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The continuing development of high throughput experiments (HTEs) in catalysis has dramatically
increased the amount of data that can be collected in relatively short periods of time. Even
when HTEs can afford “Edisonian” discovery, how can the increasing amounts of data be
converted to knowledge to guide the next search in the vast design space of catalytic materials?
To address this question, we recently proposed a catalyst design architecture that uses detailed
kinetic models. In this paper, we describe Reaction Modeling Suitesa rational, automated, and
intelligent environment, based on systems, artificial intelligence, and optimization techniques
that aid the development of kinetic models. We demonstrate its utility in developing a kinetic
model for propane aromatization on zeolite. We also show the proof-of-concept of how a genetic
algorithm-based search strategy can be used to search for kinetic parameters that correspond
to an improved catalyst.

1. Introduction

The design of new materials possessing desired
macroscopic properties or performance characteristics
is an important, although difficult, problem. Materials
design finds applications in the development of diverse
materials such as polymers, polymeric composites,
blends, paints and varnishes, refrigerants, solvents,
drugs, pesticides, and so on. The traditional approach
requires the designer to hypothesize a molecule or
material, synthesize it, and experimentally evaluate it
to see if it meets the desired properties or performance
criteria and to reformulate the design if the targets are
not met. This Edisonian guess-and-test method is time-
consuming, expensive, cumbersome, and complicateds
time-consuming and expensive because of the nature of
the experiments and cumbersome and complicated
because of the underlying huge, nonlinear search space.

In the area of catalyst design, experimentally tuning
catalyst structure to improve performance is well known.1
Advances in surface science techniques2 that enable
manipulation of individual atoms on the catalyst surface
in real time have3 immensely contributed to improved
understanding of the catalysts. With the advent of high
throughput and combinatorial methods, experimental
guidance techniques such as hierarchical screening,4
evolutionary ideas,5 and those based on statistics6 have
become relevant. Despite these efforts, the nonlinearity
and the size of the underlying search space still pose a
strong challenge to systematic design. Also, design
techniques that are mainly driven by experiments will
only enable in the collection of information, and unless
there is a method to convert that information into
knowledge and insight, a general catalyst design meth-
odology would remain an unsolved problem.

Theory and model based catalyst design strategies are
well known in the literature. These include the idea of

using qualitative reasoning and knowledge-based sys-
tems,7,8 efforts toward using computational models and
calculations to guide the search for new materials,9,10

and those that use detailed microkinetic models to study
catalytic systems.11 A more comprehensive review of
catalyst design techniques is available elsewhere.12

Computer-aided materials design13 offers an attrac-
tive alternative to the above approaches, whereby the
design problem involves the use of computer-based
procedures to systematically identify appropriate mo-
lecular structures that satisfy a set of desired properties.
In general, the overall task requires the solution of two
subproblems as shown in Figure 1: the forward prob-
lem, which involves the computation of performance
measures or physical, chemical, and/or biological prop-
erties from the product structure and formulation/
composition; and the inverse problem, which entails the
identification of the appropriate molecular structure or
composition given the desired macroscopic properties.
To solve the inverse problem, which is the true design
problem, a robust forward model is essential. This
forward model development is complicated because the
underlying system is often complex. The main chal-
lenges include identification of the key descriptors that
characterize the system under study and development
of a methodology to link the material descriptors to
performance. We recently proposed a methodology14 for
building forward models for designing catalysts. This
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Figure 1. Schematic of the forward and inverse problems in
computer-aided materials design.
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involves a systematic, rational, and iterative technique
for knowledge extraction (KE) from high throughput
experimentation data. The KE procedure facilitates
convergence to a quality predictive model from an initial
approximate model by systematically incorporating any
new information about the system as and when it is
available. In this paper, we describe the Reaction
Modeling Suite (RMS)sa collection of systems, optimi-
zation, and artificial intelligence based tools that enable
KE by aiding the expert in building robust kinetic
models.

The main objective of this work is the design and
development of systems tools for integrating large
amounts of diverse sets of data with the hypothesis
generation and screening process, at a pace com-
mensurate with the rate of data production. In particu-
lar, emphasis would be on developing user-driven
systems tools to offer a systematic, less error-prone,
automated environment for an expert to postulate,
evaluate/optimize, and refine reaction mechanisms. The
tools would allow rigorous analysis of multiple reaction
mechanisms in the light of data, with minimum human
intervention. This would make the whole process user
friendly and quick. The rest of this paper is organized
as follows. RMS will be described in the next section
along with a brief review about the requirements of an
automated kinetic model building system and the state-
of-the-art in this area. In section 3, the various capabili-
ties of the RMS tools in hypothesis screening, reaction
network analysis, model refinement, model discrimina-
tion, and experimental formulation will be demon-
strated by developing a kinetic model for propane
aromatization on H-ZSM-5 zeolite catalyst. This section
will also include a proof-of-concept of the inverse
problem that involves the search for an improved
catalyst for paraffin aromatization. The main contribu-
tions will be summarized and general conclusions will
be drawn in the final section.

2. Reaction Modeling Suite

The key requirement of any model building procedure
is the rapid screening of an expert-postulated reaction
mechanistic hypothesis that could explain the data. This
process should be fast enough to keep pace with the rate
of data generation from combinatorial and high through-
put experiments. Another challenge is to develop user-
driven tools that naturally relate to the domain expert.
Toward this end, we have developed the RMS that
enables rational, automated reaction kinetic modeling
and thus facilitates knowledge archiving and retrieval.
The software in RMS allows easy encoding of reaction
chemistry knowledge in terms of pseudo-English lan-
guage rules and enables automated and fast hypothesis
testing by screening through multiple hypothesis in a
systematic manner.

Traditionally, the reaction-modeling problem has been
an art tackled by chemists and chemical engineers or
other domain experts. On the basis of their experience
or knowledge about the system at hand, the experts first
formulate a set of heuristics or rules that appear to
govern the process. These rules directly translate to a
reaction mechanism, and a mathematical model is then
constructed from it. Depending on the discrepancies in
the predictions of the model and experimental results,
the experts go back to the initial stage of rule formula-
tion and consider alternative or additional rules. When
the reaction network consists of a large number of

reactions and chemical species, the development of the
mathematical model becomes cumbersome. The overall
process as shown in Figure 2 is therefore “Edisonian”
and is often protracted, cumbersome, and expensive. It
is protracted because even a slight change in one of the
reactions in the mechanism leads to multiple changes
in the mathematical equations that represent these
reactions. Since building a feasible mechanism starting
from a plausible set of steps is often iterative, the whole
process becomes time-consuming and highly prone to
errors. Any efforts to automate the same using computer-
assisted methods can lead to considerable savings in
time and money.

The importance of developing robust kinetic models
for understanding the underlying chemical system is
well-known in the literature. For example, concepts such
as stoichiometric network analysis,15 mathematically
controlled comparison and canonical representation of
differential equation models,16 development of large
scale reaction networks based on elementary reac-
tions,11,17 deduction of reaction mechanisms given a set
of elementary steps,18 and reverse engineering of reac-
tion mechanisms19,20 have attracted widespread atten-
tion. Software tools for automating the process of
reaction model building have also been available. Table
1 shows a list of software tools available in the literature
that aid the process of modeling chemical reaction
networks. The tools have been categorized based on
their ability to (1) formulate a reaction network from
high level chemistry rules, (2) visualize the reaction
network, (3) parse the reaction network to get a math-
ematical model, (4) solve the model and optimize the
parameters, and (5) analyze the results statistically. For
detailed reviews of software tools for reaction kinetic
modeling, the reader is referred to Arkin21 and Katare.12

Drawing ideas from the traditional modeling meth-
odologies, we propose a set of tools with a systems
viewpoint for effectively and efficiently implementing
the ideas of chemical reaction modeling within the
perspective of computer-aided materials design. Specif-
ically, the current work deals with a framework for
developing forward prediction models for surface reac-
tions from a catalyst design (Figure 1) perspective. The
key steps involved in the process of model building are
as follows: generation of the simplest plausible reaction
mechanism; translation of the mechanism to a compu-
tationally tractable mathematical model; solving the
model to estimate the parameters in light of high
throughput and/or insufficient experimental data; refin-

Figure 2. Traditional model building process.
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ing the model to better fit the data by altering the
mechanism; suggesting new experiments that could help
discriminate among multiple models.

The main challenges involved are as follows:
Mechanism Generation from Reaction Rules.
1. Unambiguous representation of the large number

of reactions and species.
2. A compiler that understands the generic reaction

rules and a network generator that applies these rules
recursively to all possible reactant species.

3. Pruning the reaction mechanism to get the simplest
possible model that can explain the data consistently.

4. Assimilating thermokinetic data and experimental
information involving the various reactions/species to
minimize the number of thermodynamic and/or kinetic
parameters to be optimized and to aid the process of
parameter estimation.

Parameter Estimation.
5. Robust solvers that handle the large number of

differential-algebraic equations and parameter estima-
tion techniques that will evaluate the validity of the
proposed mechanism to model data.

6. Evaluation of the multiple solutions for the param-
eters that explain the data equally well.

Feature Extraction.
7. Feature extraction techniques to identify the dis-

crepancies between the key features of the model
predictions and that of the data so that they can be used
for MR and experimental formulation.

8. Mapping the feature discrepancies to the mecha-
nistic rules that generated the reaction mechanism.

Statistical Analysis.
9. Estimation of the robustness of the model.

We now describe RMS (Figure 3), the tools that
provide solutions to most of the above challenges.
Specifically, in this section, we present our implementa-
tion of an English language rules-to-reaction network
compiler that translates pseudo-English language rules
into a chemical reaction network. Then we describe a
hybrid algorithm for parameter estimation that affords
a thorough and efficient search of the nonlinear param-
eter space. This is then followed by a feature extraction
procedure that enables a natural way for evaluating the
validity of a model in light of the data. Finally, we
explain the statistical analysis tools that have been
developed to analyze the robustness of a kinetic model.

2.1. English Language Rules-to-Reaction Net-
work Compiler. Building a kinetic model is initiated
by an expert who proposes an initial set of reaction rules
that is most likely to explain the experimentally ob-
served product distribution. For example, for a solid acid
catalyst system, adsorption, desorption, protolysis, beta-
scission, oligomerization, dehydrogenation, aromatiza-
tion, etc., form a plausible rule set which gives rise to a
large number of elementary reactions. The first step of
postulating a hypothesis as rules is the most critical one
as it drives the subsequent process of model building
and evaluation. Moreover, the task of model refinement
based on the model-data mismatch is typically aimed
at altering one or more of these basic reaction rules
rather than independently changing the elementary
reaction steps. This is because changing a single rule
affects several chemically similar elementary steps.
Thus, the process of hypothesis screening is largely
dependent on how well the expert is able to postulate
and iteratively manipulate these reaction rules. There-

Table 1. List of Software Tools That Aid in the Process of Modeling Chemical Reaction Networksa

no. software descriptors reference

1 Reaction Description Language F Pricket and Mavrovouniotis, 199730

2 DBsolve VPOS Goryanin et al., 199999

3 E-cell VPOb Tomita et al., 1999100

4 Gepasi POS Mendes, 1993101

5 CRNT POS ftp://ftp.che.rochester.edu/pub/feinberg/
6 Dynetica VPO You et al., 2003102

7 XMG FPOS Green et al., 200139

8 NetGen FPOS Broadbelt et al., 199424

9 IBM CKS VPOS www.almaden.ibm.com/st/msim/ckspage.html
10 MKM POS http://www.aue.auc.dk/∼stoltze/mkm/main.html
11 Mitsubishi FPOS Hostrup and Balakrishna, 200175

12 Chemkin POS Kee et al., 1989103

13 KINAL A POS Turanyi, 199038

a The descriptors show the ability of the tool to formulate a reaction network from higher level rules (F), visualize the network (V),
parse the network into mathematical model (P), solve the model and optimize the parameters (O) and analyze the results statistically (S).
b Solves but does not optimize the parameters.

Figure 3. Reaction Modeling Suite.
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fore, any effort to automate the model building process
should aid the expert as much as possible in his/her
natural working language.

2.1.1. Representation of Molecules and Reac-
tions. Software that enables hypothesis screening and
model building should provide as much flexibility as
possible to the expert in postulating and manipulating
the various reaction rules. It should be possible to
include new reaction rules readily. The molecules and
reaction rules should be encoded in the natural language
that is used by an expert while formulating them.
Previous works on automated model generation have
used several representations including extended SMILES
notation22 and bond-electron (BE) matrices23 to repre-
sent molecules and BE matrices,24 functional group
vectors,25-27 and pseudo-English language rules28 to
represent reaction rules. SMILES and BE matrices can
become cumbersome29 as the complexity of the reactive
intermediates increases. Extending the functional group
vectors representation to non-hydrocarbon chemistry
may not be straightforward.

Prickett and Mavrovouniotis30 have tried to overcome
the above shortcomings by introducing a pseudo-English
language to describe reaction rules along with a com-
piler to translate these instructions into a reaction
network. Their Reaction Description Language (RDL)
uses a sequence of commands to locate the reaction site,
to manipulate the reactant to form the product, and to
prune the reaction network with a syntax that mimics
the way reactions are typically described by the chem-
ists.

RMS has been designed to facilitate hypothesis gen-
eration and screening, and one of its key requirements
is that it should enable the initiation of this process
using a natural language interface. RDL31 satisfies this
condition, and so we have designed and developed the
Reaction Description Language Plus Plus (RDL++) as
a system that extends RDL. RDL++ can be used to
model reaction mechanisms on solid acid-based cata-
lysts, like zeolites, and is designed to be more user-
driven and extendible. Also RDL++ has been integrated
with other tools that are geared toward building robust
reaction kinetic models.

2.1.2. The Reaction Description Language Plus
Plus (RDL++). RDL++ is a compiler that translates
chemistry rules in pseudo-English language to a reac-
tion network. Molecules and reaction networks in
RDL++ are represented in an object oriented fashion
along the lines of RDL.28 Molecules are graphs whose
nodes represent the atoms and the edges denote the
connectivity between the atoms. The various attributes
of a molecule are shown in Table 2. The molecule is
characterized by its atoms, bonds, fragments (rings and
chains), and its role as a reactant or a product in a
particular reaction. An atom’s attributes include its
neighboring atoms, the list of bonds, its charge, element
type, and the molecule or the fragment to which it
belongs. A bond has its list of atoms and the list of its
neighboring atoms, order, and the identity of the
molecule or fragment to which it belongs. Finally, the

fragment is represented by its type (ring or chain), a
list of atoms and bonds, and the molecule to which it
belongs.

A schematic of the RDL++ is shown in Figure 4.
RDL++ consists of (1) a compiler and a network
generator that transforms reaction rules and global
pruning rules to a reaction network and (2) a model
generator that generates a model from the reaction
network and a set of grouping rules. The compiler
translates the English language rules to intermediate
code or patterns which are then recursively applied by
the network generator to all the species in the reaction
mixture to generate the reaction network.

