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Abstract

We present a new framework for catalyst design that integrates computer-aided extraction of knowledge with high-th
experimentation (HTE) and expert knowledge to realize the full benefit of HTE. We describe the current state of HTE and illu
speed and accuracy using an FTIR imaging system for oxidation of CO over metals. However, data is just information and not kn
In order to more effectively extract knowledge from HTE data, we propose a framework that, through advanced models and nove
architectures, strives to approximate the thought processes of the human expert. In theforward model the underlying chemistry is describ
as rules and the data or predictions asfeatures. We discuss how our modeling framework—via a knowledge extraction (KE) engi
transparently mapsrules-to-equations-to-parameters-to-featuresas part of the forward model. We show that our KE engine is capab
robust, automated model refinement, when modeled features do not match the experimental features. Further, when multiple m
that can describe experimental data, new sets of HTE can be suggested. Thus, the KE engine improves (i) selection of chemistryrulesand (ii)
the completeness of the HTE data set as the model and data converge. We demonstrate the validity of the KE engine and mode
capabilities using the production of aromatics from propane on H-ZSM-5. We also discuss how the framework applies to theinversemodel,
in order to meet the design challenge of predicting catalyst compositions for desired performance.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

We define materials design, which includes the desig
catalytic materials, as a rational framework with associa
tools for determining the optimum material and/or form
lation to meet a given set of design objectives. Mater
Design has significant differences from the more traditio
design of electrical circuits/hardware, mechanical devi
chemical manufacturing, etc. Specifically, in traditional
sign, the component behavior (i.e., an individual transis
mechanical linkage, etc.) is well known, while in materi
design the determination of a model of the material beha
is often the most significant challenge. Also, the vast arra
possible chemical structures/formulations leads to comb
torial complexity that dwarfs more traditional design pro
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lems. As shown in Fig. 1, materials design has two co
ponents: (i) aforward model that relates the chemical co
position and/or high-level descriptors of the composition
the performance of the material in the application of inte
and (ii) aninversemodel that relates the performance to
desired chemical composition or formulation. Design is
definition the solution of the inverse model. Although so
tion of the inverse problem is often the primary technolog

Fig. 1. Schematic of the forward and inverse problems in materials de
eserved.
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Fig. 2. Schematic of the overall forward model for catalyst design.
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objective, rational vs Edisonian design methods require
availability of good, robust forward models, and the dev
opment of good forward models will require in-depth know
edge of the material system of interest. The objective of
paper is to examine the development of computer-based
tems for the particular case of catalyst design—systems
can begin to take full advantage of the rate of data genera
offered by high-throughput experiments (HTE).

Our group has developed materials design systems in
eral application areas, including polymers [1], gasoline
ditives [2], and formulated rubbers [3]. As an example,
summarize the problem of designing gasoline additive
minimize intake valve deposit (IVD) in an EPA-mandat
test. The forward problem involved the development o
model to determine how changes in chemical structur
an additive mixture altered the degradation behavior i
complex engine environment. Using a hybrid model that
cluded first principles models of the relevant chemistry w
a neural network to circumvent the need for a detailed en
model, we were able to develop a one-parameter des
tor related to the thermal stability of the solubility charac
of the additive, which, in conjunction with limited engin
data, could describe the IVD within experimental error. U
ing this forward model, we developed a genetic-algorith
based search procedure for the inverse problem and fou
variety of readily synthesized chemical structures to me
target IVD—structures that had eluded the company’s
formulation chemists [2].

Because of the success of the materials design appr
for other complex chemical systems, we are now intere
in adapting this approach to catalyst design. The forw
model for catalyst design will involve two components,
shown in Fig. 2: acatalyst chemistry modelthat relates the
chemical composition or high-level descriptors of compo
tion (e.g., electron sharing indices) to the kinetic rate c
stants and akinetics modelthat maps the reaction netwo
to the catalyst performance. Because there is often un
tainty in the chemical/morphological state of the cataly
the development of the catalyst chemistry model poses s
-
t

-

h

-

unique challenges. First principles models using quan
chemistry alone may be insufficient, and while a large
diverse data set is essential, purely data-driven models
also probably be insufficient. Because of these difficult
advanced modeling techniques will be required, where
principles models are used in concert with data-driven m
els. Relatively simple versions of these hybrid models w
effective in addressing the gasoline additive design p
lem [2], but more sophisticated knowledge architectures
be needed for catalyst design. The kinetic model involves
determination of rate constants from experimental data
suming a particular reaction mechanism and thus conn
with the catalyst chemistry model, where rate constants
determined from catalyst descriptors. It might appear att
tive to just eliminate both the catalyst chemistry and kine
models and attempt to directly correlate descriptors of
catalyst with the catalyst performance; however, in our
perience all available knowledge is needed in order to
ably extrapolate to new regions of composition space, wh
is the essence of materials design.

