
31 8 Biotechnol. Prog. 1995, 11, 31 8-332 

Issues in the Design of a Multirate Model-Based Controller for a 
Nonlinear Drug Infusion System 
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Multivariable controller design for the regulation of mean arterial pressure (MAP) 
and cardiac output (CO) in congestive heart failure patients is restricted by the limited 
frequency of CO sampling. Performance criteria for the controller specify maximum 
allowable transient settling times for both variables, and the design should account 
for the inherent multirate nature of the process in order to satisfy these criteria. We 
present a multirate model predictive control (MPC) design for MAP and CO regulation 
by combined infusion of sodium nitroprusside and dopamine, based on a comprehensive 
nonlinear model of the system. The multirate MPC algorithm is based on nonlinear 
quadratic dynamic matrix control. To reduce computation time, we introduce a 
selective linearization technique that linearizes the model on the basis of trends in 
the plant-model mismatch. The problem is complicated by restrictions on initial 
dopamine infusion, prescribed to avoid extremely slow responses. We present a novel 
rule-based override (RBO) to the MPC controller that uses a set of heuristics to 
initialize dopamine. The performance of the MPC/RBO controller is illustrated using 
simulation results. 

1. Introduction 
The regulation of mean arterial pressure (MAP)  and 

cardiac output (CO) in heart attack patients is an 
important control problem. In a typical intensive care 
or operating room scenario, these variables are usually 
maintained at their desired values by the controlled 
infusion of drugs. Two drugs that are commonly used 
in practice are sodium nitroprusside and dopamine. A 
review of the area of hemodynamic control by selective 
drug infusion has been provided by Yu (1990). The 
development of advanced control strategies for the pre- 
ceding drug delivery system requires a descriptive model, 
and Yu et al. (1990) have presented a nonlinear model 
of the circulatory system describing the effect of the 
infused drugs on the controlled variables. The drug 
delivery control problem is multirate due to the limita- 
tions on CO measurement frequency. The performance 
criteria for the closed-loop system specify the maximum 
allowable settling times for MAP and CO to reach their 
steady-state values, and if all measurements are slowed 
down to correspond to the CO sampling rate, the settling 
time criteria may not be met. This supports the need 
for an explicit multirate controller design for this system. 
We present a multirate MPC design for the drug infusion 
system, based on the nonlinear model, that meets the 
specified performance criteria. 
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For linear systems where some outputs are sampled 
at a slower rate than the others, with no secondary 
measurements available, Gopinath and Bequette (1991) 
presented a multirate MPC formulation for single input- 
single output (SISO) subsets of a multivariable system, 
based on a linear convolution model. The outputs are 
estimated at the intersample points using the linear 
convolution model and control move history, when mea- 
surements are not available. It is now well-known that 
linear MPC can be represented as a special case of linear 
quadratic (LQ) control and that the state-space repre- 
sentation provides a framework for disturbance predic- 
tion via state estimation (Prett and Garcia, 1988; Ricker, 
1991). The improvement in the disturbance estimates 
improves regulatory control and also the estimates of the 
outputs made a t  intersample points. However, this 
method is valid only for systems representable in the 
standard state-space form. While the nonlinear qua- 
dratic dynamic matrix control (NL-QDMC; Garcia, 1984) 
approach used in this paper does employ a linear model 
in the prediction phase, the temporal nature of the state 
variables does not permit the model to be written in the 
standard state-space form. Hence, we use a multivari- 
able extension of the multirate method based on convolu- 
tion models. This method does not include any distur- 
bance estimation, but the controller is designed to handle 
the specific constraints of this system and is seen to 
adequately meet all the performance criteria. 

This paper is divided into the following sections. 
Section 2 provides a design overview, section 3 is used 
to describe the nonlinear model and issues involved in 
designing a model-based controller to regulate the drug 
infusion rates, and section 4 describes the controller 
design and implementation issues in utilizing a complex 
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high-order nonlinear model in the control algorithm. 
Simulation results and conclusions are presented in 
sections 5 and 6, respectively. A detailed mathematical 
description of the nonlinear model is presented in Ap- 
pendix A, from the point of view of setting up a numerical 
simulation. Details of the MPC formulation are given 
in Appendix B. 

2. MPC Design Overview 
The current MPC class of controllers had their origin 

in heuristic algorithms developed in the late 1970s 
(Richalet et al., 1978; Cutler and Ramaker, 1980). These 
algorithms found widespread application mainly due to 
their ability to handle multivariable systems with dead- 
times and constraints. Recent developments have in- 
cluded a number of modifications to the basic heuristic 
algorithms, incorporating concepts of LQ design (Prett 
and Garcia, 1988; Ricker, 1991). However, these methods 
all share the same design principle, which will be 
outlined in the following. 

MPC design is based on the use of a model of the 
process in parallel with the plant to compute the pre- 
dicted output over a certain number of future sample 
intervals, or “prediction horizon”, at each sample point. 
An optimization problem is then set up at each sample 
point, where the predicted deviation from the desired 
output trajectory (error) is minimized over the prediction 
horizon. The decision variables in the optimization 
comprise the set of future optimal control moves that 
could be implemented. A reduced set (usually one) of 
these moves is then implemented on the plant and the 
model and the process is repeated, thus setting up a 
“moving horizon’’ framework. The MPC concept is shown 
schematically in Figure 1. The number of future moves 
computed at each point in the optimization is the “control 
horizon’’ and serves as an important tuning parameter. 

An important feature of all predictive control algo- 
rithms is the ability to handle constraints. The incor- 
poration of constraints in the design is in the optimization 
step. In dynamic matrix control (DMC), the optimization 
is a least-squares minimization of the predicted error. 
Garcia and Morshedi (1986) proposed an extension to this 
method where a quadratic programming (QP) problem 
is derived from the least-squares objective function. The 
main feature of quadratic dynamic matrix control (QDMC), 
as this method is known, is that process constraints can 
be incorporated as explicit hard constraints in the QP 
problem, in contrast to DMC where they are satisfied in 
a least-squares sense. 
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Figure 2. Schematic diagram of the nonlinear drug delivery 
model. 

Since the control move computation (error minimiza- 
tion) is based entirely on the model prediction (if no 
constraints are active), it is obvious that the accuracy of 
the model has a significant effect on the ultimate 
performance of the closed-loop system. Hence, it is 
relevant to study the open-loop characteristics of the 
model carefully before designing a controller based on 
it. The drug delivery system exhibits several interesting 
characteristics in its modeled response to drug infusions 
under various initial conditions. In addition, drug infu- 
sions for this system are restricted by several constraints 
that significantly affect the solution to the optimization 
problem. The impact of these issues on the controller 
design are discussed in the following section, which 
describes the model in detail. 

3. Model Description 
To aid in simulating the effects of sodium nitroprusside 

and dopamine infusion on heart attack patients, a 
comprehensive nonlinear model that dynamically de- 
scribes drug effects on the circulatory system was devel- 
oped by Yu (1990). A schematic diagram of this model 
is shown in Figure 2. A broad division of the model yields 
three sets of descriptive equations: (a) the circulatory 
system equations, which describe the effect of specific 
body parameters on the controlled variables MAP and 
CO; (b) the drug effect relationships, which describe the 
influence of the infused drugs on the specific body 
parameters; and (c) the baroreflex model, which describes 
the effect of the arterial baroreceptors in short-term MAP 
regulation. 
3.1. Modeling Equations. In the following descrip- 

tion, note that sodium nitroprusside and nitroprusside 
are used interchangeably. Yu et al. (1990) used an 
electrical circuit analogy to describe the lumped param- 
eter model of the circulatory system. The forcing function 
is the time-varying elastance of the heart. The maximum 
value of this elastance, E,,,, is used to characterize 
ventricular contractility. Body compartments and blood 
vessels are represented as capacitances, and the viscous 
forces and resistance to blood flow in the systemic and 
pulmonary vasculature are modeled as resistors. MAP 
is then the voltage measured after the left ventricle, and 
CO is the current flow measured at that point in the 
circuit. 