Reaction rules in RDL++ are similar to that of RDL28

and consist of three important blocks of statements with
specific roles: (1) identification of the reaction site(s)
among the reactive species, (2) transformation of the
reactive sites to products, and (3) local pruning of the
reactions based on the reactive sites or on the products
formed. The pruning rules restrict the type of reactants
that can enter a reaction and the products that can be
formed. A typical reaction rule that describes adsorption
of a paraffin to form a carbonium ion (eq R.1) is shown
in Table 3. Every statement is in the form of a produc-
tion rule and is enclosed in parantheses. Comments are
preceded by a pair of forward slashes. The statement
at the beginning of every rule describes the name of the
reaction. This is followed by the identification of the rate
constant of the reactions generated by this rule. The rule
then identifies the reaction sitesa neutral carbon in the
reactant. The local pruning rules constrain the various
possibilities, and in the current version of paraffin
adsorption (Table 3), it is required that the reactant be
a paraffin and that any cyclic species be forbidden. Also,

Table 2. Attributes of a Molecule, Atom, Bond, and a Fragment in RDL++

attributes

molecule atom, bond, fragment, reactant/product, network to which it belongs
atom neighboring atoms, list of bonds, charge, element type, molecule or fragment to which it belongs
bond list of atoms, list of neighboring atoms, order, molecule or fragment to which it belongs
fragment type, list of atoms and bonds, molecule to which it belongs

Figure 4. Schematic of the Reaction Description Language Plus
Plus.

Table 3. A Typical Rule in RDL++: Adsorption of a
Paraffin To Give a Carbonium Ion

{
// description of the rule
(reaction-name “adsorption of paraffin”)

// rate constant definition
(rate-constant kaa)

// reaction site identifier
(label-site m1 reactant)
(label-site c1 (find neutral-carbon))

// local pruning statements
(require (paraffin m1))
(forbid (cyclic m1))
(forbid (less-than (size-of m1) 2))

// transformation statements
(add-charge c1)
(connect c1 neutral-hydrogen)
}
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the size or the number of carbon atoms in the reactant
has been constrained to be less than 8. So, the pruning
rules enforce the condition that paraffin adsorption can
only take place on an acyclic paraffin up to C7. Note that
any of these pruning rules can be relaxed as per the
requirement of the system under consideration.12

2.1.3. Network Generator. The reaction rules are
converted by the compiler to an intermediate code that
contains the information about the generic reactions.
These patterns are now applied to all the species in the
reaction mixture to create the actual reaction network.
For example, if there are four rules and two initial
reactants, after the application of the four rules to the
two initial species, the rules are again applied to the
products formed from in the first pass. This process is
repeated until each of the rules is applied to all the
species in the reaction mixture.

2.1.4. Model ReductionsPruning of Reaction
Networks. Since the analysis of complex reaction
networks typically requires more data than are often
available, the mathematical model of the reaction
network formed from the reaction rules is often pruned.
The area of simplification of mathematical models that
describe reaction mechanisms has been reviewed by
Tomlin and co-workers32 and Mavrovouniotis.33 The
methods of model reduction can be widely divided into
two partssreduction based on the time scale analysis
and the techniques that are not based on the time
evolution of the species. Pseudo-steady-state analysis
that converts the differential equations into algebraic
equations, computational singular perturbation based
on reaction rates, and the inertial low dimensional
manifold technique of Mass and Pope34 that use the
species rate trajectory to distinguish between the slow
and fast rates are examples of the former class. Sensi-
tivity analysis, which studies the importance of reac-
tions and species to identify the redundancy in the
reaction network, lumping of a group of species such as
isomers or chemically similar groups, forms the basis
of time-independent techniques for model reduction.

In summary, the reaction network is often pruned
using a variety of techniques,32,33,35 including sensitivity
analysis,36-38 math-programming methods,39-42 and
manifold techniques.34,43 However, these methods de-
pend on the elimination of species and/or kinetic steps
that are not important for a particular data set, where
there is no assurance that this species and/or reaction
mechanism will not become important for other reaction
conditions. In contrast, Mavrouvouniotis and Prickett31

have suggested model reduction methods where known
reactivity relationships between different species are
used to eliminate unimportant reactions; alternatively,
reaction rate based techniques have been used to control
the size of the network.44

RDL++ consists of two types of pruning rulesslocal
pruning rules that are restricted to a particular reaction
rule and global pruning rules that are applied to all the
reaction rules. The local pruning rules include (1)
forbidding a particular reactant from undergoing a
reaction or a product from being formed, (2) limiting the

number of carbons in the reactants and/or the products,
(3) requiring or forbidding a particular pattern in the
reactant and/or product. For example, adsorption of
paraffin is restricted; paraffin with fewer than two
carbonssmethaneswill not adsorb (Table 3). The global
pruning rules apply to all the reaction rules and hence
can restrict the formation of certain types of products
by any reaction rule. As shown in Table 4, the global
pruning rules, for example, forbid the formation of
species with two adjacent double bonds, triple bonds
among the productssdefined as a “trifin” product,
species that have a double bond and a positive charge
and species with charges on two different atoms.
Another powerful global pruning rule is forbidding the
formation of any isomers. This reduces the size of the
network to a great extent and is particularly useful
when building models with data that cannot distinguish
between different isomers. Although the word “pruning”
implies that it happens after the actual transformation
takes place, pruning rules defined in terms of the
reactants forbid the concerned reaction from being
executed for unqualified reactants.

2.1.5. Examples of Network Generation with
RDL++. We illustrate the utility and versatility of the
RDL++ chemistry compiler in translating the pseudo-
English language rules into a reaction network using
an example of a set of paraffin reactions on a zeolite
catalyst. This reaction mechanism consisting of paraffin
adsorption, desorption, dehydrogenation, and protolysis
is a critical subset of the reactions leading to paraffin
aromatization, a commercially important reaction for
the transformation of paraffin to gasoline. The RDL++
rules corresponding to these reactions are shown in
Table 3 and Tables 5-7 and their representative reac-
tions in R.1 through R.4, respectively. Specifically,
reaction set S1 consists of (1) adsorption of a paraffin to
form a carbonium ion (Table 3), (2) desorption of the
carbonium ion to give back the paraffin (Table 5), (3)
carbonium ion dehydrogenation to give a carbenium ion

Table 4. Global Pruning Rules

{
(forbid (adjacent double-bond))
(forbid (trifin product))
(forbid positive-carbon attached-to double-bond)
(forbid (double charge))
(forbid (isomer product))
}

Table 5. Carbonium Ion Desorption To Give a Paraffin

{
(reaction-name “desorption of carbonium”)
(rate-constant kad)
(label-site c1+ (find positive-carbonium))
(label-site h1 (find neutral-hydrogen attached-to c1+))
(disconnect c1+ h1)
(subtract-charge c1+)
}

Table 6. Dehydrogenation of a Carbonium Ion Gives
Rise to a Carbenium Ion and H2

{
(reaction-name “dehydrogenation of carboniums”)
(rate-constant kcd)
(label-site c1+ (find positive-carbonium))
(forbid (quaternary c1+))
(label-site h1 (find neutral-hydrogen attached-to c1+))
(label-site h2 (find neutral-hydrogen attached-to c1+))
(disconnect h1 c1+)
(disconnect h2 c1+)
(connect h1 h2)
}
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and H2 (Table 6), and (4) protolysis of carbonium ion to
give a paraffin and a carbenium ion (Table 7).

These reactions describe the adsorption of paraffin to
form carbonium ions which subsequently protolyze and
dehydrogenate to give carbenium ions or desorb to give
back the paraffin. To eliminate infeasible products, the
first four global pruning rules as shown in Table 4,
which forbid adjacent double bonds and triple bonds, a
carbon with a charge attached to a double bond, and
the same molecule with two charges, are used in
generating the reaction network.

To study the effect of the reaction rules on the input
species, different reactantsspropane (C3), butane (C4),
isobutane (2m-C3), pentane (C5), 2-methylbutane (2m-
C4), and 2,2-dimethylpropane (2,2m-C3)shave been
used to generate the reaction networks. The choice of
the input species was based on the fact that we wanted
to examine the effect of the size of the reaction network
and the type of species formed depending on the various
isomers of small alkanes as input reactants. Also, the
effect of the symmetric nature of the reactants on the
resultant reaction network will be studied. The number
of paraffin, carbonium, and carbenium ions and the total
number of species including H2 in the product mixture
for reaction mechanism S1 with different input species
are tabulated in Table 8.

Propane adsorbs to give a three-carbon carbonium ion
which can then protolyze to give methane and ethyl
carbenium ion, or ethane and methyl carbenium ion.
Ethane subsequently can adsorb to form a two-carbon
carbonium ion, which can then protolyze to give a
methyl carbenium ion and methane. In the final reac-
tion mixture methane, ethane, and propane along with
their adsorbed carbonium species are present. The two-
and three-carbon carbenium ions are mainly formed by
the dehydrogenation of the respective carbonium ions
and a methyl carbenium ion is formed when ethyl

carbonium ion undergoes protolysis. The total number
of elementary reactions that result from each of the four
rules is as shown in Table 9. Due to the restriction in
the paraffin adsorption rule (Table 3), species with fewer
than two carbons cannot undergo adsorption; hence,
methane does not adsorb to give a single carbon car-
bonium ion. The increase in the number of isomers with
increasing carbon numbers in the reactant molecule,
and hence the increase in the number of possible valid
reaction sites, is responsible for the increase in the
number of reactions in the various reaction networks.

The symmetry of the molecules also affects the
number of isomers and hence affects the number of
reactions due to each of the reaction rules and the total
of species that are present in the reaction network. For
example, 2-methylbutane, which has the most number
of isomers as compared to that of the other input species,
gives rise to the maximum number of ions. Also the
number of reactions due to protolysis, which involves
breaking of a bond between two carbons of a carbonium
ion, increases for reactants that are asymmetric since
asymmetric species have more isomers. Similarly, since
2,2-dimethylpropane is the most symmetric species
among all the five carbon reactants considered in this
study, it gives rise to the lowest number of reactions
and total number of species among all the five carbon
reactants. All the above computations took only a few
seconds on an Intel Xeon dual processor machine with
1 GHz processors, 512K cache, and 2 GB RAM running
under the RedHat Linux 7.3 operating system. The
computer program approximately consists of 14K lines
of C++ code.

Reaction set S1 primarily consisted of paraffin activa-
tion reactions in which the paraffin was adsorbed and
the resulting carbonium ion was transformed to paraffin
and carbenium ions. Besides the chemistry of carbonium
ions, the process of paraffin aromatization also involves
the transformation of carbenium ions. The carbenium
ions formed due to the dehydrogenation and protolysis
of carbonium ions or by the adsorption of an olefin (R.5)
can desorb to give olefins (R.6), break into smaller
carbenium ions (R.7), combine with an olefin to form a
larger carbenium ion (R.8), swap its positive charge with

Table 7. Protolysis of a Carbonium Ion To Form a
Carbenium Ion and a Paraffin

{
(reaction-name “protolysis of carbonium ions”)
(rate-constant kp)
(label-site c1+ (find positive-carbonium))
(label-site c2 (find neutral-carbon attached-to c1+))
(label-site h1 (find neutral-hydrogen attached-to c1+))
(disconnect c1+ c2)
(disconnect c1+ h1)
(connect c2 h1)
}

Table 8. Product Distribution as a Result of Reaction
Set S1 with Different Paraffins as Inputa

input paraffin
carbonium

ions
carbenium

ions

total no. of
species

including H2

C3 3 3 4 11
C4 4 5 6 16
2m-C3 4 5 6 16
C5 5 8 9 23
2m-C4 6 11 12 30
2,2m-C3 5 7 7 20

a All isomers of all the species are generated.

Table 9. Number of Reactions as a Result of Reaction
Set S1

a

reaction type
input I II III IV

total no. of
reactions

C3 3 3 3 3 12
C4 5 5 5 6 21
2m-C3 5 5 5 5 20
C5 8 8 8 10 34
2m-C4 11 11 11 14 47
2,2m-C3 7 7 6 7 27
a All isomers of all the species are generated.
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a paraffin/monoene/diene (R.9), or combine with a
paraffin to give a larger paraffin (R.10).

The above reactions are only representative of the
various reaction rules. These reactions can be easily
manipulated by changing only a few words in the
rules.12 In summary, reaction set S2 consists of the
following paraffin and olefin reactions: (1) adsorption
of paraffin to form a carbonium ion (Table 3); (2)
desorption of the carbonium ion to give back the paraffin
(Table 5); (3) carbonium ion dehydrogenation that
results in a carbenium ion and H2 (Table 6); (4)
protolysis of carbonium ion to give a paraffin and a
carbenium ion (Table 7); (5) adsorption of olefin to form
a carbenium ion (Table 10); (6) Desorption of the
carbenium ion to give back the olefin (Table 11); (7)
â-scission of a carbenium ion to a smaller carbenium
ion and an olefin (Table 12); (8) oligomerization of a
carbenium ion and an olefin to form a larger carbenium
ion (Table 13); (9) hydride transfer between a carbenium
ion and a paraffin/monoene/diene (Table 14); (10) alky-
lation of a carbenium ion with a paraffin to give rise to
a larger paraffin (Table 15). It is important to recall that
the network generator operates recursively on all the

new species formed during the course of generation of
the network starting from the initial set of reactants
specified by the user. When the generation of isomers
is forbidden by the global rule (Table 4), all isomers are
considered to be the same. For example, when a five-
carbon carbenium ion desorbs to give an olefin, the
double bond could be placed on either side of the carbon
atom that originally had the charge. Specifically

However, when the formation of isomers is forbidden,
2-pentene is considered to be the same species as
1-pentene, and so the second reaction (R.12) does not
become part of the reaction network. Consequently, the
number of species and the total number of reactions in
the reaction network reduce to a great extent when the
global rule that forbids the generation of isomers is
used. This could be very useful in generating compact
reaction networks especially when the kineticist does
not have access to analytical data that can distinguish
among the various isomers. Although the current imple-
mentation of RDL++ retains the first isomer formed
and rejects the subsequent ones, one could use thermo-
kinetic information to make this procedure more chemi-
cally consistent.

