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It is difficult and challenging to design high-performance fuel additives in an indus-
trial-design setting where data are sparse and noisy, and fundamental knowledge is often
limited. An automated framework is presented for the design of such fuel-additive
molecules that minimize the intake-valve deposit in the automobile. A hybrid model
that combined functional descriptors from a first-principles degradation model with a
statistical /neural-network model was developed to predict additive performance, given
the additive structure. The results of the predictive model are discussed for different real
industrial case studies. An evolutionary method using specialized representation and
constrained operators to enforce formulation constraints was used to generate optimal
additive molecules that meet desired performance criteria. The evolutionary design strat-
egy in combination with the hybrid prediction model was successful in identifying novel
additive molecules that also possess good synthesis potential.

Introduction

A fuel additive is a substance added to gasoline in small
quantities to provide improved performance or to correct de-
ficiencies. Typically, gasoline additives often tend to provide
these benefits at a lower cost and without the need for im-
provements in the refinery (Gibbs, 1990). As automobile de-
signs have grown in sophistication over the years and have to
meet several different performance criteria, the fuels also
have to meet varied criteria for their performance in the au-
tomobile. Hence, additives that impart different functional
characteristics to the fuel continue to be used. Gasoline addi-
tives historically have been used as combustion modifiers, an-
tioxidants, corrosion inhibitors, anti-icing components, as well
as deposit-control detergents (Gibbs, 1990; Kalghatgi, 1990).
Among deposit controlling additives, the two primary ones
are (1) intake-valve-deposit (IVD) controllers, and (2) com-
bustion-chamber deposit controllers. In this article, we are
specifically interested in the design of fuel additives that con-
trol the deposit formation on the intake valves of the auto-
mobile. Figure 1 shows the intake valve and its surrounding
components in an automobile. The intake valve forms the
opening into the combustion chamber. The fuel-injection
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nozzles spray gasoline directly on the intake valve. When the
valve opens, it draws a mixture of fuel and air into the com-
bustion chamber, where it is burned to supply power to the
automobile. Over a period of time, both during and shortly
after engine operation, deposits tend to form on the surface
of the intake valve (Graham and Evans, 1992; Kalghatgi, 1990;
Lacey et al., 1997), which affects driveability (Graham and
Evans, 1992), cold start efficiency (Grant and Mason, 1992),
power, acceleration, and knock characteristics (Arters et al.,
1997), and emissions (Houser and Crosby, 1995). The severity
of the implications on automobile operating characteristics
due to deposit formation on the intake valve has necessitated
the formation of the Coordinating Research Council (CRC)
Intake Valve Deposit Committee in 1990 to address these
specific issues. Additionally, the Environmental Protection
Agency (EPA) has instituted a stringent test that every fuel
package (gasoline + additives) now needs to clear before ap-
proving commercialization (EPA, 1996). This is the BMW-
IVD test (ASTM, 1995), which involves driving a 4-cylinder
1985 BMW vehicle over the road for a total cumulative dis-
tance of 10,000 miles (16,000 km). The test cycle consists of
10% city, 20% suburban, and 70% highway mileage with an
overall average speed of 45 mph (72 km/h). At the end of the
test, the intake valves are removed and weighed. In order for
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Figure 1. Intake-valve and manifold.

the fuel-package to successfully pass this test, it must pro-
duce an average deposit of less than 100 mg/valve (Lacey et
al., 1997). This is the property of primary concern to the
fuel-additive industry. Therefore the design problem is

“Given the characteristics of a particular grade of gasoline,
what is the best structure of the fuel-additive molecule that
will ensure that the overall fuel package (gasoline + addi-
tive) not produce intake-valve deposit more than a specified
amount.”

In order to address the design problem at hand, it is in-
structive to consider the mechanism of deposit formation on
the intake valve. The mechanism has been hypothesized to
be due to one or more of the following (Lacey et al., 1997;
Bailey et al., 1995):

1. Autooxidation: Self-catalyzed oxidation during long-term
storage.

2. Thermal Oxidation: Fuel-flow over hot surfaces leading
to deposits and observed in operating equipment away from
the combustion zone.

3. Pyrolysis: Decomposition of fuel and thermal-oxidative
deposits on very hot surfaces, typically close to the combus-
tion zone.

The actual governing reactions that lead to the formation
of these depositions are quite complex, and a detailed de-
scription is not currently available. The key factors affecting
the mechanism of 1VD formation include the nature of the
fuel and the operating conditions. In addition, other factors,
such as valve and injector design (ChengShi Wai, 1992), auto-
mobile make (Homan, 1997), temperature gradients in the
valve (Grant and Mason, 1992; Daneshgari et al., 1989), as
well as engine-oil chemistry (Mitsui, 1993), have been found
to have some effect on deposit formation. The quantities that
are usually measured during engine tests are the operating
conditions (valve temperatures, rpm, and so on), fuel grade,
and in some cases, the chemical nature of the deposits. Hence,
one usually does not have all the fundamental information
required to develop a purely first-principles model that would
predict the 1VVD formation, given the initial chemistry of the
gasoline package (fuel + additives) and the operating condi-
tions. Moreover, the engine tests are expensive and cost about
$8000 a test. Hence, the data from engine tests are rather
limited and, due to the nature of the tests themselves, quite
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Figure 3. Hybrid neural network for IVD prediction.

noisy. It is known that the car-to-car variation forms the dom-
inant part of the repeatable error in these tests (Arters et al.,
1997). These factors overrule a completely data-driven /statis-
tical model for IVD prediction, since such a model will be
prone to the noise in the data and might not capture, even
qualitatively, the important phenomenological aspects of the
underlying mechanism. Under such a scenario, a first-princi-
ples model in synergy with a data-driven /statistical model for
performance prediction seems most promising. Figure 2 shows
such a forward approach to property prediction from struc-
ture. Within this framework, if one were to predict perfor-
mance instead of property, the structural descriptors would
need to be augmented with phenomenological knowledge.
This implies that functional descriptors that capture the un-
derlying physics maximally need to be used instead of the
so-called structural descriptors. With this mind, a hybrid
(first-principles + statistical ) model was developed to provide
the right medium between computationally realizable physi-
cal relevance and predictive accuracy. The first-principles
model captures in as much detail as possible the various phe-
nomena that are hypothesized to be at play in determining
the performance of the additive. This model determines, in
the form of descriptors, the relative effects of the structural
components of the additive on its performance. A
statistical /neural network (NN) model then correlates these
different descriptors to the measured IVD data. This archi-
tecture is outlined along the lines of the general forward
model framework in Figure 3. The development of the first-
principles model, which in this case is a solubility-based model
for the fuel additive, and the use of this model to obtain in-
put descriptors are described in the next section. These de-
scriptions are followed by the development of the
statistical /NN model that uses these functional descriptors as
inputs and predicts the IVD. The development and valida-
tion of these models for two different kinds of engine tests,
that is, the BMW test described earlier, and the Honda en-
gine test, are also discussed.

First-Principles Model for Additive Stability

In the previous section the mechanisms underlying the for-
mation of intake-valve deposits were outlined. In all these
mechanisms there were two important features. The first
concerns the stability of the deposit-forming precursors.
Specifically, it is generally assumed that the deposits are not
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Figure 4. Generic structure of fuel additives.

