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Abstract

We present a new framework for catalyst design that integrates computer-aided extraction of knowledge with high-throughput
experimentation (HTE) and expert knowledge to realize the full benefit of HTE. We describe the current state of HTE and illustrate its
speed and accuracy using an FTIR imaging system for oxidation of CO over metals. However, data is just information and not knowledge.
In order to more effectively extract knowledge from HTE data, we propose a framework that, through advanced models and novel software
architectures, strives to approximate the thought processes of the human experfotw#neé model the underlying chemistry is described
asrules and the data or predictions ésatures We discuss how our modeling framework—via a knowledge extraction (KE) engine—
transparently maprulesto-equations-to-parametersfimaturesas part of the forward model. We show that our KE engine is capable of
robust, automated model refinement, when modeled features do not match the experimental features. Further, when multiple models exi
that can describe experimental data, new sets of HTE can be suggested. Thus, the KE engine improves (i) selection ofudbeanist(ji)
the completeness of the HTE data set as the model and data converge. We demonstrate the validity of the KE engine and model refineme
capabilities using the production of aromatics from propane on H-ZSM-5. We also discuss how the framework appliesd¢cstreodel,
in order to meet the design challenge of predicting catalyst compositions for desired performance.
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1. Introduction lems. As shown in Fig. 1, materials design has two com-
ponents: (i) gorward model that relates the chemical com-

We define materials design, which includes the design of position and/or high-level descriptors of the composition to

catalytic materials, as a rational framework with associated the performance of the material in the application of interest

tools for determining the optimum material and/or formu- and (ii) aninversemodel that relates the performance to the

lation to meet a given set of design objectives. Materials desired chemical composition or formulation. Design is by

Design has significant differences from the more traditional definition the solution of the inverse model. Although solu-

design of electrical circuits/hardware, mechanical devices, tion of the inverse problem is often the primary technological

chemical manufacturing, etc. Specifically, in traditional de-

sign, the component behavior (i.e., an individual transistor, Forward Problem

mechanical linkage, etc.) is well known, while in materials —

design the determination of a model of the material behavior |_>_l

is often the most significant challenge. Also, the vast array of

. . . f Material Composition

possible chemical structures/formulations leads to combina- and .
torial complexity that dwarfs more traditional design prob- | Operating Conditions Material Performance
— Garepen
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Fig. 2. Schematic of the overall forward model for catalyst design.