We define the model as a clear, precise representatio
knowledge, including first principles, data-driven, and exp
knowledge; i.e., the model is a quantitative representa
of knowledge about the catalytic system. If one wants
full benefits of HTE and the ability to do design, there
no alternative to model development. First, the composi
space, even for a limited class of catalysts, can be so l
that even HTE cannot fully search it. Second, if HTE
to lead to more than just correlations, knowledge mus
extracted, and the knowledge extraction must be autom
in order to keep pace with the flood of data that are becom
available via HTE. Finally, because of the complexity
the catalytic systems being modeled, the number of id
that must be addressed simultaneously often exceed
capacity of human experts. Consequently, a computer-a
knowledge extraction (KE) engine with both capabilit
for model refinement and formulation of new, critical HT
experiments is a necessary component for effective cat
design.
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Finally, KE is not just a model, but rather a process
a process that starts with an incomplete model with pote
errors and limited data, where each iteration of the pro
develops both a better model and more discriminating H
data. It is the continued interplay between theory
experiment via both a computer-based system and hu
experts that results in the generation of new knowledg
the KE engine, HTE data and the human expert are wor
in concert, the process should begin to converge with e
cycle of the process.

The remainder of this paper is organized as follows:
will first present a brief review of the state of the art for HT
and then describe a new FTIR method for generating h
quality data. Subsequently, we will describe our work
date in developing a computer-based KE engine for cata
development, after briefly reviewing the state of the
Finally, we will provide a brief summary.

2. High-throughput experimentation

High-throughput screening of catalysts began almos
years ago, when Creer et al. [4] screened zeolite cata
for cyclopropane conversion in a multichannel microrea
set-up. While parallel reactors have been run for many ye
several new analytical approaches to high-throughput ex
imentation (HTE) have emerged in recent years. These
to rapidly and efficiently screen known compositions of c
alysts and novel catalytic compounds [5–7]. To date, th
general types of approaches have been utilized for the a
sis of combinatorial libraries of heterogeneous catalysts.
first approach is to implement currently available “one sa
ple at a time” techniques, such as mass spectrometry (
or gas chromatography, and combine them with multip
well reactors and switching devices. These approache
the easiest to implement with a small number of samp
It is, however, apparent that this method will consume
much time when large catalyst libraries are screened, s
the screening time is directly proportional to the num
of samples to be analyzed. The second analytical appr
is based on the modification of conventional serial te
niques using automation approaches in order to decreas
screening time. Amongst these are scanning MS [8–14]
chromatography [15,16], gas sensors [17], and resona
enhanced multiphoton ionization [14,18]. All of these me
ods take advantage of the ability to run reactions in a par
fashion, but the testing is still performed in a sequential m
ner. At this stage, high-quality data are often sacrificed
improved speed by compromising the catalyst testing (
evaporated mixed metal libraries on flat substrates, flow
gases over catalyst powders instead of plug-flow geom
and therefore make accurate evaluation of catalyst pe
mance very difficult. Again, the screening time is direc
proportional to the number of samples to be analyzed.
third approach involves truly parallel screening techniqu
which gather data simultaneously from all catalysts in a
,
-

-

)

e

e

-

brary under realistic conditions. This category includes
frared thermography, fluorescence imaging, and FTIR im
ing. IR thermography detects infrared radiation emitted
objects and has been used to detect activity for exot
mic reactions in combinatorial libraries in a truly paral
fashion [18–21]. Thermal imaging does not, however, p
sess any ability to chemically resolve product composit
Therefore, it is not clear whether any apparent “activity”
served is due to the desired reaction or unexpected side
tions. This is a key issue in studying complex reactions
ing supported catalysts and highlights the necessity to ga
chemically specific information about products from each
brary member. Laser-induced fluorescence imaging relie
a fixed laser wavelength exciting fluorescence in molecu
The laser excites both products and reactants above th
alyst library during testing and this technique is limited
detecting molecules that fluoresce. The technique mea
relative activity changes among a group of catalysts an
not truly quantitative [21,22].