All the circulatory system elements are described in 
terms of the following (time-varying) body parameters: 
(a) heart rate (HR) affects the contraction time of the 
ventricle, which in turn affeds the time-varying elastance; 
(b) maximum elastance (E”), which is used to charac- 
terize ventricular contractility; (c) unstressed venous 
volume (Vu8.ve,,), which provides a measure of resistance 
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Figure 3. Schematic diagram of the baroreflex model. 

to blood flow through the veins; (d) systemic resistance 
(Rsys), which is the resistance to blood flow through the 
smaller blood vessels; and (e) critical closing pressure 
(Pcdt), which is the minimum pressure required to prevent 
the collapse of blood vessels in pulmonary circulation. 

In congestive heart failure (CHF), there are usually a 
number of factors that cause the symptomatic drop in 
CO and MAP. One of the causes is a reduction in the 
effective contractility of the heart. Sodium nitroprusside 
and dopamine are chosen to increase ventricular con- 
tractility and to reduce resistance to blood flow. Dopam- 
ine is inotropic in nature, i.e., it increases ventricular 
contractility and primarily affects Emu. Nitroprusside 
is a vasodilator and reduces resistance to blood flow by 
reducing Rsys and increasing Vu,.,,,. This drug also 
reduces Pcrit, increasing the number of blood vessels in 
the pulmonary circulation and facilitating blood flow 
through the lungs at lower pressures. The drug infusion 
thus affects the controlled variables MAP and CO through 
these body parameters. An increase in dopamine infu- 
sion increases MAP and CO, and an increase in nitro- 
prusside infusion reduces MAP but increases CO. The 
baroreflex model developed by Wesseling et al. (1983) 
describes the effect of the arterial baroreceptors on short- 
term MAP regulation. The model described here uses a 
modified version of the baroreflex and is shown sche- 
matically in Figure 3. The baroreflex model uses MAP 
as the input to modify Vu,.,,,, Rsys, E,,,, and HR. 
Congestive heart failure is modeled by a reduction in Em, 
by 50-70% in the left ventricle. Right ventricular 
contractility is assumed to be unaffected. The baroreflex 
gains and time constants are also assumed to remain 
constant during reduced LV contractility. 

The nonlinear model is represented by 38 differential 
equations. The first set of seven equations is given by 
flow relationships for each descriptive vessel in the body 
and are of the form 

($!)i = Qi- - Qi+ 

where i is the vessel being considered. Qi- represents 
flow in from the previous vessel and Qi+ represents flow 
out to the next vessel. There are seven different descrip- 
tive vessels: the left ventricle, the large arteries, the 
small arteries, the venous system, the right ventricle, the 

pulmonary artery, and the pulmonary vein. In addition, 
the following equation describes the pressure-flow re- 
lationships for the large arteries: 

- 
(2) 

- Plarge arteries 'small arteries - 
(%large arteries L 

where L is a constant inertance element. The next set 
of 20 equations describes the time-dependent concentra- 
tion of the drugs in the descriptive vessels: 

where j refers to the drug and i represents the vessel 
being considered. m is the mass of the drug in the vessel 
being considered. Cd is the drug concentration in the 
vessel, and Vis the vessel volume (Cd = (mN). t112 is the 
half-life of the drug in the vessel. The descriptive vessels 
are the same as for the flow relationships, but the venous 
compartments are split into four virtual venous volumes 
for this computation to induce a delay in the effect of the 
drugs. The largest blood volume is in the venous 
chamber, and if the instantaneous mixing assumption 
is applied to the venous volume considered as one unit, 
the model predicts an unrealistically fast drug effect. 

The third group of five equations is the drug effect 
relationships, given by 

Eff is the quantitative measure of the effect of a drug on 
its affected parameter, in the chamber where the effect 
is assumed to be concentrated. The drug effects on the 
variables and the relevant chambers in which the drug 
is assumed to act are given in Table 1. The remaining 
equations are the five differential equations that describe 
the first-order transfer functions of the Hammerstein 
baroreflex model, as shown in Figure 3. The gains and 
time constants in the baroreflex model are assumed to 
be time-invariant. A description of the modeling equa- 
tions and the procedure for solving them are given in 
Appendix A. 
3.2. Dynamic Behavior. The open-loop behavior of 

the nonlinear model plays an important role in the design 
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Figure 4. Comparison of ventricular volume variation over one 
heartbeat under normal conditions and CHF. The systolic 
volume is significantly lower during CHF, which is indicative 
of reduced baseline contractility. (a) Left ventricular volume; 
(b) right ventricular volume. 

Table 1. Drug Effects 
affected 

drug parameters area of effect 
NP R s y s ,  Pwit small arteries, pulmonary artery 
NP VU,.",ll veins 
DP E" large arteries 
DP R S Y S  small arteries 

and implementation of a model-based controller. This 
section describes the model dynamics. 

3.2.1. Hemodynamics. The 38 state variables can 
be divided into two sets on the basis of their temporal 
characteristics: (a) variables that remain constant over 
a heartbeat (these include the drug masses and the drug 
effect variables) and (b) variables that change over a 
heartbeat (these include volumes and blood flow rates 
in the circulatory compartments and the baroreflex state 
variables). The drug-related variables are assumed to 
remain constant over a heartbeat within their respective 
compartments since the transport is via the circulation. 
Changes in values are assumed to take place with the 
fresh in flow of blood into the compartment, which in turn 
coincides with the heartbeat. The volumes and flow rates 
within the circulatory compartments, however, reflect the 
changes within a heartbeat. This is illustrated in Figures 
4 and 5, which show the open-loop variation in ventricu- 
lar volume and blood flow rate through the aorta over 
one heartbeat. The variation is shown for a normal 
patient and for a patient with CHF. The systolic and 
diastolic regions of the heartbeat can be seen clearly in 
the ventricular volume profiles in Figure 4a,b. The onset 
of CHF is simulated by reducing the baseline contractility 
of the left ventricle by 60%. Right ventricle contractility 
is assumed to be unchanged but the effect is seen in both 
LV and RV profiles as a higher end systolic volume. In 
the RV profile, the end diastolic volume is actually lower 
in CHF than in the normal case, but this is due to the 
modeling approximation that only LV contractility is 

"1 / 
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Figure 5. Flow through the aorta over one heartbeat under 
normal conditions and CHF. "he amplitude of the pulse is lower 
during CHF. The heartbeat is shorter during CHF, mainly due 
to the action of the baroreceptors. 

lowered during CHI?. The effect on flow rate through the 
aorta is also pronounced, and the pulse of blood has a 
much lower amplitude during CHF, as seen in Figure 5. 
The volume and flow rate plots span a shorter time period 
as the heart rate increases during CHF, reducing the 
duration of each heart beat. The primary symptoms of 
CHF are a reduction in CO and MAP, and the control 
objective for this system is to maintain MAP and CO at 
specified set points and to return the controlled variables 
to as close to normal stable conditions in the presence of 
any external disturbance, such as a change in contractil- 
ity. Controller performance strongly depends on how 
each drug affects the controlled variables, and this will 
be discussed in the description of the pharmacodynamics. 

3.2.2. Pharmacodynamics. Drug effects on the 
controlled variables are important in the design and 
tuning of a controller. Sodium nitroprusside effects are 
primarily a reduction in MAP and an increase in CO. The 
dynamics under normal and CHF conditions is slightly 
different with respect to  settling times, with the CHF 
condition exhibiting the slower response. The dopamine 
response is more complex and strongly depends on the 
drug dosage. At higher doses, there is usually some 
overshoot at high contractilities, and the settling time is 
in the 10-20 min range. At low infusion rates, the time 
constants are much larger (50-60 min settling time), and 
the system exhibits low gain and significant delay. 
Gingrich and Roy (1991) have analyzed the dopamine 
hemodynamic response under CHF, and the model 
predictions for dopamine response closely match their 
experimental results. 