objective, rational vs Edisonian design methods require the unique challenges. First principles models using quantum
availability of good, robust forward models, and the devel- chemistry alone may be insufficient, and while a large and
opment of good forward models will require in-depth knowl- diverse data set is essential, purely data-driven models will
edge of the material system of interest. The objective of this also probably be insufficient. Because of these difficulties,
paper is to examine the development of computer-based sys-advanced modeling techniques will be required, where first
tems for the particular case of catalyst design—systems thatprinciples models are used in concert with data-driven mod-
can begin to take full advantage of the rate of data generationels. Relatively simple versions of these hybrid models were
offered by high-throughput experiments (HTE). effective in addressing the gasoline additive design prob-
Our group has developed materials design systems in sevdem [2], but more sophisticated knowledge architectures will
eral application areas, including polymers [1], gasoline ad- be needed for catalyst design. The kinetic model involves the
ditives [2], and formulated rubbers [3]. As an example, we determination of rate constants from experimental data as-
summarize the problem of designing gasoline additives to suming a particular reaction mechanism and thus connects
minimize intake valve deposit (IVD) in an EPA-mandated with the catalyst chemistry model, where rate constants are
test. The forward problem involved the development of a determined from catalyst descriptors. It might appear attrac-
model to determine how changes in chemical structure of tive to just eliminate both the catalyst chemistry and kinetic
an additive mixture altered the degradation behavior in a models and attempt to directly correlate descriptors of the
complex engine environment. Using a hybrid model that in- catalyst with the catalyst performance; however, in our ex-
cluded first principles models of the relevant chemistry with perience all available knowledge is needed in order to reli-
a neural network to circumvent the need for a detailed engineably extrapolate to new regions of composition space, which
model, we were able to develop a one-parameter descrip-is the essence of materials design.
tor related to the thermal stability of the solubility character ~ We define the model as a clear, precise representation of
of the additive, which, in conjunction with limited engine knowledge, including first principles, data-driven, and expert
data, could describe the IVD within experimental error. Us- knowledge; i.e., the model is a quantitative representation
ing this forward model, we developed a genetic-algorithm- of knowledge about the catalytic system. If one wants the
based search procedure for the inverse problem and found dull benefits of HTE and the ability to do design, there is
variety of readily synthesized chemical structures to meet a no alternative to model development. First, the composition
target IVD—structures that had eluded the company’s bestspace, even for a limited class of catalysts, can be so large
formulation chemists [2]. that even HTE cannot fully search it. Second, if HTE is
Because of the success of the materials design approacho lead to more than just correlations, knowledge must be
for other complex chemical systems, we are now interestedextracted, and the knowledge extraction must be automated
in adapting this approach to catalyst design. The forward in order to keep pace with the flood of data that are becoming
model for catalyst design will involve two components, as available via HTE. Finally, because of the complexity of
shown in Fig. 2: acatalyst chemistry modéhat relates the  the catalytic systems being modeled, the number of ideas
chemical composition or high-level descriptors of composi- that must be addressed simultaneously often exceeds the
tion (e.g., electron sharing indices) to the kinetic rate con- capacity of human experts. Consequently, a computer-aided
stants and &inetics modethat maps the reaction network knowledge extraction (KE) engine with both capabilities
to the catalyst performance. Because there is often uncerfor model refinement and formulation of new, critical HTE
tainty in the chemical/morphological state of the catalyst, experiments is a hecessary component for effective catalyst
the development of the catalyst chemistry model poses somedesign.
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Finally, KE is not just a model, but rather a process— brary under realistic conditions. This category includes in-
a process that starts with an incomplete model with potential frared thermography, fluorescence imaging, and FTIR imag-
errors and limited data, where each iteration of the processing. IR thermography detects infrared radiation emitted by
develops both a better model and more discriminating HTE objects and has been used to detect activity for exother-
data. It is the continued interplay between theory and mic reactions in combinatorial libraries in a truly parallel
experiment via both a computer-based system and humarfashion [18-21]. Thermal imaging does not, however, pos-
experts that results in the generation of new knowledge. If sess any ability to chemically resolve product composition.
the KE engine, HTE data and the human expert are working Therefore, it is not clear whether any apparent “activity” ob-
in concert, the process should begin to converge with eachserved is due to the desired reaction or unexpected side reac-
cycle of the process. tions. This is a key issue in studying complex reactions us-
The remainder of this paper is organized as follows: We ing supported catalysts and highlights the necessity to gather
will first present a brief review of the state of the art for HTE chemically specific information about products from each li-
and then describe a new FTIR method for generating high- brary member. Laser-induced fluorescence imaging relies on
quality data. Subsequently, we will describe our work to a fixed laser wavelength exciting fluorescence in molecules.
date in developing a computer-based KE engine for catalystThe laser excites both products and reactants above the cat-
development, after briefly reviewing the state of the art. alyst library during testing and this technique is limited to
Finally, we will provide a brief summary. detecting molecules that fluoresce. The technique measures
relative activity changes among a group of catalysts and is
not truly quantitative [21,22].
2. High-throughput experimentation Thus, most analytical techniques currently used for HTE
of catalysts have been developed for rapid screening of
High-throughput screening of catalysts began almost 20 relative activity and are not capable of truly quantitative
years ago, when Creer et al. [4] screened zeolite catalystsmeasurement of catalyst performance. In order to advance
for cyclopropane conversion in a multichannel microreactor combinatorial studies to the next higher level, we believe
set-up. While parallel reactors have been run for many years,that the analytical techniques must give quantitative data.
several new analytical approaches to high-throughput exper-FTIR imaging is the only quantitative, chemically sensitive,
imentation (HTE) have emerged in recent years. These aimand parallel HT technique that has been reported to date.
to rapidly and efficiently screen known compositions of cat- Over the past three years, we have demonstrated that this
alysts and novel catalytic compounds [5—7]. To date, three technique can be successfully applied to the screening of a
general types of approaches have been utilized for the analyvariety of combinatorial systems [23-25]. FTIR imaging is
sis of combinatorial libraries of heterogeneous catalysts. Thea technique that couples a focal plane array (FPA) detector
first approach is to implement currently available “one sam- with an FTIR spectrometer to enable the simultaneous
ple at a time” techniques, such as mass spectrometry (MS)collection of spectral and spatial information [26]. In FTIR
or gas chromatography, and combine them with multiple- imaging studies, spectral information is collected from
well reactors and switching devices. These approaches areegions of a sample in order to study its spatial and
the easiest to implement with a small number of samples. chemical heterogeneity. Conversely, the basic concept of the
It is, however, apparent that this method will consume too application of FTIR imaging to the analysis of combinatorial
much time when large catalyst libraries are screened, sincelibraries is to place many samples in the field of view of
the screening time is directly proportional to the number the instrumentin order to analyze them simultaneously [27].
of samples to be analyzed. The second analytical approachThis provides a multiplex advantage, in which chemically
is based on the modification of conventional serial tech- specific information is collected from multiple samples
niques using automation approaches in order to decrease theluring a single experiment. Our current setup allows us
screening time. Amongst these are scanning MS [8—14], gasto take IR spectra with spectral resolution 8 thof the
chromatography [15,16], gas sensors [17], and resonance<ffluent of 16 supported catalyst samples in parallel every
enhanced multiphoton ionization [14,18]. All of these meth- 1.5 s. The catalysts are arranged in a plug-flow reactor
ods take advantage of the ability to run reactions in a parallel configuration, which facilitates a 15-min changeover of all
fashion, but the testing is still performed in a sequential man- samples, and the temperature of each catalyst is measured
ner. At this stage, high-quality data are often sacrificed for by individual thermocouples located in the catalyst bed.
improved speed by compromising the catalyst testing (e.g., This setup provides us with the possibility to quantitatively
evaporated mixed metal libraries on flat substrates, flowing study steady state and transient phenomena on combinatorial
gases over catalyst powders instead of plug-flow geometry)libraries.
and therefore make accurate evaluation of catalyst perfor- Figure 3 displays the relative GQ@oncentrations in the
mance very difficult. Again, the screening time is directly effluent of 16 reactors during CO oxidation over transition
proportional to the number of samples to be analyzed. The metal catalysts op-Al,03 and SiQ supports. The informa-
third approach involves truly parallel screening techniques, tion on catalyst performance is obtained by fixing the image
which gather data simultaneously from all catalysts in a li- frequency on a spectral feature of interest, in this case one
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Fig. 3. Image of the gas phase array showing the absorbance intensities at 2364scwarying grayscale levels corresponding to the effluent concentrations