Table 10. Adsorption of Olefin To Form a Carbenium Ion

{
(reaction-name “adsorption of olefin”)
(rate-constant koa)
(label-site b1 (find double-bond))
(label-site c1 (find neutral-carbon attached-to b1))
(label-site c2 (find neutral-carbon attached-to b1))
(forbid (diene m1))
(decrease-order-of b1)
(add-charge c1)
(connect c2 neutral-hydrogen)
}

Table 11. Desorption of the Carbenium Ion To Give Back
the Olefin

{
(reaction-name “desorption of adsorbed olefins”)
(rate-constant kod)
(label-site c1+ (find positive-carbon))
(label-site c2 (find neutral-carbon attached-to c1+))
(label-site b1 (find single-bond connecting c1+ c2))
(label-site h1 (find neutral-hydrogen attached-to c2))
(disconnect c2 h1)
(increase-order-of b1)
(subtract-charge c1+)
}

Table 12. â-Scission of a Carbenium Ion in to a Smaller
Carbenium Ion and an Olefin

{
(reaction-name “Beta-scission”)
(rate-constant kb)
(label-site m1 reactant)
(label-site c1+ (find positive-carbon))
(label-site c2 (find neutral-carbon attached-to c1+))
(label-site c3 (find neutral-carbon attached-to c2))
(label-site c4 (find neutral-carbon attached-to c3))
(label-site b1 (find single-bond connecting c1+ c2))
(label-site b2 (find single-bond connecting c3 c2))
(label-site b3 (find single-bond connecting c3 c4))
(forbid (less-than (size-of m1) 4))
(disconnect c2 c3)
(add-charge c3)
(subtract-charge c1+)
(increase-order-of b1)
}

Table 13. Oligomerization of a Carbenium Ion and an
Olefin To Form a Larger Carbenium Ion

{
(reaction-name “Oligomerization”)
(rate-constant kolig)
(label-site m1 reactant)
(label-site b1 (find double-bond))
(label-site c1 (find neutral-carbon attached-to b1))
(label-site c2 (find neutral-carbon attached-to b1))
(forbid (diene m1))
(search-network-for

(label-site m2 reactant)
(label-site c3+ (find positive-carbon))

)
(require (less-than (plus (size-of m1) (size-of m2)) 8))
(decrease-order-of b1)
(connect c1 c3+)
(add-charge c2)
(subtract-charge c3+)
}
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To demonstrate the effect of forbidding the generation
of isomers on the size of the reaction network, we will
analyze the reaction networks that result from reaction
set S2 with and without the global rule that restricts
isomer generation. The product distribution as a result
of the reaction network from reaction set S2 when
isomers are not generated is shown in Tables 16-19.
The number of reactions as a result of the various
reaction rules is shown in Table 20. The notations in
the tables follow the IUPAC convention. The abbrevia-
tions m and e stand for methyl and ethyl, respectively.
Also the superscript ) denotes the double bond and the
prefix to the carbon (C) denotes the location of the
double bond or that of the positive charge as the case
may be. The total number of paraffin, olefin, carbonium,
and carbenium ions is shown in Table 16. It is interest-
ing to note that the number of all the species generated
remains the same irrespective of the input reactants
except for the number of olefins when 2,2-dimethylpro-
pane (2,2m-C3) is the input. However, as shown in

Tables 17-19, the paraffins, olefins, and carbonium ions
formed from each of these species as inputs are quite
different from each other. For example, the five-, six-,
and seven-carbon paraffins generated when pentane is
the input reactant are linear as against the branched
products obtained when 2-methylbutane is the input.
All the paraffins except methane, as shown in Table 17,
adsorb to give the corresponding carbonium ions shown
in Table 19. This is because the paraffin adsorption rule
(Table 3) forbids adsorption of methane that leads to
the formation of the highly unstable single-carbon
carbonium ion. Similar to the paraffins and the car-
bonium ions, the distribution of carbenium ions (not
shown as they are identical to that of carbonium ions
shown in Table 19) is similar to the distribution of
olefins (Table 18). This is intuitive because olefins
adsorb to give the corresponding carbenium ions. For
example, for the case when propane is the input species,
2-ethyl-1-butene (2e-1C4

)) adsorbs to give rise to 3m-
3C5

+ as follows:

Table 20 shows the number of reactions as a result
of each of the reaction rules and the total number of
reactions in the reaction network. The alkylation reac-
tion (Table 15) that involves the fusion of a carbenium
ion with an alkane to give rise to a larger alkane is the
least restricted rule and so accounts for the most
number of reactions. This is because any of the paraffin
and carebenium ion species in the reaction network can
undergo this reaction provided that the resultant paraf-
fin species has fewer than eight carbon atoms. The
â-scission reaction involves the fragmentation of a
carbenium ion to a smaller carbenium ion and an olefin.
Also this rule requires the presence of a three-carbon
linear chain attached to positive carbon. When propane
(C3), 2-methylpropane (2m-C3), or 2,2-dimethylpropane
(2,2m-C3) are the input reactants, carbenium ions that
satisfy this constraint are not created, and hence
â-scission reactions do not occur.

The statistics of the reaction network that results
from the seaction set S2 when the generation of all
isomers of all species is allowed is shown in Table 21
and Table 22. From Table 23, it is evident that the
number of species and the number of reactions in the
reaction network increase when isomers are generated.
The reaction network generated is the smallest when
the most symmetric molecules2,2-dimethyl propane (2,-
2m-C3)sis used as the input reactant. This is because
this molecule results in products that are highly sym-
metric and hence have fewer isomers. The vast change
in the size and type of the reaction networks that result
because of just one change in the reaction rules (forbid-

Table 14. Hydride Transfer That Transfers a Charge
from a Carbenium Ion to a Paraffin

{
(reaction-name “Hydride transfer”)
(rate-constant kh)
(label-site m1 reactant)
(label-site c1+ (find positive-carbon))
(forbid (allylic m1))
(search-network-for

(label-site m2 reactant)
(label-site c2 (find neutral-carbon))
(label-site h1 (find neutral-hydrogen attached-to c2))
(require (less-than (plus (size-of m1) (size-of m2)) 8))
(require (or (and (paraffin m2) (at-least (size-of m2) 2))))
(forbid (allylic m2))

)
(disconnect c2 h1)
(add-charge c2)
(connect c1+ h1)
(subtract-charge c1+)
}

Table 15. Alkylation of a Carbenium Ion with a Paraffin
To Give Rise to a Larger Paraffin

{
(reaction-name “Alkylation”)
(rate-constant kalk)
(label-site m1 reactant)
(label-site c1+ (find positive-carbon))
(search-network-for

(label-site m2 reactant)
(label-site c2 (find neutral-carbon))
(label-site h1 (find neutral-hydrogen attached-to c2))
(require (paraffin m2))

)
(require (less-than (plus (size-of m1) (size-of m2)) 8))
(connect c1+ c2)
(disconnect h1 c2)
(subtract-charge c1+)
}

Table 16. Product Distribution as a Result of Reaction Set S2 with Different Paraffins as Inputa

input
no. of

paraffin
no. of
olefin

total no. of
gas-phase

species

no. of
carbonium

ions

no. of
carbenium

ions
total no.
of ions

C3 7 6 14 6 7 13
C4 7 6 14 6 7 13
2m-C3 7 6 14 6 7 13
C5 7 6 14 6 7 13
2m-C4 7 6 14 6 7 13
2,2m-C3 7 5 13 6 7 13

a Isomers of different species are ignored. Total number of gas phase species includes the H2 molecule.
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ding isomers) demonstrates the power and utility of the
RDL++ compiler for translating English language rules
to elementary reactions.

The computation time for the various runs of reaction
set S2 both with and without taking into consideration
the various isomers is given in Table 23. This table also
shows the number of gas phase (paraffin + olefin + H2)
and surface species (carbonium and carbenium ions)
reactions and the total number of reactions for the
various input reactants. Clearly, the time taken to
generate a reaction network increases with its size.
Accounting for isomers takes longer, 38-42 s, as

compared to under 1 s when the isomer information is
excluded. All the computations were performed on the
Intel Xeon dual processor machine with 1 GHz proces-
sors, 512K cache, and 2 GB RAM. The effectiveness of
the compiler is evident as it can be used to generate
multiple reaction networks by minimal change in highly
intuitive rules rapidly.

2.1.6. Automatic Reaction-Network-to-Model Gen-
erator. The first phase of the RDL++ compiler gener-
ates the reaction network that is consistent with the
chemistry rules as specified by the user. However, to
test the validity of these reaction networks against
experimental data, a mathematical model has to be
generated. Typically in reaction engineering examples,
this corresponds to formulating an ordinary differential
equation model to explain transient data or an algebraic
equation model to fit steady-state data. Law of mass
action kinetics is used to translate a reaction network
to such a mathematical model. This process could be
very tedious and error prone when dealing with reaction
networks with more than 10-20 elementary steps. The
automatic reaction-network-to-model generator (Figure
4) automates this step by transforming the reaction
network into a set of differential or algebraic equations
depending on the data available. Each of the elementary
steps generated by RDL++ is scanned for every species
and the law-of-mass-action terms contributing to the
consumption, and/or production of these species is
constructed. As an example, consider the following
reactions:

Reaction terms that affect the concentration of species
B (CB) are -k1CACB and k2CCCB

2. Corresponding terms
for the species A, B, and C are then used to construct
the mathematical model:

The reactions in the network have parameters that
can be grouped according to the concept of “similar
species undergo similar reactions under similar rates”.
Empirical grouping rules such as Polanyi relations to
correlate activation energies to adsorption energies,
reactivity relationships, variation of activation energies
with carbon numbers etc. based on experiments, com-
putations, and theory can be used to group the various

Table 17. Various Paraffin Species Formed as a Result
of Reaction Set S2

a

C3 C4 2m-C3 C5 2m-C4 2,2m-C3

C1 C1 C1 C1 C1 C1
C2 C2 C2 C2 C2 C2
C3 C3 C3 C3 C3 C3
C4 C4 2m-C3 C4 C4 2m-C3
C5 C5 2m-C4 C5 2m-C4 2,2m-C3
3m-C5 C6 2m-C5 C6 3m-C5 2,3m-C4
3e-C5 3m-C6 2,3m-C5 C7 3m-C6 2,2,3m-C4

a Isomer information is ignored.

Table 18. Olefins Formed as a Result of Reaction Set S2
a

C3 C4 2m-C3 C5 2m-C4 2,2m-C3

C2
) C2

) C2
) C2

) C2
) C2

)

1C3
) 1C3

) 1C3
) 1C3

) 1C3
) 1C3

)

1C4
) 1C4

) 2m-1C3
) 1C4

) 2C4
) 2m-1C3

)

2C5
) 2m-1C4

) 3m-1C4
) 1C5

) 2m-1C4
) 3,3m-1C4

)

2e-1C4
) 3C6

) 1m-2C5
) 1C6

) 3m-1C5
) 2,3,3m-1C4

)

3e-2C5
) 2e-1C5

) 2(1m-C2)1C4
) 1C7

) 4m-1C6
) -

a Isomer information is ignored.

Table 19. Carbonium Ions Formed as a Result of
Reaction Set S2

a

C3 C4 2m-C3 C5 2m-C4 2,2m-C3

C2
+ C2

+ C2
+ C2

+ C2
+ C2

+

1C3
+ 1C3

+ 2C3
+ 1C3

+ 1C3
+ 2C3

+

2C4
+ 1C4

+ 2m-1C3
+ 1C4

+ 2C4
+ 2m-2C3

+

2C5
+ 2C5

+ 3m-2C4
+ 1C5

+ 2m-1C4
+ 2,2m-1C3

+

3m-3C5
+ 2C6

+ 4m-2C5
+ 2C6

+ 3m-2C5
+ 2,3m-2C4

+

3e-3C5
+ 3m-3C6

+ 2,3m-3C5
+ 2C7

+ 4m-2C6
) 2,3,3m-2C4

+

a Isomer information is ignored.

Table 20. Number of Reactions as a Result of Reaction
Set S2. Isomers of Different Species Are Ignored

reaction type
input I II III IV V VI VII VIII IX X

total no. of
reactions

C3 6 6 6 9 6 6 0 15 15 21 90
C4 6 6 6 10 6 6 4 15 15 21 95
2m-C3 6 6 6 10 6 6 0 15 15 21 91
C5 6 6 6 8 6 6 4 15 15 21 93
2m-C4 6 6 6 9 6 6 3 15 15 21 93
2,2m-C3 6 6 6 8 5 5 0 13 15 21 85

Table 21. Product Distribution as a Result of Reaction Set S2 with Different Paraffins as Input Taking into Account the
Various Isomers of Different Speciesa

input
no. of

paraffin
no. of
olefin

total no.
of gas-phase

species

no. of
carbonium

ions

no. of
carbenium

ions
total no.
of ions

C3 24 55 80 76 79 155
C4 23 56 80 82 81 163
2m-C3 23 53 77 83 78 161
C5 22 51 74 77 76 153
2m-C4 22 56 79 78 79 157
2,2m-C3 22 51 74 76 73 149

a Total number of gas phase species includes the H2 molecule.

A + B 98
k1

C

C + 2B 98
k2

D (R.14)

dCA/dt ) -k1CACB

dCB/dt ) -k1CACB - k2CCCB
2

dCC/dt ) -k1CACB - k2CCCB
2
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reactions so that the number of model parameters can
be reduced.45 These grouping rules also impose con-
straints to make sure that the model parameters are
correlated such that they do not vary independently
leading to nonphysical values. For example, the rate
parameters of a reversible reaction cannot vary inde-
pendent of the equilibrium constant of that reaction.

2.2. Genetic Algorithm Based Hybrid Pseudoglo-
bal Parameter Estimator. The development of pre-
dictive models is a time-consuming, knowledge inten-
sive, iterative process where an approximate model is
proposed to explain experimental data, the model
parameters that best fit the data are determined, and
the model is subsequently refined to improve its predic-
tive capabilities. Ascertaining the validity of the pro-
posed model is based upon how thoroughly the param-
eter search has been conducted in the allowable range.
The determination of the optimal model parameters is
complicated by the complexity/nonlinearity of the model,
potentially large number of equations and parameters,
poor quality of the data, and lack of tight bounds for
the parameter ranges. Thorough search of the param-
eters is necessary to obviate the wrong conclusions
about the effectiveness of a proposed mechanism.

Recently, we critically evaluated a hybrid search
procedure12,46 that employs a genetic algorithm for
identifying promising regions of the solution space
followed by the use of an optimizer to search locally in
the identified regions. We also reported that this
algorithm is capable of finding global minima for test
case problems47 as determined by a deterministic global
optimizer,48 but with significant savings in time. The
performance of this hybrid method in the presence of
noise was found to be satisfactory. Also, this hybrid
technique has been able to locate multiple solutions that
are nearly as good with respect to the “sum of squares”
error criterion but imply significantly different physical
situations. In this section, we will compare this meth-
odology with another stochastic techniquesadaptive
random search.49 In section 3, we will propose a 13-
parameter model that results in 60 differential algebraic
equations for propane aromatization on a zeolite cata-
lyst as a more challenging test case to validate this
algorithm.

