6;('C') + 6;(disjunctions)	GAMS equations and constraints definition.
EQUAT4 X('A')-X(EQUAT5 X('C')-X(EQUAT6 X('B')-X(EQUAT7 X('C')-X(EQUAT8 X('A')-X(EQUAT9 X('B')-X($\begin{array}{c} (C')^{+} 5 = L = 0; \\ (A')^{+} 2 = L = 0; \\ (C')^{+} 1 = L = 0; \\ (B')^{+} 6 = L = 0; \\ (B')^{+} 5 = L = 0; \end{array}$ Constraints for discrete choices (disjunctions) $(A')^{+} = L = 0; \end{array}$	Constraint definitions corresponding to disjunction terms are defined here.
DUMMY SUM(I, Y OBJECTIVE Z =E= X.UP(J)=20.;		Dummy equation just to avoid the elimination of variable Y from the model, which handles disjunction terms.

	T
\$ONECHO > "%lm.info%" DISJUNCTION D1,D2,D3;	
D1 IS IF (Y('1')) THEN EQUAT4; ELSE EQUAT5; ENDIF; D2 IS IF(Y('2')) THEN EQUAT6; ELSE EQUAT7; ENDIF; D3 IS	In this section are defined the disjunctions according to the <u>syntax defined</u> for LogMIP. This section is compiled by LogMIP and ignored by GAMS.
IF(Y('3')) THEN EQUAT8; ELSE EQUAT9; ENDIF; \$OFFECHO OPTION MIP=LMCHULL; MODEL PEQUE1 /ALL/; SOLVE PEQUE1 USING MIP MINIMIZING Z;	LMCHULL is the solver, which generates a MIP problem by applying the <u>convex hull</u> <u>relaxation of a disjunctive</u> <u>set</u> . Then a conventional B&B algorithm solves the MIP GAMS Input file generated by the application.
Second Version – Using 3 binary variable SET I /1*3/; SET J /A,B,C/; BINARY VARIABLES Y(I); POSITIVE VARIABLES X(J),T; VARIABLE Z; EQUATIONS EQUAT1, EQUAT2, EQUAT3, EQUAT4, EQUAT5, EQUAT6, EQUAT7, EQUAT8, EQUAT9, DUMMY, OBJECTIVE;	GAMS components declaration section.
$ \begin{array}{c} \mbox{EQUAT1} & T = \mbox{Ge} X('A') + 8; \\ \mbox{EQUAT2} & T = \mbox{Ge} X('B') + 5; \\ \mbox{EQUAT3} & T = \mbox{Ge} X('C') + 6; \\ \mbox{EQUAT4} & X('A') - X('C') + 5 = \mbox{L} = 0; \\ \mbox{EQUAT5} & X('C') - X('A') + 2 = \mbox{L} = 0; \\ \mbox{EQUAT6} & X('B') - X('C') + 1 = \mbox{L} = 0; \\ \mbox{EQUAT7} & X('C') - X('B') + 6 = \mbox{L} = 0; \\ \mbox{EQUAT7} & X('A') - X('B') + 5 = \mbox{L} = 0; \\ \mbox{EQUAT9} & X('B') - X('A') = \mbox{L} = 0; \\ \mbox{EQUAT9} & X('B') - X('A') = \mbox{L} = 0; \\ \end{array} \right) $	GAMS equations and constraints definition. Constraint definitions corresponding to disjunction terms are defined here.
DUMMY SUM(I, Y(I)) =G= 0; OBJECTIVE Z =E= T; X.UP(J)=20.;	Dummy equation just to avoid the elimination of variable Y from the model, which handles disjunction terms.

4

\$ONECHO > "%lm.info%" **DISJUNCTION D1, D2, D3;** D1 IS IF Y('A') THEN EQUAT4; ELSE EQUAT5: ENDIF; D2 is IF Y('B') THEN EQUAT6; ELSE EQUAT7; ENDIF; D3 IS IF Y('C') THEN EQUAT8; ELSE EQUAT9: ENDIF; **\$OFFECHO OPTION MIP=LMBIGM; OPTION LIMCOL=0; OPTION LIMROW=0; OPTION OPTCR=0.0;**

LMBIGM is the solver, which generates a MIP problem by applying the <u>Big-M relaxation</u> of a disjunctive set. Then a conventional B&B algorithm solves the MIP GAMS Input file generated by the application.

Third Version – Alex Meeraus compact version

SOLVE PEQUE1 USING MIP MINIMIZING Z;

MODEL PEQUE1 /ALL/;

\$TITLE LOGMIP USER'S MANUAL SMALL EXAMPLE 1 SETS J JOBS / A, B, C / S STAGES / 1*3 / GG(J,J) UPPER TRIANGLE ALIAS (J,JJ), (S,SS); TABLE P(J,S) PROCESSING TIME 1 2 3 A 5 3 в 3 2 C 2 4 PARAMETER C(J,S) STAGE COMPLETION TIME W(J,JJ) MAXIMUM PAIRWISE WAITING TIME PT(J) TOTAL PROCESSING TIME BIG THE FAMOUS BIG M; GG(J,JJ) = ORD(J) < ORD(JJ); $C(J,S) = SUM(SS(ORD(SS) \le ORD(S)), P(J,SS));$ W(J,JJ) = SMAX(S, C(J,S) - C(JJ,S-1));PT(J) = SUM(S, P(J,S));BIG = SUM(J, PT(J));COMPLETION TIME VARIABLES T X(J) JOB STARTING TIME Y(J,JJ) JOB PRECEDENCE POSITIVE VARIABLE X; BINARY VARIABLE Y;

EQUATIONS COMP(J) JOB COMPLETION TIME

5

SEQ(J,JJ) JOB SEQUENCING J BEORE JJ DUMMY FORCE NAMES INTO MODEL;

COMP(J).. T = G = X(J) + PT(J);

SEQ(J,JJ) (ORD(J) $\langle ORD(JJ)$).. X(J) + W(J,JJ) = L = X(JJ);

DUMMY.. SUM(GG(J,JJ), Y(J,JJ)) =G= 0;

X.UP(J) = BIG;

MODEL M / ALL /;

\$ONECHO > "%Im.info%" DISJUNCTION D(J,JJ);

 $\begin{array}{l} \mathsf{D}(\mathsf{J},\mathsf{JJ}) \; \mathsf{WITH} \; \mathsf{ORD}(\mathsf{J}) < \mathsf{ORD}(\mathsf{JJ}) \; \mathsf{IS} \\ \mathsf{IF} \; \mathsf{Y}(\mathsf{J},\mathsf{JJ}) \\ \mathsf{THEN} \; \mathsf{SEQ}(\mathsf{J},\mathsf{JJ}); \\ \mathsf{ELSE} \; \mathsf{SEQ}(\mathsf{JJ},\mathsf{J}); \\ \mathsf{ENDIF}; \end{array}$

\$OFFECHO OPTION MIP=LMBIGM;

SOLVE M USING MIP MINIMIZING T;