Infusion effects can be clearly analyzed from steady- 
state plots. The MAP-dopamine and CO-dopamine 
steady-state plots are shown in Figure 6 under varying 
degrees of baseline contractility (between 7.0 and 1.5 
mmHg/mL). Each of the curves shows the presence of a 
dead zone at the low infusions. This is reflected in the 
low gains of the step responses under low dopamine 
infusions. At the higher contractilities, the MAP and CO 
steady-state curves exhibit input multiplicities, with 
maxima near a DP infusion of 3.5 pg/kg/min. This can 
be explained from a physiological standpoint. Dopamine 
is modeled as a pure inotropic agent and increases 
baseline contractility. If the baseline contractility is 
already high, then the result is an increase in MAP to 
values above normal, once infusions are greater than 
those corresponding to the dead zone. As the steady-state 
MAP increases due to infusion, the arterial baroreceptors 
cause increased excitation of the vagal center and further 
inhibit the vasomotor system, which normally causes 
vasoconstriction. This results in a lowered heart rate and 
some vasodilation in the systemic vasculature, causing 
MAP and CO to decrease. At higher drug doses, the 
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a linearized model in the prediction phase. Issues in 
linearization are discussed in this section. 

3.3.1. Performance Criteria. Due to the current 
technology in CO measurement, which consists of inva- 
sive techniques such as the Fick method or the indicator- 
dilution method, the drug delivery system is multirate 
in practical application. CO measurements typically are 
available every 2-3 min, while MAP can be measured 
as oRen as every 30 s. The need for an explicit multirate 
control scheme arises from the strict performance criteria 
for the controller. The drug delivery controller is respon- 
sible for tracking MAP and CO set points that are input 
by the physician. Since MAP and CO are critical physi- 
ological variables, the performance criteria for the con- 
troller are based on response time to these set points. If 
control move implementation is slowed down to  match 
the CO sampling frequency, the performance criteria, 
summarized here, may not be met: (1) The transient 
performance criterion for the closed-loop system is a 
maximum allowable settling time of approximately 10 
min for MAP and 20-25 min for CO. (2) The desired 
transient response must be achieved subject to the 
following constraints on the manipulated variables (SNP, 
sodium nitroprusside, DP, dopamine). 

0 I DP(K) I 7pgkglmin (5a) 

0 5 SNP(K) 5 lOpg/kg/min (5b) 

0 5 ASNP(k) = ADP(b) 5 0.2 pg/kg/min (5c) 

The manipulated variable bounds and velocity con- 
straints are imposed to avoid drug toxicity. In addition, 
the complications due to low dopamine dosage, as dis- 
cussed in section 3.2.2, impose additional constraints on 
the infusion. These constraints and the manner in which 
they are imposed are discussed later. 

3.3.2. Linearizing the Nonlinear Model. In a 
model predictive control strategy, the model used for 
control is of primary importance in determining the 
nature of the output prediction (Bequette, 1991). Use of 
the full nonlinear model involves integrating the model 
several times at each time step. For a complex, high- 
order model such as the one described here, this can be 
time-consuming, and it is common practice in nonlinear 
systems to assume that a linear model adequately 
describes the plant over all future points (Garcia, 1984). 
In implementation, this involves linearizing the nonlinear 
model at every sampling instant. Sistu et a2. (1993) have 
discussed the computational issues in using a full non- 
linear model compared to using a linearized model in the 
prediction phase. For the drug delivery model, this is 
not straightforward because of the different time scales 
associated with the hemodynamic and pharmacodynamic 
states. 

The dynamic state of the model is defined from 
heartbeat to heartbeat, and steady state is when the 
volumes and flow rates at the end of each diastole remain 
constant. Linearization for control is normally performed 
at every sampling instant. Since there are assumed to  
be an integral number of heartbeats per sample time, 
this corresponds to  the end of diastole. A linear model 
obtained in this fashion would adequately reflect the 
transition of the 38 states from heartbeat to heartbeat 
and their response to drug infusion. However, this would 
yield no information on the MAP and CO, since these 
variables are obtained as functions of the volumes and 
flow rates, respectively, integrated ouer the entire heart- 
beat. To describe the outputs in terms of a linear model, 
the nonlinear model should be linearized at every sub- 
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Figure 6. Steady-state response curves for DP infusion as a 
function of baseline contractility. The numbers on each curve 
indicate the baseline contractility for the left ventricle in “Hg/ 
mL. (a) MAP steady-state response; (b) CO steady-state re- 
sponse. 

baroreflex response is stronger and results in lower 
steady-state MAP and CO. Once the baseline contractil- 
ity is low, infusion does not increase MAP above normal. 
This reduces the effect of the baroreflex, and the steady- 
state curves at lower contractilities do not exhibit any 
multiplicities. It should also be noted here that the effect 
of dopamine is much more pronounced at low contrac- 
tilities. This is expected, since the drug is inotropic and 
any effect due to its infusion under normal conditions will 
be countered by the action of the arterial baroreceptors. 
The steady-state responses shown here are supported by 
the experimental results of Gingrich and Roy (1991). 

The response to  dopamine infusion plays a significant 
role in the design of the control system, primarily due to 
the variation in speed of response and the dead zone at 
low infusions. This factor would play an important role 
in meeting the controller performance criteria given in 
section 3.3.1. The high degree of nonlinearity of the 
system is also seen clearly in the wide range of gains and 
time constants in the steady-state and transient re- 
sponses. This underlines the significance of using a 
rigorous nonlinear model to design the controller. The 
next section summarizes the control-relevant issues 
arising from the hemodynamics and pharmacodynamics 
of the nonlinear model. 
3.3. Control-Relevant Issues. There are several 

issues that affect controller design for this process. 
Primary among these are the performance criteria. They 
determine the manner in which the control objectives 
must be met and govern the tuning of the MPC controller. 
In addition, there are model characteristics that affect 
implementation. The effects of low dopamine infusion 
were introduced earlier and point toward the need for 
some scheduling. Computation time also has an impact 
on the applicability of the proposed design. The use of a 
complex nonlinear model on-line in predictive control is 
a significant computational load that affects the feasibil- 
ity of real-time implementation. This is tackled by using 
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interval of the heartbeat. With roughly 60 heartbeats 
over every sample interval (we use the normal 120 bpm 
canine heart rate as a measure) and 200 integration 
intervals per heartbeat, such a linearization procedure 
may be as time-consuming as using the full nonlinear 
model for prediction. An alternative is to compute the 
step response coefficients at each time step. This pro- 
vides complete input-output information, which is all 
that is needed in using a linear model for prediction, and 
solves the problem of obtaining a 38-state linear model. 

3.3.3. Scheduling Dopamine Docrage. As seen in 
section 3.2.2, the dopamine dosage plays a significant role 
in shaping the response of the model, particularly at low 
dosages. Accurate scheduling of drug infusion is espe- 
cially critical when MAP needs to be increased. In the 
absence of any other drug, MAP can be increased only 
by the inotropic agent, and it is essential that dopamine 
infusion be greater than that corresponding to the dead 
zone. At low infusions, the response may be extremely 
slow due to very large drug time constants, and the 
settling time performance criterion may not be met. As 
suggested by Held and Roy (19931, this could be coun- 
tered by specifying a given region as a forbidden zone 
for dopamine infusion. This is also common operating 
practice, and various heuristics are followed by physi- 
cians to determine the span of the forbidden zone. The 
main factors that govern these heuristics in actual 
practice are as follows: (1) Current condition of the 
patient. A measure of the patient’s state that is relevant 
to this problem is the offset of MAP and CO from the 
desired stable values. (2) Patient sensitivity to the drug. 
Different patients respond differently at low dopamine 
dosages, and the physician uses this information to 
estimate the best dosage at any time. (3) Need for 
dopaminergic action. Dopamine acts as a vasodilator in 
the renal vasculature at very low doses. In some patients 
where the fluid output from the body is very low, the drug 
may be injected at low doses to increase renal function. 
The removal of fluids in this fashion may serve to relieve 
edema in some cases. 

