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Abstract

This work presents a compartmental model for delivery of drugs under anesthesia and an advanced model based control algorithm for
insulin delivery for Type 1 diabetes. The model for anesthesia involves choice of three drugs isoflurane, dopamine and sodium nitroprusside,
which allows simultaneous regulation of mean arterial pressure and unconsciousness of the patients. A number of dynamic simulations are
carried out to validate the model. For Type 1 diabetes, a parametric programming approach is used to obtain the optimal insulin infusion rate
as an explicit function of the state of the patient and the regions in the space of the state of patient where these functions are valid. These
explicit functions allow the implementation of blood glucose control on a simple computational software and hardware platform.
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. Introduction

Modelling and control of drug delivery systems is a multi-
isciplinary task involving engineers, physicians and math-
maticians. A model of a drug delivery system should be
etailed enough to capture and reproduce the complex phar-
acokinetic and pharmacodynamic effects of the drug, but
n the other hand simple enough to design a controller for

he optimal delivery of the drugs. This paper considers two
rug delivery systems: regulation of anesthesia and insulin
elivery for Type 1 diabetes. In Section2, a model for the
elivery of drugs under anesthesia is proposed. The key fea-

ure of this model is that it takes into account simultaneous
egulation of the mean arterial pressure and unconsciousness
f the patients. Section3proposes a parametric controller for

he regulation of the blood glucose concentration, which can
e implemented on a simple computational platform while

ncorporating constraints on the blood glucose concentration
nd insulin infusion rate. Concluding remarks are given in
ection4.

2. Modelling anesthesia

Anesthesia is defined as the absence or loss of sens
In order to provide safe and adequate anesthesia, the an
siologist must guarantee analgesia, provide hypnosis, m
relaxation and maintain vital functions of the patient. To a
access to internal organs and to depress movement res
to surgical stimulation, muscle relaxation is necessary. A
gesia is linked with pain relief and at present, there is
specific technique to quantify it. Hypnosis, referred to
depth of anesthesia, is a general term indicating the un
sciousness and absence of post-operative recall of even
occurred during surgery. The electroencephalogram, w
is the only non-invasive measure of central nervous sy
activity while the patient is unconscious, is considered a
major source of information to assess the level of hypn
via the Bispectral Index (BIS). Anesthesiologists admin
anesthetics and monitor a wide range of vital functions,
as mean arterial pressure (MAP), heart rate, cardiac o
(CO), some of which can be measured while the others c
inferred, in order to ensure patient’s safety. These vital f
tions need to be monitored and maintained within toler
∗ Corresponding author. Tel.: +44 207 594 6620; fax: +44 207 594 1129.
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operating ranges by infusing various drugs and/or intravenous
fluids.
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Automation of anesthesia for monitoring of vital func-
tions is desirable as it will provide more time and flexibility
to the anesthesiologist to focus on critical issues, monitor
the conditions that cannot be easily measured and over-
all improve patient’s safety. Also, the cost of the drugs
will be reduced and shorter time will be spent in the post-
operative care unit. There is a significant amount of research
in the area of developing models and control strategies for
anesthesia (Derighetti, Frei, Buob, Zbinden, & Schnider,
1997; Gopinath, Bequette, Roy, & Kaufman, 1995; Mahfouf,
Asbury, & Linkens, 2003; Rao, Palerm, Aufderheide, &
Bequette, 2001; Yasuda, Targ, & Eger, 1989; Yasuda et al.,
1991a, 1991b; Zwart, Smith, & Beneken, 1972). Gentilini
et al. (2001)proposed a model for the regulation of MAP
and hypnosis with isoflurane. It was observed that control-
ling both MAP and hypnosis simultaneously with isoflurane
was difficult.Yu et al. (1990)proposed a model for regulating
MAP and CO using dopamine (DP) and sodium nitroprusside
(SNP), but the control of hypnosis was not considered.

In this work, a compartmental model is proposed, which
allows the simultaneous regulation of the MAP and the
unconsciousness of the patients. Three major aspects charac-
terise the model: (i) pharmacokinetics, which describes the
uptake and distribution of the drugs, (ii) pharmacodynamics
which is concerned with the effect of the drugs on the vital
functions and (iii) baroreflex which accounts for the reaction
o pres-
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Fig. 1. In the next section, we discuss the pharmacokinetic
modelling of the drugs.