2.2. SMALL EXAMPLE 2

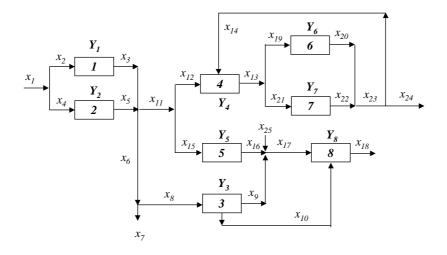
s.a.: $\begin{bmatrix} Y_{1} \\ -x_{1} + x_{2} + 2 \le 0 \\ c = 5 \end{bmatrix} \vee \begin{bmatrix} Y_{2} \\ 2 - x_{2} \le 0 \\ c = 7 \end{bmatrix}$ Small example for illustration purpose. It is composed by two disjunctions each one with two terms. Each term of the first disjunction is handled by different variables. The first term is true if Y_{1} is true; the second term of the first disjunction is true if Y_{2} is true. $\begin{bmatrix} Y_{3} \\ x_{1} - x_{2} \le 1 \end{bmatrix} \vee \begin{bmatrix} \neg Y_{3} \\ x_{1} = 0 \end{bmatrix}$ The second disjunction is handled just for one variable: Y_{3}. The first term apply if Y_{3} is true, the second if Y_{3} is false. $Y_{1} \wedge \neg Y_{2} \Rightarrow \neg Y_{3}$ $Y_{2} \Rightarrow \neg Y_{2}$ $0 \le x_{1} \le 5, 0 \le x_{2} \le 5, c \ge 0$ $Y_{j} \in \{\text{true}, \text{false}\}, j = 1, 2, 3$	$\min c + 2x_1 + x_2$	
	s.a.: $\begin{bmatrix} Y_{1} \\ -x_{1} + x_{2} + 2 \le 0 \\ c = 5 \end{bmatrix} \lor \begin{bmatrix} Y_{2} \\ 2 - x_{2} \le 0 \\ c = 7 \end{bmatrix}$ $\begin{bmatrix} Y_{3} \\ x_{1} - x_{2} \le 1 \end{bmatrix} \lor \begin{bmatrix} \neg Y_{3} \\ x_{1} = 0 \end{bmatrix}$ $Y_{1} \land \neg Y_{2} \Rightarrow \neg Y_{3}$ $Y_{2} \Rightarrow \neg Y_{3}$ $Y_{3} \Rightarrow \neg Y_{2}$ $0 \le x_{1} \le 5, 0 \le x_{2} \le 5, c \ge 0$	 composed by two disjunctions each one with two terms. Each term of the first disjunction is handled by different variables. The first term is true if Y₁ is true; the second term of the first disjunction is true if Y₂ is true. The second disjunction is handled just for one variable: Y₃. The first term apply if Y₃ is true, the second if Y₃ is false. The logic propositions indicates that: If Y₁ is true and Y₂ false it implies that Y₃ must be false.

LogMIP input file for this example

SET I /1*3/; SET J /1*2/; SCALAR M /100/; BINARY VARIABLES Y(I); POSITIVE VARIABLES X(J), C; VARIABLE Z; EQUATIONS EQUAT1, EQUAT2, EQUAT3, EQUAT4, EQUAT5, EQUAT6, DUMMY, OBJECTIVE; EQUAT1.. X('2') =L= X('1') - 2; EQUAT2.. C =É= 5; EQUAT3.. X('2') =G= 2; EQUAT4.. C =É= 7; X('1')-X('2') =L= 1; EQUAT5.. EQUAT6.. X('1') =E= M * Y('3'); DUMMY.. SUM(I, Y(I)) =G= 0; OBJECTIVE.. Z =E= C + 2*X('1') + X('2'); X.UP(J)=5; C.UP=7;

\$ONECHO > "%Im.info%" DISJUNCTION D1,D2;		
D1 IS IF Y('1') THEN EQUAT1; EQUAT2; ELSIF Y('2')THEN EQUAT3; EQUAT4; ENDIF; D2 IS IF Y('3') THEN EQUAT5;	pose a term mu (handled against TRUE te:	the different syntax used to two term disjunction where each st satisfy a TRUE condition d by two different variables) a two term disjunction with one rm condition and the other with one (handled by the same e).
ELSE EQUAT6; ENDIF; Y('1') -> not Y('3'); Y('2') -> not Y('3') ; Y('3') -> not Y('2') ;	<pre>relation</pre>	ropositions to establish hships between the tions terms
SOFFECHO		LMBIGM is the solver, which generates a MIP problem by applying the <u>BigM relaxation</u> of a disjunctive set. Then a conventional B&B algorithm solves the MIP GAMS Input file generated by the application.

Synthesis of 8 processes



$$\min \ Z = \sum_{k=1}^{8} c_k + a^T x + 122$$

s.t.
Mass Balances
 $x_1 = x_2 + x_4, x_6 = x_7 + x_8$
 $x_3 + x_5 = x_6 + x_{11}$
 $x_{11} = x_{12} + x_{15}, x_{13} = x_{19} + x_{21}$
 $x_9 + x_{16} + x_{25} = x_{17}$
 $x_{20} + x_{22} = x_{23}, x_{23} = x_{14} + x_{24}$
Specifications
 $x_{10} - 0.8 x_{17} \le 0, x_{10} - 0.4 x_{17} \ge 0$
 $x_{12} - 5 x_{14} \le 0, x_{12} - 2 x_{14} \ge 0$

Disjunctions $\begin{array}{c} Y_{1} \\ exp(x_{3}) \cdot 1 \cdot x_{2} \leq 0 \\ c_{1} = 5 \end{array} \right] \lor \left[\begin{array}{c} \neg Y_{1} \\ x_{3} = x_{2} = 0 \\ c_{1} = 0 \end{array} \right]$ Y_1 $\begin{bmatrix} Y_2 \\ exp(x_5 / 1.2) - 1 - x_4 \le 0 \\ c_2 = 5 \end{bmatrix} \lor \begin{bmatrix} \neg Y_2 \\ x_4 = x_5 = 0 \\ c_2 = 0 \end{bmatrix}$ $\begin{bmatrix} Y_3 \\ 1.5x_9 + x_{10} - x_8 = 0 \\ c_3 = 6 \end{bmatrix} \lor \begin{bmatrix} \neg Y_3 \\ x_9 = 0, x_8 = x_{10} \\ c_3 = 0 \end{bmatrix}$ $\begin{bmatrix} Y_4 \\ 1.25(x_{12} + x_{14}) - x_{13} = 0 \\ c_4 = 10 \end{bmatrix} \lor \begin{bmatrix} \neg Y_4 \\ x_{12} = x_{13} = x_{14} = 0 \\ c_4 = 0 \end{bmatrix}$ $\begin{bmatrix} Y_5 \\ x_{15} - 2x_{16} = 0 \\ c_5 = 6 \end{bmatrix} \lor \begin{bmatrix} -Y_5 \\ x_{15} = x_{16} = 0 \\ c_5 = 0 \end{bmatrix}$ $\begin{bmatrix} Y_6 \\ exp(x_{20} / 1.5) - 1 - x_{19} \le 0 \\ c_6 = 7 \end{bmatrix} \lor \begin{bmatrix} \neg Y_6 \\ x_{19} = x_{20} = 0 \\ c_6 = 0 \end{bmatrix}$ $\begin{bmatrix} V_{7} \\ V_{7} \\ exp(x_{22}) - 1 - x_{21} \le 0 \\ c_{7} = 4 \end{bmatrix} \lor \begin{bmatrix} \nabla Y_{7} \\ x_{21} = x_{22} = 0 \\ c_{7} = 0 \end{bmatrix}$ $\begin{vmatrix} Y_8 \\ exp(x_{18}) - 1 - x_{10} - x_{17} \le 0 \\ c_8 = 5 \end{vmatrix} \lor \begin{bmatrix} \neg Y_8 \\ x_{10} = x_{17} = x_{18} = 0 \\ c_8 = 0 \end{vmatrix}$

Logic Propositions:

$Y_1 \Rightarrow Y_3 \lor Y_4 \lor Y_5$	$Y_5 \Rightarrow Y_8$
$Y_2 \Rightarrow Y_3 \lor Y_4 \lor Y_5$	$Y_6 \Rightarrow Y_4$
$Y_3 \Rightarrow Y_1 \lor Y_2$	$Y_7 \Rightarrow Y_4$
$Y_3 \Rightarrow Y_8$	$Y_8 \Rightarrow Y_3 \lor Y_5 \lor (\neg Y_3 \land \neg Y_5)$
$Y_4 \Rightarrow Y_1 \lor Y_2$	$\mathbf{Y}_1 \mathbf{\vee} \mathbf{Y}_2$
$Y_4 \Rightarrow Y_6 \lor Y_7$	$Y_4 \vee Y_5$
$\mathbf{Y}_5 \Rightarrow \mathbf{Y}_1 \lor \mathbf{Y}_2$	14 – 15
	$Y_6 \vee Y_7$