(a) Additive with single linker and tail; (b) additive with sin-
gle linker but multiple tails; (c) additive with multiple link-
ers and multiple tails.

volatilized at the temperatures around the intake valve. Sec-
ondly, it is assumed that the insoluble fraction of the fuel
falls out of solution unless stabilized by an additive, which
itself may thermally degrade. It is hypothesized that these
deposit-forming precursors can directly adhere to the
intake-valve surface or undergo chain polymerization reac-
tions with other species and form long-chain deposits on the
surface. In either case, the thermal stability and the insolubil-
ity of the additive species play a crucial role in deposit forma-
tion. The primary function guiding the formulation of the fuel
additive is its ability to scavenge the deposit-forming precur-
sors from the high-boiling fractions of the fuel and prevent
them from depositing on the intake valve. To impart this
function it is imperative that the additive be thermally stable
in the fuel milieu as long as possible. Thus, the first-princi-
ples model was focused toward determining the stability of
the additive from its molecular structure and operating con-
ditions.

Figure 4 shows the functional components of a fuel-ad-
ditive structure. The figure is a lumped functional look at the
additive structure and is not a reflection of its detailed chem-
istry. The approach taken is hierarchical, where the func-
tional aspects are broken down into the relevant structural
aspects, and more details are added as necessary. The addi-
tive contains three main components:

1. Head: A set of (generally polar) functional groups col-
lectively known as the head. The purported function of the
head is to act as a receiver or scavenger of the high-boiling
deposit precursors in the fuel. The head is generally the most
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thermally stable component of the additive.

2. Tail: A long-chain component called the tail. The pri-
mary function of the tail is to keep the additive in solution
long enough to be washed away by the fuel. In general, since
the head is nonpolar and usually insoluble in the fuel, the tail
helps the additive remain in solution, allowing the head to
access the deposit precursors.

3. Linker: A transitional component that connects the po-
lar head to the nonpolar soluble components, called the
linker. The linker adds more stability to the additive and holds
together the polar head with the soluble tail.

This structure of the additive can be described in several
ways; however, the head-linker—tail description provides an
accurate and fairly general representation of additives purely
in terms of their key functional components. While in solu-
tion in the fuel + oil mixture, the different components of the
additive may undergo various degradation reactions that alter
their structural, and hence functional stability. While some
components such as the head may remain stable and bounded
to deposit precursors, the polymeric tail is relatively less so
and tends to shorten in length, progressively decreasing the
solubility of the additive in the fuel mixture. This degradation
can reach a state where the additive molecule ceases to be
effective as a detergent. It is clear that different mechanisms
are at play here. The interaction between these different
phenomena provides a dynamic solubility distribution for the
additive in the surrounding fluid milieu. If the nature of this
distribution and how it degrades from its initial state can be
tracked, it may be possible to correlate to the VD perfor-
mance of the additive. The objective of the first-principles
modeling is not so much to capture exactly in quantitative
detail the different mechanisms involved, but to acknowledge
the physics behind the relevant mechanisms to get a relative
ordering of the performance of different additives. The main
steps in the first-principles model development are the fol-
lowing:

1. Determine the tail-length distribution as a function of
time, from the relative degradation rates for the tail, head,
and linker.

2. Determine the solubility distribution (in terms of a stan-
dard measure) of the additive from its chain-length distribu-
tion.

3. Using information of the fuel characteristics, determine
as a function of time, the fraction of active or solubilized
additive.

The final step determines for each additive, a set of de-
scriptors (so-called activity at different time lines) that can
then be used as inputs to a neural network or statistical model
to correlate the 1VD performance of the additive. Figure 3
shows such a hybrid architecture.

Modeling Additive Degradation

The simplest generic structure of the fuel additive shown
in Figure 4a is the basis of all calculations. The first step is to
identify the potential sites of breakdown across the different
components of the additive. The breakdown sites of interest
in the functional components of the additive are the different
positions in the polymeric tail, the tail-to-linker connection,
and the head-to-linker connection. This functional descrip-
tion leads to species of the head-only type if the head-to-
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linker bond is broken, the head-linker—only type if the
linker—to—tail bond is broken, and the head- linker —tails type
if the breakdown occurs at any of the different potential sites
on the polymeric tail. It is obvious that there will be a distri-
bution of species of the head- linker —tails type having differ-
ent tail lengths. This allows us to provide a mathematical de-
scription that keeps track of all the temporal evolution of
these different species that can result depending upon the
site of bond breakdown. Without making any assumptions on
the nature of the reactions or reaction mechanisms, the
mathematical model governing the degradation of an additive
structure given in Figure 4a, is as follows

ﬁXH =fform(x X. S )_fdeg(x S/)
It H HL» 7}j>0r 20 H H1 >0
X

ot =flfiolim(xj>0181)_fHd?_g(XHLrsrl)

axX;
ST (X 0 8) (XS, =1 N (1)

In the preceding equation, X, is the concentration (or alter-
nately, the mol fraction) of the additive structures that con-
tain only the head without any linkers or tails; ™ is the
total rate of all reactions leading to the formation of such
head-only structures. A head-only structure can be formed
from all additive structures of different lengths if the
head-linker bond is cleaved. In general, this rate could be a
function of the concentration of the longer structures (head
+ linker, head + linker + tail of length 1, head + linker + tail of
length 2, and so on) as well as the concentrations of other
extraneous species (S;) involved in these reactions. On the
other hand, 3% is the rate at which the head itself is de-
graded by reactions with other species S;. The rate of change
of concentration of the other additive species, such as X,
(head + linker) and X , (head + linker + tails of length 1 and
greater), can be modeled in a similar fashion. Since the na-
ture of the particular reactions can be very complex, it is dif-
ficult to model these mechanisms in great detail. Since an
exact kinetic model was not sought and the ultimate aim was
to model the relative stability of the additives, the following
assumptions were introduced:

1. The degradation reactions were modeled as first order
and irreversible.

2. The rate of degradation was parameterized by three rate
constants: (a) rate constant, k,, , between the head and
linker; (b) rate constant, k, 1, between the tail and the linker;
and (c) rate constant, k;, along the length of the tail.

3. The tail-length distribution [for molecules of the form
head, head + linker, head + linker + tail (Ilengths 1 to N), etc.]
was initially assumed to be normal with a given mean and
standard deviation. These were in turn obtained from the av-
erage molecular weight and dispersity data of the initial dis-
tribution.

Even if the model simplified the reaction mechanisms, it
will at least effectively order the thermal stability of various
additives, which is all that is needed for a functional descrip-
tion. Under the preceding assumptions, Eq. 1 can now be
rewritten as a series of linear ordinary differential equations
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(ODE9).

dXy N
kHL( Xy + Z X

dt -
dX N
— = K Xl + Ker 22 X
dt i=1
dX N
_l:_(kHL+kLT)X1+kT 2 X
dt i=2
dX. _
d_tJ:_[kHL+kLT+(J_1)kT]xj+kT
N
XX
i=j+1
Vi<j<N-1
dX
dtN=_[kHL+kLT+(N_1)kT]XN' (2)

where N is the maximum tail length in the initial distribu-
tion, t is the time, and X; is the concentration/mol fraction
of a tail of length i (where i varies from 1 through N). In
order to solve Eq. 2, one now needs to specify the initial
conditions. When the tail is monodisperse, the initial condi-
tion is specified in a straightforward fashion, setting the
longest tail concentration to one and concentration of all
shorter chains to zero. When the tail is polydisperse, the ini-
tial conditions for the preceding system can be generated from
the information of the polydispersity index and average
molecular-weight data. We have assumed this distribution to
be normal. The solution of the preceding equation will yield
the mol fractions of all the different species mentioned previ-
ously, as a function of time. The preceding equations were
made dimensionless in time by setting = = kt. This leads to
two parameters that control the degradation behavior of the
system, namely k,,, /k; and k,/k;. However, the actual re-
action mechanisms are rather complex, and hence it is diffi-
cult, if not impossible, to determine the rate constants. Thus,
an approximation to the ratios was obtained by the following
procedure:

1. The most reactive bonds in the structure were identified
at the appropriate positions on the tail, between the tail and
the linker, and between the linker and the head. This was
based on the relative reactivity of different functional groups
and their stability. The bond dissociation energies of these
bonds would be representative of the activation energy for
the degradation of different components of the additive.