2.1. Pharmacokinetic modelling

2.1.1. Respiratory system
The uptake of isoflurane in central compartment occurs

via the respiratory system. Considering a well-stirred system,
this is modelled as:

V
dCinsp

dt
= QinCin − (Qin − �Q)Cinsp − fR(VT − ∆)

× (Cinsp − Cout) (1)

whereCinsp is the concentration of isoflurane inspired by
the patient (g/mL),Cin the concentration of isoflurane in the
inlet stream (g/mL),Cout the concentration of isoflurane in
the outlet stream (g/mL),Qin the inlet flow rate (mL/min),
�Q the losses (mL/min),V the volume of the respiratory
system (mL),fR the respiratory frequency (1/min),VT the
tidal volume (mL) and∆ is the physiological dead space
(mL).

2.1.2. Central compartment
The concentration of isoflurane within the central com-

partment is given by:

V

w nt
( ues
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(
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t

V

partm
f the central nervous system to changes in the blood
ure. The model involves choice of three drugs, isoflur
P, and SNP. This combination of drugs allows simultane

egulation of MAP and hypnosis.
The model is based on the distribution of isofluran

he human body (Yasuda et al., 1991a) and the works o
entilini et al. (2001)and Yu et al. (1990). It consists o

ve compartments organized as shown inFig. 1. The drugs
re distributed among the compartments via the circula
ystem and therefore the heart can be taken as if belong
he central compartment. The transfers from the central
artment to the peripheral compartments, i.e. compartm
–5 occur via the arteries and the transfers from the perip
ompartments to the central, via the veins. The introduc
f drugs can be related to the first compartment as show

Fig. 1. Com
1
dC1

dt
=

5∑
i=2

(
Qi

(
Ci

Ri

− C1

))

+fR(VT − ∆)(Cinsp − C1) (2)

hereCi is the concentration of the drug in compartmei
g/mL),Ri the partition coefficient between blood and tiss
n compartmenti andQi is the blood flow in compartmeni
mL/min).

The infusion of intravenous drugs DP and SNP in the
ral compartment is modelled as follows:

1
dC1

dt
=

5∑
i=2

(
Qi

(
Ci

Ri

− C1

))
+ Cinf − 1

τ1/2
C1V1 (3)

ental model.
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whereCinf is the flowrate of the drug infused (g/min),Vi the
volume of compartmenti (mL) andτ1/2 is the half-life of the
drug (min).

2.1.3. Peripheral compartments
Elimination of isoflurane by exhalation and metabolism

in liver, the second compartment, is given by:

V2
dC2

dt
= Q2

(
C1 − C2

R2

)
− k20C2V2 (4)

wherek20 is the rate of elimination of isoflurane in the second
compartment (min−1).

The concentration of isoflurane in compartments 3–5 is
given by:

Vi

dCi

dt
= Qi

(
C1 − Ci

Ri

)
, i = 3, . . . , 5. (5)

DP and SNP naturally decay in the body, hence the equation
for compartments 2–5 is:

Vi

dCi

dt
= Qi

(
C1 − Ci

Ri

)
− 1

τ1/2
CiVi, i = 2, . . . , 5. (6)

2.2. Pharmacodynamic modelling
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2.2.2. Effect of isoflurane on MAP
Isoflurane affects MAP as follows:

MAP = Q1

5∑
i=2

(gi,0(1 + biCi))

(9)

wheregi,0 is the baseline conductivities (mL/(min mmHg))
andbi is the variation coefficient of conductivity (mL/g).

2.2.3. Effect of isoflurane on BIS
There is experimental evidence that a transportation delay

exists between the lungs and the site of effect of isoflurane.
In order to model this, an effect compartment is linked to the
central compartment. The concentration of isoflurane within
this compartment is related to the central compartment, which
is given by:

dCe

dt
= ke0(C1 − Ce) (10)

where Ce is the concentration of isoflurane in the effect
compartment (g/mL) andke0 is the kinetics in the effect com-
partment (min−1).