We will now compare the hybrid procedure with a
popular parameter estimation method available in the
literaturesthe direct search optimization technique
based on use of randomly chosen sample points and
adaptive reduction of the search space.50 Belohlav and
co-workers51 have used this method for estimating the
parameters of a model for toluene dehydrogenation
based on the following reaction scheme

where A, B, and C represent toluene, methylcyclohex-
ene, and methylcyclohexane, respectively. The model51

consists of a set of three ordinary differential equations
to describe the time evolution of the concentration of
species A, B, and C and 14 data points for each of the
species is used for estimating the five parameters (k1-
k5) in the model. To minimize the correlation among the
estimated parameters, the authors have used the de-
terminant of the multiresponse data as the criterion for
estimating the parameters as suggested by Box and
Draper.52 The first two rows of Table 24 show the best
set of parameters as reported by Belohlav and co-
workers51 and those obtained by our hybrid search
procedure, respectively. The corresponding predictions
are shown by the solid and dashed curves, respectively,
in Figure 5. It is interesting to note that although the
predictions are nearly indistinguishable, the parameters
are slightly different and the objective function value
obtained by the hybrid procedure is marginally lower

Table 22. Number of Reactions as a Result of Reaction
Set S2 Taking into Account the Various Isomers of
Different Species

reaction type
input I II III IV V VI VII VIII IX X

total no. of
reactions

C3 89 76 71 114 96 96 54 96 81 114 887
C4 80 80 75 119 98 98 56 96 82 116 900
2m-C3 88 83 78 123 98 98 57 98 84 118 925
C5 77 77 72 115 96 97 55 96 81 115 881
2m-C4 78 78 73 117 96 96 54 96 81 114 883
2,2m-C3 76 76 71 114 98 96 54 96 81 114 876

Table 23. Comparison of Reaction Networks Generated by Reaction Set S2 with and without Isomer Generation

S2 without isomers S2 with isomers

input

no. of
surface
species

no. of
gas-phase

species
total no. of
reactions

time
(s)

no. of
surface
species

no. of
gas-phase

species
total no. of
reactions

time
(s)

C3 13 14 90 0.86 155 80 887 39
C4 13 14 95 0.91 163 80 900 40
2m-C3 13 14 91 0.86 161 77 925 42
C5 13 14 93 0.86 153 74 881 38
2m-C4 13 14 93 0.92 157 79 883 38
2,2m-C3 13 14 85 0.83 149 74 876 37

Figure 5. Concentration-time curves for species A, B, and C in
the toluene hydrogenation model.51 Solid lines correspond to the
parameters reported by Belohlav and co-workers,51 dashed lines
represent the best solution obtained by the hybrid procedure, and
the dotted lines show the predictions for the parameter set whose
objective function value is at most five times that of the best
solution of the hybrid procedure.

A a B f C
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than that reported by Belohlav et al.51 This may be
because of the errors in the integration routines used.

A crucial point commonly associated with most non-
linear parameter estimation problems is the multiplicity
of the solutions. This becomes especially important
when there is error associated with the data available
for estimating the parameters. To further investigate
this issue, we examined all the solutions of the hybrid
procedure with at most five times the objective function
value (SSE) corresponding to that of the best solution.
The dotted lines in Figure 5 show the predictions of the
worst solution of this set. The parameter values corre-
sponding to this worst solution are shown in Table 24.
With the assumption that a typical kinetic experiment
has 15-20% error in data, the predictions from this
worst solution cannot be distinguished from the predic-
tions corresponding to the best solution as shown in the
dashed lines in Figure 5. Figure 6 shows the relative
variation of the 41 solutions whose objective function
value is at most five times that of the best solution. The
relative variation in a parameter is determined as the
absolute value of the difference between the parameter
and the average value of the parameter scaled by the
average value; specifically, ki

scale ) |ki - ki
avg|/ki

avg. It is
interesting to note that parameters k2 and k5 can vary
up to almost 100% of their average value. This means
that these parameters could be twice as much as their
average values among all the solutions. Multiple solu-
tions and large parameter variation among them could
be an indication that we have insufficient data to
effectively estimate the parameters or that the proposed
mechanism does not explain the data completely. These
solutions could be of potential interest in planning
further experiments for discriminating among competi-
tive models for this problem.

As discussed in the previous paragraph, the hybrid
search procedure, using GA for identifying promising
initial guess values followed by the application of a
traditional local optimizer, is able to find the global
optimum. It is important to note that local optimizers
alone can be very successful for relatively small refined
problems with well-defined and small parameter bounds;
however, for initial screening of large amounts of data,
the above procedure would be natural choice. Also, this
method is useful from a design perspective when the
expert is interested in multiple solutions. In section 3,
we will examine how this hybrid method works for much
larger problems that are of particular interest in
determining optimal reaction networks for real systems.

2.3. Feature Extractor. The main aim of developing
an automated, user-driven tool kit such as Reaction
Modeling Suite is to aid an expert in building large-
scale kinetic models. One of the key postulates in this
effort is that any system to aid an expert should follow
the thought process of the expert. In our opinion, the
human expert does not primarily think in terms of the
detailed mathematical formulation of a model; rather
he or she thinks in terms of the “rules” that lead to that
model and the features that result from the model.
Accordingly the RDL++ compiler acts as an information
gathering tool from the user through which the expert
can key in the rules and it also translates the input rules
into a mathematical model automatically. The model
parameters are then robustly estimated using the GA-
based hybrid parameter estimation technique as ex-
plained in section 2.2. The expert is now interested in
analyzing the predictions that resulted from the model
that was based on the rules.

The analysis of predictions vs data, at least during
the early stages of model development, is not primarily
via a least-squares fit but rather through a comparison
of the “features” of the data vs those of the model. As
shown in Figure 7a, the expert would vote for model 2
that captures the features of the true performance
(dotted line) even though model 1 has better quantita-
tive fit to the data. Clearly, the expert does not think
in terms of the squared errors at individual data points
or in terms of the sum of the squared errors or in other
statistical lack-of-fit measures that quantitatively ad-
dress the difference between the model predictions and
the data. For example, in the simple catalytic reaction
A goes to B, the “rule” that A must be adsorbed
reversibly leads to the “feature” that the rate of produc-
tion of B will show a maximum with increasing tem-
perature. Similarly, the features could be the initial
slope of the rate curve, the kink at the top of the curve
(Figure 7b), or the time at which the selectivity curve
saturatessessentially the key landmarks that the ex-
pert is interested in explaining through the model.

Information about the mismatch between the features
of the data and the model predictions is used to

Table 24. The Performance of the Hybrid Procedure on
the Toluene Hydrogenation Model 51 Where k1 to k5 Are
the Parametersa

model k1 k2 k3 k4 k5 objective

Belohlav et al. 0.023 0.005 0.011 1.9 1.8 3.088 × 10-8

hybrid, best 0.0234 0.0039 0.0106 1.6958 1.6953 2.883 × 10-8

hybrid, worst 0.0226 0.0034 0.0071 1.2139 0.8438 1.424 × 10-7

a The best solution from the hybrid method and the solution
with at most five times the objective function value of this best
solution are reported. The corresponding concentration-time
curves are as in Figure 5.

Figure 6. Multiple solutions for the toluene hydrogenation
problem51 whose objective function value is up to five times that
of the best solution but whose parameter values are widely
different. The scaled parameter values have been calculated as
the absolute difference between the actual value and the average
value and then scaled by the average value.

Figure 7. Need for feature extraction: (a) rate vs time; (b)
concentration vs time.
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postulate new rules or to modify the existing rules to
improve the modelsan iterative process that we call
model refinement. Evidently, the ability to automati-
cally extract the features facilitates model refinement,
and in this section, we explain the process of automati-
cally and robustly extracting the features from a curve
which could be either experimental or based on the
model predictions.

To avoid the scenarios shown in Figure 7 and to aid
the process of model refinement, we propose a feature-
based model evaluation to screen and compare models.
These models could be different mathematical realiza-
tions of a process that are derived based on different
assumptions or could be because of the multiple param-
eter values for the same underlying model.

The objective is to come up with a criterion for
estimating the goodness-of-fit of multiple models in their
ability to explain data using an objective function based
upon the critical features of the model predictions and
the data. For example, consider a model with two
parameters. If nf is the number of features identified to
be critical in the data, Mfi(x1,x2) corresponds to the ith
feature as predicted by the model, and Dfi(x1,x2) corre-
sponds to the corresponding feature in the data, then
the following objective function would suit our purposes

where wi is the weighing factor for the feature i that
depends on the importance of the feature and ∑i)1

nf wi )
1. For the purpose of illustration, let us choose two
slopes s1 and s2 as the critical features and let m1 and
m2 be the corresponding model predicted slopes. Then
the above objective function would reduce to

An automatic feature extraction procedure would fa-
cilitate the evaluation of the above criterion simple. This
becomes more important especially when the data are
available at a higher rate and accuracy and automated
model discriminations strategies are required to build
robust kinetic models.

In the chemical engineering literature, feature extrac-
tion techniques have been used for the purposes of trend
analysis of process data in order to exploit the temporal
information and to reason about the process state. The
main activities involved are (i) identification of qualita-
tive trends and (ii) mapping from trends to operational
conditions. To deal effectively with a multitude of
process data and extract the underlying important
trends and events in the process, Janusz and Venkata-
subramanian53 proposed a framework for the automatic
generation of such qualitative process trend descriptions
directly from sensor data. A trend is represented as a
sequence of seven primitives that are piecewise unimo-
dal or quadratic segments. These primitives form the
alphabets of their trend description language. This
qualitative filter provided a meaningful compaction of
large amounts of numerical data without losing the
essential information about the trends.

Other examples of qualitative process trend analysis
include use of an expandable “composite” shape library
to approximate a noisy process signal by a polynomial,54

a knowledge-based interpretation of sensor patterns,55

a technique for data compression and trending called
piecewise linear online trending that adapts to process
variability and noisy data,56 pattern matching between
the observed fault trends and the ones in a knowledge
base,57 application of trend based temporal techniques
for medical diagnosis,58 a B-Spline based technique for
data compression and automatic trend extraction,59

combination of the primitives based trend description
language53 with a fuzzy-logic-based multivariate infer-
ence framework for temporal-reasoning,60 and auto-
mated identification of process trends based on an
interval-halving procedure.61 A more recent review of
the qualitative methods used in the process trend
analysis and fault diagnosis is available elsewhere.62,63

There are significant differences between the sensor
network process data and kinetic data that are the focus
of this paper. Unlike process data from plants, kinetic
data are typically available in small amounts. Although
the volume of data from high throughput experiments
has been increasingly available at a higher rate and
accuracy in the recent years, this is still not a match to
the historical process data available from chemical
plants. Kinetic data generally do not show abnormal
deviations or unexplainable trends. If there are ir-
regularities in curves from good experimental setups,
they will mostly be systematic and repeatable. The data
from experiments is noisy, but the noise is far less as
compared to that in process data.

Qualitative process trend extraction algorithms do not
use a priori information about the processes as this is
typically not available in sensor network data; however,
in the case of kinetic data, one typically knows the curve
signatures for faulty experiments such as malfunction
in reactor setup, catalyst deactivation, temperature
spike, etc., and this information can be used to reject
certain features in the curves that are not interesting.
Also, the expert typically has some information about
which features are important and which are not. This
information can be used so that the feature extraction
algorithm does not have to look for the unimportant
features. Considering the above differences between the
kinetic data and the data from process plants, we cannot
use the automatic trend extraction algorithms such as
the interval-halving procedures61 that have been devel-
oped mainly to deal with large volumes of noisy data
without user intervention and with minimal a priori
information.

Any feature extraction algorithm devised for charac-
terizing kinetic data should be able to overcome a
different set of challenges. First, it is highly likely that
in the context of kinetic data, some features that occur
only for very short periods of time, and hence treated
as noise by automatic noise rejection algorithms, could
actually be the most important features. So, a progres-
sive, detailed-to-coarse feature identification with up-
dates from the user is required. Second, not all the
features are equally important for a kineticist trying to
model data. For example, the initial lag in a rate curve
may be more important than the relatively large devia-
tions at saturation at later times. Also, features such
as the slope of the curve, offset, etc., at lower space times
in a plug flow reactor may be more important as they
nonlinearly affect the features at the end of the reactor.
Similarly the concentrations of species with fewer
carbon numbers may be more important than that of
the long-chain hydrocarbons in a polymerization reactor,

min
x1x2

∑
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nf
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as the smaller species act as the seeds for the longer
ones. So, a mechanistic rank ordering of features that
are important for the problem at hand is required so as
to facilitate the understanding of which features would
need to be fixed first and which are relatively unimpor-
tant in the process of MR. Third, in the case of kinetic
data we are interested in not only the qualitative trends
in terms of the slopes of the curves but also the absolute
values of at least some of the features. Finally, data may
be sparse in certain time ranges. Unlike process data
that has almost equal density over large periods of time,
kinetic data may not be available over the entire design
parameter space. So any feature extraction algorithm
for kinetic data should not rely on the density of data
to extract meaningful features.

We propose the following feature extraction algorithm
that systematically interprets the kinetic data curves
by identifying key features of the curve, e.g., increasing
rate, decreasing rate, change of slope, inflection point,
etc. realized through the generation of a “feature vector”.

(1) With the help of a human expert, draw a smooth
curve passing through the experimental data. This
ensures that the features generated are not affected by
the noise and irregularities in the data.

(2) As shown in Figure 8, identify the critical points
where there are abrupt changes in the value, first or
second derivatives of the curves. Report any unimodal
or quadratic primitives that match this section of the
curve. Populate the feature vector with the primitive,
slope, curvature, intercept at end points, and the range
of the independent variable (typically time) that corre-
sponds to this section of the curve.

(3) Interacting with the user, rank order features both
in terms of the important species and time regimes
according to their importance. If the user flags certain
features to be unimportant according to the user, redo
step 2 by merging time ranges of the identified features
with the adjacent ones. If the user specifies a particular
time range to be of greater importance, calculate the
feature vector in that range.

(4) Repeat step 2 for the curves generated by the
model simulations and calculate the sum of the squared
deviations between the model and the data features.
Populate the feature vector of the model curve with this
metric. Optimize on the model parameters using this
objective function criterion with any parameter estima-
tion routine such as the GA-based hybrid algorithm
explained in section 2.2.

The example shown in Figure 9 demonstrates the
feature extraction technique to compute the similarity
between two curves. The expert identifies the significant
features in the data (Figure 9a) by analyzing the abrupt
changes in the value, slope, and the curvature. The data
curve is partitioned into five intervals within which the
curve is characterized by one feature. For example, in
the first time interval, the expert is interested in the
lag period and in the second interval between t1 and t2,
the slope of the curve (at t2) is considered to be
important. The points at which the curve saturates at
t4 and at t5 are considered to be the critical features in
the last two intervals. The primitives that closely match
the curves in each of the time intervals is extracted by
computing the slope and curvature and is as shown in
Table 25.

Now consider a model that results in the curve as
shown in Figure 9b. This curve is analyzed for the
critical points, and the various time intervals are
calculated. The primitives and the important features
of this curve are also shown in Table 25. It is interesting
to note that the first time point at which significant

Figure 8. Methodology for automated feature extraction.

Figure 9. Example to illustrate the feature extraction algorithm
to compute the similarity between two curves. Data and the expert
postulated curve through data are shown in the top figure (a) and
the hypothetical model curve is in the bottom figure (b).

Table 25. Critical Features of the Data and the Model
Curves Shown in Figure 9

data model

time interval primitive feature primitive feature

t1-0 E E
range t1 t1′
t2-t1 B B
slope at t2 s s
t3-t2 D D
- - -
t4-t3 A A
ordinate at t4 b b′
t5-t4 E F
ordinate at t5 a a
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change in slope occurs is different in the data (t1) and
the model (t1′) curves. Similarly, the saturation point
at time t4 is different between the two curves, b and b′.
Also, the basic shape as characterized by the primitive
between t4 and t5 in the data curve is E whereas that
in the model curve is F. The objective function in eq 1
is used to account for the differences in the two curves
as

and w1 + w2 + w3 ) 1. To quantify the differences in
the qualitative aspects of the primitives E and F, the
fuzzy similarity matching indices60 to quantify the
differences between the various primitives. For example,
primitives A and C are not completely different and so
they are assigned a similarity index of 0.25. This means
that primitive A is 25% similar to primitive C. Similarly,
primitives E and F are closer to each other by 75%.