2. Small molecule analogs were constructed for each of the
bonds whose dissociation energies had to be estimated. These
analogs were constructed in such a fashion as to retain a sim-
ilar charge behavior around the bond under consideration.
Functional groups and atoms farther along the chain from
the bond of interest were discarded and the molecule was
truncated with a hydrogen or methyl group at an appropriate
position to obtain the analogs.

3. For the analog, the bond dissociation energies of the
bond considered were calculated by using semiempirical
quantum chemical calculations. This involves estimating the
heats of formation for the molecule as well as the two radi-
cals formed after the bond was broken. The bond dissocia-
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tion energy is the difference between the sum of the heats of
formation of the radicals and the heat of formation of the
analog.

4. The ratio of the rate constants for an irreversible, first-
order degradative reaction was calculated as the ratio of the
exponentials of the calculated bond dissociation energies
(from the Arrehenius rate equation)

Knp ((EHL_ET))

K oPT RT

®)

where E,, and E; are the bond dissociation energies of the
appropriate small molecular analogs of the linker—head bond
and the polymeric tail bond, respectively; T is the tempera-
ture of evaluation; and R is the universal gas constant. The
operating temperature for this study was 523 K (250°C). This
is the typical temperature of the surface of the intake. With
the rate constants now specified, a vectorized MATLAB code
was developed to solve the system of equations in Eq. 2.

Multiple Tails

Most of the structures of actual interest include heads with
multiple linkers and tails, as shown in Figures 4b and 4c.
A single head portion is attached to multiple tails through a
single linker in Figure 4b and by different linkers in 4c. In
order to simulate the tail-length distribution of the structure
in Figure 4b, the tail length is defined to be the sum of the
lengths of all tails on the linker. For multiple tails greater
than two, the approach is to first perform the simulation for
two tails and then successively add in the distribution of the
other tails. The simulation approach presented for the
single-tail case is extended to the two-tail scenario by using
the following ideas:

1. The degradation of any single tail is independent of all
other tails attached to the same linker + head.

2. The total concentration of heads (attached to linker and
tails, as well as separate) is a conserved quantity irrespective
of the number of linkers +tails present, since the rate of for-
mation of single heads depends only on the rate of degrada-
tion of the head-linker bond(s).

Under these assumptions, the concentration of a structure
with a total “linker-A + tail-A of length i” with a second
“linker-B + tail-B of length j”is given by Eq. 4.

Xi;=(1.0— X, ) P;P, (4)

In this equation, X;; is the concentration of the structure just
mentioned; X is the concentration of structures with heads
only; and P; and P; are the probabilities of finding single
tails of length i, and length j, respectively. They are deter-
mined independently by performing two simulations with sin-
gle-tail generic structures of the kind shown in Figure 4a.
Equation 4 follows from the assumption of the independent
degradation of each individual chain attached to the head.
Once the preceding concentration is evaluated for each com-
bination (i, j), the distribution of the sum (given by X, where
s=i+ j)is given as

X,= Z Xij- (5)
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From a computational point of view, this is easily achieved by
performing two complete simulations (when both tails are
different) to obtain, X,(t) and X,(t). They correspond to the
tail-length distribution for each of the two tails. At each in-
stant of time, the outer product of the two vectors yields the
matrix of the joint distribution of the two tails. Summing up
the contradiagonals of the resulting matrix gives the concen-
tration of various possible sums of the two tails.

In order to obtain a qualitative verification of the tail dis-
tribution behavior for typical cases, simulations were per-
formed to compare a two-tailed additive and its single-tail
counterpart that would possess the same total length. The

osf | T Typel
<00 Type #l

o
(:
T

Mole Fraction (X}
o o
» o
T T

o
w
g

o
[
T

0.1

0 0.5 1 1.5 2 25 3 35 4 45 5
Time (dimensionless) ««--->

Figure 6. Comparison of degradation behavior of differ-
ent chain-length additives.
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two additives, whose chain-length distributions were simu-
lated, were structurally similar except for the number and
manner in which the tails are connected to the head. The
structures considered are shown in Figure 5. Type | is a sin-
gle-tailed structure, and Type Il is a two-tailed one. For this
particular case, the rate constants governing the degradation
of the head from the linker and the linker from the tail were
very low for both the additives. This implies that the
head—-linker and tail-linker bonds were very strong, and tails
were never lost completely by the breaking of these bonds.
The only difference between the additives was the presence
of an additional tail in the two-tailed structure and its con-
nectivity. Figure 6 shows the concentration vs. time plots for
three different values of the chain length (1) for Type-I
(single-tailed) and Type-Il (two-tailed) structures. In both
cases the concentration of these structures shows a steady
increase because the head-linker and tail-linker bonds are
always very stable, that is, the first tail unit is never lost. Hence
the longer tails are successively degraded to form shorter and
shorter tails. The difference between Type | and Type Il
structures for the zero tail-length (I =0) case is due to the
fact that Type Il has longer tails in general but a lower initial
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Figure 8. Solubility parameter vs. time for additives with
different structures.
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concentration of very short and very long tails. This means
that the tail degradation to structures with 1=0 is much
slower in Type Il. This difference in the transient behaviors
of the tail distribution in Type | and Type Il is shown in
Figure 7. It is evident from the plots that two-tailed (Type I1)
structures tend to keep the tails longer and retain a higher
concentration of species with tails compared to the Type |
structures. This leads to the conclusion that the alkane-like
solubility characteristics imparted by the tail would be sus-
tained for a longer duration in the case of the additive with
two short tails, as compared to the additive with a single long
tail.

Solubility Descriptor Determination

At this stage, we have a degradation—kinetics model that
predicts the temporal degradation of the additive structures.
This is a necessary first step, but what we are truly interested
in is a phenomenological descriptor that could be correlated
to IVD. In our problem, this is the solubility descriptor. Typi-
cally, solubility is indicated by the cohesive energy density,
which in turn is characterized by the Hildebrand parameter
(Hildebrand and Scott, 1962). This is a measure of the inter-
nal-energy density and represents the amount of energy re-
quired to move two molecules of a species to infinite separa-
tion in solution. The Hildebrand parameter can be estimated
by group contribution methods, of which the modified

Hansen’s methods (Barton, 1991) were found to be the most
suitable for the purposes of descriptor calculation in this case.
These were obtained from the Handbook of Solubility and
Cohesion Parameters (Barton, 1991). Hansen’s group contri-
bution method determines three separate contributions to the
Hildebrand parameter, which include dispersion, polarity, and
hydrogen bonding. A molecule is first split into a group of
functional groups that have fixed contributions to each of
these terms. For a molecule containing N; functional groups,
the Hildebrand parameter was estimated as follows (Barton,
1991)

i=N; F_Zd

8y = -
i=1 w

i= N¢ F-Zp

S = _
P i=1 Vi

i= N (U_zh)z

1

=T

i i

8=1/85+ 8+ 87, (6)

where &, 6p, and §,, are the dispersion, polar, and hydrogen
bonding contributions for the entire molecule; F.2¢, F?P, and
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Figure 9. Solubility parameter variation with time for different additives (BMW database).
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UzM are the functional group contributions to each of those
three terms, respectively; and V; is the group-contribution to
the molar-volume of the molecule, from functional group i.
When a mixture/solution of two species (like that of a
fuel—-additive mixture) is considered, a small Hildebrand pa-
rameter of one species (say, A) compared to the other (say,
B) indicates that A will not be able to provide enough energy
to disperse B, and hence they will remain immiscible. Hence,
a large difference between the Hildebrand parameters of the
components indicates poor solubility of A in B. Fuel addi-
tives contain a distribution of chain lengths, and hence a dis-
tribution of Hildebrand parameter values. The Hildebrand
parameter for the overall fuel additive was calculated as the
mol-fraction weighted sum of the different fractions consti-
tuting the additive. Specifically

N
Xi(t)8;,

i
5y =

)

Il
-

where §; were the Hildebrand parameters estimated for each
species, 61 was the total Hildebrand parameter value, and
X; were the mol fractions of species of chain length, i. The

mol fractions were in turn distributions (varying with chain
length) changing over time due to the degradative reactions.