The action of isoflurane can be then expressed as follows:

�BIS = �BISmax
C

γ
e
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γ + ECγ
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.2.1. Effect of DP and SNP on MAP
DP and SNP indirectly affect MAP via two of the hea

haracteristic parameters: maximum elastance (Emax) and
ystemic resistance (Rsys). The action of these two drugs
hese parameters is given by:

dEff

dt
= k1C

N
1 (Effmax − Eff) − k2Eff

Emax = Emax,0(1 + EffDP−Emax)

Rsys = Rsys,0(1 − EffDP−Rsys − EffSNP−Rsys)

(7)

here Eff is the measure of the effect of drug on
arameters of interest,Rsys the systemic resistance (mmH
mL/min)), Emax the maximum elastance (mmHg/m
max,0nominal maximum elastance,Rsys,0nominal systemi

esistance, EffDP−Emax effect of DP onEmax, EffDP−Rsys effect
f DP onRsys, EffSNP−Rsys the effect of SNP onRsys, k1, k2

he rate constants andN is the non-linearity constant.
MAP can be expressed as a function ofEmax andRsys as:

MAP2 1

R2
sys

+ 2K2MAP − 2K2VLVEmax = 0

K = AaortaALV

√
ρ

√
A2

LV − A2
aorta

(8)

here MAP is the mean arterial pressure (mmHg),Aaorta
he cross-sectional area of the aorta (cm2), ALV the cross
ectional area of the left ventricle (cm2), VLV the mean vol
me of the left ventricle (mL) andρ is the blood densit
g/mL).
e 50

�BIS = BIS − BIS0

�BISmax = BISmax − BIS0

(11)

here BIS0 is the baseline value of BIS (assumed to be 1
ISmax the maximum value of BIS (assumed to be 0), E50

he patient’s sensitivity to the drug andγ is the measure o
he degree of non-linearity.

.3. Baroreflex

In this model, baroreflex is obtained from a set of tran
unctions relating the mean arterial pressure to the maxi
lastance and the systemic resistance and is given by:

fc = ec(MAP−MAP0)

1 + ec(MAP−MAP0) (12)

herec is the empirical constant (mmHg).

.4. Model validation

A number of dynamic simulations were performed us
PROMS (2003)to validate the model. First, a simulation w
arried out in order to see the effect of isoflurane on M
t was observed that a drop in MAP occurs when subje
o an uptake of 1.5 vol.% of isoflurane. MAP drops from
o 78 mmHg, which is consistent with the results obta
y Gentilini et al. (2001)during clinical experiments. It wa
lso observed that the elimination of isoflurane was corr
odelled as MAP reaches the value of 90 mmHg as so

here is no uptake of isoflurane.
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Another simulation was performed to see the effect of
isoflurane on BIS. General anesthesia corresponds to BIS
value between 40 and 65. It was observed that in order
to maintain this range, the uptake of isoflurane should be
between 0.5 and 1 vol.%.

In order to see the effect of dopamine on MAP, a simula-
tion was performed, where the model was run at steady-state
for the first 10 min, then a drop of 20 mmHg in MAP was
induced and finally 10 min after the drop, 5�g/(kg min) of
dopamine was infused. It was observed that MAP decreases
to 70 mmHg after the drop and then increases to 80 mmHg
due to the baroreflex and then finally reaches the steady-state
after the infusion of dopamine.

Similarly, another simulation was performed to see the
effect of SNP on MAP. It was observed that 1�g/(kg min) of
SNP results in a rapid drop in MAP from 90 to 75 mmHg.
It was also observed that SNP should not be infused
more than 10�g/(kg min) since this decreases MAP to
65 mmHg.

