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Abstract

This work presents a compartmental model for delivery of drugs under anesthesia and an advanced model based control algorithm fc
insulin delivery for Type 1 diabetes. The model for anesthesia involves choice of three drugs isoflurane, dopamine and sodium nitroprusside
which allows simultaneous regulation of mean arterial pressure and unconsciousness of the patients. A number of dynamic simulations at
carried out to validate the model. For Type 1 diabetes, a parametric programming approach is used to obtain the optimal insulin infusion rate
as an explicit function of the state of the patient and the regions in the space of the state of patient where these functions are valid. Thes
explicit functions allow the implementation of blood glucose control on a simple computational software and hardware platform.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction 2. Modelling anesthesia

Modelling and control of drug delivery systems is a multi- Anesthesia is defined as the absence or loss of sensation.
disciplinary task involving engineers, physicians and math- In order to provide safe and adequate anesthesia, the anesthe-
ematicians. A model of a drug delivery system should be siologist must guarantee analgesia, provide hypnosis, muscle
detailed enough to capture and reproduce the complex phartelaxation and maintain vital functions of the patient. To assist
macokinetic and pharmacodynamic effects of the drug, but access to internal organs and to depress movement response
on the other hand simple enough to design a controller for to surgical stimulation, muscle relaxation is necessary. Anal-
the optimal delivery of the drugs. This paper considers two gesia is linked with pain relief and at present, there is no
drug delivery systems: regulation of anesthesia and insulin specific technique to quantify it. Hypnosis, referred to as
delivery for Type 1 diabetes. In Secti@y a model for the depth of anesthesia, is a general term indicating the uncon-
delivery of drugs under anesthesia is proposed. The key fea-sciousness and absence of post-operative recall of events that
ture of this model is that it takes into account simultaneous occurred during surgery. The electroencephalogram, which
regulation of the mean arterial pressure and unconsciousnesg the only non-invasive measure of central nervous system
of the patients. SectioBproposes a parametric controller for  activity while the patient is unconscious, is considered as the
the regulation of the blood glucose concentration, which can major source of information to assess the level of hypnosis,
be implemented on a simple computational platform while via the Bispectral Index (BIS). Anesthesiologists administer
incorporating constraints on the blood glucose concentrationanesthetics and monitor a wide range of vital functions, such
and insulin infusion rate. Concluding remarks are given in as mean arterial pressure (MAP), heart rate, cardiac output
Sectiond. (CO), some of which can be measured while the others can be

inferred, in order to ensure patient’s safety. These vital func-
tions need to be monitored and maintained within tolerable
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Automation of anesthesia for monitoring of vital func- Fig. L In the next section, we discuss the pharmacokinetic
tions is desirable as it will provide more time and flexibility modelling of the drugs.
to the anesthesiologist to focus on critical issues, monitor
the conditions that cannot be easily measured and over- ;. prarmacokinetic modelling
all improve patient's safety. Also, the cost of the drugs
will be reduced and shorter time will be spent in the post- 5 7 ;. Respiratory system

in the area of developing models and control strategies for yja the respiratory system. Considering a well-stirred system,
anesthesialferighetti, Frei, Buob, Zbinden, & Schnider, thisis modelled as:

1997 Gopinath, Bequette, Roy, & Kaufman, 199%8ahfouf,
Asbury, & Linkens, 2003 Rao, Palerm, Aufderheide, & Vdcinsp = QinCin — (Qin — AQ)Cinsp— fr(VT — A)
Bequette, 2001Yasuda, Targ, & Eger, 198¥asuda et al., dt
1991a, 1991pZwart, Smith, & Beneken, 1972Gentilini X (Cinsp — Cout) Q)
et al. (2001)proposed a model for the regulation of MAP . ) ) o
and hypnosis with isoflurane. It was observed that control- Where Cinsp is the concentration of isoflurane inspired by
ling both MAP and hypnosis simultaneously with isoflurane the patient (g/mL)(in the concentration of isoflurane in the
was difficult.Yu et al. (1990proposed a model for regulating ~ inlet stream (g/mL)Cout the concentration of isoflurane in
MAP and CO using dopamine (DP) and sodium nitroprusside the outlet stream (g/mL)2i, the inlet flow rate (mL/min),
(SNP), but the control of hypnosis was not considered. AQ the losses (mL/min)y’ the volume of the respiratory