Figure 8 shows the temporal (dimensionless) evolution of
the Hildebrand parameter (§) for different structures that
vary in the number of tails attached to the linker, as well as a
case where the head contains two linkers and two tails at-
tached to each linker. These structures are based on an addi-
tive in the BMW database, which is a collection of 92 engine
tests on different additives. Realistically, only one or two tails
per linker are probable in the actual additive structures. For
cases with greater than two tails, it was assumed that there
was some way more tails could be attached to the linker inde-
pendently, without changing the Kkinetic stability characteris-
tics of the linker. Figure 8 compares the Hildebrand parame-
ter for different additive structures against the estimates of
the Hildebrand parameter for alkanes, aromatics, and amines
on the background. For example, nitroethane has a Hilde-
brand parameter value of 22.8, while toluene is 18.2. The plot
indicates that as more tails break down to shorter lengths,
the Hildebrand parameter tends to increase and settle down
in the aromatic/naphthalene end of the spectrum. Also, as
the number of tails increases, the additives tend to reside at
lower values of the solubility parameter. This is because the
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head-linker and tail-linker bonds do not degrade thermally.
Consequently, even after a long period of time the first tail
unit remains in the structure. This indicates that one would
get a greater nonpolar contribution from the first tail unit
when more tails are present, thus lowering the final solubility
parameter value. However, in the final case shown in the fig-
ure (four tails attached to the head via two linkers), there is
an increase in the final solubility value compared to the case
with four tails. This is due to the additional polar contribu-
tion of the extra linker. As long as the additive cohesive en-
ergy density was comparable to that of the liquid fuel, then
the additive would remain soluble in the liquid portion of the
fuel throughout the period under consideration. The polar
head that binds to the deposit precursors would be more ef-
fective, as it was kept in solution longer.

To determine whether the solubility calculations lead to
differences, and hence ordering between additive packages,
four different additive packages from the BMW database
provided by Lubrizol were tested. Due to the proprietary na-
ture of the data, the actual structures in the additive package
cannot be disclosed here. The main difference between frac-
tion-1 and fraction-2 for additive package-1 was the presence
of two additional tails connected to the head through an ad-
ditional linker in fraction-2 of the package. As evident from
the inset in Figure 9, initially fraction-2 has a slightly lower
Hildebrand parameter value due to the presence of longer
tails. The polar contribution of two linkers in fraction-2, as
opposed to one in fraction-1, dominated the solubility contri-
bution of the structure as the tail started degrading, and it
finally settled at a much higher value compared to that of
package 1. On the other hand, package 2 showed higher solu-
bility parameter values. This was due to the presence of only
a single tail and a large polar contribution of the head for
this particular additive structure. Package 3 had a lower final

value due to a smaller polar contribution from the head com-
pared to that of package 2. The solubility simulations led to
the following conclusions:

1. The degradation of the tail played an important part in
the dynamic behavior of the solubility characteristics.

2. The topology or the internal connectivity in the additive
structure also played a crucial role in determining its
degradative characteristics. Hence, they also dictated the na-
ture of variation of the solubility characteristics with time.

3. The relative polarity of the head/linkers of different ad-
ditives determines the magnitude of the final difference in
the Hildebrand parameter values. This was mainly due to the
greater thermal stability of the head and the linker.

Consider now a solvent milieu for the additive that pos-
sesses a predominantly alkane-like character (say, octane).
This would be, for instance, largely characteristic of the ini-
tial composition of the fuel. The experimental estimate of
Hildebrand parameter values for octane is about 15.4
MPa~¥2 (Barton, 1991). In order for the additive to be solu-
ble in the fuel, the difference between the Hildebrand pa-
rameters for the additive and the fuel should be within a
specified limit. This difference is typically about 5 MPa~%?,
that is, |5, — BJ-I <5.

We discussed previously the estimation of the additive
Hildebrand parameter from the additive structure and oper-
ating temperature (Egs. 6 and 7). In addition, if the fuel
Hildebrand parameter could be estimated, then the fraction
of the additive distribution miscible in the fuel solvent could
be calculated. Figure 10 shows the essential steps of such a
calculation. First, the Hildebrand parameter of the additive
as a function of the chain length was obtained using the
group-contribution method described previously. This is not
a function of time, and is shown for a typical case at the
bottom of Figure 10. On this plot the fuel Hildebrand param-
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eter is demarcated on the Y-axis. It was assumed that there
are enough fuel components that are compatible with any
solute/additive species with Hildebrand parameter values be-
low this critical value. These species are indicated inside the
square block on this plot. The top lefthand portion of Figure
10 shows the additive distribution at a given time t. From this
plot, and using the information of the additive species/lengths
that are compatible with the fuel, the distribution of the ac-
tive or solubilized additive species was obtained. The sum of
the molar concentrations of all these species gives one point
on the activity plot, as shown in the righthand top portion of
Figure 10. The dynamic activity curve can be constructed in
this fashion, for a given additive package + fuel combination.
This forms our functional descriptor, which is our input to the
secondary model.

IVD Performance Predictions for Fuel Additives

The final and an important step in the performance pre-
diction of intake-valve deposits is the determination of a re-
gression model that correlates the functional descriptors to
the IVD data from engine tests. Several different models can
be developed at this stage. However, any model contains two
main components, namely, the inputs to be used by the model
and the model’s internal parameters. The inputs in all cases
were the amounts of active additive at different times. These
times were not fixed a priori, but optimized toward best pre-
diction. This was done in a sequential but trial-and-error
fashion. The influence of the actual inputs chosen on the
prediction accuracy of the model is less than that of the
model’s internal parameters. While a wide variety of statisti-
cal models may be explored for this purpose, we restricted
ourselves to linear models based on projections to latent
structures (PLS) (Geladi and Kowalski, 1986) and neural net-
works (Haykin, 1999). The main reason for the examination
of linear model is their simplicity. On the other hand, neural
networks provide general nonlinear architectures for function
approximation and pattern recognition. The complexity of the
underlying phenomena and the lack of accurate measure-
ments make the quantitative information built into the first-
principles model highly difficult, if not impossible. This and
the noise in the engine test data make neural networks ideal
candidate models for IVD prediction. Figure 11 shows the
general architecture of neural-network models examined for
the first case-study involving the BMW engine-test data.
While there are no restrictions on the direction of connectiv-
ity of neural-networks for a general case, attention here is
focused only on feed-forward networks where connections go
from inputs to outputs across different layers. These net-
works are widely used for prediction and pattern classifica-
tion (Haykin, 1999).