Also, in order to validate the model’s general behaviour,
an anesthetic procedure has been simulated, which consists
of five parts: for the first 10 min, it is assumed that the patient
is awake. Then isoflurane of 0.6 vol.% is infused alongwith
0.3�g/(kg min) of SNP to create the anesthetic state and
lower the blood pressure to 60 mmHg in order to minimize
the possible blood losses. After 800 min, when the steady-
s d. It
w thesi-
o ng
a p.
T sion
w rane
a atient
s la-
t

It must be stressed that this procedure is oversimplified.
First, the anesthesiologist would give high dosages of drugs
at the beginning of the procedure in order to induce quick
response from the patient and then gradually adjust the infu-
sions to keep BIS, MAP, and infusion rates within safe ranges.
Also, the patient would be subject to greater number of dis-
turbances starting with the intubation at the beginning of pro-
cedure, which was not considered in this simulation. Despite
these simplifications, it was observed that the accuracy of the
model is not altered by multiple drug infusions.

3. Control of Type 1 diabetes

Diabetes is a disease that affects the body’s ability to reg-
ulate glucose concentration. There are two main types of
diabetes: Types 1 and 2 diabetes. In Type 1 diabetes (also
called juvenile diabetes or insulin-dependent diabetes), the
pancreas produces insufficient insulin, and exogenous insulin
is required to be infused at an appropriate rate to main-
tain blood sugar levels at normal levels. According to the
Diabetes Control and Complications Trial (DCCT) (DCCT,
1993), blood glucose should be controlled within the range
of 60–120 mg/dL. If insulin is supplied in excess, the blood
glucose level can go well below normal (<60 mg/dL), a con-
dition known ashypoglycemia. On the other hand, if insulin is
n ated
a
g l to
a riti-
c and
p term
i y and
o ntrol
t able

ation o
tate is reached, a drop of 20 mmHg in MAP is induce
as assumed for the sake of simulation that the anes
logist would react only after 5 min of the drop by givi
n infusion of 4.5�g/(kg min) of DP to counteract the dro
hen after 60 min, MAP does not drop and hence DP infu
as stopped. After another 40 min, the uptake of isoflu
nd SNP was stopped and it was observed that the p
moothly wakes up.Fig. 2 shows the results of this simu
ion.

Fig. 2. Simulation of the regul
ot supplied sufficiently, the blood glucose level is elev
bove normal (>120 mg/dL), a condition known ashyper-
lycemia. Both hypo- and hyperglycemia can be harmfu
n individual’s health. The effects of hypoglycemia are c
al on short-term basis, which can lead to diabetic coma
ossibly death, while those of hyperglycemia have long-

mpacts that have been linked to nephropathy, retinopath
ther tissue damage. Hence, it is very important to co

he level of blood glucose in the body to within a reason

f MAP and BIS during anesthesia.
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Fig. 3. Critical regions for fixedG.

range (Lynch & Bequette, 2002; Parker, Doyle, & Peppas,
2001).

This can be achieved by developing a control algorithm
that can take into account the model of the patient and
the constraints on insulin infusion rate and blood glucose
concentration. In this work, an advanced model based con-
trol technique is proposed that does not require an on-line
computer for its implementation. This is based upon para-
metric control algorithms (Dua, Sakizlis, Dua, Doyle, &
Pistikopoulos, 2004; Pistikopoulos, Dua, Bozinis, Bemporad,
& Morari, 2002) where the state of the patient is systemati-
cally partitioned into a number of polyhedral regions, known
as critical regions, and in each of these regions the optimal
insulin infusion rate is obtained as an explicit function of
the state of the patient (seeAppendix A for the theory of
model based parametric control). The critical regions for the

case of the widely used three-compartment Bergman model
(Bergman, Phillips, & Cobelli, 1981) are shown inFig. 3.
In the figure,G, the blood glucose concentration above the
basal value, is fixed at 36 mg/dL andI is the insulin concen-
tration above the basal value (mU/L) andX is proportional
to insulin concentration in the remote compartment (min−1).
The explicit functions can then be stored on simple computa-
tional hardware and implementation of the controller reduces
to simple function evaluations.

A schematic of the proposed controller implementation is
shown inFig. 4 where a sensor measures the blood glucose
concentration and feeds it to the parametric controller, which
computes the optimal insulin infusion rate and drives the
mechanical pump to infuse the computed amount of insulin.
The key advantage of the parametric controller is that a com-
plete road-map of all the possible solutions is available a

p param
Fig. 4. Closed loo
 etric control system.
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priori which results in an enhanced feeling of safety. Since a
complete road-map of all the possible scenarios is available,
an off-line ‘fail-safe’ analysis for various scenarios can also
be carried out.