In this work, a compartmental model is proposed, which System (mL)/fr the respiratory frequency (1/minyr the
allows the simultaneous regulation of the MAP and the fidal volume (mL) andA is the physiological dead space
unconsciousness of the patients. Three major aspects charadmL).
terise the model: (i) pharmacokinetics, which describes the
uptake and distribution of the drugs, (ii) pharmacodynamics 2.1.2. Central compartment
which is concerned with the effect of the drugs on the vital ~ The concentration of isoflurane within the central com-
functions and (iii) baroreflex which accounts for the reaction partment is given by:
of the central nervous system to changes in the blood pres-
sure. The model involves choice of three drugs, isoflurane, . dCq > C;
DP, and SNP. This combination of drugs allows simultaneous " g; — Z (Q" ( - Cl))
regulation of MAP and hypnosis.

The model is based on the distribution of isoflurane in + frR(VT — 4)(Cinsp — C1) 2)

the human bodyYasuda et al., 199)aand the works of _ . : ,
Gentilini et al. (2001)and Yu et al. (1990) It consists of where(; is the concentration of the drug in compartmént

five compartments organized as showFig. 1 The drugs (g/mL), R; the partition coefficient between blood and tissues

are distributed among the compartments via the circulatory In com_partment andg; is the blood flow in compartment
system and therefore the heart can be taken as if belonging to(mL/m'n)' . . .

the central compartment. The transfers from the central com- The infusion of '|ntravenous drugs DP .and SNPin the cen-
partment to the peripheral compartments, i.e. compartmentstral compariment is modelled as follows:

2-5 occur viathe arteries and the transfers from the peripheral 5

compartments to the central, via the veins. The introduction Vl@ — Z (Qi (Ci — Cl)) + Cinf — iclvl (3)
of drugs can be related to the first compartment as shown on dr i— R; 1172

i=2

| RESPIRATORY SYSTEM |4%\r:“°

|

Injection of DP and
SNP

/ \ 1: Lungs (Central Compartment)
5 2: Vessel rich organs (e.g. liver)
3: Muscles
4: Other organs and tissues
5: Fat tissues

Fig. 1. Compartmental model.
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whereCips is the flowrate of the drug infused (g/miri); the
volume of compartment(mL) andzy, is the half-life of the
drug (min).

2.1.3. Peripheral compartments
Elimination of isoflurane by exhalation and metabolism
in liver, the second compartment, is given by:

dcC,

Vo= 0>

o - (4)

(Cl - CZ) — k20C2V2
R2
wherekygis the rate of elimination of isoflurane in the second
compartment (mint).
The concentration of isoflurane in compartments 3-5 is
given by:

g

C;
Vi

Qi(cl_Ri)7 i=3,...,5.

dr

(5)

P. Dua, E.N. Pistikopoulos / Computers and Chemical Engineering 29 (2005) 2290-2296

2.2.2. Effect of isoflurane on MAP
Isoflurane affects MAP as follows:

01

Z:Z(gi,o(l + b;C;))

MAP = 9)

whereg; o is the baseline conductivities (mL/(min mmHg))
andp; is the variation coefficient of conductivity (mL/Q).

2.2.3. Effect of isoflurane on BIS

There is experimental evidence that a transportation delay
exists between the lungs and the site of effect of isoflurane.
In order to model this, an effect compartment is linked to the
central compartment. The concentration of isoflurane within
this compartment is related to the central compartment, which
is given by:

dCe

—% = keo(C1 — Co) (10)

DP and SNP naturally decay in the body, hence the equation df

for compartments 2-5 is:

-o(-)
=i 1_E -

2.2. Pharmacodynamic modelling

dc;

) | =2, ...
dr !