Thus, most analytical techniques currently used for H
of catalysts have been developed for rapid screenin
relative activity and are not capable of truly quantitat
measurement of catalyst performance. In order to adv
combinatorial studies to the next higher level, we beli
that the analytical techniques must give quantitative d
FTIR imaging is the only quantitative, chemically sensiti
and parallel HT technique that has been reported to d
Over the past three years, we have demonstrated tha
technique can be successfully applied to the screening
variety of combinatorial systems [23–25]. FTIR imaging
a technique that couples a focal plane array (FPA) dete
with an FTIR spectrometer to enable the simultane
collection of spectral and spatial information [26]. In FT
imaging studies, spectral information is collected fr
regions of a sample in order to study its spatial a
chemical heterogeneity. Conversely, the basic concept o
application of FTIR imaging to the analysis of combinato
libraries is to place many samples in the field of view
the instrument in order to analyze them simultaneously [
This provides a multiplex advantage, in which chemica
specific information is collected from multiple samp
during a single experiment. Our current setup allows
to take IR spectra with spectral resolution 8 cm−1 of the
effluent of 16 supported catalyst samples in parallel ev
1.5 s. The catalysts are arranged in a plug-flow rea
configuration, which facilitates a 15-min changeover of
samples, and the temperature of each catalyst is mea
by individual thermocouples located in the catalyst b
This setup provides us with the possibility to quantitativ
study steady state and transient phenomena on combina
libraries.

Figure 3 displays the relative CO2 concentrations in th
effluent of 16 reactors during CO oxidation over transit
metal catalysts onγ -Al2O3 and SiO2 supports. The informa
tion on catalyst performance is obtained by fixing the im
frequency on a spectral feature of interest, in this case
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Fig. 3. Image of the gas phase array showing the absorbance intensities at 2364 cm−1 as varying grayscale levels corresponding to the effluent concentra
of CO2. Spectra A, B, and C have been extracted from the positions indicated in the image. Spectrum A shows an active catalyst (high CO2 concentration).
Catalyst C has no CO2 peak and a CO peak, indicating that this catalyst is not active under the applied conditions. The activity of catalyst B lies betw
of catalyst A and C.
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vibrational branch of gas-phase CO2. The grayscale level in
dicates the extent of CO oxidation, light being high CO2 pro-
duction and dark being low CO2 production. Thus, we obtai
instant information about the activity of all library elemen
FTIR imaging has of course the same quantitative abili
as single-element FTIR spectroscopy, where IR absorb
can be directly related to the concentration [28]. The qu
titative capability of FTIR imaging becomes very importa
when not only a rapid activity screen will be applied, b
quantitative information, such as turnover frequencies, c
centrations of individual products, and material balances
important; i.e., it is essential for the knowledge extract
we envision.

We have used FTIR imaging to obtain reaction ord
for a library of 16 different supported catalysts. The C
partial pressure was varied while the O2 partial pressure wa
kept fixed. The reaction was carried out at ambient pres
and He was used as the diluent. Gas-phase IR spectra
different steady-state conditions were analyzed for eac
the catalysts by integrating the CO and CO2 IR-absorbance
band area, and calibration curves allowed conversion
the peak area to partial pressure. Figure 4 shows a
log plot of the reaction rate vs CO partial pressure for
Rh, and Ru, which all were supported onγ -alumina. The
slopes indicate the CO reaction order. Having nine of th
reactors loaded with three different amounts of each t
of catalyst gave immediate information on the absenc
interparticle mass transport limitations and ensured that
r

data in the differential regime were considered for e
reaction condition. The carbon balance was readily clo
on each reactor, and activation energies were obtained
steady state measurements at five temperatures—less
2 h work for 16 catalysts. Activation energies and mater
balances can be obtained. All these quantitative data can

Fig. 4. Order of reaction plot of ln(r) vs ln(PCO). The two lines through
the Ru data points represent a change in the reaction order with CO p
pressure.
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eplike
Fig. 5. Integrated absorbances for the CO and CO2 bands for experiments in which CO is turned on (open symbols) and off (filled symbols) in a st
fashion in a constant stream of oxygen and helium. Lines are drawn through data points for visual clarity.
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serve as high-quality input for the modeling framework to
described in this paper.