The main components of the neural-network architecture
are the inputs, the number of hidden neurons, and the na-
ture of the transfer functions. Developing a neural-network
prediction model involves two phases: training and testing.
During the training phase, the weights on the connections
between the nodes are regressed from a given set of inputs
and their corresponding output data. Several algorithms exist
for training the weights of the neural-networks, such as back
propagation (Rummelhart, 1986), conjugate-gradients (Char-
alambous, 1992), and general nonlinear optimization meth-
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ods, such as the Levenberg-Marquadt (LM) technique. The
LM method was used for training due to its added robustness
to locally optimal weights (Hagan and Menhaj, 1994). How-
ever, it is expected that the use of conjugate gradients or any
such technique for this purpose would not drastically alter
the results. During the testing phase of the neural-network,
the network with the trained weights is presented with data
that were excluded from the training set. The performance of
the neural network on data not seen before is indicative of its
generalization or extrapolation performance.

The engine-test data that were available to train the neural
networks were limited (a total of 100 points), given the ex-
pense of the tests. To reliably train models to predict data
outside the training set, the cross-validation method was used.
In all the cases, a single hidden-layer neural network was
used, but the number of neurons was varied. The entire data
set was partitioned into a training set and a testing set (ap-
proximately 10% of the total data). The neural network was
trained on the training data and then tested to evaluate its
performance on the test data to determine its root-mean-
squared error (rmse) during the testing phase. Next, the test
set was added into the data set and a different partition made,
to obtain different training and testing data sets. The archi-
tecture was again trained and tested on this new partition.
This procedure was repeated several times until each data
point had appeared at least once in both the testing and
training sets. The performance of the architecture is reported
as the average rmse on this cross-validation (during the test
phase).

BMW database

The BMW database consisted of 92 engine-test results af-
ter screening for outliers. The additive structures and fuel
characteristics were provided for each engine test. The fuel
Hildebrand parameter required for estimating the amount of
active additive was not directly available. For the BMW
database, a fuel profile was obtained based on the composi-
tion of the fuel and its performance in engine tests without
any additives. All the fuels used in the engine tests were
ranked based on this profile. A base value (which was later
optimized) of the Hildebrand parameter was assigned to the
most ‘“severe” fuel that had the worst VD performance
(without additives). All the other fuels were assigned values
relative to the most severe one on a linear scale with an ad-
justable slope. The slope was also optimized to give maxi-
mum correlation to the IVD performance. The development
of the first-principles-based hybrid model from the engine-test
data followed the steps given below:

1. The solubility and molecular weight distribution were
determined as a function of time, as outlined in the first-
principles model development.

2. The fraction of the additive package that remained ac-
tive in the given fuel was determined. Activity was defined as
the number of moles of the additive that had a Hildebrand
value lesser than that of the fuel at any time.

3. The amount of active additive at different times gave
the solubility descriptors that described the time-varying sol-
ubility characteristic of the additive in the given solvent.

For the BMW database, these descriptors were used as in-
puts to different neural-network architectures and the best
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set was reported. The inputs were mean-centered and vari-
ance-scaled before feeding into the network. Several differ-
ent models were examined, including some linear ones. The
linear models were clearly outperformed by the neural-
network architectures. Comparisons were made between net-
works using solubility descriptors as inputs and the best net-
works derived using structural descriptors as inputs. These
structural descriptors were picked to reflect the structure of
the additives in terms of various functional groups and were
provided by the chemists at the Lubrizol Corporation. Al-
though these descriptors did capture some of the important
structural characteristics of the additive, the connection be-
tween these descriptors and the macroscopic property of in-
terest, in this case, the amount of intake-valve deposit, was
not transparent. On the contrary, the functional descriptor
derived from first principles in the previous sections captures
the inherent chemistry in a clear and transparent manner.
The results are encouraging using this functional descriptor
and are summarized in Figure 12. The best network in terms
of accuracy (rmse on 10-fold cross-validation) and reliability
(standard deviation of the error across different data parti-
tions) was a radial-basis neural network that used a single
solubility-based descriptor (the moles of active additive at
time = 0). The performance of this network was comparable
to that of the best network that used as inputs linear projec-
tions of 36 structural descriptors extracted directly from the
structure of the additive, without the aid of any phenomeno-
logical model. The first-principles hybrid neural-network
model overhelmingly outperformed the other models, espe-
cially considering that only a single-descriptor was eventually
used. Primarily, this was due to the rich phenomenological

Proiections NN Architecture
No. of Input (PLJS PCA/ Transfer RMSE (mg) in
Descriptors None) Function [No of | Testing (CV)
Hidden Neurons]
36 None Tan-Sigmoid [7] 273"
4 PLS Log-Sigmoid [3] 105
3 None Tan-Sigmoid [3] 142
7 PCA Tan-Sigmoid [3] 200
6" None Tan-Sigmoid 3] 172
1™ None Radial Basis [4] 124

*Large Standard Deviation; *Descriptors extracted from PLS factors
MDescriptors extracted from PCA factors
**Solubility Descriptor extracted at time T = 0

Figure 12. Comparison of models for IVD prediction:
BMW database.

knowledge included in the input descriptor through the first-
principles model as opposed to picking standard structural
descriptors that one can obtain using any conventional
molecular-modeling software.

Honda database

The Honda database represented the engine-test results of
IVVD performance based on a Honda two-valve generator. The
Honda generator test is a shorter test compared to the BMW
test, taking about 80 hours, and is generally considered to be
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Figure 13. General architecture of a PLS-NN model.
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more consistent statistically. Although, most of the additive
components that formed the basis of this database were simi-
lar to those used in the BMW engine tests, there were some
differences, the most important being the lack of information
about the fuel Hildebrand parameter required for determin-
ing the amount of active additive in the fuel. As a reasonable
estimate, therefore, the fuel Hildebrand parameter was al-
lowed to vary between 18 and 28 MPa~¥? for the Honda
database. Several time vs. active-amount curves were con-
structed for each additive, corresponding to values of the
Hildebrand parameter given earlier. These curves were then
used as inputs to a neural network. Since this leads to over-
parameterization, projection methods especially PLS-based
techniques (Geladi and Kowalski, 1986; Qin and McAvoy,
1992) were used in series with the neural network for predic-
tion.

Partial least squares (PLS) projection to latent structures
are based on linearly projecting (or rotating) the input as well
as the output space so that they are optimally correlated (in a
linear sense). The projection part of PLS is called the outer
relationship, and the correlation or prediction part of PLS is
called the inner relationship. For the IVD prediction problem
there was only one output variable, that is, the IVD data
from engine tests. There was then no need for output projec-
tions. Originally PLS methods implied only the use of linear
models for both inner and outer relationships. Over the years,
nonlinear PLS methods have been developed using both non-
linear outer relationships, as well as nonlinear inner relation-
ships. One approach in this regard is the generalized nonlin-
ear PLS regression based on neural-networks proposed by
Qin and McAvoy (1992). In this approach several neural net-
works were used in series to successively correlate each input
factor with the corresponding output factor. Residuals from
preceding neural-network relationships were used for succes-
sive training. A variant of this approach is to use the neural
network only as a transformation relation for the output, that
is, as the output outer relationship (Andersson et al., 1996).
While a series of neural networks would clearly overparame-
terize the model for the given data, using the neural network
only as a transformation of the output also may not be suffi-
cient, considering there is only one dependent variable. In
addition, for the latter method, a smooth nonlinear function
in the residuals needs to be established. Given the noise in
the data, this requirement is difficult to meet and discern. A
better approach to the same problem would be to model the
relationship between the input and output to consist of a lin-
ear and a nonlinear part. The linear relationship would be
determined using the traditional PLS technique and the eval-
uated output residuals. The input factors, determined as a
result of the first step, would then be correlated to the resid-
uals via a neural network. This significantly reduces the num-
ber of parameters in the system, and using the neural net-
work to “fit” only the nonlinear interactions in the data (if
any) after the significant linear effects have been accounted
for through the PLS model. This approach is outlined in Fig-
ure 13. Fitting the noise instead of the data trend is a possi-
ble source of error in this method. However, the networks
were cross-validated several times to eliminate this possibility
(Schenker and Agarwal, 1996). The architecture of this PLS-
NN model would then consist of the number of PLS factors
used, plus the architecture of the neural network itself. These
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Best Linear Model: (1 =0,1,5; § = 18-28), 3 Latent Variables;
RMSE: 33 mg in Testing (CV)