‘/i 7Ci‘/[v ’ 5 (6)

T1/2

2.2.1. Effect of DP and SNP on MAP

DP and SNP indirectly affect MAP via two of the heart’s
characteristic parameters: maximum elastaritgaf) and
systemic resistanc&{ys). The action of these two drugs on
these parameters is given by:

dEff

= k1 CY (Effmax — Eff) — koEff

Emax = Emaxo(1+ Effop_£,.,)
Rsys = RsysO(l - EffDP—RSyS - EffSNP—RsyS)

()

where Eff is the measure of the effect of drug on the
parameters of interesRsys the systemic resistance (mmHg/
(mL/min)), Emax the maximum elastance (mmHg/mL),
Emax,onominal maximum elastancksys onominal systemic
resistance, Effp— g, effect of DP 0rEmax, Effpp— g, effect
of DP onRsys, Effsnp- Reys the effect of SNP oRsys, k1, k2
the rate constants amdis the non-linearity constant.

MAP can be expressed as a functiorfigfax andRsys as:

1

2
sys

AaortaALv

\/ﬁ\/ AEV - Agorta

where MAP is the mean arterial pressure (mmHHerta

the cross-sectional area of the aorta {f;m v the cross-
sectional area of the left ventricle (ébn Vv the mean vol-
ume of the left ventricle (mL) ang is the blood density
(g/mL).

MAP2 + 2K2MAP — 2K?Vy Emax = O

(8)

K =

where Ce is the concentration of isoflurane in the effect
compartment (g/mL) ankkgis the kinetics in the effect com-
partment (mim?).

The action of isoflurane can be then expressed as follows:
_c
Cé +ECyy
ABIS = BIS — BISg
ABISmaX = BISmaX— BISO

(11)

where BIS is the baseline value of BIS (assumed to be 100),
BISmax the maximum value of BIS (assumed to be 0)s5C
the patient’s sensitivity to the drug andis the measure of
the degree of non-linearity.

2.3. Baroreflex

In this model, baroreflex is obtained from a set of transfer
functions relating the mean arterial pressure to the maximum
elastance and the systemic resistance and is given by:

- (MAP—MAP()

bfc = 1 + e*(MAP—MAP()

C (12)

wherec is the empirical constant (mmHg).
2.4. Model validation

A number of dynamic simulations were performed using
gPROMS (2003jo validate the model. First, a simulation was
carried out in order to see the effect of isoflurane on MAP.
It was observed that a drop in MAP occurs when subjected
to an uptake of 1.5vol.% of isoflurane. MAP drops from 90
to 78 mmHg, which is consistent with the results obtained
by Gentilini et al. (2001 uring clinical experiments. It was
also observed that the elimination of isoflurane was correctly
modelled as MAP reaches the value of 90 mmHg as soon as
there is no uptake of isoflurane.
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Another simulation was performed to see the effect of It must be stressed that this procedure is oversimplified.
isoflurane on BIS. General anesthesia corresponds to BISFirst, the anesthesiologist would give high dosages of drugs
value between 40 and 65. It was observed that in order at the beginning of the procedure in order to induce quick
to maintain this range, the uptake of isoflurane should be response from the patient and then gradually adjust the infu-
between 0.5 and 1 vol.%. sionsto keep BIS, MAP, and infusion rates within safe ranges.