The above algorithm for feature extraction is simple
and extensively uses domain knowledge about the
system available from the user regarding the features
and their relative importance. Unlike interval-halving-
based fully automated algorithms,60 it does not rely on
the density of the data. This algorithm also allows for
iterative correction of features and so if it misses an
important feature, it can go back and locate it with the
help of the user. The user-defined features on the
experimental data are used to guide the automatic
extraction of the features from the model curves using
the critical points. The feature-based objective function
(eq 2) can thus be computed for estimating the param-
eters and screening through multiple models.

2.4. Statistical Analyzer. Statistical analysis of the
models is necessary in order to screen, compare, and
improve them. The most common statistical method
used for analyzing the quality of the model is based on
the sensitivity of the model output with respect to the
model parameters defined as a partial derivative intro-
duced via a Taylor series expansion

where the partial derivatives ∂ci/∂kj known as the first-
order local concentration sensitivity coefficients are
evaluated by the parameters kj, one at a time at time t
and the effect on concentrations measured at time t +
∆t. Kinetic models generally involve ordinary differen-
tial equations such as

where c is a dimensional concentration vector. The
above ODEs can be differentiated with respect to the
model parameters kj to give

where J(t) ) ∂f/∂c and the initial condition for ∂c/∂kj is
a zero vector. Equations 5 and 4.6 are coupled through
the matrices ∂f/∂c and ∂f/∂k; hence eq 6 can only be
solved if the concentration values calculated in eq 6 are
available at times where these matrices are calculated

during the numerical solution of eq 6. This is achieved
by solving the (m + 1)n equations in eqs 5 and 6
simultaneously. A more efficient algorithm for the
solution of the sensitivity differential equations is the
decoupled direct method64 which uses the fact that eqs
5 and 6 have the same Jacobian. The result of the above
solution procedure is a set of sensitivity coefficients ∂ci/
∂kj. Since the parameters and the various output
quantities of the model may have different units espe-
cially when the reactions are of different reaction orders,
normalized sensitivity matrix defined as the fractional
change in concentration ci caused by a fractional change
of parameter kj

is typically used for further analysis. The variance on
the parameter estimates can be computed using

where s2 is an unbiased estimate of the model prediction
error expressed as the difference between the model
predictions (ci) and the experimental data (ĉi) as

for a model with p parameters and in the case where
there are n experimental data points.

The local sensitivity coefficients and the other metrics
defined above have been used for identifying redundant
species and redundant reactions35,42 and hence to reduce
a kinetic model. Other techniques such as concentration
sensitivity analysis,32 reaction rate analysis,36 principal
component analysis,65 and lumping analysis66 have been
used for the investigation and reduction of reaction
mechanisms especially for the description of combustion
reactions. For a more comprehensive review of the
statistical methods for the analysis of reaction mecha-
nisms, refer to Tomlin et al.32 Computer software
packages such as SENKIN67 and KINALC38 implement
one or more of these methods. An alternative to these
local methods would be the global sensitivity analysis
proceduresstudy of the effect of the parameters on the
model output without the assumption of any individual
solution. For example, methods68 such as the Fourier
amplitude sensitivity test simultaneously perturb all
rate parameters by sine functions with different fre-
quencies and analyzes its effect on the concentrations.
These methods are computationally expensive especially
for models with a large number of parameters.

To address the above concerns, the Statistical Ana-
lyzer in RMS uses techniques from both local and global
sensitivity analysis for ascertaining the robustness of
a kinetic model. A kinetic model is defined to be robust
if it is accurate in explaining the data even when the
model parameters have not been estimated with suf-
ficient accuracy. Typically kinetic model parameters
such as rate and equilibrium constants cannot be
estimated accurately because of the errors in the model
and the data and the errors in the estimation of the
parameters. It is useful to see how these errors are
propagated through to the model predictions. We pos-
tulate that the various errors are localized as errors in
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the estimated parameters, and we use these errors to
compute the error in the model predictions.

Local sensitivity analysis deals with sensitivity coef-
ficients computed by local perturbations around the best
minimum and is expressed as the standard deviations,
confidence bounds, and correlation matrix69,70 of the
parameters. To illustrate the concepts of the local
sensitivity analysis, we consider a model for CO oxida-
tion on a supported metal catalyst as described in
Appendix A. Specifically, we show as to how the error
in the model, in the data, and in the parameter
estimation procedure can be propagated to the model
predictions. This model consists of three steps: molec-
ular adsorption of CO in a quasi-equilibrated manner
where the forward step of adsorption and the reverse
step of desorption are of almost the same rate; dissocia-
tive irreversible adsorption of oxygen; the surface reac-
tion between the two adsorbed species to give CO2. The
three parameters that describe this process are the
equilibrium constant of the CO adsorption process (K1),
the rate constant for oxygen adsorption (k2), and the rate
constant for the surface reaction (k3). Table 26 shows
the values of the estimated parameters, and the corre-
sponding predictions of the rate of CO2 production with
respect to the variation in the partial pressures of CO
and O2 are as in Figure 10. The large standard devia-
tions and the confidence intervals in parameter k3 show
that for a reasonably good prediction of the data, the
value of k3 has not been estimated accurately.

Figure 11 pictorially represents the inference re-
gions70 of the parameters for 90 and 95% confidence
limits. The large variation in the ordinate of the first
plot again shows that the parameter k3 has not been
estimated accurately. Also, the plots show how the
parameters are correlated to each other. Parameters k2
and k3 are correlated negativelyswhen k2 increases k3
decreasessand parameters K1 and k2 are positively

correlated. This information is also available from the
correlation matrix shown in Table 26. We claim that
errors in the model, in the data, and in the estimation
procedure have been cast as the errors in the model
parameters, and we now propagate this error to the
model predictions in the following manner. Assuming
that the parameters follow a Gaussian distribution with
mean as the best estimates and standard deviation
given by the errors in the estimates (Figure 12), we
randomly sample 1000 parameter sets from this distri-
bution and simulate the model with these parameter
sets. The resulting predictions are shown in the bottom
two plots in Figure 12. The thick lines show the 3σ
deviation of the model predictions and the dots show
the experimental data.71 The error bars on the model
predictions show clearly that even though the parameter
k3 has not been accurately estimated, the model is
robuststhe predictions are accurate. Also, we can see
that the accuracy of parameter k3 affects the predictions
of the variation of CO2 rate with the partial pressure of
CO more than that of the predictions of the variation
of CO2 rate with the partial pressure of O2. In the case
of a large reaction network, inferences of this kind can
be used to ascertain as to which part of the reaction
network is sensitive to which parameters.

Information available by locally perturbing the pa-
rameters around the best solution may not be sufficient
to analyze the model especially when a large number
of parameter sets explain the data equally well. Typi-
cally the ranges in which parameters of large reaction
networks lie are not known accurately. Also the models

Figure 10. Predictions of CO oxidation model where carbon-
monoxide adsorption is quasi-equilibrated and adsorption of
oxygen is irreversible. The parameters are as in Table 26.

Table 26. Values of the Rate Constants, Standard
Deviations, 80% Confidence Interval, and the Correlation
Matrix for the CO Oxidation Model Where Carbon
Monoxide Adsorption Is Quasi-Equilibrated and
Adsorption of Oxygen Is Irreversible

80% confidence
interval correlation matrixparameter mean std dev

log K1 -3.75 0.24 -4.09 -3.42 1.000 0.967 -0.753
log k2 -3.87 0.11 -4.03 -3.72 1.000 -0.849
log k3 3.57 168.53 -222.18 229.30 1.000

Figure 11. Inference regions based on the confidence intervals
of the parameters for the CO oxidation model where carbon
monoxide adsorption is quasi-equilibrated and adsorption of
oxygen is irreversible.

Figure 12. Parameter correlations assuming a Gaussian distri-
bution and the µ ( 3σ error bars on the model predictions for the
CO oxidation model where carbon monoxide adsorption is quasi-
equilibrated and adsorption of oxygen is irreversible. The dots in
the bottom plots show the data from Cant, Hicks, and Lennon.71
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that describe these networks may not have all the
required components either stoichiometrically or in
terms of constraints among the model parameters at
least in the beginning of the model-building procedure.
In such situations, the data can be predicted by a large
number of parameter sets equally well. It is important
to estimate these multiple minima as they may cor-
respond to physically different situations of the underly-
ing system. This information is especially useful when
designing a catalyst. For example a set of parameters
could correspond to the high coverage of CO on the
catalyst surface and yet another set of parameters could
correspond to the high coverage of O2. It is likely that
for the range of partial pressures of CO (higher than
that of O2) used to collect the data, high coverage of O2
is physically infeasible. Hence, it is important to identify
and analyze the multiple minima.

To address this concern, the Statistical Analyzer in
Reaction Modeling Suite uses techniques to identify
multiple minima and analyzes them. The GA-based
hybrid parameter estimation technique discussed earlier
in this section was one such technique. The effectiveness
of this method in identifying multiple minima was
shown in section 2.2 and Figure 6. Another method
known as the trough-walking algorithm that tracks the
minima in the local neighborhood of any given minima
is described in Appendix B. This method starts with
multiple initial guess values, and once a local optimum
is found, the local neighborhood is analyzed to find any
other close minima. This ensures that we find most of
the local minima around any given minima. The number
of local minima that we are able to find depends on the
value of the parameter that controls the size of the local
neighborhood searched at any step (EDBOUND ) 0.05)
and also on the ruggedness of the fitness landscape.

The vertical bars in Figure 13 show the parameter
value ranges of all the minima found at the various
temperatures for the CO oxidation model described in
Appendix A. Each of these minima predicts the data
within a sum of squared errors between the model
predictions and the data of 0.1. It is interesting to note
that the O2 adsorption rate constant (k2) has been found
with great accuracy unlike the other parameters (K1 and
k3) that show large variations. This information is also
available from the standard deviations of the param-
eters from the local sensitivity analysis (Table 26). More
importantly, the information about the multiple minima
helps us in validating the model predictions. For ex-
ample in Figure 13, the equilibrium constant K1 for the
exothermic reaction of CO adsorption has a positive
slope and the rate constants have negative slopes. This
is in accordance to the physical realities of this system.

2.5. DiscussionsReaction Modeling Suite. In this
section, we describe a user-driven, automated set of
toolssReaction Modeling Suite (RMS) that aids the
expert in constructing robust kinetic models. Specifi-
cally, RMS is designed to allow the expert to initiate
the kinetic modeling sequence in a simple reaction
chemistry language, converts the reaction network into
a mathematical model, optimizes the model parameters
using a hybrid algorithm, extracts the features of the
data and model prediction curves, and statistically
analyzes the robustness of the model.

The RDL++ compiler that translates the English-
language rules to a reaction network is generic, extend-
able, and intuitive, thereby affording an easy-to-use
interface for a practitioner. The English-language rules
input is more user friendly as compared to that of the
bond order-bond electron matrices24 and the structure
oriented lumping vectors25 as the rules are in the
natural language used by a chemist to describe the
reactions. The human expert can readily create multiple
hypotheses and change the size of the reaction networks
from a few species and reactions to several hundreds of
species and reactions by manipulating a few steps in
the reaction rules. Any new rule can be easily added,
and the existing rules can be changed with little effort.
The capability of RDL++ to track down all the isomers
and generate all reaction steps that involve all the
isomers of any species is very useful for describing
reaction networks whose characteristics change with the
three-dimensional structure of the species involved.
Also, during the initial stages of modeling a network,
the expert can simply turn off the isomer generation
global rule and, with the limited amount of analytical
data, try to explain the reaction. The expert can also
manipulate the size of the reaction network by changing
the number of carbon atoms present in a reactant or a
product in any of the reaction rules. The use of global
rules to prevent the formation of chemically infeasible
speciessallylics, species with a positive charge and a
double bond, trifins, species with triple bonds, species
with more than two double bonds, species with a
positive carbon attached to a double bond, etc.senables
the expert to keep the reaction network feasible.

RDL++ has been designed and implemented along
the lines of Reaction Description Language,31 but RDL++
forms a part of RMS which handles all the operations
of building a kinetic model starting from the formulation
of chemistry rules to the analysis of the performance of
a kinetic model. With this in mind, RDL++ has been
designed to be more extendable, user-driven, and ef-
ficient than RDL. Specifically, new rules such as de-
sorption, cyclization, and hydride transfer have been

Figure 13. Multiple values of rate constants for the CO oxidation model where carbon monoxide adsorption is quasi-equilibrated and
adsorption of oxygen is irreversible.
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developed based on the language for solid acid chemistry
and reactions on catalytic surfaces. New keywords and
syntax for carbonium ions, trifin (species with triple
bonds), allylic (species with a double bond and a positive
charge), and monoene, diene, and triene (species with
three double bonds), have been included in RDL++ so
as to enrich the palette for the user. New model pruning
concepts to reduce the size of the reaction network have
been introduced. The concept of global rules prevents
duplication of pruning steps in individual reaction rules.
Also the user now has the powerful ability to forbid the
formation of isomers. The size of the resulting model is
controlled by the size of the carbon chain in the
hydrocarbon reactants or products rather than the less-
intuitive “generation count”72 that is based on the depth
of the reaction network. We have also shown as to how
a tool such as RDL++ can be integrated with other tools
for automated hypothesis generation and testing in
order to build robust kinetic models. Finally, RDL++
has been developed in a C++ environment which is
more structured and user friendly compared to that of
LISP.

Possible improvements to RDL++ include an XML
(http://www.w3c.org) based interface to interactively
define new keywords and to extend existing keywords.
An intelligent backtracking mechanism that enables
causal reasoning of the individual terms in the math-
ematical model to the elementary reaction steps of the
network and/or directly to the section of the rules would
make the whole compiling process more transparent and
could have potential implications in model refinement.
With this added feature to perform qualitative sensitiv-
ity analysis, the user will be able to selectively modify
a set of rules to manipulate the terms in the model
which would result in different features in the perfor-
mance curves.

The Feature Extractor module in RMS is used to aid
the expert in extracting the features in the data curves
and then use this information to develop an objective
function to compare the features in the model and the
data. An expert-system-like framework that can be
continually updated with user-supplied information
about the different features and their relative impor-
tance can make this process more efficient. Also, the
primitives that have been currently used in RMS are
based on the description of the first- and second-order
derivatives of the curves. New definitions of primitives
that use the domain knowledge would be more attrac-
tive. For example, simple kinetic reaction mechanisms
give rise to standard rate laws73 which in turn give rise
to specific features in the performance curves. For
example, a second-order surface reaction gives rise to a
square in the denominator of the Langmuir-Hinshel-
wood rate expression and a saturation curve. Similar
trends can be encoded as primitives and more complex
rate expressions can be derived by superposition of these
primitives. A list of common features and the corre-
sponding rate laws can be used to enhance the set of
currently available primitives. This would help in
transparent and intuitive model refinement.

The Statistical Analyzer affords inference and analy-
sis of performance curves obtained from the user-
postulated hypothesis and acts as a feedback mecha-
nism for the user to refine the model. We have used
information from local sensitivity analysis to propagate
the error in the data, model, and the parameter estima-
tion procedures to model predictions and thereby evalu-

ate the robustness of the models. We also analyzed the
multiple solutions of the parameters that explain the
data equally well in order to understand the variations
in parameters physically.