Best NN Model: (1 =0,1,5; & = 18-28), 2 Tan-Sigmoid Hidden Neurons
RMSE: 35 mg in Testing (CV)

PLS-NN Models : RMSE in Testing Phase of CV
Number ‘ Latent Variables
of Hidden }
Neurons ; 2 3 4 5 6
2 328 31.98 30.7 321 31.5
3 31.7 31.22 31.62 334 31.3
4 33.9 314 31.7 31.6 33.6

Figure 14. Performance comparison of different models
(Honda database).

factors were determined by cross validation, as described for
the BMW database. The performance of different PLS-NN
models using the Honda engine-test data is shown in Figure
14. As the results indicate, the generalization performance is
very consistent across different architectures. It is clear from
the results that the model was able to perform very close to
the quality of the given data. The Honda engine-test data
had a smaller standard deviation and lower test-to-test vari-
ability. This was reflected in the fact that the rmse in cross
validation across different models was consistently close to
about 32 mg for the Honda database. The best PLS-NN model
had an rmse of 30 mg in cross-validation. The experimental
error between repeats for this test was around 25 mg.

Extension to Blends of Fuel Additives

The preceding model was extended to blends, which are
fuel-additive packages that contain more than one fuel-ad-
ditive molecule/component in them. As with the previous
data, no information about the fuels was used, and the latent
variables used in the models were projections of the descrip-
tors calculated at different times while varying the fuel Hilde-
brand parameter between 18 and 28 MPa¥2. Cross-validation
was performed over 50 partitions, and the average rmse is
reported in the table. It was evident that the accuracy of the
best models did not vary significantly, with linear models
slightly better than the best neural-network models. This may
be due to the sparseness as well as the noise in the data.
While the accuracy of the forward models in explaining the
experimental data for the Ford model was not great, the sol-
ubility descriptors did capture quite significantly the formula-
tion knowledge. Figure 15 shows the plot of the best solubil-
ity descriptor on the X-axis with expert assigned values for
the thermal stability of the blends used in the case study. The
two descriptions are closely correlated with a correlation co-
efficient of 0.965. This showed that, because of the nature of
the hybrid-model, a clear separation between the underlying
physics of the mechanism and the data-based statistics is
achieved. This implied that even when the hybrid model failed
to provide an accurate description of the IVD behavior of
blends (due to the nature of the training data or other un-
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Correlation: 0.965

Thermal Stability Descriptor (Expert Assigned)
o
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Best *Solubility” Predictor

Figure 15. Correlation between expert assigned and
solubility descriptors.

modeled effects), the first-principles model remained quite
accurate in capturing the underlying formulation knowledge
behind the stability of the additives. This is crucial, because
even in the absence of engine test data, a screening proce-
dure for additives based on stability could be established.

Fuel Additives Design Using Evolutionary
Algorithms

Up to this stage, we have demonstrated that a hybrid ap-
proach utilizing fundamental models in conjunction with some
statistical /neural-network algorithms provides improved pre-
dictions for a number of different case studies for a difficult
design problem, such as fuel-additive design over conven-
tional structure-property methodologies employing a multi-
tude of ad hoc structural descriptors. This sets the stage for
the inverse or reverse-design problem, which involves con-
struction of fuel-additive packages that meet a desired 1VD
performance constraint. Although several techniques could be
potentially applied towards the inverse problem, most of them
rely strongly on the functional nature of the predictor method.
In our particular case, the presence of the neural network in
the hybrid model precludes the use of mathematical-
programming methods, because the accompanying solution
strategies do not work well with neural-network objective
functions. Evolutionary methods offer a powerful alternative,
due to their robustness to discontinuity and nonlinearity in
the objective function. Therefore, it was the ideal method for
the design of fuel additives using hybrid forward model for
performance prediction. Genetic algorithms usually offer ease
of development and are much more powerful when cus-
tomized using knowledge specific to the application. This
could be achieved by the use of customized representation
(Rogers and Hopfinger, 1994; Rogers, 1996), specialized ge-
netic operators (Venkatasubramanian et al., 1996; Venkata-

Statistical/Neural-Net

A Correlation
Physical Model

Hybrid Model
[ | y Intake Valve

Deposit
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Figure 16. Forward and inverse problems in computer-aided fuel-additive design.
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sign.

subramanian and Sundaram, 1998; Glen and Payne, 1995),
and /or selection schemes (Venkatasubramanian et al., 1995).
In this section, the development of an evolutionary algorithm
for fuel-additives design is described. The important aspects
of this algorithm are the representation and the operators
used to reflect the special nature of the product-design prob-
lem. The general approach to the fuel-additives design prob-
lem is outlined in Figure 16. While the specific details of the
product-design problems vary, the main components of the
evolutionary algorithm for fuel-additive design were the same
as are depicted in Figure 17. The main differences are in the
representation, the genetic operators, and in the determina-
tion of the fitness function.

Representation

The vital components of the additive that formed a conduit
between its structure and performance were the head, linker,
and tail. This was in fact also the level of detail at which
design decisions were made during formulation. The alpha-
bet set or the basic palette from which additive structures
were assembled, therefore, consisted of heads, tails, and link-
ers. Additional information in terms of satisfying the basic
chemical and formulation constraints in the combination of
head, linkers, and tails was also incorporated.

Figure 18 shows the representation used in the evolution-
ary scheme. As opposed to the traditional binary representa-
tion (Holland, 1975; Goldberg, 1989; Back and Schwefel,
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Figure 18. Representation used for evolutionary design
of fuel additives.

1993), and the modified string representation (Chan, 1994),
the one used here is best described as object oriented. For
instance, all head objects contain information on their va-
lency that dictates the number of linkers that should be at-
tached to it. In addition, they also contain details regarding
where the branch points are, in terms of the functional groups
and kinds of linkages allowed or disallowed. The linkers and
the tails are similarly represented. The choice of a particular
type of head automatically constrains the number and some-
times the type of the linkers attached to it. A similar relation-
ship would exist between each linker and the tails attached to
the linker. This implies that changes to one component of the
structure will affect other components connected to it. In this
fashion, the object-oriented representation gives greater flex-
ibility in capturing the basic structural knowledge as well as
the connectivity underlying the fuel-additive design problem.
If an alternative representation such as binary or string was
used, it would have necessitated the use of externally im-
posed constraints or constructs to manage the flow of struc-
tural information.