The speed of FTIR imaging also enables us to fol
transients during reactions. Transient behavior of cata
and insight into the underlying non-steady-state kine
are relevant to many catalytic systems. This applies,
example, to any system where the catalyst is periodic
regenerated or where cyclic feed and other measure
being taken to force a chemical reaction. It can also ex
the sampling space for validating kinetic models. Figur
shows transient data for CO oxidation for one of the
reactors. The data are collected every 3 s over a perio
90 s. The transients show the response of this partic
catalyst to step introduction of CO in the feed and then
CO shut-off with continuously flowing oxygen and heliu
These step changes are repeated for four different rea
temperatures between 140 and 220◦C. The response i
shown in changes in the CO and CO2 partial pressure
in the reactor effluents. This type of transient data
collected simultaneously for all 16 reactors and the wh
experiment was carried out in less than 1 h. The trans
data show, as expected, that with increasing temperatur
CO conversion increases. More interesting are the cha
in the CO2 response. At lower temperatures the CO on/
off responses are mirror images of each other, but as
temperature increases a difference between the two bec
apparent. This result points towards storage of carbon o
catalyst surface, possibly as a carbonate or carbide a
temperature increases.

3. Knowledge extraction

3.1. Overview

In order for quantitative HTE to reach its full potenti
KE must occur at a rate that is comparable to the e
e

f

e
s

s

e

increasing rate of data generation. In this section we
describe a specific, computer-based, KE engine that
work in concert with a human expert in development o
forward model. The key concept is that the computer-ba
KE engine should approach data and models in a sim
manner as that used by the human expert. It is impo
to realize that data are information, not knowledge,
while multicolor and 3D visualization may allow one
better observe the data, the real objective is to cap
the knowledge content of the data in a form that allo
continuous accumulation of knowledge. A computer-ba
system will never be able to fully capture the rich thou
process of a human expert, but neither can the human e
alone handle the flood of data from HTE and the rang
predictions possible from ever more sophisticated mode
is our hypothesis that the combination of a computer-ba
KE engine in concert with a human expert is needed.

A schematic of the KE engine for the kinetic mod
is shown in Fig. 6. Both HTE data and chemistry ru

Fig. 6. Schematic of the knowledge flow in a knowledge extraction en
for the kinetic model.
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are the starting point, models are automatically gener
from rules, the parameters of the model are optimized
comparing the predictions of the model with the data,
finally the features of the predictions and data are compa
For example, in the simple catalytic reaction A goes
B, the “rule” that A must be adsorbed reversibly leads
the “feature” that the rate of production of B will show
maximum with increasing temperature. To build the kine
model one shouldfirst decide on how knowledge shou
be represented. In our opinion, the human expert d
not primarily think in terms of the detailed mathematic
formulation of a model; rather he or she thinks in terms of
“rules” that lead to that model. The analysis of predictions
data, at least during the early stages of model developm
is not primarily via a least-squares fit, but rather throu
a comparison of the “features” of the data vs those of
model. Thus, a KE engine for model development sho
be able to map “rules” to “features” accurately, robus
and automatically.Second, the best human experts are ve
good at Model Refinement by at least partially solving
inverse feature-to-rule mapping, i.e., changing the rule
improve the features. Thus, the development of autom
computer-based algorithms to address the very diffi
inverse feature-to-rule mapping will be essential.Third,
since at the onset the data may be compatible with sev
potential models and there may be multiple param
sets for each model (i.e., the models are nonlinear),
KE engine will need to help formulate new, critical HT
experiments that will discriminate between the models
parameter sets.Finally, as shown in Fig. 6, KE is not a one
pass process—it is cyclic. If the KE engine in concert w
the human expert works effectively,convergenceof model
predictions with the data should eventually occur, resul
in a robust forward model.

3.2. Review of knowledge extraction for chemically
reacting systems

The most comprehensive approach to date for cata
performance is the MicroKinetic (MK) approach of Dume
and co-workers [29]. Although reaction network analy
predates the MK approach by several decades [30,31],
analysis is a systematic approach to heterogeneous cat
that uses a wide range of experimental and theore
information to test various model hypotheses. Applicati
of the MK approach include detailed reaction analysis
metal, oxides, sulfides, and zeolites [32–37]. MK analy
has provided considerable insight into the fundame
behavior of catalytic systems; however, in its current fo
knowledge extraction via MK analysis is inexorably ti
to a level of human intervention that is incommensur
with HTE and the increasing complexity of fundamen
models.

Computer-generated development of large-scale rea
mechanisms has been used extensively in hydrocarbon
bustion, oxidation, and pyrolysis [31,38–47] and orga
.