The model we use here does not reflect the dopamin- 
ergic action, and response time constants are assumed 
to be the primary factors in scheduling dopamine. In this 
application, we choose the region between 0 and 4 pgl  
kglmin as the forbidden zone for initial infusion. Nor- 
mally the drugs are initialized to zero infusion at startup. 
The desired dopamine infusion profile is then to step up 
to 4 pgkglmin whenever the first infusion is requested. 
After this, the subsequent infusion can be subject to the 
other constraints as given in eq 5. The implication of 
this for the MPC solution and the method for implemen- 
tation are discussed later. The next section describes the 
multirate MPC formulation. 

4. Controller Design 
This section is used to provide an overview of the steps 

in the MPC algorithm and the implementation issues 
arising from each step. The details of the MPC formula- 
tion are provided in Appendix B. 

The MPC algorithm consists of two steps. In the 
prediction step, the model of the process is propagated 
over the prediction horizon. The unknowns in this 
propagation are the future values of the manipulated 
variables. These values are obtained at each time step 
through the optimization, where the future moves that 
minimize the predicted error are computed. In the 
presence of constraints, the minimization of the predicted 
error may require several optimization iterations. With 
a complex nonlinear model, the computational load then 
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becomes significant since the nonlinear model is inte- 
grated over a number of intervals at each time step, with 
each new guess for the decision variable vector (set of 
future moves). For real-time feasibility, it is important 
to ensure that the control calculations are completed 
within the specified sampling interval. To ensure this 
in the drug delivery system, we use a modification of the 
nonlinear MPC procedure, as proposed by Garcia (1984). 
In this method, the system is assumed to be linear at all 
future points. The prediction then is split into two parts. 
In the first part the nonlinear model is propagated over 
the prediction horizon prior to the optimization, with the 
current input values held constant. In the second part, 
the nonlinear model is linearized around the current 
states and inputs. Then the linear model is used in the 
optimization iterations, with the nonlinear contribution 
simply added on since it is computed a priori. This 
circumvents the repeated integrations and saves com- 
putation time. As discussed in section 3.3.2, linearization 
of the drug delivery model is nontrivial due to the two 
time scales, and the determination of a method for 
obtaining the linear model during control calculations is 
an important implementation issue. 

The second issue in controller design involves the 
multirate nature of the system. In the MPC procedure, 
the output prediction has to be corrected at each time 
step using feedback information. The correction term is 
the observed mismatch between the plant and model 
outputs (disturbance variable). In conventional MPC 
formulations such as DMC, this term is assumed to 
remain constant over the prediction horizon, since no 
future measurements are available. In recent formula- 
tions of MPC, the variation of the plant-model mismatch 
over the prediction horizon is estimated by characterizing 
it as a stochastic variable and computing the Kalman 
filter gains over the prediction horizon. In a multirate 
system, the values of all outputs may not be available at 
a given sample point. The best information available to 
correct the prediction then is the disturbance term 
computed at the previous sampled point for a given 
output. In a DMC-type formulation, the disturbance 
term a t  an intersample point for a given output is 
assumed to be the same as that obtained at  the previous 
sampled point. If the disturbance term is estimated over 
the prediction horizon as described earlier, then the 
estimate for the current point can be computed by the 
same procedure. Once the disturbance term is estimated 
at the current point, the prediction step is analogous to 
the single-rate case. The Kalman filter design procedure 
is valid for systems cast in the standard state-space 
form. While the NL-QDMC approach used here ensures 
a linear model over future points at every time step, the 
linear model used cannot be cast in the standard state- 
space form, as explained in section 3.3.2. The distur- 
bance estimation procedure thus cannot be used, and we 
use the DMC assumption of constant additive distur- 
bance to update the CO plant-model mismatch term at 
its intersample points. This procedure yields the desired 
closed-loop response specified in eq 5 for various simula- 
tion tests. In the most general case, however, it is 
expected that disturbance estimation would significantly 
improve regulatory performance. 

4.1. Implementation Issues. We now describe the 
linearization methods used to generate the on-line model 
and the rule-based scheduling of dopamine infusion to 
avoid the low infusion effects. 

4.1.1. Linearization. In using a nonlinear model, the 
most rigorous approach is to use the full model in 
prediction. This necessitates calling the model from the 
optimization routine, with every guess for the future 
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to a given set point change or disturbance rejection may 
actually require a dopamine infusion that is within this 
region, and constraining it to be either zero or greater 
than 4.0 may result in some steady states being unreach- 
able. The rule-based override thus is used only to avoid 
initial low doses that may result in extremely slow 
response. The important tuning parameters for the RBO 
are the waiting periods iu and id. These should be 
adjusted on the basis of the observed response and/or the 
requested set point. If the measurements are very noisy, 
it might be necessary to desensitize the RBO to noise 
effects to reduce chattering in the response. Once the 
dopamine infusion has been initialized a t  4.0 pg/kg/min, 
the subsequent control actions are determined by the 
MPC controller and are affected only by the MPC tuning 
and the constraints (eq 5). 

4.2. Controller Tuning. (1) The prediction horizon 
p is chosen on the basis of the open-loop settling time. 
The open-loop response of the output to each input is 
generated, and p is set to  the number of intervals 
corresponding to the settling time for the slowest input- 
output transient. (2) The control horizon m is used to  
tighten or detune the controller. In general, larger values 
of m for an input will result in more aggressive action. 
This yields faster response, but the closed-loop system 
is less robust to disturbances. m is chosen on the basis 
of the allowed trade-off. (3) The output weighting matrix 
Q is a diagonal matrix used to assign weights to the 
components of the error function, corresponding to each 
output, in the optimization step. A larger weight for an 
output will result in tighter control. (4) The input 
penalty matrix R is also a detuning parameter and is 
used to penalize control action in the objective function. 
This parameter is especially useful when a large m is 
used. The effects of these tuning parameters on closed- 
loop response have been discussed at length in the MPC 
literature (Maurath et al., 1988; Garcia et al., 1989). For 
the multirate drug delivery system, the following tuning 
parameters were used. 

control moves, at every iteration. With a multivariable 
nonlinear model with large prediction horizons, this is 
computationally intensive. On a test run with the drug 
delivery system, use of the full nonlinear model took 
roughly 30 min per MPC iteration. As discussed earlier, 
an approach based on using the linear model in prediction 
should be used. Due to the problems in linearization to 
a state-space form, as discussed in section 3.3.2, a 
multivariable step response model is generated for use 
in prediction. Generation of the step response at every 
time step is computationally expensive as well, since the 
coefficients would have to be generated by integrating 
the nonlinear model at every time step over a large 
enough number of intervals to correspond to the open- 
loop settling time. We propose, as an alternative, the 
following procedure of selective linearization that is based 
on trends in the plant-model mismatch: (1) At every 
step, the change in the plant-model mismatch term is 
noted. (2) If the difference in this term grows over more 
than a specified number of intervals or changes in one 
step by an amount greater than a specified tolerance, it 
is assumed that this is either due to the plant moving to 
a different region based on the current input or due to 
an unmodeled disturbance entering the system. A flag 
is set to indicate this. (3) If the flag in (2) is set, the step 
responses are computed. 

This procedure thus calls for generation of the step 
response model only when the current step response 
model is seen to be inadequate in tracking the plant. The 
computational load is reduced significantly as a result. 
In all the simulations reported here, this method was 
used, and the maximum computational time in an 
iteration (including the linearization step) was 27 s. This 
is within real time, since the base sampling interval for 
the drug delivery system is chosen to be 30 s. 

4.1.2. Rule-Based Override Option. To achieve the 
desired scheduling of dopamine infusion around the 
forbidden zone, we propose a rule-based override (RBO) 
to the MPC controller that alters the infusion on the basis 
of the current action requested by the MPC controller. 
It must be emphasized here that the override is not a 
controller, since its outputs are not influenced by the 
current values of the controlled variables. In future 
work, this option could be extended into a complete fuzzy 
logic controller that is activated only in the forbidden 
zone. 