of CO,. Spectra A, B, and C have been extracted from the positions indicated in the image. Spectrum A shows an active catalyst ¢bigte@iation).

Catalyst C has no C&peak and a CO peak, indicating that this catalyst is not active under the applied conditions. The activity of catalyst B lies between those
of catalyst A and C.

vibrational branch of gas-phase €Qhe grayscale levelin-  data in the differential regime were considered for each
dicates the extent of CO oxidation, light being high#o- reaction condition. The carbon balance was readily closed
duction and dark being low Croduction. Thus, we obtain  on each reactor, and activation energies were obtained from
instant information about the activity of all library elements. steady state measurements at five temperatures—Iless than
FTIR imaging has of course the same quantitative abilities 2 h work for 16 catalysts. Activation energies and materials
as single-element FTIR spectroscopy, where IR absorbancepalances can be obtained. All these quantitative data can now
can be directly related to the concentration [28]. The quan-

titative capability of FTIR imaging becomes very important

when not only a rapid activity screen will be applied, but ] = Ru
guantitative information, such as turnover frequencies, con-
centrations of individual products, and material balances are -114
important; i.e., it is essential for the knowledge extraction

we envision.

We have used FTIR imaging to obtain reaction orders -124
for a library of 16 different supported catalysts. The CO
partial pressure was varied while the @artial pressure was =
kept fixed. The reaction was carried out at ambient pressure £
and He was used as the diluent. Gas-phase IR spectra under
different steady-state conditions were analyzed for each of
the catalysts by integrating the CO and £&-absorbance-
band area, and calibration curves allowed conversion of
the peak area to partial pressure. Figure 4 shows a log— - - :
log plot of the reaction rate vs CO partial pressure for Pt, -5.2 -4.8 -4.4 -4.0 -3.6
Rh, and Ru, which all were supported gralumina. The In(P
slopes indicate the CO reaction order. Having nine of these
reactors loaded with three different amounts of each type rig. 4. order of reaction plot of Im) vs In(Pco). The two lines through
of catalyst gave immediate information on the absence of the Ru data points represent a change in the reaction order with CO partial
interparticle mass transport limitations and ensured that only pressure.

-14-

CO)
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Fig. 5. Integrated absorbances for the CO and ®@nds for experiments in which CO is turned on (open symbols) and off (filled symbols) in a steplike
fashion in a constant stream of oxygen and helium. Lines are drawn through data points for visual clarity.