LogMIP INPUT FILE for this example

```
$TITLE APPLICATION OF THE LOGIC-BASED MINLP ALGORITHM IN EXAMPLE #3
* THE FORMULATION IS DISJUNCTIVE
SOFFSYMXREF
$OFFSYMLIST
 SELECT OPTIMAL PROCESS FROM WITHIN GIVEN SUPERSTRUCTURE.
               PROCESS STREAMS
SETS
                                                    / 1*25 /
       I
              PROCESS UNITS
                                                    / 1*8 /
       ъT
PARAMETERS CV(I)
                         VARIABLE COST COEFF FOR PROCESS UNITS - STREAMS
       VARIABLES PROF
                       PROFIT :
BINARY VARIABLES
                      Y(J)
 POSITIVE VARIABLES X(I) , CF(J);
 EQUATIONS
* EQUATIONS Independent of discrete choices
                    _____
 MASSBAL1, MASSBAL2, MASSBAL3, MASSBAL4, MASSBAL5, MASSBAL6, MASSBAL7, MASSBAL8
 SPECS1, SPECS2, SPECS3, SPECS4
* EQUATIONS allowing flow just IFF the unit EXISTS
 LOGICAL1, LOGICAL2, LOGICAL3, LOGICAL4, LOGICAL5, LOGICAL6, LOGICAL7, LOGICAL8
* DISJUNCTION'S CONSTRAINTS and EQUATIONS
 INOUT11, INOUT12, INOUT13, INOUT14 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 1
 INOUT21, INOUT22, INOUT23, INOUT24 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 2
 INOUT31, INOUT32, INOUT34
                                         INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 3
 INOUT41, INOUT42, INOUT43, INOUT44, INOUT45 FOR PROCESS UNIT 4
INOUT51, INOUT52, INOUT53, INOUT54 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 5
INOUT61, INOUT62, INOUT63, INOUT64 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 6
 INOUT71, INOUT72, INOUT73, INOUT74 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 7
INOUT81, INOUT82, INOUT83, INOUT84, INOUT85, INOUT86 FOR PROCESS UNIT 8
                     OBJECTIVE FUNCTION DEFINITION ;
 OBJETIVO
* BOUNDS SECTION:
 _____
X.UP('3') = 2.0;
 X.UP('5') = 2.0;
X.UP('9') = 2.0;
 X.UP('10') = 1.0;
 X.UP('14') = 1.0;
 X.UP('17') =
                2.0;
 X.UP('19') = 2.0;
 X.UP('21') = 2.0;
 X.UP('25') = 3.0;
 OPTIONS LIMCOL = 0 ;
 OPTION LIMROW = 0 ;
OPTION OPTCR = 0 ;
*DEFINITIONS of EQUATIONS Independent of discrete choices
 MASSBAL1.. X('13') =E= X('19') + X('21')
              X('17')
                                 =E= X('9') + X('16') + X('25');
 MASSBAL2..
              X('11')
 MASSBAL3..
                                =E= X('12') + X('15')
              X('3') + X('5') = E = X('6') + X('11')
 MASSBAL4..
                                                                      ;
              X('6') = E = X('7') + X('8')
X('23') = E = X('20') + X('22)
 MASSBAL5..
                                                                      ;
                                = E = X('20') + X('22')= E = X('14') + X('24')= E = X('2') + X('4')
 MASSBAL6..
                                                                      ;
              X('23')
 MASSBAL7..
                                                                      ;
 MASSBAL8..
              X('1')
                                                                      ;
               X('10') =L= 0.8 * X('17')
X('10') =G= 0.4 * X('17')
X('12') =L= 5.0 * X('14')
 SPECS1..
                                                                      ;
 SPECS2..
                                                                      ;
 SPECS3..
               X('12') = G = 2.0 * X('14')
 SPECS4...
* DEFINITION of EQUATIONS allowing flow just IFF the unit EXISTS
LOGICAL1.. X('2') + X('3') = L = 10. * Y('1')
LOGICAL2.. X('4') + X('5') = L = 10. * Y('2')
LOGICAL3.. X('9') = L = 10. * Y('3')
                                                                  ;
 LOGICAL4.. X('12') + X('14') = L = 10. * Y('4')
                                                                   ;
```

```
LOGICAL5.. X('15') =L= 10. * Y('5')
LOGICAL6.. X('19') =L= 10. * Y('6')
LOGICAL7.. X('21') =L= 10. * Y('7')
                                                              ;
                                                              ;
                                                              ;
 LOGICAL8..
             X('10') + X('17') =L= 10. * Y('8')
                                                              ;
*DEFINITIONS of DISJUNCTION'S EQUATIONS
 INOUT11.. EXP(X('3')) -1. =E= X('2')
                                                      ;
 INOUT14..
            CF('1') =E= 5
                                                      ;
            X('2') =E= 0
 INOUT12..
                                                      ;
 INOUT13.. X('3') =E= 0
INOUT21.. EXP(X('5')/1.2) -1. =E= X('4')
                                                      ;
                                                      ;
            CF('2') =E= 8
 INOUT24..
                                                      ;
 INOUT22..
            X('4') =E= 0
                                                      ;
 INOUT23.. X('5') =E= 0
                                                      ;
             1.5 * X('9') + X('10') =E= X('8')
 INOUT31..
 INOUT34..
            CF('3') =E= 6
 INOUT32..
            X('9') =E= 0
 INOUT41..
            1.25 * (X('12')+X('14')) =E= X('13')
                                                      ;
 INOUT45..
            CF('4') =E= 10
                                                      ;
 INOUT42..
            X('12') =E= 0
                                                      ;
 INOUT43..
             X('13') =E= 0
                                                      ;
 INOUT44..
            X('14') =E= 0
                                                      ;
 INOUT51..
             X('15') =E= 2. * X('16')
                                                      ;
 INOUT54.. CF('5') =E= 6
                                                      ;
 INOUT52..
            X('15') =E= 0
                                                      :
 INOUT53..
            X('16') =E= 0
                                                      ;
            EXP(X('20')/1.5) -1. =E= X('19')
 INOUT61..
                                                      ;
            CF('6') =E= 7
 INOUT64..
                                                      ;
 INOUT62..
            X('19') =E= 0
                                                      ;
            X('20') =E= 0
 INOUT63..
                                                      ;
 INOUT71..
            EXP(X('22')) -1. =E= X('21')
                                                      ;
            CF('7') =E= 4
 INOUT74..
                                                      ;
 INOUT72..
            X('21') =E= 0
                                                      ;
            X('22') =E= 0
 INOUT73..
             EXP(X('18')) -1. =E= X('10') + X('17');
 INOUT81..
 INOUT86..
            CF('8') =E= 5
                                                      ;
            X('10') =E= 0
 INOUT82..
                                                      ;
            X('17') =E= 0
 INOUT83..
                                                      ;
            X('18') =E= 0
X('25') =E= 0
 INOUT84..
                                                      ;
 INOUT85..
                                                      ;
 OBJETIVO .. PROF =E= SUM(J,CF(J)) + SUM(I , X(I)*CV(I)) + 122 ;
* BEGIN DECLARATIONS AND DEFINITIONS OF DISJUNCTIONS (LOGMIP Section)
$ONECHO > "%lm.info%"
disjunction d1, d2, d3, d4, d5, d6, d7, d8;
       dl is if Y('l') then
                 INOUT11;
                 INOUT14:
                else
                INOUT12;
                INOUT13;
                endif;
       d2 is if Y('2') then
                 INOUT21:
                 INOUT24;
                else
                 TNOUT22:
                INOUT23;
                endif;
       d3 is if Y('3') then
                 INOUT31;
                 INOUT34;
                else
                INOUT32;
                endif;
       d4 is if Y('4') then
                 INOUT41;
                 INOUT45;
                else
                 INOUT42;
```