Genetic operators

In evolutionary algorithms, genetic operators are the means
of manipulating existing solutions to create new ones that di-
versify or intensify (Michalewicz, 1996) the structural features
being explored for potential optimality. In this sense, genetic
operators are powerful in that they provide for both explo-
ration and exploitation of the search space. However, tradi-
tional genetic operators are stochastic in nature (DeJong,
1975; Goldberg, 1989) and often need customization to cap-
ture the constraints inherent to the application (Michalewicz,
1991, 1995). In an earlier work on polymer design (Chan,
1994), the problem structure was implicitly included in the
representation, and no explicit constraining of the mechanics
of the genetic operators was necessary. In the fuel-additive
problem, however, there are constraints explicitly specified in
the formulation that need to be acknowledged by the genetic
operators to efficiently search the combinatorial space. These
constraints disallow certain combinations of heads and link-
ers or linkers and tails. In addition, the valency of the head
and the linker control the allowed branching for each of them,
and hence disallow certain heads or linkers to be considered,
for instance, during mutation. These combinatorial con-
straints were explicitly enforced during genetic operation.
Four different crossover and four different mutation opera-
tors were used for the fuel-additive design. The essential dif-
ference between crossover and mutation was the number of
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Figure 19. Tail crossover operator.

parents involved in the operation. In applying the genetic op-
erators, the following sequence was followed. An operator
was chosen and several attempts made to satisfy feasibility
requirements of the anticipated offspring. If all attempts
failed (the number of possibilities was always a small finite

set), the operation was discarded and a different operator
picked for application.

Crossover. Crossover involves exchanges between two par-
ents. The cut points were chosen randomly on each parent
and structural features exchanged across the cut points. In

LN

,,.-”""

Paremi-2

Branch Crossover

Oifspring-1 fEspring-2
Branch A moved 1o site-2 1o L
retain feasibility of affspring-1
Figure 20. Branch crossover operator.
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the fuel-additive structure, however, the cut points could not
be chosen at random, as head-linker and linker—tail and
tail-tail points provide fixed cut points on the additive struc-
ture. Hence, four types of crossover could exist, depending
upon the cut point chosen.

Tail Crossover. The linker—tail bond was the cut point for
tail crossover. Here, the tails of two parents were exchanged
to create two offsprings. This is depicted in Figure 19.

Branch Crossover. The cut point for this operator was the
head-linker bond. Here, a linker along with all tails attached
to it (a branch) was chosen at random on each parent from
among all linkers in the respective structures. The chosen
branches were then exchanged between the parents to create
two offsprings, as shown in Figure 20. Feasibility was en-
forced, by requiring that the linkers exchanged be compatible
with the specific branching sites on the head components of
the appropriate parents. For instance, in Figure 20 the
crossover was performed only when the branch from the sec-
ond parent is compatible with attachment site 2 on the head
of first parent, and vice versa. In the case of structures with
multiple linkers or branches, one of the branches from the
unaffected sites on the head may be moved to the open site
to ensure that the entering branch can be feasibly placed. As
shown in the figure, the first branch of first parent was moved
to site 2 to accommodate the entering branch from parent 2
into the first attachment site.

Linker crossover. The linker crossover involved the ex-
change of chosen compatible linkers between two parents. It
is analogous to two-point crossover, which is often used in
evolutionary algorithms (Goldberg, 1989; Chan, 1994). The
operator was characterized by more than one cut point on

each parent, in this case a head-linker attachment site and
all the linker—tail attachments of the chosen linker. Such an
operator is shown in Figure 21. During application, once two
compatible head-linker sites were found on the parents, dif-
ferent rearrangements of tails of the first parent on the sec-
ond parent’s linker and vice versa were explored until all tails
on both linkers were compatible to the appropriate linker—tail
sites. The linker crossover operation might therefore lead to
relocation of some tails to different—tail attachment sites on
the new linker.

Head crossover. This operation was similar in flavor to the
linker crossover. Head components were exchanged between
parents during this operation. The original assignment of
linkers to the head might be rearranged as a result of this
operator.

Mutation. Mutation involves introduction of localized
perturbation to the population through randomly changing
one of the structural characteristics of the fuel additive. Four
different mutation operators were employed. These were
modeled along the same lines as the crossover operators to
yield tail, branch, linker, and head crossovers.

Tail Mutation. In the tail-mutation operation, a tail on a
chosen parent was replaced with another tail from the base
set (that is, set of all possible tails) that was compatible with
the linker—tail attachment site from which the original tail
was removed.

Branch Mutation. In this operation, an entire branch con-
taining a linker and all tails attached to it were mutated. Once
again the linker was chosen randomly, but always from among
the set of linkers compatible with the chosen head-linker at-
tachment site. This operator is depicted in Figure 22.

)
:I_
K
Parent 1
X, I
“n)
Offspring 1

Pareni 2

Linker Crossover

=)

Offspring 2

Figure 21. Linker crossover operator.
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Figure 22. Branch mutation operator.

Linker Mutation. The linker-mutation operation replaced
a linker on a chosen parent with a compatible linker from the
base set. This was done in two steps. First, a linker was cho-
sen at random from a set of linkers compatible with the
head-linker attachment site. This linker was used as the re-
placement if a sufficient number (as many as the branching
of the new linker) of tails on the removed linker were com-
patible with the sites on the new one. If not, different rear-
rangements of the tails were explored to identify a compati-
ble configuration. If no such arrangement could be found,
this linker was dropped from the list of compatibles (only for
this selection procedure) and a different linker component
was chosen. If the chosen linker had more branch points than
the linker mutated, the additional branches/tails were cho-
sen at random, but compatible with the vacant attachment
sites on the linker. If the chosen linker had less branch points,
the surplus tails after feasible assignment were discarded.

Head Mutation. In the head-mutation operation, the head
of the chosen parent was replaced with a compatible head
from the base set. As with the linker crossover, the linkers on
the tail might be rearranged as a result of this operation to
ensure feasibility of the offspring. All the operators described
earlier ensured the creation of feasible offspring from feasi-
ble parents. The initial population for the evolutionary algo-
rithm was also created in a random but feasible manner.
While none of the genetic operators described earlier were
involved at this stage, a feasible growth operator was imple-
mented to assemble the fuel additive, one component at time.

Results and Discussion

As shown in Figure 17, the main aspects of the evolution-
ary algorithm are the creation of an initial population, fitness
determination, selection, and application of genetic opera-
tors. In our study, the populations were selected based on
fitness proportionate schemes (Goldberg, 1989). The objec-
tive function for the search was allowed to be one of two
different forms:

1. Maximizing the stability of the additive at a given time
and for a given fuel Hildebrand parameter. In this case, the
amount of active additive at the desired time and for the given

AIChE Journal June 2001

Table 1. Fitness of Additives Identified for Solubility

Maximization
-
& (MPa¥?) 1 5 10
19 0.956 0.791 0.637
21 0.956 0.849 0.729
23 0.923 0.720 0.607
25 0.418 0.406 0.501

fuel Hildebrand parameter was maximized. This objective
function did not require the use of the neural-network /re-
gression model.

2. Minimizing the predicted IVD for the given additive
structure and operating conditions. For this objective func-
tion, a reliably accurate hybrid model (first-principles+ NN
hybrid) was used for prediction.