serve as high-quality input for the modeling framework to be increasing rate of data generation. In this section we will
described in this paper. describe a specific, computer-based, KE engine that will
The speed of FTIR imaging also enables us to follow work in concert with a human expert in development of a
transients during reactions. Transient behavior of catalystsforward model. The key concept is that the computer-based
and insight into the underlying non-steady-state kinetics KE engine should approach data and models in a similar
are relevant to many catalytic systems. This applies, for manner as that used by the human expert. It is important
example, to any system where the catalyst is periodically to realize that data are information, not knowledge, and
regenerated or where cyclic feed and other measures arevhile multicolor and 3D visualization may allow one to
being taken to force a chemical reaction. It can also extendbetter observe the data, the real objective is to capture
the sampling space for validating kinetic models. Figure 5 the knowledge content of the data in a form that allows
shows transient data for CO oxidation for one of the 16 continuous accumulation of knowledge. A computer-based
reactors. The data are collected every 3 s over a period ofsystem will never be able to fully capture the rich thought
90 s. The transients show the response of this particularprocess of a human expert, but neither can the human expert
catalyst to step introduction of CO in the feed and then to alone handle the flood of data from HTE and the range of
CO shut-off with continuously flowing oxygen and helium. predictions possible from ever more sophisticated models. It
These step changes are repeated for four different reactions our hypothesis that the combination of a computer-based
temperatures between 140 and 22ZD. The response is  KE engine in concert with a human expert is needed.
shown in changes in the CO and gQ@artial pressures A schematic of the KE engine for the kinetic model

collected simultaneously for all 16 reactors and the whole

experiment was carried out in less than 1 h. The transient
data show, as expected, that with increasing temperature the ‘— Formulation of Experiments |«
CO conversion increases. More interesting are the changes High

in the CQ response. At lower temperatures the CO on/CO | yhreughput
off responses are mirror images of each other, but as the| Experiments
temperature increases a difference between the two becomes 4

: . Performance
apparent. This result points towards storage of carbon on the i > Curves
catalyst surface, possibly as a carbonate or carbide as the h‘/}zzc:f"“ e Feature

. elmn = .
temperature Increases. Suite g & Extraction

7 :
3. Knowledge extraction Chemistry
Rules

3.1. Overview ; Model Refinement -

In order for quantitative HTE_ to reach its full potential, Fig. 6. Schematic of the knowledge flow in a knowledge extraction engine
KE must occur at a rate that is comparable to the ever- for the kinetic model.
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are the starting point, models are automatically generatedsynthesis [48-51] modeling. These efforts include the rep-
from rules, the parameters of the model are optimized by resentation of reaction species and pathways using matrices
comparing the predictions of the model with the data, and [39,44,46], structure-oriented lumping [52,53], optimiza-
finally the features of the predictions and data are compared.ion, and statistical analysis [54-58]. Of particular interest
For exi\mplne, in the simple catalytic reaction A goes 10 are the work of Mavrovouniotis and Prickett [59-61] in de-
B, the rule” that A must be adsorbed reversibly leads t0 \g|oping a compiler for generating chemical reactions from
the “feature” that the rate of production of B will show a  cnemical rules, a graph-theoretic method to identify candi-
maximum with increasing temperature. To build the kinetic date mechanisms [62], and recent work by Koza et al. [63]
model one shouldirst deudg on how knowledge should using genetic algorithms to discover potential reaction path-
be represented. In our opinion, the human expert does ; . . .
ways. The reaction network is often pruned using a variety of

not primarily think in terms of the detailed mathematical i : . - .
formulation of a model; rather he or she thinks in terms of the techniques [54,64,65], including sensitivity analysis [54-57,

“rules” that lead to that model. The analysis of predictions vs 9671, math-programming methods [45,68-70], and man-
data, at least during the early stages of model development!fold techniques [71,72]. However, these methods depend
is not primarily via a least-squares fit, but rather through UPon the elimination of species and/or kinetic steps that are
a comparison of the “features” of the data vs those of the Not important for a particular data set, where there is no
model. Thus, a KE engine for model development should assurance that this species and/or reaction mechanism will
be able to map “rules” to “features” accurately, robustly, not become important for other reaction conditions. In con-
and automaticallySecondthe best human experts are very trast, Mavrouvouniotis and Prickett [59] suggested model
good at Model Refinement by at least partially solving the reduction methods where known reactivity relationships be-
inverse feature-to-rule mapping, i.e., changing the rules to tween different species are used to eliminate unimportant re-
improve the features. Thus, the development of automatic, actions, or alternatively reaction-rate-based techniques have
computer-based algorithms to address the very difficult heen used to control the size of the network [73]. The tools
inverse feature-to-rule mapping will be essentighird, described above are certainly essential components of any
since :_alt the onset the data may be compau_ble with Severalcomputational approach to catalyst design; however, these
potential models and there may be multiple parameter ., s oy facilitate the implementation and fitting of mod-
sets for each model (i.e., the models are nonlinear), theels, not the automation of deep reasoning.