12

```
INOUT43;
                 INOUT44;
                endif;
       d5 is if Y('5') then
                 INOUT51;
                 INOUT54;
                else
                 INOUT52:
                 TNOUT53:
                endif:
       d6 is if Y('6') then
                 INOUT61;
                 INOUT64;
                else
                 INOUT62;
                 INOUT63;
                endif;
       d7 is if Y('7') then
                 INOUT71;
                 INOUT74;
                else
                 INOUT72;
                 INOUT73;
                endif;
       d8 is if Y('8') then
                 INOUT81;
                 INOUT86;
                else
                 INOUT82;
                 INOUT83;
                 INOUT84;
                INOUT85;
                endif:
                                                        Special sentences to establish
 atmost(Y('1'), Y('2'));
                                                        relationships between Boolean
 atmost(Y('4'), Y('5'));
                                                        variables
 atmost(Y('6'), Y('7'));
Y('1') -> Y('3') or Y('4') or Y('5');
Y('2') -> Y('3') or Y('4') or Y('5');
 Y('3') -> Y('8');
                                                        Logic Propositions to establish
 Y('3') -> Y('1') or Y('2');
                                                        relationships between the disjunctions
 Y('4') -> Y('1') or Y('2');
                                                        terms
 Y('4') \rightarrow Y('6') or Y('7');
 Y('5') -> Y('1') or Y('2');
 Y('5') \rightarrow Y('8');
 Y('6') \rightarrow Y('4');
 Y('7') \rightarrow Y('4');
                                                         This is a special section for non-
linear problems. This is an
                                                         initialization section needed by the
INIT TRUE Y('1'), Y('3'), Y('4'), Y('7'), Y('8');
                                                         LOGIC BASED OA algorithm. You must
INIT TRUE Y('1'), Y('3'), Y('5'), Y('8');
                                                         specify it. More references about this
INIT TRUE Y('2'), Y('3'), Y('4'), Y('6'), Y('8');
                                                         will be explained later, you can read
                                                         also Turkay and Grossmann (1996a).
$OFFECHO
* end logmip section
 option minlp=LMLBOA; ~
                                                          LMLBOA is the solver for non-
                                                          linear problems, which applies the
MODEL EXAMPLE3 / ALL / ;
SOLVE EXAMPLE3 USING MINLP MINIMIZING PROF
                                                          LOGIC_BASED OA algorithm. You need
                                                ;
                                                          a NLP and a MIP solver installed
                                                          together with GAMS to solve this
                                                         problem.
```

3. How to write a disjunctive model for LogMIP

The algorithm to write a problem into GAMS is the following:

a) Write in a GAMS input file (extension gms) the sets, scalars, parameters, variables, equations and constraints, and any other component necessary for the problem like if you were writing a mathematical problem.

You must be familiar with the GAMS notation to do so.

You must even declare and define in this section the equations and constraints for the disjunction terms.

You must declare and define binary variables to handle disjunction terms, these variables will work as Boolean variables. Make sure to write at least a **dummy** equation that uses them in order to avoid the GAMS compiler take out from the model if they are not used in other equation/constraint of the model.

b) Write in the same GAMS input file the sentences:

\$ONECHO > "%lm.info%"

\$OFFECHO

the dollar sign must be in the 1st column. You must write all three keywords.

Between these two sentences you must include disjunction declarations and definitions.

The complete section including the sentences above is a comment for GAMS compiler, so it is ignored by it. LogMIP language compiler compiles this section.

c) Write between the sentences of section b) the disjunction declaration and definitions according to the rules of **LogMIP language.**

4. Declaration and Definition of Disjunctions

To write disjunctions there are two types of sentences:

- declaration sentence
- definition sentence.

Disjunction can be <u>single or no-domain</u> or can have a <u>domain</u> such that you declare and define a set of disjunctions over the domain.

The domain of the disjunction can be limited by applying the sentence with.

4.1. Declaration Sentence

The declaration sentence use de word DISJUNCTION as token. The syntax is:

DISJUNCTION disjunction_identifier [domain_identifier, ..., domain_identifier], ..., disjunction_identifier [domain_identifier, ..., domain_identifier];

A disjunction name as well as the domain name can have up to 32 characters long and must start with a letter.

It follows GAMS rules about naming. You can have several entries for disjunction declarations.

Cannot use LogMIP reserved words, which are: disjunction, bu, card, else, elsif, eq, ge, if, initial, le, lt, ord, then, with

The disjunction declaration/definition over a domain is optional.

The domain must be previously defined in GAMS section declared as a SET or ALIAS.

You cannot define a domain inside the LOGMIP section. The reason is that the disjunction's domain must be in concordance of the constraint's domain, which is defined in the GAMS section.

Disjunction identifiers must be unique it cannot be equal to any other identifier in the GAMS or LogMIP section.

Examples:

DISJUNCTION a, b(i,j), disjunctionnamelong, d2(j), D2_d2;

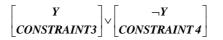
a, D2_d2 and disjunctionnamelong are single domain disjunctions.

b(i,j) and d2(j) are disjunctions defined over a domain, i and j are SETS or ALIAS defined in the GAMS section.

4.2. Definition sentence for single domain disjunctions

Given the following disjunction, which is a

single domain disjunction with two terms that must satisfy only one condition (first term:TRUE - second term: FALSE).



The syntax for the definition is:

```
disjunction_identifier IS
      IF term condition THEN
             constraint_identifier_1;
             ...
             constraint_identifier_i;
             constraint_identifier_n;
      ELSE
             constraint_identifier_n+1;
             constraint identifier r;
             constraint_identifier_z;
```

ENDIF:

term_condition is the identifier of a binary variable defined in GAMS section which takes the role of a Boolean variable, (1:TRUE, 0:FALSE).

Declaration and definition of *constraint_identifier_1...constraint_identifier_z* must be performed in GAMS section.

Another example of single domain disjunction can be the following:

Single domain disjunction with two terms. Each term must satisfy a condition.

Y ₁		Y ₂	
CONSTRAINT1	$ $ \vee	CONSTRAINT 2	
EQUATION1		EQUATION2	

The syntax for this case is:

```
disjunction_identifier IS
IF term_condition_1 THEN
constraint_identifier_1;
...
constraint_identifier_n;
ELSIF term_condition_2 THEN
constraint_identifier_n+1;
...
constraint_identifier_z;
ENDIF:
```

term_condition_1 and *term_comdition_2* are binary variables identifiers defined in GAMS section which takes the role of a Boolean variable, (1:TRUE, 0:FALSE). The identifiers must be different.

Declaration and definition of *constraint_identifier_1...constraint_identifier_z* are performed in GAMS section.

The same syntax can be applied for single domain disjunction with several terms. Each term must satisfy a condition.

The main difference is that having a disjunction with more than two terms implies that you must have several ELSIF sections for this case.

For both examples presented the following declarations and definitions apply.

\$ONECHO > "%Im.info%" Disjunction D1, D2;

D1 IS

IF Y THEN CONSTRAINT3; ELSE CONSTRAINT4; ENDIF;

```
D2 IS
IF Y1 THEN
CONSTRAINT1;
EQUATION1;
ELSIF Y2 THEN
CONSTRAINT2;
EQUATION2;
ENDIF;
$OFFECHO
```

It is not allowed in this release the capability of defining a disjunction with several terms (with each term satisfying a condition), and having an ELSE term, which applies when none of the previous term is TRUE.