In order to see the effect of dopamine on MAP, a simula- Also, the patient would be subject to greater number of dis-
tion was performed, where the model was run at steady-stateturbances starting with the intubation at the beginning of pro-
for the first 10 min, then a drop of 20 mmHg in MAP was cedure, which was not considered in this simulation. Despite
induced and finally 10 min after the dropu.§/(kg min) of these simplifications, it was observed that the accuracy of the
dopamine was infused. It was observed that MAP decreaseanodel is not altered by multiple drug infusions.
to 70 mmHg after the drop and then increases to 80 mmHg
due to the baroreflex and then finally reaches the steady-state

after the infusion of dopamine. 3. Control of Type 1 diabetes
Similarly, another simulation was performed to see the
effect of SNP on MAP. It was observed thagid/(kg min) of Diabetes is a disease that affects the body’s ability to reg-

SNP results in a rapid drop in MAP from 90 to 75mmHg. ulate glucose concentration. There are two main types of
It was also observed that SNP should not be infused diabetes: Types 1 and 2 diabetes. In Type 1 diabetes (also
more than 1Gg/(kgmin) since this decreases MAP to called juvenile diabetes or insulin-dependent diabetes), the
65 mmHg. pancreas produces insufficientinsulin, and exogenous insulin
Also, in order to validate the model's general behaviour, is required to be infused at an appropriate rate to main-
an anesthetic procedure has been simulated, which consistgain blood sugar levels at normal levels. According to the
of five parts: for the first 10 min, it is assumed that the patient Diabetes Control and Complications Trial (DCCDGCT,
is awake. Then isoflurane of 0.6 vol.% is infused alongwith 1993, blood glucose should be controlled within the range
0.3ng/(kgmin) of SNP to create the anesthetic state and of 60-120 mg/dL. If insulin is supplied in excess, the blood
lower the blood pressure to 60 mmHg in order to minimize glucose level can go well below normal (<60 mg/dL), a con-
the possible blood losses. After 800 min, when the steady- dition known astypoglycemia. Onthe other hand, ifinsulin is
state is reached, a drop of 20 mmHg in MAP is induced. It not supplied sufficiently, the blood glucose level is elevated
was assumed for the sake of simulation that the anesthesi-above normal (>120 mg/dL), a condition known /agper-
ologist would react only after 5min of the drop by giving glycemia. Both hypo- and hyperglycemia can be harmful to
an infusion of 4.9.9/(kg min) of DP to counteract the drop.  an individual’s health. The effects of hypoglycemia are criti-
Then after 60 min, MAP does not drop and hence DP infusion cal on short-term basis, which can lead to diabetic coma and
was stopped. After another 40 min, the uptake of isoflurane possibly death, while those of hyperglycemia have long-term
and SNP was stopped and it was observed that the patienimpacts that have been linked to nephropathy, retinopathy and
smoothly wakes ugrig. 2 shows the results of this simula-  other tissue damage. Hence, it is very important to control
tion. the level of blood glucose in the body to within a reasonable

100T T120

T20

0 100 200 300 400 500 600 700 800 900 1000
time (min)

—a—MAP —e—BIS

Fig. 2. Simulation of the regulation of MAP and BIS during anesthesia.
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Fig. 3. Critical regions for fixeds.

range [ynch & Bequette, 2002Parker, Doyle, & Peppas, case of the widely used three-compartment Bergman model
2001. (Bergman, Phillips, & Cobelli, 1981are shown inFig. 3.
This can be achieved by developing a control algorithm In the figure,G, the blood glucose concentration above the
that can take into account the model of the patient and basal value, is fixed at 36 mg/dL ands the insulin concen-
the constraints on insulin infusion rate and blood glucose tration above the basal value (mU/L) aids proportional
concentration. In this work, an advanced model based con-to insulin concentration in the remote compartment (M)n
trol technique is proposed that does not require an on-line The explicit functions can then be stored on simple computa-
computer for its implementation. This is based upon para- tional hardware and implementation of the controller reduces
metric control algorithmsQua, Sakizlis, Dua, Doyle, &  to simple function evaluations.
Pistikopoulos, 2004istikopoulos, Dua, Bozinis, Bemporad, A schematic of the proposed controller implementation is
& Morari, 2002 where the state of the patient is systemati- shown inFig. 4where a sensor measures the blood glucose
cally partitioned into a number of polyhedral regions, known concentration and feeds it to the parametric controller, which
as critical regions, and in each of these regions the optimal computes the optimal insulin infusion rate and drives the
insulin infusion rate is obtained as an explicit function of mechanical pump to infuse the computed amount of insulin.
the state of the patient (s&gpendix A for the theory of The key advantage of the parametric controller is that a com-
model based parametric control). The critical regions for the plete road-map of all the possible solutions is available a