,

l

is

-

synthesis [48–51] modeling. These efforts include the r
resentation of reaction species and pathways using mat
[39,44,46], structure-oriented lumping [52,53], optimiz
tion, and statistical analysis [54–58]. Of particular inter
are the work of Mavrovouniotis and Prickett [59–61] in d
veloping a compiler for generating chemical reactions fr
chemical rules, a graph-theoretic method to identify can
date mechanisms [62], and recent work by Koza et al.
using genetic algorithms to discover potential reaction p
ways. The reaction network is often pruned using a variet
techniques [54,64,65], including sensitivity analysis [54–
65–67], math-programming methods [45,68–70], and m
ifold techniques [71,72]. However, these methods dep
upon the elimination of species and/or kinetic steps that
not important for a particular data set, where there is
assurance that this species and/or reaction mechanism
not become important for other reaction conditions. In c
trast, Mavrouvouniotis and Prickett [59] suggested mo
reduction methods where known reactivity relationships
tween different species are used to eliminate unimportan
actions, or alternatively reaction-rate-based techniques
been used to control the size of the network [73]. The to
described above are certainly essential components o
computational approach to catalyst design; however, th
tools only facilitate the implementation and fitting of mo
els, not the automation of deep reasoning.

Because of the complexity of predicting catalyst perf
mance, several AI methods have been applied to this p
lem. Complex systems that are not amenable to detailed
principles modeling can be described via artificial neu
networks (ANN). For example, ANN have been develop
to explain performance of a catalyst on the basis of its st
ture and other descriptors [74,75]. Two major disadvanta
of ANN are that they need large numbers of training data
that their predictions beyond the domain of the training d
are poor. These drawbacks have been addressed by h
neural networks [2,76–80] that use first-principles kno
edge with an ANN. The idea of using qualitative reason
was demonstrated by Banares-Alcantara et al. [81,82] i
expert system for catalyst selection. Hattori et al. [83]
port a knowledge-based system for designing catalysts b
on information about catalyst activity patterns. McCleod a
Gladden [84] have used a stochastic optimization algori
to optimize the geometric arrangement of the catalytic s
that maximizes the catalyst activity. Recently Baerns and
workers [85,86] demonstrated an evolutionary approac
combinatorial selection and optimization of catalytic ma
rials. Their methodology uses genetic algorithms to gu
combinatorial experiments in a search for catalysts. The
jectives of the methods described in this paragraph ar
model data and find new catalytic materials; however, th
AI approaches do not directly address how an improved
derstanding is to be developed.
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Fig. 7. Schematic of the various tools in the reaction modeling suite

3.3. Knowledge extraction—rate constants to performan

We will now discuss a potential framework for KE f
the kinetic model. The first component of the KE eng
is a set of tools for generating model predictions of kine
performance from chemistry rules and experimental data
shown in Fig. 7 this set of operations include (i) translat
of chemistry/catalyst rules such as basic reaction pathw
postulated groupings of species with similar reactivities
Polanyi relationships, written in near-English language fo
to a computer compatible syntax, (ii) generation of
appropriate algebraic and/or differential equations (DA
consistent with the rules, (iii) solution of the DAEs wi
minimal user intervention including nonlinear optimizati
to determine the sets of model parameters that can be
the data either via least squares or in terms of featu
and (iv) statistical analysis of the various fits. Because
models are nonlinear and the data are often incomple
noisy, there may be many parameter sets for a single m
and/or multiple sets of rules that can describe the d
Consequently, the analysis process must be extremely
robust, and inclusive if it is to keep up with the speed
HTE. We have recently developed a genetic algorithm (G
based optimization procedure [87] that is able to locate la
numbers of local minima that are nearly indistinguisha
from the global minimum at a rate that is at least two ord
of magnitude faster than alternative search procedures
This allows a more complete evaluation of all the param
sets consistent with a given data set, rather than just cho
between the first several parameter sets that fit the data

Application of the kinetic modeling tools as they cu
rently exist is illustrated for the problem of production
aromatics from propane using H-ZSM-5. A number of
netic models have been proposed for aromatization of a
nes over ZSM-5 [89–91]; however, a model with pred
tive capabilities remains a challenge. Our kinetic mode
based on a reaction scheme involving adsorption, desorp
protolysis, dehydrogenation, hydride transfer,β-scission,
oligomerization, and aromatization reactions. The propo
set of reaction “rules” generates a very large number o
dividual reactions. To reduce the number of parameter
volved, the reactions were categorized into various fam
and all reactions in a particular family were assumed to h
,

t
,

l

,

.

g

,

the same rate constant or a set of rate constants that
specific function of the carbon number of the species.
model consists of 31 gas-phase species, 29 surface sp
and 271 reaction steps, which have been categorized in
different families. Each reaction family is parameterized
terms of either a rate constant or an equilibrium constant
the carbon number dependence within a family is consid
in terms of the Polanyi relation. Transition state theory
been used to estimate bounds on the preexponential fa
and literature values have been used to bound the activ
energies [92–96] and provide interrelationships between
ious reaction families [97,98] to reduce the number of
rameters to 13. The proposed model assumes that the
tions of neutral surface alkoxy species [94,99,100] take p
through carbenium/carbonium ion transition states.