KE engine will need to help formulate new, critical HTE : o
. AN Because of the complexity of predicting catalyst perfor-
experiments that will discriminate between the models and . .
mance, several Al methods have been applied to this prob-

parameter set&inally, as shown in Fig. 6, KE is not a one- | c I h ble to detailed fi
pass process—it is cyclic. If the KE engine in concert with '€~ ~O0Mpiex systems that are notamenable to detailed first-

the human expert works effectivelgonvergencef model principles modeling can be described via artificial neural
predictions with the data should eventually occur, resulting Networks (ANN). For example, ANN have been developed
in a robust forward model. to explain performance of a catalyst on the basis of its struc-
ture and other descriptors [74,75]. Two major disadvantages
3.2. Review of knowledge extraction for chemically of ANN are that they need large numbers of training data and
reacting systems that their predictions beyond the domain of the training data

are poor. These drawbacks have been addressed by hybrid
The most comprehensive approach to date for catalytic neural networks [2,76—80] that use first-principles knowl-

performance is the MicroKinetic (MK) approach of Dumesic - edge with an ANN. The idea of using qualitative reasoning
and co-workers [29]. Although reaction network analysis was demonstrated by Banares-Alcantara et al. [81,82] in an
predates the MK approach by several decades [30,31], MK expert system for catalyst selection. Hattori et al. [83] re-
analysis is a systematic approach to heterogeneous catalysigort 4 knowledge-based system for designing catalysts based
that uses a wide range of experimental and theoretical o, intormation about catalyst activity patterns. McCleod and
information to test various model hypothesgs. AppI|cqt|ons Gladden [84] have used a stochastic optimization algorithm
of the MK approach include detailed reaction analysis on o . .

to optimize the geometric arrangement of the catalytic sites

metal, oxides, sulfides, and zeolites [32-37]. MK analysis that maximizes th talvst activity. Recently Baerns and co-
has provided considerable insight into the fundamental atma es the catalystactivity. wecently baerns and co

behavior of catalytic systems; however, in its current form WO'Kers [85,86] demonstrated an evolutionary approach to
knowledge extraction via MK analysis is inexorably tied combinatorial selection and optimization of catalytic mate-
to a level of human intervention that is incommensurate fals. Their methodology uses genetic algorithms to guide
with HTE and the increasing complexity of fundamental combinatorial experiments in a search for catalysts. The ob-
models. jectives of the methods described in this paragraph are to

Computer-generated development of large-scale reactionmodel data and find new catalytic materials; however, these
mechanisms has been used extensively in hydrocarbon comAl approaches do not directly address how an improved un-
bustion, oxidation, and pyrolysis [31,38—47] and organic derstanding is to be developed.
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Performance the same rate constant or a set of rate constants that are a

Curves specific function of the carbon number of the species. The
model consists of 31 gas-phase species, 29 surface species,
and 271 reaction steps, which have been categorized into 33
different families. Each reaction family is parameterized in
terms of either a rate constant or an equilibrium constant and
v Reaction Modeling Suite | the carbon number dependence within a family is considered
in terms of the Polanyi relation. Transition state theory has
been used to estimate bounds on the preexponential factors
and literature values have been used to bound the activation
energies [92-96] and provide interrelationships between var-

Fig. 7. Schematic of the various tools in the reaction modeling suite. ious reaction families [97,98] to reduce the number of pa-

rameters to 13. The proposed model assumes that the reac-
3.3. Knowledge extraction—rate constants to performance tions of neutral surface alkoxy species [94,99,100] take place
through carbenium/carbonium ion transition states.

We will now discuss a potential framework for KE for The results of the GA-based hybrid search methodology
the kinetic model. The first component of the KE engine described above are presented in Fig. 8, where the data are
is a set of tools for generating model predictions of kinetic taken from Lukyanov et al. [91]. The results of local sen-
performance from chemistry rules and experimental data. As sitivity analysis for the optimal parameter set are given in
shown in Fig. 7 this set of operations include (i) translation Table 1, where 7 of the 13 parameters are particularly sen-
of chemistry/catalyst rules such as basic reaction pathways sitive for modeling the data. We also located 32 additional
postulated groupings of species with similar reactivities and local minima that are almost as good with respect to the sum
Polanyi relationships, written in near-English language form of squares error criterion. It is important to know if there
to a computer compatible syntax, (ii) generation of the are multiple local minima each with its own parameter set,
appropriate algebraic and/or differential equations (DAES) since different minima can have different physical implica-
consistent with the rules, (iii) solution of the DAEs with tions. The speed of the new GA-based hybrid search method
minimal user intervention including nonlinear optimization allows more complete exploration of the global parameter
to determine the sets of model parameters that can best fitspace, which has obvious implications for assessing the va-
the data either via least squares or in terms of features,lidity of a given model.
and (iv) statistical analysis of the various fits. Because the  The suite of modeling tools described above begins to al-
models are nonlinear and the data are often incomplete orlow more efficient handling of HTE data; however, it is not
noisy, there may be many parameter sets for a single modelan automated KE engine, since there is no (i) mechanism
and/or multiple sets of rules that can describe the data.for resolving discrepancies between the data and model by
Consequently, the analysis process must be extremely fastmodifying the chemistry rules or (ii) help in the selection of
robust, and inclusive if it is to keep up with the speed of new HTE experiments. A first step toward KE is the devel-
HTE. We have recently developed a genetic algorithm (GA)- opment of an automated process for identifying “features”
based optimization procedure [87] that is able to locate large of the data and predicted performance. Especially during the
numbers of local minima that are nearly indistinguishable early stages of model development, the best least-squares
from the global minimum at a rate that is at least two orders fit to the data may in fact be a poor indication of model.
of magnitude faster than alternative search procedures [88].Moreover, in diagnosing problems in the model, especially
This allows a more complete evaluation of all the parameter for multiple products as shown in Fig. 8, it is often more
sets consistent with a given data set, rather than just choosingmportant to fit some parts of the data well (e.g., the ini-
between the first several parameter sets that fit the data.  tial region of the response), forcing the difficulties into areas