It is not allowed a disjunction defined like: IF..THEN..ELSIF..THEN..ELSIF..THEN..ELSIF..THEN..ELSE..ENDIF

4.3. Definition sentence for disjunctions defined over a domain

As was mentioned in section 4.1. to define a disjunction over a domain you must first declare the domain (as a SET or ALIAS in GAMS section) and then declare the disjunction identifier over that domain.

The simplest definition can be a disjunction defined over the complete domain, for example, suppose the following disjunction:

$$\begin{bmatrix} Y_{ij} \\ CONSTRAINT 1_{ij} \\ EQUATION1_{ij} \end{bmatrix} \lor \begin{bmatrix} \neg Y_{ij} \\ CONSTRAINT 2_{ij} \\ EQUATION2_{ij} \end{bmatrix}$$

In order to define it you must have in the GAMS section:

Declaration of the domain: SET I /1*3/ J /1*4/;

Declaration of the constraints: EQUATION CONSTRAINT1(I,J), CONSTRAINT2(I,J), EQUATION1(I,J), EQUATION2(I,J) DUMMY;

Declaration of variables for disjunction terms: BINARY VARIABLES Y(I,J);

Definition of constraints:

CONSTRAINT1(I,J).. define constraint1 here; CONSTRAINT2(I,J).. define constraint2 here; EQUATION1(I,J).. define equation1 here; EQUATION2(I,J).. define equation2 here;

```
Dummy equation if needed:

DUMMY.. SUM(I, SUM(J, Y(I,J))) =G= 0;

In the LogMIP section you must have:

$ONECHO > "%Im.info%"

Disjunction D(I,J);

D(I,J) IS

IF Y(I,J) THEN

CONSTRAINT1(I,J);

EQUATION1(I,J);

ELSE

CONSTRAINT2(I,J);

EQUATION2(I,J);

ENDIF;
```

\$OFFECHO

The previous define a total of 12 (3 times 4) disjunctions with two terms according to all possible combination of I times J.

Another illustrative example could be:

Γ	Y _{ij}		$\neg Y_{ij}$
CO	NSTRAINT _{ij1}	$ $ \vee	CONSTRAINT _{ij 3}
CO	NSTRAINT _{ij2}		CONSTRAINT _{ij4}

In order to define it you must have in the GAMS section:

Declaration of domains: SET I /1*3/ J /1*4/; ALIAS(J,K);

Declaration of constraints: EQUATION CONSTRAINT(I,J,K), DUMMY;

Declaration of variables for the condition of disjunction terms: BINARY VARIABLES Y(I,J);

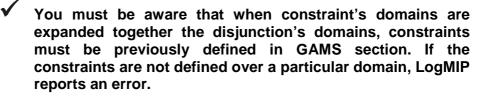
Definition of constraints: CONSTRAINT1(I,J,K).. define constraint here;

Dummy equation if needed: DUMMY.. SUM(I, SUM(J, Y(I,J))) =G= 0;

In the LogMIP section you must have:

\$OFFECHO

In the same way than the previous example, with the sentences above a total of 12 (3 times 4) disjunctions with two terms are defined according to all possible combinations of I times J.



4.4. Controlling the disjunction's domain

The constraint and disjunction's domain can be controlled by the sentence **with** in conjunction with other operators:

- Relational operators: It, < : less than le, <= : less than or equal to eq, = : equal gt, > : greater than ge, <=: greater than or equal to
- Logic operators: and, or.
- Sets operators:
 - ord : order of an item in the set
 - card : number of items in the set
 - in : inclusion of a set item
- Using subsets.

If you have defined a disjunction over a domain and you have also the disjunction's variables and constraints defined over the same or different domain, you can have two situations, which are:

- Constraints and variables whose domain is under the control of the disjunction domain.
- Constraints and variables with uncontrolled domains, which must be defined in order to avoid semantic errors.

If you need to control a set domain that is already controlled by the disjunction definition, you must use an ALIAS for that set and redefine the domain over that ALIAS. See example 3 for this purpose.

In the following four sections some illustrative examples are presented with the intention of clarifying these matters.

4.4.1. Example 1

In this example, the disjunction domains are controlled using the *with*, *ord* and *card* clauses. The disjunction's variables and constraints domains do not need an extra control.

Given the following set definition in the GAMS Section:

SET I /1*3/ , J /1*4/;

and the following disjunction declaration and definition in LogMIP Section:

```
$ ONECHO > "%Im.info%"
Disjunction D(I,J);
D(I, J) with (ord(J) It card (J)) IS
IF Y(I,J) THEN
CONSTRAINT(I,J);
ELSE
CONSTRAINT(I,J);
ENDIF;
$OFFECHO
```

Only the domain of set J is controlled. The values of J must be less than the cardinality of J, meaning that only 1, 2 and 3 are permitted. The expansion of the previous definition renders 9 disjunctions (3 times 3): D('1','1'), D('1','2'), D('1','3'), D('2','1'), D('2','2'), D('2','3'), D('3','1'), D('3','2') and D('3','3').

```
Please note that although GAMS allows declaring variables and
equations without a domain, and then in the definition use them
with domains, LogMIP compiler is not aware about this situation
and gives you an error or get stacked. We strongly suggest to
explicitly declare all domains for every variable and constraint
defined in the model.
```

4.4.2. Example 2

In this example, the disjunction domains are controlled using the *with* and *ord* clauses. There exists a constraint with a domain not controlled by the disjunction that must be done in order to avoid semantic errors.

Given the following set definition in the GAMS Section:

SET I /1*3/ , J /1*4/, K/1*2/;

and the following disjunction declaration and definition in LogMIP Section:

\$OFFECHO

The previous example will generate the following disjunctions:

D('1', '2'), D('1', '3'), D('1', '4'), D('2', '3'), D('2', '4') y D('3', '4').

Observe that CONSTR4 is defined over sets j and k. In this case j does not have problems since its domain is controlled by disjunction D. This is not the case of k, where you must include a with sentence to control the domain and avoid a semantic error.

For the second term of the first disjunction D('1', '2') the following constraints must be satisfied: CONSTR3('2'), CONSTR4('2','1'), CONSTR4('2','2'), CONSTR4('2', '3').

4.4.3. Example 3

This example is a modification of the previous, for this case we need to control a domain set which is already controlled. An ALIAS definition in the GAMS section is needed.

Given the following definition in the GAMS Section

SET I /1*3/ , J /1*4/; ALIAS (J,JJ) and the following disjunction declaration and definition in LogMIP Section:

```
$ ONECHO > "%lm.info%"
Disjunction D(i,j);
```

```
D(i,j) with (ord(i) < ord(j)) IS
IF Y(i,j) THEN
CONSTR1(j);
CONSTR2(i,jj) with (ord(jj) le 2);
ELSE
CONSTR3(j);
CONSTR4(j,k) with (ord(k) lt card(k));
ENDIF;
```

```
$OFFECHO
```

Since the domain j is controlled by the disjunction, and for CONSTR2 you need a different control, the ALIAS definition allow that you can define a *with* clause over it.

The previous example will generate the following disjunctions:

D('1', '2'), D('1', '3'), D('1', '4'), D('2', '3'), D('2', '4') y D('3', '4').

Note that:

- for the first term of disjunction D('1','2') the following constraints must be satisfied: CONSTR1('2'), CONSTR2('1', '1') and CONSTR2('1', '2').
- for the first term of disjunction D('2', '3') the following constraints must be satisfied: CONSTRAINT1('3'), CONSTRAINT2('2', '1'), CONSTRAINT2('2', '2').
- and so on...

If you control the domain of a particular constraint with the sentence with you must be aware which domain expansion is assumed in order to avoid errors on it

Observe that in the previous example it has been compared the order of a set item against an integer number, because the order is related to a position into the set, the position in which the item has been defined in the set.