At the beginning of the simulation, both drugs are 
initialized to zero. When set point changes are requested, 
the MPC controller requests the infusion of dopamine, if 
MAP or CO has to be increased. Velocity constraints are 
imposed as in eq 5, so that the first requested action will 
usually be in the forbidden zone. Even if the velocity 
constraints are removed within the forbidden zone, the 
requested action depends on the tuning of the MPC 
controller, and it requires extremely tight tuning to make 
a large initial step out of this region. As is well-known, 
such tuning adversely affects the robustness of the 
controller. Instead, the initial infusion for dopamine is 
determined by the rule-based override as follows: (1) 
Waiting periods are specified for control actions in the 
up and down directions. These are denoted as iu and id. 
The initial requests for dopamine infusion are monitored, 
and if these exceed iu in number, dopamine is stepped 
up to 4 pgkglmin. (2) Dopamine is held at an infusion 
of 4 pg/kg/min for at least id intervals. After this, control 
is passed completely to the MPC controller. 

The concept of a forbidden zone suggests that any  
infusion in this range must be avoided. It must be 
recognized here, however, that the limits of this zone are 
determined rather arbitrarily. The steady-state solution 

controlled variable prediction horizon weight 
MAP 
co 

15 1.0 
20 20.0 

manipulated variable control horizon penalty 
SNP 
DP 

3 
5 

100.0 
20.0 

In addition, the application-specific tuning parameters 
used were in the selective linearization and in the RBO. 
In selective linearization, the number of intervals over 
which the plant-model mismatch is allowed to grow or 
reduce before the model is relinearized was 5. The 
tolerance for maximum allowable change in the plant- 
model mismatch over one interval was lOmmHg for MAP 
and 0.25 min-l for CO. For rule-based override, the 
waiting period in the up direction (iu) was 3. The waiting 
period in the down direction was varied from case to case 
and is reported in the discussion of simulation results. 

5. Simulation Results and Discussion 
The simulation results in this section illustrate the 

performance of the multirate MPC controller in servo and 
regulatory mode. Simulations were performed on an 
IBM RS/6000 Model 550 with 256M memory, running 
AIX Version 3.2.4. The maximum CPU time per MPC 
iteration was 27 s. For similar applications reported in 
the literature, this lies within real time moss et al. (1987) 
used a 40-60 s sample interval, while Yu et al. (1990) 
used a 30 s sample time]. The GRG2 package (Lasdon 
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Figure 7. Closed-loop response to MAP set point changes under 
normal conditions. The MAP and CO responses are seen to meet 
the settling time performance criteria. The intermediate offset 
in CO is because DP is constrained a t  its lower bound. (a) MAP 
profile; (b) CO profile; (c) drug infusion profile. 

et al., 1978) was used to solve the optimization problem. 
In the multirate framework, the MAP sampling rate is 
assumed to be 5 times that of CO. All control moves are 
made at the base sampling rate. The following cases 
were simulated: (1) Normal patient, set point changes 
in MAP only; (2) patient with CHF, set point change in 
CO with a change in the plant operating region; and (3) 
patient with CHF, set point changes in MAP and CO. 
The model was initialized with the appropriate data sets 
for each case (C. M. Held, personal communication, 1993), 
as described in Appendix A. Unless stated otherwise, the 
model description of the plant is assumed to be perfect. 

5.1. Case 1. Normal Patient, MAP Set Point 
Changes. The closed-loop response under multirate 
MPC without the rule-based override is shown in Figure 
7. The plant and model are initialized with normal 
condition parameters, and the drug concentrations are 
initialized to zero. At t = 0, the nonlinear model is 
linearized by computing the open-loop step response. A 
dopamine step of 4.0 is used to compute the step 
response, and the coefficients are normalized according 
to this. Further linearization would follow the logic in 
section 4.1.1. A set point reduction is requested in MAP 
at t = 15. This is possible only by nitroprusside infusion, 
and the expected response is seen. MAP settles to the 

set point within 10 min, which satisfies the settling time 
performance criterion. CO is seen to settle with offset, 
since dopamine is constrained at its lower bound. At t 
= 30, the set point is increased to the initial value. Two 
control actions accompany this: nitroprusside infusion 
decreases, which lowers CO below its steady-state value. 
This is countered by dopamine infusion that serves to 
increase MAP and CO back to the set point. The settling 
time in both profiles satisfies the performance criterion. 
An important observation is the steady-state value of 
dopamine (0.72 pg/lrg/min). This is in the low end of the 
forbidden zone under normal conditions, but still results 
in the desired response. This illustrates that the final 
steady-state infusion for a given set point change may 
actually lie within the 0-4 pg/kg/min infusion range. We 
use this as a basis for handing control back to MPC after 
the waiting period in the implementation of the RBO. 

5.2. Case 2. Patient with CHF, CO Set Point 
Change. This case is used to study the disturbance 
rejection properties of the controller in regulating MAP 
and also its performance, with model uncertainty intro- 
duced. Transient responses are shown in Figure 8. The 
plant and model are initialized with CHF parameters, 
and drug infusions are set to zero initially. We compare 
three cases here: single-rate MPC (SR), multirate MPC 
(MR), and multirate MPC with the rule-based override 
(RBO). The control objective is to maintain MAP at its 
set point of 98.2 mmHg, while a set point change is 
requested in CO from 1.43 to 2.00 min-l. Single-rate 
MPC was implemented with the common sampling period 
now set to 2.5 min (to correspond to CO sampling 
frequency). The rule-based override was implemented 
with iu = 3. id = 3 was used for this case, on the basis 
of the observed distances of MAP and CO from their 
respective set points. In the extension of this concept to 
a complete fuzzy logic override controller, the selection 
of the waiting periods could be determined by the 
controller, on the basis of current offset. For the single- 
rate case, the horizons were based on the larger sampling 
time, and adjusted to represent roughly the same predic- 
tion time as the multirate case. The prediction and 
control horizons used were p(MAP) = 3, p(C0) = 4, 
m(SNP) = 1, and m(DP) = 3. The CO weight function 
was increased and the dopamine penalty was reduced 
from the multirate values to get the fastest single-rate 
response to the requested set point change. 

A CO set point change is requested at t = 5.0. The 
MPC controller requests an increase in the infusion of 
both drugs. The infusion in the single-rate case is lower 
for both drugs, which is expected as a result of the 
detuning effect of a larger sample time. The MR-MPC 
control action is subject to the velocity constraints on 
infusion and several steps are made in the forbidden 
zone. With the RBO, the MPC output is held at 0 for 
three intervals and then stepped up to 4.0 ,ug/kg/min. The 
effect of this is seen immediately in the MAP response 
time. The single-rate response is extremely slow and is 
entirely unsatisfactory. The multirate response is faster, 
but still does not satisfy the settling time criterion. The 
lower initial doses result in a smaller peak, but much 
slower settling. The RBO response satisfies the settling 
time criterion. The slight overshoot is due to the chosen 
value of id. With a smaller value, the control would have 
switched to MPC at an earlier point, eliminating the 
overshoot. The CO responses show the same trend. The 
single-rate response is extremely slow, while the multi- 
rate MPC still shows some deviation from set point 1 h 
aRer the set point change. The benefits of using the RBO 
to initialize dopamine infusion are obvious from this 
simulation. 
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Figure 8. Comparison of various MPC implementation methods. Transient responses to CO set point change under CHF with a 
sudden change in plant parameters introduced at t = 50. (a) MAP profile; (b) CO profile; (c) SNP infusion profile; (d) DP infusion 
profile. 