The results of the GA-based hybrid search methodo
described above are presented in Fig. 8, where the dat
taken from Lukyanov et al. [91]. The results of local se
sitivity analysis for the optimal parameter set are given
Table 1, where 7 of the 13 parameters are particularly
sitive for modeling the data. We also located 32 additio
local minima that are almost as good with respect to the
of squares error criterion. It is important to know if the
are multiple local minima each with its own parameter
since different minima can have different physical impli
tions. The speed of the new GA-based hybrid search me
allows more complete exploration of the global param
space, which has obvious implications for assessing the
lidity of a given model.

The suite of modeling tools described above begins to
low more efficient handling of HTE data; however, it is n
an automated KE engine, since there is no (i) mechan
for resolving discrepancies between the data and mode
modifying the chemistry rules or (ii) help in the selection
new HTE experiments. A first step toward KE is the dev
opment of an automated process for identifying “featur
of the data and predicted performance. Especially during
early stages of model development, the best least-squ
fit to the data may in fact be a poor indication of mod
Moreover, in diagnosing problems in the model, especi
for multiple products as shown in Fig. 8, it is often mo
important to fit some parts of the data well (e.g., the
tial region of the response), forcing the difficulties into ar
that then can be more clearly evaluated. A feature vect
constructed by first defining a sequence of intervals tha
separated by abrupt changes in the magnitude, slope, o
vature for either data or model predictions. The shape (
linear, concave upward, etc.) is then defined for each in
val. Each element in the feature vector now includes the
cation of the interval, shape, and least-squares fitting in
mation if desired. The data can be optimized via traditio
least-squares methods or alternatively on the features.

Once features of various potential models and/or para
ter sets have been identified, model refinement is emplo
which requires determination of the mapping between
tures and rules. Consider the case of developing a predi
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[91]; solid
Fig. 8. Improvement in performance curves for propane aromatization on HZSM-5. Dots correspond to experimental data from Lukyanov et al.
lines indicate the original model predictions and the dashed line indicate the refined model predictions. Thex-axis is in terms of the space-time× 104 (h) and
they-axis is the weight percentage of the various species.
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model for the data shown in Fig. 8, where a difference in f
ture (e.g., the magnitude of ethane production at high sp
times) is observed between the predictions and data. T
features were determined from an approximate set of ru
which were initially down-selected from a much more co
prehensive set of rules for the carbenium ion chemistr
zeolites—i.e., the human expert made initial choices ab
what was important. A variety of alternative rules were th
stochastically probed for their effect on light paraffin p
duction. The most effective single rule addition was al
lation of alkoxy species with light alkanes [101,102]. Th
expanded rule set better captures the performance of the
alyst for all species. Thus, the inverse feature-to-rule m
ping has determined what rule was needed from the gl
rule set using a stochastic search guided by expert in
mation. Specifically, the human expert made a very rea
able, but incomplete, initial guess to start the process,
then the KE engine determined an improved rule set w
-
e

-

associated kinetic parameters—i.e., KE has been achie
A search over all possible sets of rules is impossible du
the significant computational demands of the forward ru
to-feature mapping and the combinatorial explosion if
rule combinations are considered. In this case, the solu
was relatively straightforward, since the changes were
calized around rules directly connected to the C2 chemistry;
however, there will be cases where changes would be ne
in the reaction network that are not directly connected to
region of data/model feature discrepancy. The example
lined above should clearly shows the general principle
hind model refinement, although considerable research
mains to be done.