4.4.4. Example 4 – Using a subset and the GAMS GDX facilities

Sometimes it is useful to restrict the disjunction domain by using a subset of the original set's domain. This can be done using the definition of a subset and the GDX facilities in the GAMS Section. This possibility is available for GAMS versions 20.5 and up. There exist two versions of this implementation depending on the GAMS version that is running in the system.

This method for controlling the set domain has the advantage of being the most general way of doing it, because you explicitly define the domain applicable for the disjunction.

Suppose the example 1 of section 4.4.1 that must be defined over the following domain of I,J: ('1','2'), ('2','3'), ('3','4'), to specify this you must define in the GAMS section the following:

SET I /1*3/, J /1*4/;

* Define the subset k

SET K(I,J) / 1.2, 2.3, 3.4 /;

and the following disjunction declaration and definition in LogMIP Section:

```
$ ONECHO > "%lm.info%"
Disjunction D(I,J);
D(I, J) with K(I,J) IS
IF Y(I,J) THEN
CONSTRAINT(I,J);
ELSE
CONSTRAINT(I,J);
ENDIF;
$OFFECHO
```

Note the sentence using the clause *with* in the definition of D(I,J) it is referencing the subset to define disjunctions D('1','2'), D('2','3') and D('3','4'). If you are using GAMS IDE versions 20.5, 20.6, 20.7, 21.0, and 21.1 you

If you are using GAMS IDE versions 20.5, 20.6, 20.7, 21.0, and 21.1 you must do the following:

- 1. Include in GAMS INPUT file the following sentences: \$ GDXOUT filename
 - \$ UNLOAD
- In the IDE GAMS parameters box (in the upper right section of the IDE window) write the following: *gdx*= *filename*

The first two sentences generate in GAMS compilation time a filename.gdx file containing the symbols of the subsets needed by LogMIP to proceed with the compilation. The sentence included in the IDE GAMS parameters box tells LogMIP the filename and file location in

Both filenames must be the same.

order to open it and read those symbols.

For versions 21.2 and up the previous items 1. and 2. are not needed.

A larger example

The following example corresponds to a jobshop scheduling problem (Raman and Grossmann, 1994). In this problem, there is a set of jobs $i \in I$ that must be processed in a sequence of stages but not all jobs require all stages. Zero wait transfer policy is assumed between stages. To obtain a feasible solution is necessary to eliminate all clashes between jobs. It requires that no two jobs be performed at any stage at the same time. This is expressed by the following disjunction:

$$\begin{bmatrix} Y_{ik} \\ t_i + \sum_{\substack{m \in J(i) \\ m \leq j}} \tau_{im} \leq t_k + \sum_{\substack{m \in J(k) \\ m < j}} \tau_{km} \end{bmatrix} \lor \begin{bmatrix} \neg Y_{ik} \\ t_k + \sum_{\substack{m \in J(k) \\ m \leq j}} \tau_{km} \leq t_i + \sum_{\substack{m \in J(k) \\ m \leq j}} \tau_{im} \\ m < j} \end{bmatrix}$$

where t_i is the starting time of job i and τ_{ij} the processing time of job i in stage j. The meaning of (1) is that either the job i precede job k or viceversa in the stage j where a clash can occur. The objective is to minimize the makespan.

The subset is used to prevent clashes at stage j between job i and k. In the following we include GAMS file for a jobshop scheduling problem to illustrate how to use a subset to control the disjunction domain.

The LogMIP input file corresponding to this example is the following:

```
SETS I jobs / A, B, C, D, E, F, G / ;
ALIAS(I,K);
SET J stages / 1*5 /;
ALIAS(J,M);
\ast Subset L to prevent clashes at stage j between stage i and k
SET L(I,K,J) /A.B.3, A.B.5, A.C.1, A.D.3, A.E.3, A.E.5, A.F.1, A.F.3,
     A.G.5, B.C.2, B.D.2, B.D.3, B.E.2, B.E.3, B.E.5, B.F.3, B.G.2,
B.G.5, C.D.2, C.D.4, C.E.2, C.F.1, C.F.4, C.G.2, C.G.4, D.E.2,
D.E.3, D.F.3, D.F.4, D.G.2, D.G.4, E.F.3, E.G.2, E.G.5,
      F.G.4 /
TABLE TAU(I,J) processing time of job i in stage j
                     2
             1
                             3
                                     4
                                             5
             3
                             5
                                             2
      А
                     3
                                             3
      В
                            4
      С
             б
                    3
                                     б
                    8
                           5
      D
                                     1
                    4
      E
                            6
                                             2
                                     7
      F
             2
                            5
      G
                     8
                                     5
                                              4
                                                   ;
VARIABLES MS
                   makespan ;
BINARY VARIABLES Y(I,K,J) sequencing variable between jobs i and k ;
POSITIVE VARIABLES T(I) ;
EQUATIONS
                           makespan greater than all processing times
           FEAS(I)
                           when i precedes k
           NOCLASH1(I,K,J)
           NOCLASH2(I,K,J) when k precedes i
           DUMMY
                      ;
FEAS(I)..MS = G = T(I) + SUM(M,TAU(I,M));
NOCLASH2(I,K,J)$((ORD(I) LT ORD(K)) AND L(I,K,J)) ...
               T(K) + SUM(M\$(ORD(M) LE ORD(J)), TAU(K, M)) = L=
               T(I) + SUM(M\$(ORD(M) LT ORD(J)), TAU(I,M));
DUMMY.. SUM(I, SUM(K, SUM(J, Y(I, K, J)))) = G = 0;
MODEL JOBSHOP / ALL / ;
```

```
$ ONECHO > "%Im.info%"
DISJUNCTION D1(I,K,J);
      D1(I,K,J) with ((ord(I) lt ord(K)) and L(I,K,J)) IS
      IF Y(I,K,J) THEN
        NOCLASH1(I,K,J);
      ELSE
       NOCLASH2(I,K,J);
      ENDIF;
SOFFECHO
T.up(I)=100.;
              = LMBIGM;
OPTION MIP
OPTION OPTCR = 0.0 ;
OPTION OPTCA
               = 0.0 ;
SOLVE JOBSHOP MINIMIZING MS USING MIP ;
```

In the example shown above note that in LogMIP section disjunction D1 is defined over sets I,K,J their domain is controlled by the clause *WITH* using *ord* and *card* operators and the subset L, this is done in the same way than the definition of NOCLASH1 and NOCLASH2 constraints in GAMS section.

4.5. Using the operator IN

Using the operator IN as follows can perform the same constraints domain limitation for the Example 3:

```
$ ONECHO > "%lm.info%"
```

```
Disjunction D(i,j);
```

```
D(i,j) with (ord(i) < ord(j)) IS
IF Y(i,j) THEN
CONSTR1(j);
CONSTR2(i,j);
ELSE
CONSTR3(j);
CONSTR4(j,k) with k IN ('1', '2');
ENDIF;
```

\$OFFECHO

 \checkmark

The operator IN expands the domain just for the set items included between the parentheses after the operator. The set items must be enclosed by single quotation marks and separated by commas.

Another example of the IN operator is when you define the domain over a value range as follows:

\$OFFECHO

The above examples are just a few samples of what you can do for limiting the disjunction's domain. You can define more difficult sentences by using the operators mentioned and the logical operators and/or.