The evolutionary algorithm was applied for the design of
fuel additives using both the preceding objectives separately.
The base set consisted of 25 heads, 9 linkers, and 9 tails. A
population of 25 molecules was used in every generation, and
the algorithm evolved through 25 generations. The mutation
frequency was set at 0.40 and the crossover rate at 0.60.
Within mutation, branch-mutation frequency was set at 0.10
and the rest equally shared between the other types. Within
crossover, all the different types had the same frequency
(0.25). Even for this relatively small-sized problem, the com-
binatorial size of the search space is around one million. In
this study, only the more common heads, tails, and linkers
were considered, and hence the base set was rather small.
The main aim was to demonstrate the success of the evolu-
tionary approach using constrained operators to come up with
high fitness solutions while examining a very small fraction of
the total search space. For the IVD prediction objective, the
best PLS-NN model based on the Honda database was used.
For the solubility objective, the fuel Hildebrand parameter
could be varied to reflect the nature of the fuel for which the
additive was being designed. Table 1 shows the results from
different runs of the evolutionary algorithm using the solubil-
ity objective. Each row of the table corresponds to a different
fuel Hildebrand parameter setting, the severity of the fuel
increasing as indicated across the first column. The second
column shows the maximum amount of active additive at time
7 =1 corresponding to the best additive structure located by
the evolutionary search. Similarly, columns 3 and 4 show the
maximum amount of active additive corresponding to the best
structure for the given fuel Hildebrand parameter, but at dif-
ferent times (7 =5, 10). Since the dimensionless time could
be directly correlated to the molecular weight of the additive,
the different times are analogous to the activity that could be
delivered by the additive structure at a given stage in its
degradation. The structures identified to be the best for each
set of conditions (7, 8) were different. This indicated that
the choice of the optimal additive structure was dependent
on the nature of the fuel itself. This was expected, as the
nature of the fuel, and especially its polarity, is crucial in
determining the activity of the additive, and hence different
additives give different levels of activity in the same fuel.
Table 2 shows the solubility performance (in terms of fitness)
of the best additive at time 7 =1 as subsequent time is
elapsed. As the table shows, the fitness of the additive for
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Table 2. Solubility at Longer Times of Additives that are
Highly Active at 7 =1

Solubility (in terms of fitness)

5 (MPa¥?) =5 =10
19 0.771 0.552
21 0.818 0.690
23 0.671 0.454
25 0.312 0.082

longer times was always lower than that of the best structure
identified by the evolutionary scheme at those times.

This demonstrated that the algorithm was able to utilize
the degradative stability built into the first-principles model
in decision making involving the choice of the structural com-
ponents. For all these cases, the amount of active additive
was estimated by considering a narrow band of Hildebrand
values around that of the fuel. This was different from the
activity estimates used for IVD prediction. Minimization of
the predicted 1VD was used as an alternative objective in
determining the optimum additive structure. The PLS-NN
model developed for the Honda database was used as the
predictor. This model did not require the specification of the
fuel Hildebrand value, as mentioned earlier. In addition, no
time points need to be specified, since these are internal to
the 1\VD prediction model. Once the predicted VD was de-
termined using the PLS-NN model, the following fitness
function was used.

F=1.0; IVDpred =< IVDIimit

F = e (@[IVDprep = IVDiimic) - IVDpyeq > VD - (9)

The fitness varies between 0 and 1, with the maximum value
attained for any value of the predicted 1VD less than a preset
limit. The fitness decayed exponentially to zero with pre-
dicted IVD larger than the limit. The base set and internal
parameters for the evolutionary algorithm were the same as
the ones used earlier. The limit on the 1VVD was set at 10 mg,
with an assumed initial dosage of 50 PTB. The results of three
different runs starting with different initial populations are
shown in Table 3. As indicated previously, the proprietary
nature of the work does not permit us to reveal the actual

structures in Table 3. The initial population was created as
copies of a single randomly assembled dispersant. The figure
shows the fitnesses of some of the best structures identified
in each run with a description of the structure in terms of
major differences from the ones present in the databases. In
the table, a novel structure was characterized as a structure
where all the components (the head, tails, and linkers) had
never occurred in any combination in either the BMW or
Honda engine-test databases. Many structures, some of whose
components had been examined in combination in the
databases, were characterized variants of known structures.
Even with a very small sampling of the search space (about
625 out of a possible one million), the evolutionary algorithm
was successful in identifying diverse structures that met or
were close in meeting the set objectives. Indeed, some of the
best structures found in each of the runs were never encoun-
tered before. These structures especially 111-1 in Table 3, not
only have the desired performance measure, but also good
synthesis potential.

Conclusions

A hybrid ANN forward model was developed to predict
the intake-valve deposit characteristics of fuel additives un-
der given operation conditions. This model was trained on
tested on two different sets of engine tests and was proved to
have very good predictive accuracy, given the sparseness and
noise of the data. The extension of this model from additive
structures to blends also showed reasonable promise (using
the Ford 2.3L engine-test data) in terms of its ability to cap-
ture the best functional aspects of an expert’s knowledge. An
evolutionary algorithm that designed structures to meet a de-
sired 1VD performance was developed. The algorithm was
augmented with formulation knowledge with carefully chosen
operators that retain structural and functional feasibility of
the offspring at every stage. The success of the algorithm was
demonstrated with two different objectives and different sce-
narios. The algorithm was able to identify a whole spectrum
of structures, including known good performers and some
novel ones. The synthesis potential of the identified struc-
tures was ensured to be at least fair, with the use of the feasi-
bility-aware genetic operators.

Table 3. Results from Three Different Runs of the Evolutionary Algorithm

Predicted 1IVD

(hybrid-NN
Run Rank Fitness model) (mg) Structural Description
1,11 0.997 11.4 Novel Structure. Rarely used components
| 2,1-1 0.996 115 Novel Structure. Similar to best structure, different core
6, 1-6 0.993 12.0 Variant of structure found in the BMW database
1,111 0.999 10.1 Novel Structure. Different from 1-1. Infrequently
used transitional component
1 2, 11-2 0.989 12.6 Slight variation of structure found in Honda and
BMW databases
4,11-4 0.983 13.2 Minor variations of structure 11-2 earlier
1, 1I-1 1.00 8.9 Novel Structure. Diffusion from 1-1 and I1-1.
Commonly used components
11 2, 11-2 0.994 11.9 Variation of 111-1. One of the transition and branch
components different
3, 111-3 0.993 12.1 Variant of structure 11-2 earlier. Slight modification of

the core. Contains an additional branch
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There is another subtle, albeit important use of the hybrid
approach developed here. The first-principles model cap-
tures the current understanding of the different factors that
influence the deposit removal mechanism. The ANN or re-
gression model is the bridge that connects the reality (or the
actual 1VD performance) to the extent of the current knowl-
edge (the functional descriptors from the first-principles
model). As demonstrated earlier, the evolutionary algorithm
could be used to optimize either on the descriptors or on the
final performance. In addition, the optimization provides a
variety of optimal or near-optimal structures for each of these
objectives. By studying the differences between the structures
based on the best current understanding and those based on
the actual performance, some missing aspects in the model-
ing might become evident. For instance, different kinds of
structures that are expected to be optimal in the functional
sense may not perform well in terms of the predicted I1\VVD.
This information could act as important feedback in different
ways. First, they might direct the amplification of engine-test
data by inclusion of specific kinds of additives for which the
differences were most pronounced. Second, they might serve
in refining the first-principles model to account for uncertain
parameters, such as measurement of fuel character and so
on. Third, they might point toward phenomena that would
have to be modeled to account for large differences between
theoretical expectations and engine-test data. All these av-
enues are currently being explored.

The forward model development as well as the inverse
problem of fuel-additive design is the first attempt of its kind
in this area, to the best of our knowledge. Although the feasi-
bility of reasonably accurate predictions and subsequent de-
sign based on these predictor models was proved, more could
be done to improve these models. While solubility/stability
proved to be a sufficiently good phenomenological descrip-
tor, future work would need to quantify other descriptors,
including deposit removal ability and hardware effects. From
the perspective of design, future extensions could include to-
tal package design, including design of blends and secondary
components that enhance fuel-additive performance.
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