Although we have not as yet implemented an autom
algorithm for the formulation of experiments portion
the kinetic model shown in Fig. 6, we will briefly outlin
what we believe will be needed. As shown in Table
there may be multiple sets of kinetic parameters that
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Table 1
Results of nonlinear parameter estimation

S.no. Model parameters log10(value)

1 kp 7± 7
2 kod 4.5± 2.9
3 kad 9± 5
4 kb 5.2± 2.4
5 ka 7± 8
6 kaa 1± 2
7 kh 2.0± 0.7
8 koa 3± 2
9 kcd 2± 2

10 �qod 0.77± 0.12
11 �qad 1.1± 0.2
12 �qcd 0.3± 1.6
13 S 1.25± 0.01

Error in parameters obtained from the local sensitivity of the objective f
tion to the parameters corresponding to the best minimum. Model par
ters are rate constants for protolysis,kp; olefin desorption,kod; alkane des-
orption,kad; β-scission,kb; aromatization,ka; alkane adsorption,kaa; hy-
dride transfer,kh; olefin adsorption,koa; carbonium ion dehydrogenation
kcd; increase with carbon number of adsorption enthalpies for olefin
sorption,�qod, and alkane adsorption,�qad; increase with carbon numbe
of activation energy for carbonium ion dehydrogenation,�qcd; and the en-
tropy change for theβ-scission/oligomerization equilibrium constant,�S.
First-order rate constants (kp, kod, kad, kb, ka, kcd) are in terms of mol/g/h;

second-order rate constants (kaa, kh, koa) in m3/g/h; energy terms (�qod,
�qad, �qcd) are in kJ/mol; and the entropy term,�S, has been normalize
by the universal gas constant (J/mol/K).

provide an equivalent description of the features of a g
data set as quantified by the sensitivity matrix for
kinetic parameters. For a given catalyst system the fea
directly depend upon the feed composition and reac
temperature. Thus, one needs to develop algorithms sim
to the model refinement procedure for guiding the inve
sensitivity matrix to reaction/feed dependence mappin
order to determine what type of HTE experiments will
most discriminating. This inverse search procedure m
need to be extended to also include multiple rule set
well as multiple sets of kinetic parameters for a giv
rule set. In this section we have summarized our work
development of an automated KE engine for the kin
model. Considerable research remains, but we believe
the basic knowledge architecture is relatively compl
The key postulate in the development of the propo
architecture is that the software must capture the typ
thought processes currently employed by the human ex

3.4. Knowledge extraction—catalyst chemistry model

The problem of relating catalyst microstructure to r
constants is the next step in developing an overall cata
design system and represents arguably the most challe
part. Our development of the catalyst chemistry mode
much less complete than that of the kinetic model descr
above, but we believe that the basic organization of
catalyst chemistry model is reasonably firm and sho
provide a blueprint for future development. The input
t

.

g

the catalyst chemistry model is experimental data from
catalyst library and chemistry rules, working in concert w
the human expert. These data and rules are used to dete
a set of catalyst “descriptors” that define the import
processes that control how the catalyst microstructur
connected to the reaction mechanism and rate const
The aim of catalytic descriptors is to provide well-defin
terms that capture the collective influence of microstruc
on relevant kinetic model parameters. The identificat
calculation, and subsequent refinement of an appropria
of descriptors is the key task in development of the cata
chemistry model.

Various methods can be used to provide the link betw
catalytic descriptors and kinetic parameters. For insta
a descriptor in zeolite chemistry could be theSi/Al ratio,
which is correlated with acid strength and the proximity
acid sites. Other descriptors such as proton affinity [1
and deprotonation energy and chemical reactivity meas
such as Fukui functions [104], hardness and softness [1
electron-sharing indices [106], electron localization fu
tions [107], and local isoelectronic reactivity [108] may
useful; however, these descriptors lack a direct comp
tional link to kinetic parameters. Examples of descript
that do provide direct links to parameters include transi
state geometries and activation energies, which are c
lated using density functional theory; alternatively, a l
direct means of rate constant estimation can be achi
by calculating heats of reaction and invoking the Brønst
Polanyi relationships that relate activation energies to h
of reaction [109,110].

During the early stages of the KE process, a sin
descriptor may not provide a direct correlation betw
the catalyst microstructure and the kinetic parameters
this point a hybrid model that relates a set of descrip
constrained by expert rules and guided by experime
data can provide a viable initial model. We have develo
software where a neural network with multiple inputs
constrained by (i) equality and/or inequality constrai
consistent with the chemistry rules and (ii) the complete
partial form of a fundamental model. As an example of
power of this software architecture, consider the two-s
catalytic reaction to produce C from A in which species
adsorbs molecularly. Assuming that the adsorption ste
quasi-equilibrated and Aads+ site→ C + 2 sites, the rate
expression is of the formrc = k2K1PA/(1+K1PA)2, where
rc is the rate of C formation,PA is the partial pressur
of A, and K1 and k2 are model constants. Reaction ra
data over a limited range of pressures were generated
this kinetic expression, adding experimental noise as sh
in Fig. 9. The data were first fit via just a neural netwo
where as expected the fit was reasonable over the ran
the data but diverged significantly for pressures outside
data range. Next, the neural network was constrained
assuming that the reaction order was 1± 0.5—a reasonabl
constraint exposed from the rules. For this case there
little change in the predictions inside the data range,
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Fig. 9. Hybrid models for predicting performance from data and pa
knowledge. Filled cicles indicate training data with noise; solid l
indicates the true model; dashed–dotted line indicates the neural ne
predictions; dashed line indicates the predictions of the neural net
where the reaction order is constrained to be 1± 0.5 and dotted line
indicates the reaction order constraint of 1± 0.1.