Some other examples could be:

with (ord(j) It card(i) and ord(k) not 1)

with (ord(I) It ord(K)) and ((ord(I) eq 1 and ord(K) eq 3 and ord(j) eq 1) or

(ord(I) eq 1 and ord(K) eq 4 and ord(j) eq 4))

4.6. Use of a DUMMY equation

Although it is not mandatory, we recommend the user to write a dummy equation into the GAMS section for the binary variables that handle disjunction terms (disjunction conditions) in order to avoid that GAMS compiler eliminate those variables from the model (and from the matrix). It occurs when some or all variables are not used in other equations/constraints of the model. Suppose the following variables handling disjunction's terms defined in GAMS section:

Binary variables Y(J);

If some or all variables of Y are not included in any equation or constraint defined in GAMS section they will be eliminated from the model, and LogMIP compiler will show an error even when they handle disjunction terms. To avoid that, you must write the following constraint:

DUMMY.. SUM(J, Y(J)) = G = 0;

which should be always satisfied. Another example could be:

Binary variables y, w, z;

DUMMY .. y + w + z = G = 0;

A combination of the previous examples could be:

DUMMY.. y + w + z + SUM(j, Y(j)) = G = 0;

5. Logic Propositions

Logic propositions are used to pose relationships between the Boolean (Binary) variables handling the disjunctive terms.

Symbol	Meaning
->	Implication
<->	equivalence
not	negation
and	logical and
or	logical or

The operators defined for writing these sentences are:

Every logic proposition must have an implication or equivalence operator, otherwise a syntax error will occur.

LogMIP transforms the logical propositions into a set of mathematical integer inequalities. Given the following set of logic propositions in LogMIP Section: Y('1') and not $Y('2') \rightarrow not Y('3')$;

```
Y('2') -> not Y('3');

Y('1') -> Y('3') or Y('4') or Y('5');

Y('2') -> Y('3') or Y('4') or Y('5');

Y('3') -> Y('8');

Y('3') -> Y('1') or Y('2');

Y('5') <-> Y('8');
```

They are transformed into the following set of inequalities written in GAMS language syntax:

```
LOGPROP1.. -Y(1) +Y(2) -Y(3) =G = -1;

LOGPROP2.. -Y(2) -Y(3) =G = -1;

LOGPROP3.. -Y(1) +Y(3) +Y(4) +Y(5) =G = 0;

LOGPROP4.. -Y(2) +Y(3) +Y(4) +Y(5) =G = 0;

LOGPROP5.. -Y(3) +Y(8) =G = 0;

LOGPROP6.. -Y(3) +Y(1) +Y(2) =G = 0;

LOGPROP7.. -Y(5) +Y(8) =G = 0;

LOGPROP8.. -Y(8) +Y(5) =G = 0;
```

Then the disjunctive problem including this mathematical inequalities set is solved.

The user can avoid the writing of logic propositions into LogMIP section by introducing directly the mathematical equivalent inequalities in the GAMS Section, it depends on how confident it is with one methodology or the other.

6. Special Sentences

The special sentences are sentences to establish single relationships between the Boolean (binary variables) handling the disjunction terms. They represent an easy and more natural way than logic propositions to express the most common relationships between the Boolean/binary variables. There are three kind of special sentences:

- atmost
- > atleast
- exactly

The syntax of these sentences are:

atmost (Boolean/binary variable list separated by comma, [number]) *atleast* (Boolean/binary variable list separated by comma, [number]) *exactly* (Boolean/binary variable list separated by comma, [number])

- The meaning of **atmost** is that the summation of the variable list must be less than or equal to number.
- The meaning of atleast is that the summation of the variable list must be greater than or equal to number.
- The meaning of exactly is that the summation of the variable list must be equal to number.

[number] is optional, if no number is specified 1 is assumed.

The Boolean/binary variable list can include single variables and also a variable defined over a domain.

```
Example:
Given the following set of special sentences in LOGMIP section
atmost( Y('1'), Y('2'), Y('3'),2);
atleast(Y('1'), Y('2'), Y('3'), 3);
exactly(Y('1'), Y('2'), Y('3'));
```

They are transformed into the following set of mathematical inequalities: LOGPROP1.. +Y(1) +Y(2) +Y(3) = L= 2; LOGPROP2.. +Y(1) +Y(2) +Y(3) = G= 3;LOGPROP3.. +Y(1) +Y(2) +Y(3) = E= 1;

- 7. LogMIP compilation errors
 - The syntax, semantic and some other errors detected during the disjunction's compilation phase are shown in the execution window of the IDE. They are not included in the listing file (.lst file).

8. SOLVERS

LogMIP can solve linear/nonlinear disjunctive hybrid models that follow the formulation showed in section 2 of this manual. Disjunctive models are those where discrete decisions are written only in the form of disjunctions, while hybrid models involve both disjunctions and mixed-integer constraints.

8.1. Linear Solvers.

In figure 1 it is shown the solution algorithms for linear hybrid/disjunctive models.

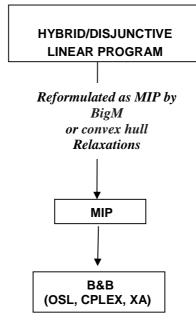


Fig. 1: solution algorithms for linear models

The disjunctions defined in the model are transformed into mixed integer formulations by using one of the relaxations proposed: BigM or convex hull. The original model is transformed into a Mixed Integer Model that it is later solved by a Branch and Bound algorithm. References about the relaxations can be found in Balas(1979), Vecchietti and Grossmann(2002).

Two solvers are available for linear solvers, which are:

- LMBIGM: applies the BigM relaxation of a disjunctive set.
- LMCHULL: applies the convex hull relaxation of a disjunctive set.

To select one solver you must write in the GAMS input file one of the following sentence:

OPTION MIP=LMBIGM;

or

OPTION MIP=LMCHULL;

See the small examples provided in Section 2 of this manual.

8.1.1. OPTIONS in LMBIGM solver

You have two options when selecting the BigM relaxation solver (LMBIGM). Both options are related to value of the parameter M in the relaxations. This value is very important in order to reach the solution. The parameters are set up by the keywords **DEFAULT** and **DETERMINEM** in the file "LMBIGM.opt".

The way LMBIGM uses this parameters is same than the other solvers in GAMS:

 In GAMS section and after defined the model you want to solve, you must write:

model_name.optfile =1;

- In the directory where GAMS files are included, write a file whose name is LMBIGM.opt with the options you have selected.
- In LMBIGM.opt you must write the options according to the following rules: DEFAULT is the default value for the M parameter value. After the keyword DEFAULT you must write a real number representing the value of M of your choice. Examples: DEFAULT 1000, DEFAULT 5.e5. DETERMINEM is the option that can be turned off or turned on by writing 0 or 1 respectively, after the keyword DETERMINEM. If you turned it on, then the solver can calculate the best value of M. For doing that it is very important to provide good bounds for all continuous variables included in the model. Example: DETERMINEM 0.

The default values for this option are DEFAULT 1.E4 and DETERMINEM 0.

8.2. Nonlinear SOLVER

In figure 2 it is shown the solution algorithms for nonlinear hybrid/disjunctive models.

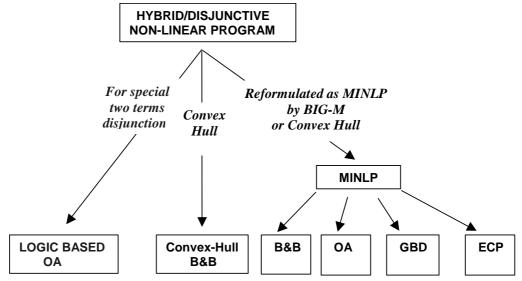


Fig. 2: solution algorithms for nonlinear models

From nonlinear hybrid/disjunctive models you have three paths to arrive to the solution the first one is for models that have special two terms disjunctions that have the following formulation:

$$\begin{bmatrix} Y_i \\ h_i(x) \le 0 \\ c_i = \gamma_i \end{bmatrix} \lor \begin{bmatrix} \neg Y_i \\ B^i x = 0 \\ c_i = 0 \end{bmatrix} i \in D$$

This special disjunction involves two terms handled by one variable, the first term apply when the Yi is true; while the second when it is false. In the second term a subset of variables must set to zero.

The **LOGIC BASED OA** algorithm (Turkay and Grossmann, 1996a) was mainly generated to solve the synthesis of chemical processes. It was applied to examples other than these types of problems. **This is the only solution method working in this release of LOGMIP**. The solver name is LMLBOA.