The current work on RMS aims at the design and
development of new tools and modification and integra-
tion of existing qualitative and quantitative concepts
and tools to aid an expert in all the steps involved in
building robust kinetic models. This framework affords
a usable and practical methodology to systematize reac-
tion modeling for materials design. Generally RMS can
be used to study any kinetic system typically modeled
as a set of elementary reactions11 leading to models
based on ordinary differential or algebraic equations.
The current implementation of RDL++ is geared to-
ward carbenium/carbonium-based chemistry, and the
overall design is such that it can be extended to other
systems, for example, reactions on transition metal cata-
lysts, metabolic reaction networks, etc. All other tools
in the RMS require little or no modification to apply
them to other systems. We have used an ideal plug flow
reactor model to explain the details of RMS. However,
there may be situations where the basic assumptions
of the flow through the reactor may warrant more
complicated multimode reactor models.74 Also, RMS
provides a good tool box to rapidly screen through
multiple kinetic mechanisms especially in the light of
high throughput kinetic data; however, for detailed
analysis of catalytic processes, one would require much
richer understanding of the concepts such as aging,
poisoning, coverage-dependent surface energetics, etc.

Similar work in developing an integrated framework
includes the efforts by Hostrup and Balakrishna75 who
use reaction modeling for process design and by Stoltze76

(http://www.aue.auc.dk/∼stoltze/mkm/main.html) for a
reactor design based on the Langmuir-Hinshelwood
reaction mechanism. On the basis of the descriptors
such as (1) the ability of the tool to formulate a reaction
network from higher level rules, (2) visualize the
network, (3) parse the network into mathematical
model, (4) solve the model and optimize the parameters,
and (5) perform statistical analysis of the results to
evaluate software systems that facilitate kinetic model
building as discussed at the beginning of this section
(Table 1), RMS would be an effective option.

3. Case StudysPropane Aromatization on
Zeolites

The effectiveness of the various components of the
RMS has been demonstrated on simpler problems;
however, to truly test its hypothesis screening abilities,
we will now apply it to develop a kinetic model of a
complex and industrially relevant reactionspropane
aromatization on HZSM-5 zeolite catalyst. A number
of kinetic models have been proposed for aromatization
of alkanes over ZSM-5;45,77,78 however, a model with
predictive capabilities remains a challenge. Our kinetic
model is based on a reaction scheme involving adsorp-
tion, desorption, protolysis, dehydrogenation, hydride
transfer, â-scission, oligomerization, and aromatization
reactions. The rules are encoded in a similar manner
as described in section 2.1.

The proposed set of reaction “rules” generates a very
large number of individual reactions. Statistics-based
model reduction techniques40,42 do lead to the reduction
in the number of parameters; however, they may result
in ad hoc elimination of reactions leading to chemically
infeasible reaction networks. To reduce the number of
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parameters involved, we invoke the principle of similar
species undergo similar reactions at similar rates. Thus
we categorize the reactions into various families, and
all reactions in a particular family were assumed to
have the same rate constant or a set of rate constants
that are a specific function of the carbon number of the
species. The model consists of 31 gas-phase species, 29
surface species, and 271 reaction steps, which have been
categorized into 33 different families. Each reaction
family is parametrized in terms of either a rate constant
or an equilibrium constant and the carbon number
dependence within a family is considered in terms of
the Polanyi relation. Transition state theory has been
used to estimate bounds on the preexponential factors,
and literature values have been used to bound the
activation energies79-83 and provide interrelationships
between reaction families84,85 to reduce the number of
parameters to 13. The proposed model assumes that the
reactions of neutral surface alkoxy species81,86,87 take
place through carbenium/carbonium ion transition states.
The details of the model and the parametrization
methods will be communicated in a future publication.
Table 27 shows a summary of the reaction families, the
various model parameters, and their allowable bounds.

3.1. Parameter Estimation and Statistical Analy-
sis. Clearly the above kinetic model for propane aro-
matization, with 29 algebraic equations and 31 ODEs,
is much more complicated as compared to that of the
test case considered in section 2.2 for demonstrating the
GA-based hybrid pseudoglobal parameter estimator.
The parameter bounds as shown in Table 27 are so large
that solving the system is not possible using local
optimization algorithms with multiple initial guesses
that are randomly or uniformly spaced. Experimental
data for propane aromatization at 500 °C and 1 bar as
reported by Lukyanov and co-workers45 has been used
to fit the model. The search space is complicated, and
intuitive initial guesses for all the parameters are
difficult. The GA-based hybrid search procedure46 (sec-

tion 2.2) with 50 generations and 100 members in each
generation was able to identify a pseudoglobal solution
with a normalized sum-of-squared error (SSE) of 0.19,
where SSE was calculated by the ratio of the sum of
the squared differences between the model predictions
and the experimental data, as scaled by the experimen-
tal data and normalized by the number of data points.
The model predictions corresponding to this minimum
are shown with the experimental data in Figure 14 for
the various species. The performance of this hybrid
procedure as compared to randomly generated points,
its effectiveness in finding multiple solutions, global
statistical analysis,46 and local statistical analysis of the
results14 are discussed elsewhere.12

Table 27. Model Characteristics for the Propane Aromatization on a Zeolitea

model components reaction families

231 reactions protolysis of carbonium ions
31 gas-phase species carbonium ion desorption
28 surface species carbenium ion desorption
1 vacant site â-scission
31 ODEs aromatization
29 algebraic equations alkane adsorption
28 surface species balances hydride transfer
1 site balance olefin adsorption
species up to C9 have been considered oligomerization

carbonium ion dehydrogenation

model parameters bounds

protolysis of carbonium ions 102 e kp e 107

carbenium ion desorption 104 e kod e 1010

increase in adsorption enthalpy for alkenes with carbon number 6 e ∆qod e 14
carbonium ion desorption 103 e kad e 109

increase in activation energy for alkanes desorption with carbon number 6 e ∆qod e 12
â-scission 103 e kb e 108

aromatization 107 e ka e 1013

alkane adsorption 10-3 e kaa e 102

hydride transfer reactions 10-3 e kh e 102

olefin adsorption 10-1 e koa e 104

carbonium ion dehydrogenation 102 e kcd e 108

increase in the activation energy for carbonium ion dehydrogenation
with carbon number

2 e ∆qod e 6

entropy factor for determining the equilibrium between â-scission and oligomerization 18 e S e 25
a First-order rate constants (kp, kod, kad, kb, ka, kcd) are in terms of mol/(g/h); second-order rate constants (kaa, kh, koa) in m3/(g/h); energy

terms (∆qod, ∆qad, ∆qcd) are in kJ/mol; and the entropy term, ∆S has been normalized by the universal gas constant (J/(mol/K)).

Figure 14. Improvement in performance curves for propane
aromatization on HZSM-5. Dots correspond to experimental data
from Lukyanov, Gnep, and Guisnet,45 solid lines indicate the
original model predictions, and the dashed line indicates the
refined model predictions. The x-axis is in terms of the space-time
× 104 (hours), and the y-axis is the weight percentage of the
various species.
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3.2. Model Refinement. The predictions from the
proposed model for paraffin aromatization on HZSM-5
(Figure 14) is reasonable and to the best of our knowl-
edge is better than that available in the literature.45

However, under close observation it is clear that at
lower space times, the slope of the C2 model prediction
curve is higher than that of the data and the slope of
the model curve for aromatics concentration is lower
than that of the corresponding data. This means that
we overpredict C2 concentration and underpredict the
concentration of the aromatics. It is important to ac-
count for such small discrepancies at lower space times
that correspond to the inlet of the plug flow reactor. This
is because the concentrations at the lower space times
can nonlinearly affect those at higher space times. So,
although the predictions at higher space times are far
worse than those that at lower space times, we choose
to concentrate on the discrepancies at the lower space
times. The overprediction of C2 and the underprediction
of aromatics suggest that we might be missing a reac-
tion step that transforms the light paraffin to aromatics.

To address this concern, we tried a variety of alternate
rules and the most effective single rule addition was
alkylation of alkoxy species with light alkanes.88,89

Intuitively, this step that creates larger alkanes from
smaller alkanes should be able to drain the smaller
alkanes and produce more aromatics. This is because
the larger alkane formed by alkylation can further
adsorb to form carbonium ions which can then undergo
protolysis to give carbenium ions which are longer than
those that were present before. These carbenium ions
can in turn cyclize and produce aromatics. The addition
of this new rule results in the creation of 27 additional
elementary reactions and one more model parameters
the rate constant of alkylation. Thus the new model
consists of 298 steps and 14 parameters. However, with
the help of RMS, the new model can be formulated and
evaluated very efficiently. The dashed lines in Figure
14 show the predictions of this refined model. Clearly
the predictions at lower space times for C2 and for
aromatics are much better than the predictions corre-
sponding to our earlier model. More importantly, the
predictions at the higher space times have also improved
substantially for C2 and aromatics. Since this reaction
network is highly coupled, the addition of the alkylation
rule has also improved the predictions of other species
such as ethane, propane, ethylene, and propylene.

In summary, the human expert made a very reason-
able, but incomplete, initial hypothesis to initiate the
process of kinetic model building, then with the help of
the various tools of RMS, the expert determined an
improved rule set with associated kinetic parameters;
i.e., knowledge extraction has been demonstrated. The
example outlined above regarding improving the quality
of the model by the addition of a rule prompted by the
feature mismatch in the model and the data should
clearly show the general principle behind model refine-
ment. Model refinement is an iterative model, experi-
ment, and expert guided process of adding, deleting, or
modifying the rules until a model that satisfactorily
explains the data is obtained and, in general, is a
difficult task. This is a difficult inverse mapping and
search problem, where the expert looks for a new set of
rules or modifications to the existing rule set from a
large and combinatorial rule hyperspace.

To address this concern, we reformulate MR as a
search problem for the true rule set among a combina-

torially large rule space. The objective is to down select
a set of reaction rules that define a kinetic model for
olefin chemistry that plays a critical role in paraffin
aromatization as explained in section 2.1. The possible
reaction rules are (1) olefin adsorption to produce a
carbenium ion, (2) desorption of a carbenium ion to
produce an olefin, (3) alkylation of a smaller paraffin
by a nonallylic carbenium ion to produce a larger
paraffin, (4) â-scission of a carbenium ion to produce
an olefin and a smaller carbenium ion, (5) oligomeriza-
tion of a carbenium ion and an olefin to give rise to a
larger carbenium ion, and (6) hydride transfer between
a carbenium ion and an olefin/paraffin/diene to yield an
alkane and a carbenium ion. Each of these rules can
assume several different variations as shown in Table
28. For example, there are three different rule variations
for olefin adsorption: no reaction; only 2° and 3°
carbenium ion with up to seven or eight or nine carbon
atoms as the reactant; and any carbenium ion with up
to seven or eight or nine carbon atoms as the reactant.
Olefin desorption can only assume two variations and
the bimolecular reaction; hydride transfer can take place
in any of the 34 different forms depending on the first
and second reactants. These variations typically form
the palette from which a modeler chooses for explaining
the olefin chemistry in the context of paraffin adsorp-
tion. A rule set is constructed by picking one variation
of each rule. Considering all the different possibilities
in Table 28, a total of 333 200 different rule sets are
possible. Every such rule set is equivalent to a kinetic
model, and the set of all rule sets corresponds to the
rule space. RDL++ translates the rule set into the
corresponding kinetic model by using propane and
propylene as the starting reactants. All reaction net-
works are restricted to species with up to 12 carbons
and are characterized by six rate constants, one for each
of the reaction class.

The objective of this study is to find a rule set from
the given rule space (Table 28) that best corresponds
to the data through successive model refinement. For
demonstration purposes, we choose the rule set as
shown in Table 29 as the target. This rule set leads to
a kinetic model with 5 gas-phase species (propane,
propylene, hexane, hexene, and hex-1,2-ene), 3 surface
species (carbenium ion formed by the adsorption of
propene, hexene, and hex-1,2-ene), and 15 reactions.
Table 29 also shows the bounds on the various model
parameters and their values for the target model.
Product distribution data corresponding to propane,
propene, and lumps of all other paraffin and all other
monoenes is simulated using this model. This will be
used as the target experimental data in the model
refinement case study.

A knowledge-based, guided stochastic search based
on genetic algorithms90,91 (GA) is used to search for the
model that best corresponds to the simulated data. Each
of the solutions is represented as a string of numbers
that represents each of the rules. For example, the
string corresponding to the target rule is 626 333. This
represents the fact that this rule set involves the sixth
variation (Table 28) of the rule for olefin adsorption: All
carbeniums up to C8 are formed, the second variation
of carbenium desorption, and so on. Fitness of each of
the strings is calculated by translating the rule string
into the corresponding kinetic model using RDL++ and
subsequently fitting this model to the target data using
the hybrid algorithm based on GA as discussed in
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section 2.2. The resultant SSE is the fitness value of
this model. The GA is used to find the model with the
lowest SSE which is the one that best explains the
target data.

A hybrid fitness proportionate and random selection
criterion is used in every generation to identify the
individuals to be manipulated by the GA operators.
Uniform crossover and single-point mutation with prob-
abilities 0.85 and 0.5, respectively, have been used, and
the top 10% of the solutions in every generation are
preserved in the next generation. A custom operator
known as the complement-carbon-number that modifies
the size of the reactants has been defined. For example,
this operator can change the fifth variation of the olefin

adsorption rule which corresponds to the formation of
carbenium ions up to C7 to the sixth variation of the
rule that corresponds to the formation of carbenium ions
up to C8. Thus, this operator modifies the rule sets such
that the size of the resultant reaction network changes.

All the three genetic operatorssuniform crossover,
single point mutation and complement-carbon-numbers
maintain the feasibility of the rule set. The maximum
size of the reactants in all the reaction rules in any rule
set should be the same in order to prevent any incon-
sistencies in the size of the species involved in the
different reactions. Adsorption, desorption, and alkyla-
tion are assumed to be always present in every rule set,
and the rule variations for â-scission and oligomeriza-

Table 28. Possible Variations among the Different Reaction Rules of Olefin Chemistry that Constitute the Rule Space
Used for Automated Model Refinement.

rule variations
no. of

possibilities

olefin adsorption
no reaction 1
no 1° carbenium formed, up to C7, C8, or C9 3
all carbenium formed, up to C7, C8, or C9 3

total 7

carbenium desorption
no reaction 1
all carbenium desorb 1

total 2

alkylation
no reaction 1
no 1° carbenium as reactant, up to C7, C8, or C9 3
ny carbeninum can react, up to C7, C8, or C9 3

total 7

â-scission
no reaction 1

all carbenium except allylics react, up to C7, C8 or C9 3
all carbenium (gC5) except allylics react, up to C7, C8, or C9 3
no 1° carbenium product formed, up to C7, C8, or C9 3

total 10

oligomerization
no reaction 1
all carbenium except allylics react, up to C7, C8, or C9 3
all carbenium except 1° and allylics react, up to C7, C8, or C9 3
no 1° carbenium product formed, up to C7, C8, or C9 3

total 10

hydride transfer
no reaction 1
first reactant

all carbenium except allylics react, up to C7, C8, or C9
second reactant

paraffin or monoene 3
monoene 3
diene 3
paraffin 3
monoene or diene 3

first reactant
any carbenium can react, up to C7, C8, or C9

second reactant
paraffin 3
monoene 3
diene 3
monoene or diene 3
paraffin, monoene, or diene 3

first reactant
all carbenium except allylics react, up to C7, C8 or C9
no 1° carbenium formed

second reactant
paraffin, monoene, or diene 3

total 34
a Allylic stands for a species with a double bond and a positive charge and carbenium means a positively charged tricoordinated carbenium

ion.
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tion should be similar as they are reverse of each other.
These restrictions reduce the search space from 333 200
to approximately 13 000. To demonstrate the power of
the GA as a search procedure, we sample only four
generations with six rule sets in each. This corresponds
to a total of 24 solutions, which is less than 0.2% of the
total of 13 000 solutions. This ensures that we do not
exhaustively search through the space of possible solu-
tions.