Application of the kinetic modeling tools as they cur- that then can be more clearly evaluated. A feature vector is
rently exist is illustrated for the problem of production of constructed by first defining a sequence of intervals that are
aromatics from propane using H-ZSM-5. A number of ki- separated by abrupt changes in the magnitude, slope, or cur-
netic models have been proposed for aromatization of alka-vature for either data or model predictions. The shape (e.g.,
nes over ZSM-5 [89-91]; however, a model with predic- linear, concave upward, etc.) is then defined for each inter-
tive capabilities remains a challenge. Our kinetic model is val. Each element in the feature vector now includes the lo-
based on a reaction scheme involving adsorption, desorptioncation of the interval, shape, and least-squares fitting infor-
protolysis, dehydrogenation, hydride transf@rscission, mation if desired. The data can be optimized via traditional
oligomerization, and aromatization reactions. The proposedleast-squares methods or alternatively on the features.
set of reaction “rules” generates a very large number of in-  Once features of various potential models and/or parame-
dividual reactions. To reduce the number of parameters in- ter sets have been identified, model refinement is employed,
volved, the reactions were categorized into various families which requires determination of the mapping between fea-
and all reactions in a particular family were assumed to have tures and rules. Consider the case of developing a predictive
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Fig. 8. Improvement in performance curves for propane aromatization on HZSM-5. Dots correspond to experimental data from Lukyanov et al. [91]; solid
lines indicate the original model predictions and the dashed line indicate the refined model predictionsighis in terms of the space-time10* (h) and
the y-axis is the weight percentage of the various species.

model for the data shown in Fig. 8, where a difference in fea- associated kinetic parameters—i.e., KE has been achieved.
ture (e.g., the magnitude of ethane production at high space-A search over all possible sets of rules is impossible due to
times) is observed between the predictions and data. Thesehe significant computational demands of the forward rule-
features were determined from an approximate set of rules,to-feature mapping and the combinatorial explosion if all
which were initially down-selected from a much more com- rule combinations are considered. In this case, the solution
prehensive set of rules for the carbenium ion chemistry of was relatively straightforward, since the changes were lo-
zeolites—i.e., the human expert made initial choices about calized around rules directly connected to thecBemistry;
what was important. A variety of alternative rules were then however, there will be cases where changes would be needed
stochastically probed for their effect on light paraffin pro- in the reaction network that are not directly connected to the
duction. The most effective single rule addition was alky- region of data/model feature discrepancy. The example out-
lation of alkoxy species with light alkanes [101,102]. This lined above should clearly shows the general principle be-
expanded rule set better captures the performance of the cathind model refinement, although considerable research re-
alyst for all species. Thus, the inverse feature-to-rule map- mains to be done.

ping has determined what rule was needed from the global Although we have not as yet implemented an automatic
rule set using a stochastic search guided by expert infor-algorithm for the formulation of experiments portion of
mation. Specifically, the human expert made a very reason-the kinetic model shown in Fig. 6, we will briefly outline
able, but incomplete, initial guess to start the process, andwhat we believe will be needed. As shown in Table 1,
then the KE engine determined an improved rule set with there may be multiple sets of kinetic parameters that can
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Table 1 the catalyst chemistry model is experimental data from the
Results of nonlinear parameter estimation catalyst library and chemistry rules, working in concert with
S.no. Model parameters lpg(value) the human expert. These data and rules are used to determine
1 kp 747 a set of catalyst “descriptors” that define the important
2 kod 45+29 processes that control how the catalyst microstructure is
3 kad 9+5 connected to the reaction mechanism and rate constants.
‘5‘ ib Sgig“‘ The aim of catalytic descriptors is to provide well-defined
6 k;a 142 terms that capture the collective influence of microstructure
7 kn 20407 on relevant kinetic model parameters. The identification,
8 koa 3+2 calculation, and subsequent refinement of an appropriate set
9 ked 2+2 of descriptors is the key task in development of the catalyst
ﬂ) iqod O'lqi 8';2 chemistry model.
12 AZ‘;’;‘ 03+16 Various methods can be used to provide the link between