4. Concluding remarks

Automation of anesthesia is expected to allow the anes-
thesiologist to focus more on critical aspects during surgery

and reduce the amount of drugs infused and the time spent
by the patient in the post-operative care unit. A success-
ful implementation of the automation strategy relies on a
hi-fidelity model, which can capture the dynamic response
of the patient to various drug infusions. In this work,
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x

subject to the following constraints:

xmin ≤ xt ≤ xmax

umin ≤ ut ≤ umax
(A.2)

wherext∈Rn, ut∈Rm, are the state and input vectors, respec-
tively, and the subscripts min and max denote lower and upper
bounds, respectively. Typically,xt andut representG, I, X and
the insulin delivery rate, at time intervalt, respectively. Model
based control problem can then be posed as the following
optimization problem:

min
U

J(U, x(t)) = xT
t+Ny|tPxt+Ny|t +

Ny−1∑
k=0

[
xT
t+k|tQxt+k|t + uT

t+kRut+k

]

s.t. xmin ≤ xt+k|t ≤ xmax, k = 1, . . . , Nc

umin ≤ ut+k ≤ umax, k = 1, . . . , Nc

xt+k+1|t = Axt+k|t + But+k, k ≥ 0

ut+k = Kxt+k|t , Nu ≤ k ≤ Ny

(A.3)

whereU = [uT
t , . . . , uT

t+Nu−1]
T
, Q andR are constant, sym-

metric and positive definite matrices,P given by the solution
of the Riccati equation,Ny, Nu andNc the prediction, control
and constraint horizons, respectively,K some feedback gain
and the superscript T denotes transpose of the vector. Problem
(A.3) is solved repetitively at each timet for the current statext

a
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compartmental model for the automation of anesth
hat takes into account simultaneous regulation of M
nd unconsciousness of the patients has been deve
nd validated. This paves the way for the developme
dvanced control and automation strategies for anest
n advanced model based parametric controller for T
diabetes was proposed. This controller provides the
al insulin infusion rate as an explicit function of the s
f the patient, which is expected to greatly simplify
utomation of the blood glucose control and reduce pa

nconvenience.
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ppendix A. Model based parametric control

Consider the following mathematical model of the pati

t+1 = Axt + But (A.1)
.

nd the vector of predicted state variables,xt+1|t , . . . , xt+Ny|t
t timet + 1, . . ., t + Ny, respectively, and corresponding c

rol actionsut, . . ., ut+Ny−1 are obtained. The main drawba
f model based control problem(A.3) is its extensive on

ine computational effort. This drawback can be overc
y using parametric programming as described next.

The equalities in formulation(A.3)are eliminated by mak
ng the following substitution:

t+k|t = Akxt +
k−1∑
j=0

AjBut+k−1−j (A.4)

o obtain the following Quadratic Program (QP):

min
U

1

2
UTHU + xT

t FU + 1

2
xT
t Yxt

s.t. GU ≤ W + Ext

(A.5)

hereU = [uT
t , . . . , uT

t+Nu−1]
T ∈ Rs, is the vector of opti

ization variables,s = mNu, H a constant, symmetric a
ositive definite matrix andH, F, Y, G, W, E are obtaine

rom Q, R and(A.1) and(A.2).
The QP problem in(A.5) can now be reformulated

multi-parametric quadratic program (mp-QP) (Bemporad
orari, Dua, & Pistikopoulos, 2002; Dua, Bozinis, &
istikopoulos, 2002; Pistikopoulos et al., 2002):

Vz(x)= min
z

1

2
zTHz

s.t. Gz ≤ W + Sxt

(A.6)

herez = U + H−1FTxt, z∈Rs andS = E + GH−1FT.
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This mp-QP is solved by treatingz as the vector of opti-
mization variables andxt as the vector of parameters to obtain
z as an explicit function ofxt. U is then obtained as an explicit
function of xt by usingU = z − H−1FTxt. The final solution
is given byU as a set of explicit functions ofxt and the cor-
responding polyhedral regions in the space ofxt where these
functions are valid.
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