At t = 50, an uncertainty is introduced by reducing 
the LV baseline contractility, in the plant only, from 2.33 
t o  1.9. This results in a sudden drop in MAP and CO. 
Nitroprusside infusion is immediately reduced to bring 
MAP rapidly back to set point. Further, dopamine 
infusion also increases, which raises MAP and CO back 
to set point. The responses of the MR-MPC and the RBO 
are similar in terms of response time, since the RBO had 
handed control back to MPC and the drug infusions had 
nearly stabilized, at the time of the reduction in plant 
Emaxbase. The response times for both MAP and CO 
satisfy the settling time criterion. Again, the significant 
difference is with the single-rate strategy, which shows 
the expected slow response time. These results underline 
the importance of designing an effective multirate control 
system for combined MAP and CO regulation, and the 
proposed design illustrates a feasible method, depending 
on the availability of a reliable model. 

5.3. Case 3. Patient with CHF, MAP and CO Set 
Point Changes. The previous simulation established 
the performance deterioration as a result of slowing down 
all sampling frequencies to correspond to that of CO. We 
do not show further single-rate results, and conclusions 
regarding the controller design will be based on the 
performance of the multirate controller. The next simu- 
lation compares the MR-MPC with -0 for set point 
changes in MAP and CO. The closed-loop response is 
shown in Figure 9. A perfect model is assumed in this 
case, and the CHF parameters are used to initialize the 
plant and model, with zero drug infusion. At t = 5.0, a 
set point change in MAP occurred from 98.2 to 110 “ H g  
and a change in CO from 1.43 to 2.1 min-l occurred at 
the same time. The RBO was implemented with id = 
10, since the final desired value of CO is higher. After 
an initial wait of three intervals, the RBO increases 
dopamine infusion to 4 pgkglmin and holds it there until 
a further increase to the final value is requested by the 
MPC controller. The nitroprusside infusion in the earlier 
stage serves to increase CO. The effect on MAP is 
countered by the dopamine infusion. Once CO has been 

brought reasonably close to its set point, the nitroprus- 
side infusion levels off. The final increase in both MAP 
and CO to their set points is brought about by dopamine 
infusion. The improvement in the speed of response 
using the RBO is clearly seen in the transients. Differ- 
ences of roughly 15 min in MAP and roughly 30 min in 
CO settling time are seen. The reason is that the entire 
range of infusion that corresponds to a slow response is 
avoided (small steps from zero infusion). Once the RBO 
initializes dopamine to the specified level (4.0 pgkglmin 
in this case), further adjustments can be made on the 
basis of the MPC output. 

6. Conclusions 
Control system design plays a very important role in 

the successful implementation of an automatic drug 
infusion system, the objective being to achieve tight 
control, as determined by various performance criteria. 
We have presented a control system design for the 
combined mean arterial pressure-cardiac output regula- 
tion problem that satisfactorily meets the specified 
control objectives and performance criteria. The multi- 
rate controller design allows MAP and CO to be sampled 
at different rates, as in actual practice, clearly demon- 
strating the need for explicit multirate controller design 
when compared with the single-rate case. The success 
of any model-based controller design critically depends 
on the accuracy of the descriptive model. The rigorous 
nonlinear model used in this work has previously been 
shown to accurately predict system response (Yu et al., 
19901, as determined by the limits on the drug infusions. 
Further aspects of the open-loop behavior of the modeled 
system, from both the hemodynamic and pharmacody- 
namic points of view, were discussed in this paper. Open- 
loop response is important from the point of view of 
controller design, as it provides a valuable guideline in 
tuning the controller. 

An important implementation issue was addressed as 
a direct consequence of the low-dose open-loop response 
predicted by the model. Dopamine infusion is often 
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Figure 9. Transint response to MAP and CO set point changes under CHF. A perfect model is used throughout the simulation. The 
waiting periods in the RBO are adjusted to get the best initial DP infusion. (a) MAP profile; (b) CO profile; (c) SNP infusion profile; 
(d) DP infusion profile. 

scheduled in actual practice, but the scheduling methods 
vary widely from one practitioner to the next. A novel 
method for dopamine scheduling that results in the 
desired drug response was presented. The scheduling 
was achieved via a rule-based override on the MPC 
controller output, formulated to handle initialization from 
zero infusion. The initialization avoids initial infusions 
in a specified forbidden zone, thus preventing the slow 
responses that characterize low infusion rate response 
during CHF. This results in an overall superior response, 
as determined by the settling time performance criteria. 
The parameters in the RBO were seen to play an 
important role in the performance of the combined MW 
RBO controller, and it is expected that these would be 
important tuning parameters for a fuzzy logic controller 
based on the RBO concept. Future work in this area 
includes the development of a fuzzy logic controller 
specifically for dopamine initialization that takes into 
account current-controlled variable offset, in addition to 
the MPC output which is used by the RBO. 

Computational issues are important, especially from 
the point of view of real-time implementation of the 
design. The simulations showed that the use of a 
selectively linearized model in the prediction phase 
results in significant computational savings. Further 
efficiency may be achieved by reformulating the current 
model as a lower order system. We feel that a compart- 
mental model with a lower number of compartments 
could be used to describe the drug concentrations and 
drug effect changes and would still predict the dynamics 
adequately. The resulting reduced order model will 
reduce computation time considerably. Further, the 
reduced order may permit the use of the full nonlinear 
model even during prediction, with the added accuracy 
resulting in superior controller performance. This option 
will be addressed in future work. In the current design, 
however, the multirate MPC controller using the full 
nonlinear model with a selectively linearized prediction 
model is seen to run within real time, based on commonly 
used sample times. 

Table 2. Initial Data-Nonlinear Drug Delivery Model 
parameter normal CHF 

7.0 
49.813 
120.022 
125.329 
908.138 
58.18 
24.428 
64.097 
12.77 
0.4961 
119.6026 
2.3853 
13.038 
4.626 
19.6511 
19.6511 

2.333 
64.881 
112.503 
124.30 
813.213 
50.167 
40.172 
144.779 
25.687 
0.22146 
99.926 
1.4442 
26.489 
23.262 
9.7688 
9.7687 
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Appendix A: Nonlinear Modeling Equations 
and Solution Procedure 

The nonlinear modeling equations for the drug delivery 
system are given below. The equations are presented 
sequentially and describe the steps to be followed in 
setting up a time-domain simulation. Data for this 
section may be found in Tables 2-5. 

I. Initialization. As described in section 3.1, the 
circulatory system is divided into seven compartments. 
Blood is assumed to flow from one vessel to another in 
the following sequence: left ventricle - large arteries - small arteries - veins - right ventricle - pulmonary 
arteries - pulmonary veins - left ventricle. At the 
beginning of the simulation, the following variables are 
initialized: volumes in each of the seven compartments, 
V; flow in the large arteries (from the left ventricle), 
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Table 5. Maximum effect of the drug, Eff,,; power to 
which concentration is raised in the drug effect equation, 
P; drug reaction rate constant, kz; infusion corresponding 
to 50% drug effect, i50; drug half-life, ~ 1 1 2 .  

The drug time constant is defined as 

Table 3. Ventricular Parameters (Values for an 18 kg 
Doe) 

left right 
parameter ventricle ventricle 

A (mL-l) 0.145 0.145 
PM h " g )  2.0 2.5 
ED (mmHg/mL) 0.09817 0.06544 
v d  (mL) 5.0 12.0 
R,,, (mL) 0.0015 0.0045 

Table 4. Circulatory Parameters-Nominal Values 
(Values for an 18 kg Dog) 

parameter nominal value 
Rsysc (mmHg/(mL*s)-') 0.125 
Rven (mmHg/(mL%-') 0.00125 
Rp, (mmHg/(mL.s)-l) 0.0025 
Rpul (mmHgI(mL4-l) 0.013406 
Garge artenes b L h " g )  0.6 
Csmal~ arteries (mL"mHg) 0.0787 
Cven (mL/mmHg) 30.0 

C,, (mIJmmHg) 4.2 
Cpa (mL/mmHg) 1 .o 

&large d r i e s ;  BFC parameter to the baroreflex, BFC; initial 
LV contractility, E,, base LV; initial pressures in the 
systemic and pulmonary circulations, mean arterial 
pressure (MAP), mean pulmonary arterial pressure 
(MPAP), and mean pulmonary venous pressure MPVP; 
initial cardiac output, CO; initial stroke volumes for each 
ventricle, SV. 