We now introduce a pictorial representation of the
rule sets as shown in Figure 15 in order to explain the
search results. There are six bins corresponding to each
of the rules in the rule set. The finer divisions within a
bin represent the second major variation within each
rule. For example, as shown in Figure 15, the vertical
bar at the second location in the first bin corresponds
to the rule variation that all possible carbenium ions
are formed during adsorption of an olefin. The no-
reaction variation is not considered for pictorial repre-
sentation of the rule of adsorption as it is an infeasible
alternative. Similarly, the fourth, fifth, and the sixth
bins have four divisions in them corresponding to the
four different variations. The next level of rule variation
corresponding to the number of carbons specified in the
reaction rules is represented by the height of the vertical
bars.

Rules that have restrictions on the carbon numbers
up to C7 are represented by the smallest height followed
by those with the C8 restriction and then by the case
with the rules that allow for reactants up to C9. If there
are any more variations, then this is depicted by the
color of the bars. For example, the hydride transfer rule
has variations based on its second reactant. This is
represented by the color of the bar. The target rule
626 333 is shown pictorially in Figure 16. The bar of
intermediate size in the second division of the first bin
represents olefin adsorption that allows the formation
of all carbenium ions up to C8. It is important to note

that all the bars have the same height. This is because,
for any chemically consistent rule, the maximum num-
ber of carbons in any reactant in all the reaction rules
should be the same. The red bar in the first subdivision
of the last bin corresponding to hydride transfer repre-
sents that the second reactant could be a paraffin or a
monoene (Figure 16) and that all carbenium ions except
allylics up to C8 can react. Figure 17 pictorially show
the crossover and mutation operators employed in the
GA search. It is interesting to note that crossover makes
large jumps in the search space and mutation leads to
only small changes in the rules. The complement-
carbon-number operator will change the height of the
vertical bar in any of the bins; however, to maintain
chemical consistency, the heights of the other bars are
also modified to be the same.

The GA search procedure for the rule set that closely
corresponds to the target model shown in Table 29 is
seeded with a set of chemically consistent random rule
sets. These random rules are shown pictorially in Figure
18. Also shown in this figure is the true model. The data
generated by the true target model are shown as circles,
and the solid lines represent the predictions from the
randomly generated models. Clearly the predictions due
to the randomly generated models are not good. After
four generations of hybrid selection and chemically
feasible genetic operations, the predictions from the new
rule sets have improved as shown in Figure 19. The
figure also shows the true model, the two best models
from the first generation of GA and the three best
models from the GA search in the increasing order of

Table 29. The Target Rule Set Used in the Automated Model Refinement Case Studya

rules
no. of

reactions
bounds on the rate

constants
rate constants

for the target model

olefin adsorption: any carbenium up to C8 can form 3 1 e koa e 103 10
carbenium desorption: all carbenium desorb 3 100 e kod e 105 100koa
alkylation: all carbenium up to C8 react 1 0.1 e kalk e 100 80
â-scission: all carbenium up to C8 except allylics react 1 105 e kb e 107 106

oligomerization: all carbenium up to C8 except allylics reacts 1 104 e kolig e 106 0.1kb
hydride transfer: first reactant, all carbenium up to C8 except
allylic; second reactant, paraffin or monoene

6 1 e kh e 104 103

a The rule set has been down selected from the rule space defined in Table 28. Number of reactions generated by RDL++ corresponding
to each rule, bounds on the six rate constants and their values used for generating the data for the target model are also given. Allylic
stands for a species with a double bond and a positive charge and carbenium means a positively charged tricoordinated carbenium ion.

Figure 15. Pictorial representation of the rule sets in the
automated model refinement case study.

Figure 16. Pictorial representation of the target rule 626333. The
rule variations are as shown in Table 29.

Figure 17. Pictorial representation of the genetic operators of
uniform crossover and single point mutation.
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SSE. The best solution of the GA search clearly re-
sembles the true model much more than any of the
solutions in the initial solution. The height of the bars
of this best solution that represent the maximum size
of the reactant is same as that of the true model.
However, it is clear that the locations of the bars of this
best model and those corresponding to the true model
are quite different. It is also interesting to note that
many more models now predict the data well as com-
pared to the predictions of the initial set of models
shown in Figure 18.

3.3. Experimental Formulation. During the itera-
tive procedure of hypothesis generation and testing, it
is typical that the suggested hypothesis does not explain
the data or more than one hypothesis explains the data
equally well. In the former case, we need to identify the
cause for the discrepancy by exercising model refine-
ment (MR). We did this through a GA-based search
procedure in section 3.2. In the latter case, when more
than one model explains the data equally well, we need
to discriminate among the multiple models. This can
be achieved by evaluating the equally good models
against new discriminatory datasanalytical measure-
ments of a new set of species or measurements of species
with different feeds or at different temperatures, etc.
Models that could explain the data from one part of the
network may not be able to explain the data from a
different part of the network. Thus the task of discrimi-
nating among models leads to suggestions about new
sets of experiments and we call this step as the
formulation of experiments.

At the end of the GA search as discussed in section
3.2, we found improved models whose predictions were

better than the initial set of randomly generated models;
however, now there are several models that explain the
data equally well. The current data set corresponds to
the two input species (propane and propylene) and
lumped forms of other downstream species (all paraffins
other than propane and all monoenes other than pro-
pylene). These kinds of lumped analytical measure-
ments are useful during the initial stages of model
building; however, now we are unable to discriminate
among the different models with these data. If further
details about the species are available, we may be able
to distinguish among the various models. So, we choose
to measure at least one downstream species, say,
hexane, and one species which has two double bonds,
say, hex-1,2-ene, which also appears downstream of the
initial set of reactants. Figure 20 shows the predictions
of the top three models at the end of the GA search
against this new data set. The predictions for propane
and propylene remain the same as in Figure 19;
however, there is only one model that predicts the time
evolution of hex-1,2-ene reasonably well. The other two
models form very little of this species and so are not as
good in explaining the data. Clearly using the additional
resolution in the data, we have achieved model dis-
crimination. However, we still do not have the right
model that can explain the data. Hence, we choose to
perform another iteration of the GA-based MR, now
with the new data set.

Figure 21 pictorially shows the three best models at
the end of the second iteration of MR with measure-
ments from new species suggested as part of experi-
mental formulation. This figure also shows the target
model and the two best models from the previous

Figure 18. Pictorial representation of the randomly generated initial set of rules to seed the genetic algorithm-based model refinement
search. Also shown is the true model corresponding to the rule variation shown in Table 29. The solid lines on the plots show the predictions
corresponding each of the random set of models and the circles correspond to that of the data generated by the true model using the
parameters in Table 29.
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iteration of MR in the increasing order of SSE. The
predictions of these models have substantially improved
as compared to the models from the previous iteration
of MR as shown in Figure 20. The current best model

explains the data very well. The pictorial representation
of the current best model resembles that of the true
model except for the height of the vertical bars. This
means that these two models have exactly the same set
of rules except that the maximum size of the reactant
in these rules is differentsup to C8 in the true model
and up to C7 in the current best model. The predictions
do not seem to be affected because of this variation. With
a few more iterations of MR, we are able to find a rule
set that is identical to the target rule set; however, after
one iteration of experimental formulation and two
iterations of MR, we could refine an initial set of random
models, discriminate among equally good models, and
find a model whose predictions are almost identical to
that of the target. Thus, we have demonstrated the
iterative procedure of MR and experimental formula-
tion.

Typically, the process of refining models is approached
in the form of deleting and adding an elementary
reaction.20,92 Our modeling step starts from the chem-
istry rules of the domain expert rather than the
individual reactions. The process of changing rules
rather than individual reactions is chemically more
intuitive because the experts think in terms of rules and
also a single rule change can affect a large number of
reactions that may not be in the local vicinity of one
another. Also, the allowable search space in a typical
reaction network with 300 elementary steps, for a single
instance of the rule set, is of the order of 3300, the three
possibilities signifying the absence of an individual
reaction and its presence in the forward or reverse
direction. On the contrary, the rule space is typically of
the order of 15 with around five variations in each of

Figure 19. Pictorial representation of the three best models after four generations of the genetic algorithm search. The true model and
two of the initial solutions are also shown. The solid lines represent the predictions corresponding to the solutions after the genetic
algorithm search and the circles represent the predictions of the true model.

Figure 20. Predictions of the models at the end of the first
iteration of model refinement for a new set of species. Measure-
ments of downstream species such as hexane and hex-1,2-diene
instead of lumped paraffin and monoenes lead to discrimination
among models.
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these, thereby giving rise to a search space of 1010,
which is much smaller than 3300.

The current automated MR strategy is based on
knowledge-guided stochastic search of the rules. This
is based on a custom genetic algorithm and is driven
by the causal models postulated by the expert about how
the rules affect the resultant model predictions. Provi-
sions for probabilistic acceptance of the initial causal
models, learning novel causal patterns that arise in the
evolution process, and guidance using the local concen-
tration or rate sensitivity coefficients93 will enhance the
capability of this procedure. RMS has been used to
faithfully translate the knowledge from the expert into
quantitative models and evaluate them; however, using
the above model refinement procedure, it is possible to
discover combinations of rules resulting in new path-
ways that may not have been considered by the expert
because of the sheer size of the number of possibilities.

3.4. Search for Novel Catalyst Formulations
Using Genetic Algorithms. The main objective of
developing robust forward models is to use them in the
context of computer-aided materials design (Figure 1)
in order to design catalysts that meet a set of desired
performance criteria.13,94 The most important challenge
in designing a zeolite catalyst for paraffin aromatization
is in developing a good forward model that would predict
the product distribution (paraffin, olefin, diene, cyclic
olefin, aromatics, etc.) with the catalyst structure and
process conditions such as the contact time on the
catalyst, temperature, pressure, etc. The kinetic model
presented in section 3.1 that predicts the product

distribution with the contact time on the catalyst is a
valuable starting point towards this.

We now demonstrate how the kinetic model developed
in section 3.1 can be used to design a new catalyst with
improved aromatics yield. The catalyst will be charac-
terized by the set of kinetic model parameters as in
Table 27. The objective here is to search for a set of
parameters that would give the maximum aromatics
yield, given that the catalyst will behave according to
the kinetic model that we have developed. Specifically,
we want to find a catalyst with the maximum aromatics
yield using our model as it can explain the product
distribution of the current catalyst with 7% aromatics
yield.45 The hybrid GA-based search procedure used for
parameter estimation as discussed in section 2.2 is used
for this search; however, we now minimize the reciprocal
of the aromatics yield instead of the sum of the squared
error evaluated as the difference between the model and
the data. The aromatics yield is defined as the weight
percentage of the aromatics in the product mixture.

Figure 22 shows the set of parameters corresponding
to this new catalyst that gives 58% aromatics yield as
the third vertical bar. This figure also compares the
values of these parameters to that corresponding to the
catalyst that was used for validating our model (second
vertical bar) and the lower (first bar) and upper (fourth
bar) bounds of the parameters (Table 27). It is interest-
ing to note that the rate constant for carbonium ion
dehydrogenation (parameter 11) has been increased to
reach its upper bound. It is well-known that the pres-
ence of metal additives such as Ga as the extraframe-

Figure 21. Pictorial representation of models after the second iteration of model refinement with measurements from new species suggested
as part of experimental formulation. The best model from the genetic algorithm search closely resembles that of the true model. Predictions
of the best model after two iterations of model refinement explain data better than compared to that of the initial set of models shown
in Figure 20.
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work metal ions increase the aromatics yield of zeolite
catalysts.78 Also it is intuitive to see that the rate
constant for the aromatization reaction (parameter 7)
is increased. Another interesting change is the increase
in the value of the rate constant for â-scission (param-
eter 6). The rate constant for oligomerization has been
defined as the product of the rate constant of â-scission
and an equilibrium constant for the reversible reaction
of â-scission/oligomerization. This equilibrium constant,
in turn, is characterized by the entropy as in parameter
13. Hence, the marginal decrease in the entropy and
substantial increase in the rate constant for â-scission
signifies the increase in the rate of oligomerization. This
is intuitive as an increase in the rate of oligomerization
would increase the rate at which larger carbenium ions
are formed and hence increases the rate of formation
of cyclic olefins and aromatics. Thus the change in the
values of the model parameters is consistent with the
objective function of increasing the aromatics yield.

The above procedure has been able to find a set of
model parameters that correspond to a catalyst with an
improved aromatics yield. However, the aromatics yield
predicted by this new catalyst is the upper bound that
can ever be achieved using this chemistry. Any ad-
ditional restrictions on the model parameters in the
form of either relationships between the catalyst struc-
ture and the kinetics or interrelationships among the
existing parameters will only reduce the number of
degrees of freedom among the model parameters. This
may lead to a decrease in the aromatic yield reported
here. This process of catalyst design and improvement

can be enhanced with a model that maps the effect of
the catalyst structural and electronic descriptors to the
reaction kinetics.14 This model will help to relate the
new parameters as found in the current study to the
actual structure of the catalyst that the expert could
make in the laboratory.

The upper bound on the aromatics yield as found by
the GA-based search can be used as follows. If for
economical reasons or otherwise one cannot afford to
retrofit an existing reactor setup in the plant unless a
catalyst with 60% yield is available, searching in the
design space of a zeolite catalyst with carbonium/
carbenium chemistry may be futile as it can only yield
a maximum of 58% yield. Either a completely different
catalyst or a modified zeolite catalyst that follows new
chemistry has to be evaluated for this purpose. This
kind of guidance for eliminating possibilities can po-
tentially save a lot of time and effort in the process of
catalyst development.

4. Summary and Discussion

In this paper, we have demonstrated how ideas from
process systems, artificial intelligence, and machine
learning can be used to design, develop, customize, and
integrate a set of tools that aid an expert in building
robust kinetic models to be used for catalyst design
(Figure 1). As shown in Figure 23, the model-building
procedure starts with the expert down-selecting a
specific rule set from a large rule space, formulating a
reaction network from the selected rule set, translating

Figure 22. Parameters corresponding to an improved catalyst with 58% aromatics yield found by the inverse search procedure by using
the kinetic model for paraffin aromatization on zeolites. LB and UB correspond to the lower and upper bounds on the parameter values.
kData corresponds to the value of the rate constants corresponding to the catalyst with 7% aromatics yield45 and kOptimal represents
the new catalyst with 58% aromatics yield.
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the reaction network into a mathematical model, solving
the equations, estimating the model parameters, sta-
tistically analyzing the results, extracting the features
of the model predictions, and using the model-data
feature mismatch to initiate the process of model
refinement. The pieces of knowledge that the user can
directly relate to are the model, data, and the model-
data feature mismatch.