extrapolation outside the data range was improved. Fin
the reaction order constraint at low pressures was tighte
to 1± 0.1, and the hybrid model now did a much better j
of extrapolation. This example clearly shows how a hyb
neural model with constraints from expert rules and fi
principles information can improve predictive capabilit
as additional, but still perhaps incomplete, knowledge
added to the model. Unlike previous efforts at incorpora
first-principles knowledge into neural networks [76–79], t
architecture is truly parallel.

4. Summary

High-throughput catalytic experiments are changing
catalysis research landscape. While the number of cata
in a library, the control of the catalytic environment, and
quantitative accuracy of the performance data continu
evolve, it is already possible to get a full set of concentrat
and temperature-dependent data on 16 or more catalys
less than a day. The speed offered by imaging FTIR
tection even enables parallel quantitative transient ana
on the timescale of seconds. Consequently, more exh
tive searches of composition space and the close inter
of hypothesis and testing on reasonable time scales are
possible. These tools will certainly accelerate Edisonian
covery of new catalysts and also the generation of new
derstanding by the classical scientific method. What new
portunities do they afford? Even when an Edisonian sear
successful, how can the information on both successful
unsuccessful catalyst formulations be converted to kno
edge that will guide the next search? For complex cata
systems driven by many interrelated and often hidden v
-

ables, are there tools that will help an expert discover
important relationships and arrive more efficiently at the
search target? In this paper we have advanced the pre
that model building is the key to knowledge extraction fro
the high density of information enabled by HTE. The mo
archives relationships between catalyst properties and
formance, creating an ever-growing knowledge bank.
requirement that the model predicts performance quan
tively challenges the model structure and forces model c
ponents to capture fundamental relationships.

For this approach to be effective, model building can
be the limiting step. Our reaction modeling suite afford
rational, automated framework that is designed to allow
expert to initiate the modeling sequence in a simple re
tion chemistry language. The software then interprets
information into a reaction sequence, writes the approp
equations, optimizes the fitted parameters while keeping
rameters in physically and chemically allowed bounds,
does statistical analysis of the results. These steps have
fully demonstrated in the propane-to-aromatics exampl
the text above. The genetic algorithm approach to para
ter estimation is of particular note, since it enables thoro
search of the parameter space with a dramatic improvem
in speed over other methods.

It is a rare event for an initial kinetic model to be tho
ough enough to fit all the data, so it is essential that the m
eling approach also facilitate model refinement. We have
cused on feature identification and the mapping of feat
to reaction rules as an efficient path for model improvem
The concept has been demonstrated on an example pro
A key element of this aspect of the model building is th
as shown schematically in Fig. 6, iteration of model co
parison to high-throughput data and subsequent mode
finement lead toconvergenceto a predictive kinetic model
Thus, the goal of the reaction modeling suite is to facilit
MK analysis—but this is only one part of theforward model.
The catalyst chemistry part of the model calls for ident
cation of chemical descriptors and the mapping of the
scriptors to the kinetic model and its parameters. We h
outlined approaches that will enable this step but we ap
ciate its difficulty. We will rely on the iterative convergen
implied by Fig. 6 to carry us from crude initial models
increasingly sophisticated ones, and we expect this pro
although probably slow, to strengthen our understandin
the fundamentals of catalytic behavior. This opportunity
model evolution arises from the ability to construct hyb
software architectures that mix first principle, data driv
and expert rule models. During the initial stages of the
process, the data may carry most of the predictive load, w
after multiple passes through the KE engine more fundam
tal models will carry more of the predictive load and th
have more robust extrapolation capabilities.

A successful forward model has considerable value
its own right, but its power is dramatically leveraged
theinverse model, which forecasts catalyst formulations th
will solve targeted problems. This potential to truly des
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