Values for these parameters for normal and CHF 
conditions are given in Table 2. The following ventricular 
parameters are also initialized. Typical values for an 18 
kg dog are given in Table 3. Stiffness parameter, A; limit 
of linear region in the ventricular P-V relationship, PM; 
linear elastance parameter, ED; dead volume of the 
ventricle, Vd; characteristic resistance of the ventricle, 

In addition, the following ventricular parameters are 

(A1 1 

Ram 

computed from the preceding ones: 

V, = Vu, + P,IED 

B, = c, eXp(AVM) - PM (A3) 
Vu, is the unstressed ventricular volume (read in initial 
data) and VM is the volume corresponding to PM. C, and 
B, are derived constants. 

Next the circulatory parameters are initialized. These 
constitute characteristic resistances of vessels directly 
entering and leaving the heart and the compliances of 
the systemic and pulmonary vasculature. Values are 
given in Table 4. Characteristic resistance for flow 
leaving LV, Rsysc; characteristic resistance for flow enter- 
ing RV, R,; characteristic resistance for flow leaving RV, 
Rpdc; characterisic resistance for flow entering LV, Rpv; 
compliance of each systemic and pulmonary vessel, C. 

The drug parameters are initialized next. For sodium 
nitroprusside and dopamine, typical values are given in 

2112 

ln(2.0) 
z=- 

Then the second reaction rate constant is computed as 
follows. For NP - Rays and NP - Vu,.,,,, 

x = (i50)d85.0 (A5 1 
For the other effects 

3t = exp{P ln(r)} (A6) 

y = (i50)z/85.0 

where 

Then 

k, = kdx  (A71 
In the preceding equations, 85.0 mL of bloodkg of body 
weight is assumed. After all the parameters are initial- 
ized, initial drug concentrations and infusion rates are 
computed in the body, for each drug. 

umass = UW (A8) 

mbody = zmz 
c d  = m N  in each vessel ( N O )  

where u is the drug infusion rate in pgkglmin, umass is 
the mass infusion rate, and W is the subject body weight 
in kg. mi represents the drug mass in the ith compart- 
ment, and nwy is the total drug mass in the body. 

11. Solution Procedure. 
1. The baroreflex input is computed: 

ec(MAP-MAPo) 
(Al l )  

where MAP0 is the nominal value of MAP (120 mmHg) 
and c is an empirical constant equal to 0.062 63. 

2. Parameters that remain constant over one heart- 
beat are calculated: 

(A121 

(-413) 

(A141 

bfc = 1 + ec(MAP-MAPo) 

HR = H%ase - (YHR)HRbase 

Rsys = Rsys - (yRsys)Rsys base 

vus-ven = vus-ven base + yV,,.,,, 

Equations A12-Al5 represent the modifications due to 
the baroreflex. The base values in the nominal case are 
as fOllOWS: HRbase  = 120 bpm, Rayabase = 2.81 mmHg/ 
(mL*s)-l, E m ,  base RV = 1.5 mmHg/mL. The other base 

Table 5. Drug Parameters 

NF' - Rays 
parameters NP-F'C,.it NP-  Vus.ven DP - Emax DP- R s y s  

EfTmax 0.635 225.0 mL 1.3 0.5 
P 1.0 1.0 6.11 1.45298 
kz 0.025 s-l 0.00625 0.0011316 8-l 0.0125 
i50 1.706 pg/kg/min 0.936 p&g/min 4.0 pg/kg/min 92.261 pgkglmin 
7112 15 s 15 s 120 6 120 s 
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values are read in the initial data. All initial volumes 
are assumed to be the base unstressed volumes for each 
vessel. Y in each case represents the baroreflex output 
at the end of the previous heartbeat. The integration 
time over each heartbeat is determined by the heart rate 
(HR). The modified value is used to update the various 
time steps. 

Theat = 1/HR (AX)  

329 

Tstep = l/n(HR) 

0.65 T,, = 1 4- 0.004(HR - HRbaS,,% (A18) 

}Tct (A19) 
LV - base LV 

base LV 
T, = 1.0 - 0.2933 

Tbeat is the time duration of one heartbeat. Tstep is the 
integration step size within one heartbeat. n is the 
specified number of steps per heartbeat (a constant). T, 
is the contraction time of the ventricle (duration of 
systole). 

Each parameter except heart rate in eqs A12-Al5 is 
further modified by the drug effects. 

The drug effects are updated by integrating the drug 
effect equation. 

-- d(dEtff) - K,C,P[Effm, - E a -  k,Eff (A24) 

3. Parameters are integrated over one heartbeat. The 
variable &bat, which denotes flow out from the heart over 
one heartbeat, is first set to zero. The following steps 
are repeated over n intervals. 

(a) The baroreflex equations are integrated using the 
time domain representation of the transfer functions 
shown in Figure 2. The output from each first-order 
transfer function is Y. 

(b) The heart is in a relaxed state at the beginning of 
the beat. The diastolic pressure and time-varying 
elastance are computed for each ventricle. 

(A25)  
In the nonlinear region (PD > Pd, diastolic pressure is 
given by 

P D  = ED(V - Vus) 

P D  = (ED/A>[exp(A{VD - VM}) - 11 + P M  (A261 
The relaxed-state ventricular elastance is given by 

E = P d ( V  - Vd) (A271 
If the time within the beat t is less than T, (systole), then 

(A28) E = E  + 0.5(Em, - E)(1.0 - ~ 0 ~ ( 2 p t / T , ) )  

(c) The pressures in the rest of the compartments are 
computed. 

P = (V - VUJC v ’ vu, (A291 

P=O v5vus (A301 
where C is the compliance parameter for the compart- 
ment being considered. 

(d) The pressure-flow relationships in the ventricles 
are computed as follows. 

Flow out 

if P 5 Pa, 

if P > P, 

P = Pa* (A35) 

In the preceding equations, Pad is the blood pressure in 
the artery leaving the heart. Rout is the characteristic 
systemic or pulmonary resistance to blood flow from the 
heart. 

Flow in 

if P 2 Pven 

Qi- = 0 (A36) 

if P < Pven 

Qi- = Vven - (-437) 
In the preceding equations, P v e n  is the blood pressure in 
the vein entering the ventricle, and Rin is the character- 
istic systemic or pulmonary resistance to blood flow into 
the ventricle. 

(e) Blood flow rate in the small arteries is computed: 

(A381 

(0 Pulmonary flow rates are computed as follows. The 

- Psmall arteries - P v e n  

Rsys &small arteries - 

following terms are defined. 
If P p a  2 P p v ,  

P i n  = P p a  + Hves 

P o u t  = P p v  + Hves  

If P p a  < P p v ,  

P i n  = P p v  + H v e s  

P o u t  = P p a  + Hves 

If PI, I P , ~ t  (minimum pressure necessary to prevent 
pulmonary vessel collapse), 

Q = O  

Hl = P o u t  - pcr i t  

Ifpin > Pcrit ,  

Hl = 0 P o u t  < pcr i t  
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This sequence of steps is repeated over each simulation 
interval. 

H2 = Pin - Pcrit 

then 

Q =  
(Pi,  - Pout )H1  + (Pi ,  - PCfit)(H2 - H I )  - (H: - HI2)/2 

(A39) 
In the preceding equations, HT is the pressure equivalent 
to that of a column of blood of height equal to that of the 
lung (15.0 mmHg nominally). H,,, is a constant (3.75 
mmHg in the nominal case). 

(g) The volume-flow differential equations are inte- 
grated: 

R p u f l T  

In the notation used in this paper, i- refers to the 
previous vessel and i+ refers to the next vessel in 
sequence. In eq A40, the integration is performed for the 
seven assigned body compartments. 