Reaction Modeling Suite (Figure 3) facilitates rapid
formulation of hypothesis, thorough screening of models
and their analysis. The overall idea is based on the
postulate that any computer tool should mimic the
thought process of the human expert. Toward this end,
we have developed the various tools in the RMS. For
example, the Reaction Description Language Plus Plus
is a compiler that enables an expert to initiate kinetic
model building in the natural language of the chemist.
The hybrid parameter estimation procedure affords a
thorough search of the vast nonlinear space of param-

eters in a computationally efficient manner. The Fea-
ture Extractor ensures that the output of the model
building exercise is in a language that is highly intuitive
to the expert. The Statistical Analyzer evaluates the
robustness of the models. The concept of model refine-
ment that allows us to start with an approximate model
and iteratively converge to a better predictive model and
the idea of experimental formulation for discriminating
among similar models has been demonstrated. All the
above ideas have been used to develop a kinetic model
for propane aromatization on zeolites. This kinetic
model has been subsequently used to search for a set of
kinetic parameters that correspond to a catalyst with
improved aromatics yield.
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Appendix A: CO Oxidation on Supported Metal
Catalysts

CO oxidation involves the adsorption of CO and O2
on the surface of a catalyst and their reaction to give
CO2. This problem in its own right is important as it
finds application in the automobile catalytic converter.
Due to its relative simplicity, both the experimentalists
and the modelers study this reaction. Models available
in the literature assume surface homogeneitysCO and
O2 adsorb randomly on any part of the surface with
equal probability and react to give CO2. Razon and
Schmitz95 have reviewed a large part of this modeling
literature until 1986, and recent work by Lund et al.96

support this. As noted by Mukesh and co-workers,97 it
is somewhat surprising that the elementary step models
predict experimental data so well since the true situa-
tion on the catalyst surface even for relatively simple
reactions is complicated.98

Models for CO oxidation in the literature fall under
four major categories depending on the major assump-
tions: Langmuir-Hinshelwood models with one type
of adsorption site for both CO and O2 and a mean field
approximation about the availability of the adsorbed
species for reaction; two-site models which consider
two different sites for the adsorption of CO and O2;
models that assume adsorption of CO to be on two
different sites; the perimeter models that allow reac-
tion between CO and O2 only at the perimeter of the
CO islands. Within these different types of models,

Figure 23. Schematic of the model building procedure designed,
developed, and implemented in this paper.

Table 30. Different Models for CO Oxidation within
Each Model Type

model no. CO reaction O2 reaction

1 quasi-equilibrated irreversible
2 reversible irreversible
3 irreversible irreversible
4 quasi-equilibrated reversible
5 reversible reversible
6 irreversible reversible
7 quasi-equilibrated quasi-equilibrated
8 reversible quasi-equilibrated
9 irreversible quasi-equilibrated

Table 31. Typical Reaction Model Representation for CO Oxidationa

model tag reactions model equations

LH1 CO + S T COS (K1) x - K1PCO(1 - x - y) ) 0
O2 + 2S f 2OS (k2) k2PO2(1 - x - y)2 - k3xy ) 0
COS + OS f CO2 (k3) r ) k3xy

TS5 CO + S1 T COS1 (k11, k12) k11PCO(1 - x) - k12x - k3xy ) 0
O2 + 2S2 T 2OS2 (k21, k22) k21PO2(1 - y)2 - k22y2 - k3xy )
COS1 + OS2 f CO2 + S1 + S2 (k3) r ) k3xy

COTS9 CO + 2S f SCOS (k1) K1PCO (1 - x - y)2 - k3xy ) 0
O2 + S T 2OS (K2) y2 - K2PO2(1 - x - y)2 ) 0
SCOS + OS f CO2 + 3S (k3) r ) k3xy

PM1 CO + S T COS (K1) x - K1PCO(1 - x - y) ) 0
O2 + 2S f 2 OS (k2) k2PO2(1 - x - y)2 - k3x1/2y ) 0
COS + OS f CO2 (k3) r ) k3x1/2y

a The symbol T represents an equilibrium reaction.
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depending on the reversibility, irreversibility, or the
equilibrated nature of the CO and O2 adsorption steps,
we can formulate nine different models (Table 30).
This leads to a total of 36 different models. The reac-
tions and the equations of a representative set of
four models are shown in Table 31. The model denot-
edby LH1 allows for a molecular CO adsorption that is
quasi-equilibrated and a dissociative and irreversible
O2 adsorption. This model has been used in section
2.4 to demonstrate the Statistical Analyzer of the
RMS.

Appendix B: Trough-Walking Algorithm for
Locating Multiple Minima

Parameter estimation is a nonlinear optimization
problem for which local optimization algorithms have
been traditionally used. Although deterministic glo-
bal optimization algorithms48 have been recently devel-
oped for this purpose, modelers still rely on the local
optimization algorithms due to their ready availabil-
ity in commercial packages. One of the major draw-
backs of the local optimization algorithms is that they
are strongly affected by the initial guess values and
can get trapped into local minima. In this study, we
use a modified Levenberg-Marquardt local optimiza-
tion algorithm to search the local neighborhood of
the minima found by starting with multiple initial
guess values. Thus this trough-walking algorithm is
an attempt to identify as many local minima as pos-
sible.

Any local minimum obtained by starting from an
initial guess is searched for other minima in its neigh-
borhood. The neighborhood is defined in terms of a
Euclidean distance. When a local optimum value is
located, the eigen vector corresponding to the minimum
eigen value of the JTJ matrix (J is the Jacobian matrix
consisting of the derivatives of the objective function
with respect to the parameters) at the optimum identi-
fies the direction in which the objective function changes
the minimum.65 A new initial guess value is obtained
as

where kopt is the minimum around which the search is
being carried out, ev is the eigen vector corresponding
to the minimum eigen value, and s is a step size (taken
to be the inverse of the maximum eigen value of the
JTJ matrix). The minimum obtained by the local search
from this initial guess value is accepted if it satisfies
the SSE criterion and if it is sufficiently (defined by
another user defined parameter, EDBOUND)0.05) far
from all minima already found. The distance between
any two minima is measured in terms of the Euclidean
distance between them. This is similar to locating all
the optima along a shallow trough. The pseudocode of

this trough-walking algorithm is given in Table 32. The
overall idea for this intensive search is to locate all
possible optimum values that satisfy the experimental
data mathematically.
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(65) Vajda, S.; Valkó, P.; Turányi, T., Principal Component
Analysis of Kinetic Models. Int. J. Chem. Kinet. 1985, 17, 55-81.

Ind. Eng. Chem. Res., Vol. 43, No. 14, 2004 3511



(66) Li, G.; Rabitz, H.; Toth, J. A General Analysis of Exact
Nonlinear Lumping in Chemical Kinetics. Chem. Eng. Sci. 1994,
49, 343-361.

(67) Lutz, A. E.; Kee, R. J.; Miller, J. A. Senkin: A Fortran
Program for Predicting Homogeneous Gas-Phase Chemical Kinetics
with Sensitivity Analysis; SAND87-8248; Sandia National Labo-
ratories Report, 1988.

(68) Cukier, R. I.; Levine, H. B.; Shuler, K. E. Nonlinear
Sensitivity Analysis of Multiparameter Model Systems. J. Comput.
Phys. 1978, 26, 1-42.

(69) Bard, Y. Nonlinear Parameter Estimation; Academic
Press: New York, 1974.

(70) Bates, D. M.; Watts, D. G. Nonlinear Regression Analysis
and Its Applications; Wiley: New York, 1988; p 384.

(71) Cant, N. W.; Hicks, P. C.; Lennon, B. S. Steady-State
Oxidation of Carbon Monoxide over Supported Nobel Metals with
Particular Reference to Platinum. J. Catal. 1978, 54, 372-383.

(72) Prickett, S. E.; Mavrovouniotis, M. L. Construction of
Complex Reaction SystemssIii. An Example: Alkylation of Ole-
fins. Comput. Chem. Eng. 1997, 21 (12), 1325-1337.

(73) Boudart, M.; Djega-Mariadassou, G. Kinetics of Heteroge-
neous Catalytic Reactions; Princeton University Press: Princeton,
NJ, 1984; p 243.

(74) Balakotaiah, V.; Chakraborty, S. Low-Dimensional Models
for Describing Mixing Effects in Laminar Flow Tubular Reactors.
Chem. Eng. Sci. 2002, 57, 2545-2564.

(75) Hostrup, M.; Balakrishna, S. Systematic Methodologies for
Chemical Reaction Analysis. Comput. Aided Chem. Eng. 2001,
401-406.

(76) Stolze, P. Microkinetic Simulation of Catalytic Reactions.
Prog. Surf. Sci. 2000, 65, 65-150.

(77) Bandiera, J.; Taarit, Y. B. Ethane Conversion: Kinetic
Evidnece for the Competition of Consecutive Steps for the Same
Active Centre. Appl. Catal., A 1997, 152, 43-51.

(78) Lukyanov, D. B.; Gnep, N. S.; Guisnet, M. S. Kinetic
Modelling of Ethene and Propene Aromatization over Hzsm5 and
Gahzsm5. Ind. Eng. Chem. Res. 1994, 33, 223-234.

(79) Narbeshuber, T. F.; Brait, A.; Seshan, K.; Lercher, J. A.
Dehydrogenation of Light Alkanes over Zeolites. J. Catal. 1997,
172, 127-136.

(80) Krannila, H.; Haag, W. O.; Gates, B. C. Monomolecular
and Bimolecular Mechanisms of Paraffin Cracking: N-Butane
Cracking Catalyzed by Hzsm5. J. Catal. 1992, 135, 115-124.

(81) Kazansky, V. B. Adsorbed Carbocations as Transition
States in Heterogeneous Acid-Catalyzed Transformations of Hy-
drocarbons. Catal. Today 1999, 51, 419-434.

(82) Guisnet, M. S.; Gnep, N. S. Mechanism of Short-Chain
Alkane Transformation over Protonic Zeolites, Alkylation, Dis-
propotionation and Aromatization. Appl. Catal., A 1996, 146, 33-
64.

(83) Narbeshuber, T. F.; Vinek, H.; Lercher, J. A. Monomo-
lecular Conversion of Light Alkanes over H-Zsm-5. J. Catal. 1995,
157, 388-395.

(84) Kazansky, V. B.; Frash, M. V.; van Santen, R. A. A
Quantum-Chemical Study of Hydride Transfer in Catalytic Trans-
formations of Paraffins on Zeolites. Pathways through Adsorbed
Nonclassical Carbonium Ions. Catal. Lett. 1997, 48, 61-67.

(85) Buchanan, J. S.; Santiesteban, J. S.; Haag, W. O. Mecha-
nistic Considerations in Acid-Catalyzed Cracking of Olefins. J.
Catal. 1996, 158, 279-287.

(86) Aronson, M. T.; Gorte, R. J.; Farneth, W. E.; White, D. 13C
NMR Identification of Intermediates Formed by 2-Methyl-2-
Propanol Adsorption in H-Zsm-5. J. Am. Chem. Soc. 1989, 111,
840-846.

(87) Kazansky, V. B. The Catalytic Site from a Chemical Point
of View. Stud. Surf. Sci. Catal. 1994, 85, 251-272.

(88) Boronat, M.; Viruela, P.; Corma, A., A Theoretical Study
of the Mechanism of the Hydride Transfer Reaction between
Alkanes and Alkenes Catalyzed by an Acidic Zeolite. J. Phys.
Chem. A 1998, 102, 9863-9868.

(89) Boronat, M.; Viruela, P.; Corma, A. Ab Initio and Density-
Functional Theory Study of Zeolite-Catalyzed Hydrocarbon Reac-
tions: Hydride Transfer, Alkylation and Disproportionation. Phys.
Chem. Chem. Phys. 2000, 2 (14), 3327-3333.

(90) Holland, J. H. Adaptation in Natural and Artificial
Systems; University of Michigan: Ann Arbor, MI, 1975.

(91) Goldberg, D. E. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning; Addison-Wesley: Reading, MA, 1989.

(92) Bay, S. D.; Shrager, J.; Pohorille, A.; Langley, P. Revising
Regulatory Networks: From Expression Data to Linear Causal
Models. J. Biomed. Informatics.

(93) Ni, T. C.; Savageau, M. A. Model Assessment and Refine-
ment Using Strategies from Biochemical Systems Theory: Ap-
plication to Metabolism in Human Red Blood Cells. J. Theoret.
Biol. 1996, 179, 329-368.

(94) Ghosh, P. A Systematic Framework for Computer-Aided
Design of Engineering Rubber Formulations. Ph.D. Thesis, Purdue
University, West Lafayette, IN, 2002.

(95) Razon, L. F.; Schmitz, R. A. Intrinsically Unstable Behav-
ior During the Oxidation of Carbon Monoxide on Platinum. Catal.
Rev.-Sci. Eng. 1986, 28 (1), 89-164.

(96) Lund, C. D.; Surko, C. M.; Maple, M. B.; Yamamoto, S. Y.
Model Discrimination in Oscillatory Co Oxidation on Platinum
Catalysts at Atmospheric Pressure. Surf. Sci. 2000, 459, 413-
425.

(97) Mukesh, D.; Morton, W.; Kenney, C. N.; Cutlip, M. B.
Island Models and the Catalytic Oxidation of Carbon Monoxide-
Olefin Mixtures. Surf. Sci. 1984, 138, 237-257.

(98) Zambelli, T.; Wintterlin, J.; Trost, J.; Ertl, G. Identification
of the “Active Sites” of a Surface-Catalyzed Reaction. Science 1996,
273, 1688-1690.

(99) Goryanin, I.; Hodgman, T. C.; Selkov, E. Mathematical
Simulation and Analysis of Cellular Metabolism and Regulation.
Bioinformatics 1999, 15 (9), 749-758.

(100) Tomita, M.; Hasimoto, K. E.-Cell: Software Environment
for Whole-Cell Simulation. Bioinformatics 1999, 15 (1), 72-84.

(101) Mendes, P. Gepasi: A Software Package for Modleing the
Dynamics, Steady States and Control of Biochemical and Other
Systems. Comput. Appl. Biosci. 1993, 9, 563-571.

(102) You, L.; Hoonlor, A.; Yin, J. Modeling Biological Systems
Using Dyneticasa Simulator of Dynamic Networks. Bioinformatics
2003, 19, 435-436.

(103) Kee, R. J.; Rupley, F. M.; Miller, J. A. Chemkin; SAND89-
8003; Sandia National Laboratories Report, 1989.

Received for review August 14, 2003
Revised manuscript received November 24, 2003

Accepted December 1, 2003

IE034067H

3512 Ind. Eng. Chem. Res., Vol. 43, No. 14, 2004