Meals,
Exercise

Parametric . Insulin
Controller Mechanical Patient Glucose
- ! Pump » > Sensor

Reference

Fig. 4. Closed loop parametric control system.
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priori which results in an enhanced feeling of safety. Since a subject to the following constraints:
complete road-map of all the possible scenarios is available,
an off-line ‘fail-safe’ analysis for various scenarios can also
be carried out. Umin < U; < Umax

wherex;eR", u;€R™, are the state and input vectors, respec-

tively, and the subscripts min and max denote lower and upper
4. Concluding remarks bounds, respectively. Typically, andu, represeng, 1, X and

theinsulin delivery rate, attime intervatespectively. Model

Automation of anesthesia is expected to allow the anes-based control problem can then be posed as the following

thesiologist to focus more on critical aspects during surgery optimization problem:

Xmin = X; = Xmax

(A.2)

Ny—1
mL;n J(U, x(r)) = x,T+N)_‘lPx[+Ny|, + Z [xtT+k|th,+k|, + utT+kRu,+k]
k=0
St Xmin < Xtk)r < Xmaxe k=1,..., N, (A3)
Umin < Uik < Umax, k=1,..., N,
Xkl = AXepkje + Busrg, k=0

Uk = Kxeppr, Ny < k < Ny

whereU = [u], ..., ”zT+Nu—1]T- 0 andR are constant, sym-
[metric and positive definite matrica given by the solution

of the Riccati equationy,, N, andN, the prediction, control

and constraint horizons, respectivatysome feedback gain
andthe superscript T denotes transpose of the vector. Problem

and reduce the amount of drugs infused and the time spen
by the patient in the post-operative care unit. A success-
ful implementation of the automation strategy relies on a
hi-fidelity model, which can capture the dynamic response : . ;
of the patient to various drug infusions. In this work, (A.3)issolved repet|t|\_/elyateachtlm&)rthe current state

a compartmental model for the automation of anesthesia@nd the vector of predicted state variab}gsa. . . .. xr+,s
that takes into account simultaneous regulation of MAP at t|me_t+1,...,t+Ny, respectlvely_, and correspondlng con-
and unconsciousness of the patients has been developed©!actionsu, ..., u;.y,—1 are obtained. The main drawback
and validated. This paves the way for the development of Of model based control proble&.3) is its extensive on-
advanced control and automation strategies for anesthesial.Ine c_omputatlonal_ effort. This _drawback can be overcome
An advanced model based parametric controller for Type PY USING parametric programming as described next.

1 diabetes was proposed. This controller provides the opti- 1 he €qualitiesinformulatiofA.3) are eliminated by mak-

mal insulin infusion rate as an explicit function of the state ing the following substitution:

of the patient, which is expected to greatly simplify the k=1
automation of the blood glucose control and reduce patient x4, = Ak x, + Z ABupyp—1-; (A.4)
inconvenience. j=0

to obtain the following Quadratic Program (QP):
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Appendix A. Model based parametric control

1
V.(x)= min =z Hz
Consider the following mathematical model of the patient: @ 2 (A.6)

s.t. GZ < w + Sx,
Xi41 = Ax; + Bu; (A.1) wherez=U+H 1F"x;, zeR* andS=E+GH 1FT.
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This mp-QP is solved by treatingas the vector of opti-
mization variables ang as the vector of parameters to obtain
zas an explicit function of,. U is then obtained as an explicit
function ofx, by usingU=z— H-1F"x,. The final solution
is given byU as a set of explicit functions af and the cor-
responding polyhedral regions in the space,afhere these
functions are valid.
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