(h) The flow per beat and pressures are updated: 

&beat = &beat + & (for each Vessel) (A42) 

MAP = MAP + Plarge arteries (A43) 

MPAP = MPAP + Ppa (A441 

MPVP = MPVP + Ppv (A451 
This completes the integration within a heart beat. Then 
for each ventricle, the stroke volume is computed from 

SV = QbeatTstep (A46) 

Qbeat = &beadn (A47) 
The mean values over the heartbeat are given by 

MAP = M A P h  (A48) 

MPAP = MPAP/n (A49) 

MPVP = MPVP/n W O )  
Equation A48 is the mean arterial pressure at the end 
of the heartbeat. 

4. Cardiac output is computed from 

CO = (SV)(HR) (A511 
5.  The end diastolic volumes are updated using the 

ventricular volumes at the end of the heartbeat. Pres- 
sures are updated using eqs A25 and A29. 

6. The drug concentration equations are integrated 
with the current infusion in each body compartment. For 
drug concentrations, the venous chamber is subdivided 
into four subchambers to introduce sufficient delay in 
drug effect and elimination. The new concentrations for 
each drug for the next cycle are obtained from 

(s), = (C,&),- - (CdQ),+ - (m/t112)i (A52) 

where i is the compartment for which the concentration 
is being computed. The new concentrations and mass 
infusion rates are computed from eqs A8-AlO. 

Appendix B: Nonlinear Multirate MPC 
Formulation 

For multirate systems, such as the drug delivery 
system where CO is sampled at a lower rate, the 
following terms are defined, consistent with the notation 
in existing literature on multirate control (e.g., Berg et 
al., 1988). The sample time for the ith output variable 
is denoted as an integer multiple Ni of a base sample 
period T,, corresponding to the fastest sampling rate. The 
sample times associated with each output are then 
defined by the following. 

Definition 1: Shortest Time Period zs. This is the 
shortest sampling period for an output variable. Assume 
that all inputs are manipulated at this rate. 

Definition 2: Basic Time Period zb. Assuming that 
at t = 0 all variables were sampled synchronously, tb is 
the number of intervals after which the samples coincide. 
The multirate system is then periodically time varying 
(PTV). t b  represents the period of the system as a 
multiple of T,: 

(B2) t b  = lcm(N,, N2, ..., Nny)Ts 
We also define 

v = Zdts (€33) 
kv hence defines the synchronous sample times, where 
all output measurements are available. In the multirate 
MPC formulation, we denote a general point kv + j  that 
i s j  steps from the synchronous point, where k = 0, 1, 2, 
... and j  = 0, 1, 2, ..., v - 1. 

I. Prediction Step. Consider a general nonlinear 
model of the s input-r output multivariable system: 

3i: = f(x,u,t}  (€34) 

Y = g{x,u,tl (B5) 
f and g are vector functions and x E R", u E RE, and y E 
Rr. In the NL-QDMC prediction step, the contribution 
to the predicted output is split into two parts. The first 
part is computed by integrating the nonlinear model (eq 
B4) over the prediction horizon holding the current input 
constant. Then the ith element of the nonlinear compo- 
nent of the predicted output vector, computed at time kv + j ,  is given by 

(B6) 
where 2(kv + j + i) is obtained by integrating eq B1 i 
steps into the future, with input u(kv +j). The nonlinear 
component is computed prior to the optimization step. 

If the current point kv + j  is a linearization step, then 
the linear multivariable convolution model for each 
input-output pair is generated by making a unit step 
change in the input, keeping all other inputs constant 
at their respective values in the input vector u(kv +j). 
The step response for the (z,q) input-output pair is 
represented by {az,(i)li = l-Nz,),where N,, is the trun- 
cation order for the (z,q) step response and roughly 
corresponds to the settling time of the open-loop tran- 
sient. The linear component of the prediction for the qth 

9NL(Kv + j  + i) = g( i (kv  + j  + i),u(kv +j), t)  
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output is then given by 

jqL(kv + j + i) = 
s u  
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c x a z , ( i  - t + l)Au,(kv + j + t - 1) (B7) 
s=lt=l 

p = min(i,m) 

i = 1, 2, ..., p 
where p is the prediction horizon and m is the control 
horizon. The predicted output is computed by adding the 
linear and nonlinear contributions for each output over 
its prediction horizon. 

The prediction computed thus far is open-loop since 
available feedback information has not been used. This 
is now corrected with the disturbance term for each 
output, which is the difference between model prediction 
and the measured value of the output at the current 
point. For the qth output, if the measurement is avail- 
able at kv + j, the feedback term is updated. If the 
measurement is not available, then an estimate of the 
output based on the previous measurement is used 
(Gopinath and Bequette, 1991). This is equivalent to 
holding the disturbance term for the qth output constant 
over all its intersample points. The estimate is given by 

where h,,(i) is the ith (z,q) impulse response coefficient, 
given by 

The estimation equation (eq B8) is written by assuming 
that the qth output is sampled only at the synchronous 
points. In general, the previous sampled point for the 
output may be at any kv + j*, where j *  -= v .  For the 
drug delivery system however, eq B8 is valid since the 
synchronous points are defined as those where CO 
measurements are available. The corrected prediction 
for the qth output at the ith future point, based on 
information at kv + j, is then given by 

?,(kv + j + i) = yqNL(kv + j + i) + 9$(kv + j + i) + 
{dgq(kv  + j )  + [ l  - 6,3yqe(kv + j )  - y,"(kv + j ) }  

(B10) 
where yqm is the model prediction at the current point 
and is given by 

In eq B10, 6, is used to represent the measurements 
available at kv + j. 

6,  = 1 if the qth output measurement is available 

6, = 0 otherwise 
11. Optimization Step. Once the output prediction 

has been computed for the multirate system, the opti- 
mization step is the same as in single-rate MPC, since it 
is assumed that control moves will be updated at the base 
sampling rate. The optimization step consists of finding 
the m future optimal control moves that minimize the 
predicted error in a least-squares sense over the predic- 
tion horizon, subject to the satisfaction of the process 

constraints. In the usual notation, let e denote the 
predicted error vector. The j t h  component of the error 
vector for the qth output at any (sampled or intersample) 
point k is defined by 

e,(k + j) = yqd(k + j) - 9,(k + j )  (B12) 
where yd is the desired output trajectory over the predic- 
tion horizon. The objective function for the minimization 
is given by 

min Y(Au) = eTQe + Au~RAu (B13) 
subject to the specified constraints. In eq B13, Au is the 
vector of future control moves and e is the predicted error 
vector, constructed by stacking the error vectors for all 
outputs. Process constraints on manipulated and output 
variables can be written in terms of constraints on the 
future control moves (Garcia and Morshedi, 1986). R and 
Q are weighting matrices for the control moves and 
predicted errors, respectively. Selection of the horizons 
and determination of the weighting matrices constitute 
the important tuning steps in MPC, and tuning rules for 
their selection have been discussed by a number of 
researchers (Maurath et al., 1988; Garcia et al., 1989). 

One of the main advantages of the MPC formulation 
is the ability to explicitly include constraints in the 
controller design. This is done by formulating a qua- 
dratic programming (QP) subproblem with output and 
manipulated variable constraints stated as hard con- 
straints on the decision variables: 

min q(Au) = '/,Au~GAu + gTAu (B14) 

such that CTAu L b, (B15) 
G is the Hessian of the objective function (eq B13), and 
g is the objective function gradient. Equation B15 
represents the system of linear equality and inequality 
constraints. For the unconstrained case, an analytical 
solution to the QP exists (Fletcher, 1981) and is given 
by 

Au* = -G-'g (B16) 
where the Hessian and the gradient of the objective 
function are obtained by the vector differentiation of the 
objective function. Equation B16 is the linear uncon- 
strained MPC control law. In the presence of constraints, 
the solution is not straightforward since the analytical 
expression (eq B16) is no longer valid and the constrained 
MPC control law is highly nonlinear even for linear 
models. However, the constrained QP solution can be 
written in terms of active sets (Fletcher, 1981), resulting 
in a piecewise linear MPC control law. The computed 
solution Au* is now implemented on the plant and model, 
and the prediction and optimization steps are repeated 
a t  the next time step. 
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