13 s 1.25+0.01 catalytic descriptors and kinetic parameters. For instance,
Error in parameters obtained from the local sensitivity of the objective func- a Qesgrlptor In zeohtg ChemIStry could be tBgAIl I’a'.tIO',

tion to the parameters corresponding to the best minimum. Model parame- Which is correlated with acid strength and the proximity of
ters are rate constants for protolysig; olefin desorptionog; alkane des- acid sites. Other descriptors such as proton affinity [103]
orption, kag; A-Scission kp; aromatizationka; alkane adsorptiortaa hy- and deprotonation energy and chemical reactivity measures
dride transferkp; olefin adsorptionkgs; carbonium ion dehydrogenation, such as Fukui functions [104], hardness and softness [105],

kcg; increase with carbon number of adsorption enthalpies for olefin ad- lect hari indi 106 lect | lizati f
sorption,A¢gqg, and alkane adsorptiorg,g; increase with carbon number electron-sharing indices [ 1, electron localization func-

of activation energy for carbonium ion dehydrogenatiageq; and the en- tions [107], and local isoelectronic reactivity [108] may be

tropy change for thg-scission/oligomerization equilibrium constarnts. useful; however, these descriptors lack a direct computa-
First-order rate constants, kod, kad; kb, ka, kcd) are in terms of molg/h; tional link to kinetic parameters. Examples of descriptors
second-order rate constanisd, kn, koa) in m°/g/h; energy termsAqoq, that do provide direct links to parameters include transition

Agad, Agcq) are in kymol; and the entropy termiy S, has been normalized

by the universal gas constany &dol/K), state geometries and activation energies, which are calcu-

lated using density functional theory; alternatively, a less
direct means of rate constant estimation can be achieved
provide an equivalent description of the features of a given py calculating heats of reaction and invoking the Brensted—
data set as quantified by the sensitivity matrix for the pojanyi relationships that relate activation energies to heats
kinetic parameters. For a given catalyst system the featuresyf reaction [109,110].
directly depend upon the feed composition and reaction During the early stages of the KE process, a single
temperature. Thus, one needs to develop algorithms Sim”ardescriptor may not provide a direct correlation between
to the model refinement procedure for guiding the inverse the catalyst microstructure and the kinetic parameters. At
sensitivity matrix to reaction/feed dependence mapping in this point a hybrid model that relates a set of descriptors
order to determine what type of HTE experiments will be constrained by expert rules and guided by experimental
most discriminating. This inverse search procedure may gata can provide a viable initial model. We have developed
need to be extended to also include mU|t|p|e rule sets aSgoftware where a neural network with mu|t|p|e inputs is
well as multiple sets of kinetic parameters for a given constrained by (i) equality and/or inequality constraints
rule set. In this section we have summarized our work on consistent with the chemistry rules and (ii) the complete or
development of an automated KE engine for the kinetic partial form of a fundamental model. As an example of the
model. Considerable research remains, but we believe thaipower of this software architecture, consider the two-step
the basic knowledge architecture is relatively complete. catalytic reaction to produce C from A in which species A
The key postulate in the development of the proposed adsorbs molecularly. Assuming that the adsorption step is
architecture is that the software must capture the type quuasi-equilibrated and fs+ site— C + 2 sites, the rate
thought processes currently employed by the human expert.expression is of the form, = koK1 Pa /(1 + K1 Pa)2, where

rc is the rate of C formationPa is the partial pressure
3.4. Knowledge extraction—catalyst chemistry model of A, and K1 and k> are model constants. Reaction rate

data over a limited range of pressures were generated from

The problem of relating catalyst microstructure to rate this kinetic expression, adding experimental noise as shown

constants is the next step in developing an overall catalystin Fig. 9. The data were first fit via just a neural network,
design system and represents arguably the most challengingvhere as expected the fit was reasonable over the range of
part. Our development of the catalyst chemistry model is the data but diverged significantly for pressures outside the
much less complete than that of the kinetic model describeddata range. Next, the neural network was constrained by
above, but we believe that the basic organization of the assuming that the reaction order was 0.5—a reasonable
catalyst chemistry model is reasonably firm and should constraint exposed from the rules. For this case there was
provide a blueprint for future development. The input to little change in the predictions inside the data range, but
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ables, are there tools that will help an expert discover the
important relationships and arrive more efficiently at the re-
search target? In this paper we have advanced the premise
that model building is the key to knowledge extraction from
the high density of information enabled by HTE. The model
archives relationships between catalyst properties and per-
formance, creating an ever-growing knowledge bank. The
requirement that the model predicts performance quantita-
tively challenges the model structure and forces model com-
ponents to capture fundamental relationships.