The other two paths are not implemented yet.

To select the LOGIC BASED OA algorithm you must write in the GAMS input file the following sentence:

OPTION MINLP=LMLBOA;

Observe that since this corresponds to a nonlinear model you must select the option for MINLP models. See the nonlinear example provided in section 2 of this manual.

8.2.1. INITIALIZATIONS

For some nonlinear models in order to solve a particular problem the user should provide initializations. The meaning of the initializations is to fix the disjunctions terms that are true or false. The algorithm runs as many NLP subproblems as initializations is provided. By running these subproblems it is possible to generate the first MASTER MIP. More details about this initialization step can be found in Turkay and Grossmann (1996a).

There is a special LogMIP language construction for this purpose. The initialization entries must be provided in LogMIP section. The keyword **INIT** is used. After that you must provide the list of disjunctions terms that are TRUE or FALSE by adding those words, and the list of variables that handle those terms, separated by commas and ended by a semicolon. Each **INIT** entry corresponds to an initialization set (a new NLP subproblem). In the Nonlinear example showed in section 2, this initialization is provided:

INIT TRUE Y('1'), Y('3'), Y('4'), Y('7'), Y('8'); INIT TRUE Y('1'), Y('3'), Y('5'), Y('8'); INIT TRUE Y('2'), Y('3'), Y('4'), Y('6'), Y('8');

The first initialization set specifies that the first term of disjunction 1, 3, 4, 7 and 8 must be true, the second 1, 3, 5, y 8 and the third 2, 3, 4, 6 y 8. The algorithm executes three Non Linear Program problems by considering in the model the constraints of the disjunction terms that are TRUE. The resulting problem must be feasible, so the correct initialization sets must be provided.

The initialization entries must be written after the disjunction definitions.

The same specification can be done by the following sentences:

INIT FALSE Y('2'), Y('5'), Y('6'); INIT FALSE Y('2'), Y('4'), Y('6'), Y('7'); INIT FALSE Y('1'), Y('5'), Y('7'); Instead of initializing by the TRUE terms, we can initialize by those that are FALSE. We can have also a combination of both initializations previously presented:

INIT TRUE Y('1'), Y('3'), Y('4'), Y('7'), Y('8'); INIT TRUE Y('2'), Y('3'), Y('4'), Y('6'), Y('8'); INIT FALSE Y('2'), Y('4'), Y('6'), Y('7');

The order of the sentences is not important. If you want to specify all disjunctions terms you can use the word ALL. For example: INIT TRUE ALL; or

INIT FALSE ALL;

8.2.2 TERMINATION OPTIONS

Since the OA Logic-Based algorithm is similar to the OA MINLP algorithm based on dividing the original problem into two subproblems: the NLP subproblem and the master MILP subproblem, and according to this, two termination options for the algorithm exist for the LogMIP non-linear solver. These options are similar to those implemented in DICOPT++ (MINLP GAMS solver).

- 1. STOP on CROSSOVER
- 2. STOP on NLP worsening

Option 1 is appropriated for convex models. The meaning of this option is that the objective function obtained in the Master MILP subproblem is lower/upper the solution obtained in the NLP subproblem depending if the optimization direction is maximize/minimize the objective function.

Option 2 is recommended for non-convex model, and the algorithm stops after the objective function obtained in the solution of consecutive NLP subproblems starts to deteriorate.

The default is option 1.

These options are implemented in the same way than DICOPT++, you must specify at the option file (LMLBOA.opt) STOP 1 or STOP 2 depending on the choice selected.

9. Recommendations and Limitations.

- Write the GAMS file in a single way following a sequence: declare SETS, VARIABLES and EQUATIONS at the beginning of the file, then start with the constraint and objective function definitions. Finally write the options, model and solution sentences.
- Although GAMS is flexible about the declarations of the equation and variable domains (you can declare them or not), it is strongly recommended to explicitly declare all domains for every variable and constraint defined in the model. LogMIP compiler can not deal with variables and constraint not declared over a domain and then defined with a domain.
- Write your entire model in a single file, do not use the include directive to import an external file in the model.
- Note that constraints defined in the disjunctions are related with your declaration and definitions in the GAMS section. In this sense you cannot include in the disjunction the name of a constraint not previously defined. This is especially

important for constraints defined in the GAMS section over a domain controlled by the dollar sign (\$).

 A similar advice is necessary for variables handling disjunction terms. Do not forget to include the dummy equation for them.

10. References.

The following is a list of articles where you can get a more complete material about disjunctive/hybrid models and the algorithms to solve them.

Balas, E.

"Disjunctive programming". Discrete Optimizations II, Annals of Discrete Mathematics, 5, North Holland, Amsterdam, **1979**.

Balas, E.

"Disjunctive Programming and a hierarchy of relaxations for discrete optimization problems", SIAM J. Alg. Dis. Meth., 6 (3), 466-485, **1985**.

Balas, E.

"Disjunctive Programming: Properties of the convex hull of feasible points", Discrete Applied Mathematics 89 (1), 3-44, **1998**.

Brooke A., Kendrick D. and Meeraus A.

"GAMS a User's Guide". Gams Development Corporation, **1996**.

Gil J.J. and Vecchietti A.

"Issues about the development of a disjunctive program solver". Proceedings of Enpromer, I,403-409, **2000.**

Gil J.J. and Vecchietti A.

"Using design patterns for a compiler modeling for posing disjunctive optimization programs". Proceedings of 31 JAIIO, September 2002, Santa Fe Argentina.

Grossmann I.E.

"Mixed-Integer Optimization Techniques for Algorithmic Process Synthesis", Advances in Chemical Engineering, Vol. 23, Process Synthesis, pp.171-246, **1996**.

Lee S. and Grossmann I.E.

"New algorithm for Nonlinear Generalized Disjunctive Programming". Comp. Chem. Eng., 24 (9-10), 2125-2141, **2000**.

Lee, S. and I.E. Grossmann,

"Logic-based Modeling and Solution of NonlinearDiscrete/Continuous Optimization Problems," Annals of Operations Research: State of the Art and Recent Advances in IntegerProgramming, 139, 267-288, **2005**.

Raman R. and Grossmann I.E.

"Modeling and Computational Techniques for Logic Based Integer Programming". Comp. Chem. Eng., 18 (7), 563-578, **1994**.

Sawaya, N.W. and Grossmann I.E.

"A Cutting Plane Method for Solving Linear Generalized Disjunctive Programming Problems," Computers and Chemical Engineering, 29, 1891-1913, **2005**.

Sawaya, N.W. and Grossmann I.E.

"Computational Implementation of Non-Linear Convex Hull Reformulation," Computers & Chemical Engineering, 31, 856-866, **2007**.

Turkay M. and Grossmann I.E.

"Logic-Based Algorithms for the Optimal Synthesis of Process Networks". Comp. Chem. Eng., 20 (8), 959-978, **1996**.

Vecchietti A. and Grossmann I.E.

"LOGMIP: A Disjunctive 0-1 Nonlinear Optimizer for Process System Models". Comp. Chem. Eng., 23, 555-565, **1999**.

Vecchietti A. and Grossmann I.E.

"Modeling issues and implementation of language for disjunctive programming". Comp. & Chem. Eng, 24, 2143-2155, **2000**.

Vecchietti, A., S. Lee and I.E. Grossmann

"Modeling of Discrete/ContinuousOptimization Problems: Characterization and Formulation of Disjunctions and their Relaxations," Computers and Chemical Engineering 27, 433-448 **2003.**

Vecchietti A, and Grossman I.E.,

"Computational Experience with LogMIP Solving Linear and Nonlinear Disjunctive Programming Problems," Proceedings of the Sixth International Conference on Foundation of Computer Aided Process Design (FOCAPD 2004), p. 587-590 **2004**.