For this approach to be effective, model building cannot
be the limiting step. Our reaction modeling suite affords a
rational, automated framework that is designed to allow the

expert to initiate the modeling sequence in a simple reac-
'2-§1 0 log, P 1 2 tion chemistry language. The software then interprets this
10 A information into a reaction sequence, writes the appropriate
Fig. 9. Hybrid models for predicting performance from data and partial €duations, optimizes the fitted parameters while keeping pa-
knowledge. Filled cicles indicate training data with noise; solid line rameters in physically and chemically allowed bounds, and
indicates the true model; dashed-dotted line indicates the neural networkdoes statistical analysis of the results. These steps have been
predictions; dashed line in_dicates th_e predictions of the neural Qet\Nork fully demonstrated in the propane-to-aromatics example in
yvhgre the reaction order is const_ramed to be: 0.5 and dotted line the text above. The genetic algorithm approach to parame-
indicates the reaction order constraint a£D.1. ) L . . )
ter estimation is of particular note, since it enables thorough

, i ] ] search of the parameter space with a dramatic improvement
extrapolation outside the data range was improved. Finally, ;, speed over other methods.

the reaction order constraint at low pressures was tightened |1 is a rare event for an initial kinetic model to be thor-

to 1+0.1, and the hybrid model now did a much better job 541 enough to fit all the data, so it is essential that the mod-
of extrapolation. This example clearly shows how a hybrid g|ing approach also facilitate model refinement. We have fo-
neural model with constraints from expert rules and first ;sed on feature identification and the mapping of features
principles information can improve predictive capabilities g reaction rules as an efficient path for model improvement.
as additional, but still perhaps incomplete, knowledge is The concept has been demonstrated on an example problem.
added to the model. Unlike previous efforts at incorporating a key element of this aspect of the model building is that,
first-principles knowledge into neural networks [76-79], this 55 shown schematically in Fig. 6, iteration of model com-
architecture is truly parallel. parison to high-throughput data and subsequent model re-

finement lead t@onvergencéo a predictive kinetic model.

Thus, the goal of the reaction modeling suite is to facilitate
4. Summary MK analysis—but this is only one part of ttierward model

The catalyst chemistry part of the model calls for identifi-

High-throughput catalytic experiments are changing the cation of chemical descriptors and the mapping of the de-

catalysis research landscape. While the number of catalystsscriptors to the kinetic model and its parameters. We have
in a library, the control of the catalytic environment, and the outlined approaches that will enable this step but we appre-
quantitative accuracy of the performance data continue to ciate its difficulty. We will rely on the iterative convergence
evolve, itis already possible to get a full set of concentration- implied by Fig. 6 to carry us from crude initial models to
and temperature-dependent data on 16 or more catalysts ifncreasingly sophisticated ones, and we expect this process,
less than a day. The speed offered by imaging FTIR de- although probably slow, to strengthen our understanding of
tection even enables parallel quantitative transient analysisthe fundamentals of catalytic behavior. This opportunity for
on the timescale of seconds. Consequently, more exhausmodel evolution arises from the ability to construct hybrid
tive searches of composition space and the close interplaysoftware architectures that mix first principle, data driven
of hypothesis and testing on reasonable time scales are novand expert rule models. During the initial stages of the KE
possible. These tools will certainly accelerate Edisonian dis- process, the data may carry most of the predictive load, while
covery of new catalysts and also the generation of new un- after multiple passes through the KE engine more fundamen-
derstanding by the classical scientific method. What new op- tal models will carry more of the predictive load and thus
portunities do they afford? Even when an Edisonian search ishave more robust extrapolation capabilities.
successful, how can the information on both successful and A successful forward model has considerable value in
unsuccessful catalyst formulations be converted to knowl- its own right, but its power is dramatically leveraged by
edge that will guide the next search? For complex catalytic theinverse modelhich forecasts catalyst formulations that
systems driven by many interrelated and often hidden vari- will solve targeted problems. This potential to truly design
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catalysts is the return on the investment in model building.
Because of the complexity of the problems, knowledge
extraction in the model can only be driven by large amounts
of high-quality data; i.e., KE relies on HTE and vice versa.
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