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Abstract

Increased information intensity is greatly expanding the importance of model-based decision-making in a variety of areas. This
paper reviews applications that involve large-scale combinatorics, data uncertainty, and game theoretic considerations and
describes three related algorithm architectures that address these features. In particular, highly customized mathematical
programming architectures are discussed for time-based problems involving significant combinatorial character. These architec-
tures are then embedded into a simulation-based optimization (SIMOPT) architecture to address both combinatorial character
and significant data uncertainty. Multiple SIMOPT objects are combined using a coordinating architecture to address game
theoretic issues. A key focus of the paper is a discussion of the algorithm engineering principles necessary to mitigate the
NP-complete nature of practical problems. The life cycle issues of algorithm delivery, control, support, and extensibility are
important to sustained use of advanced decision-making technology. An inductive development methodology provides a means
for developing sophisticated algorithms that become increasingly powerful as they are subjected to new constraint combinations.
Implicit generation of formulations is crucial to routine large-scale use of mathematical programming based architectures. © 2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The global economy continues to undergo massive
changes. In contrast to the industrial revolution of the
early 20th century, which primarily effected society’s
ability to manipulate the physical world, these changes
are being induced primarily by the explosive evolution
of information generation, management, and dissemi-
nation. The World Wide Web and the Internet revolu-
tion are a popular and well-documented example of the
self-catalytic nature and speed of these changes. As the
Web and Internet technologies permeate society, they
are changing how people collect and use information.
Indeed, businesses are beginning to learn to use the
Web and Internet in concert with other information
technology (e.g. personal computers, databases, etc.)

for rapid response to customer needs and opportunities.
As such businesses are becoming acutely aware that
they exist in a highly dynamic environment where speed
and effectiveness of response is a matter of profitability
and survival. This trend towards the speed at which
business is conducted and important decisions have to
be made has significant implications for the need for
Process Systems Engineering (PSE). For purposes of
this paper PSE is defined to be the coupling of engi-
neering, physics, software, mathematics, and computer
science principles to address business and industrial
applications (see Grossmann and Westerberg (2000) for
a more detailed discussion).

The Internet revolution to date has involved signifi-
cant first order use of information. That is, this initial
phase of the revolution made the same large body of
information available to anyone who could access the
Internet. Of course the existence of and access to this
large body of information generates value for society
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and prepares a foundation for next generation ad-
vances (Magnusson, 1997; Phelps, 2002). A critical
next generation advance, and one that the PSE com-
munity is poised to contribute to, is the systematic
processing of information into the knowledge of
which actions to undertake to achieve specific goals.
In particular, the PSE discipline has developed for-
malism for systematically translating information into
decisions in a goal-oriented fashion. In fact the speed
of the economy in general and the speed at which
profitability of a market attracts competition makes
the adoption of systematic means of transforming in-
formation to knowledge essential. This follows be-
cause the speed of the economy lessens the value of
‘steady-state’ experience since companies now rarely
operate in a static environment and companies need
other means for generating a competitive advantage
since mere possession of information is a less signifi-
cant advantage in an information rich environment.

In general terms, the PSE formalism for transform-
ing information into knowledge involves (i) the analy-
sis of a problem to understand its essential features,
(ii) the construction of a model which captures these
essential features and provides a concise statement of
the goal and constraints to achieving the goal, (iii) a
means of obtaining answers from the model, and (iv)
interpreting the answers to understand the range over

which they are valid and how to implement them in
practice. A model is an expression of how various
pieces of information relate to one another and can
take on many different forms, for example a spread-
sheet, a neural network, an expert system, a mathe-
matical program, a regression equation, an x–y plot,
etc. In virtually every successful application of PSE
technology models undergo iterative refinement that
involves adapting the model to reflect continually im-
proving understanding and an evolution of needs.
Obtaining a solution to a model requires an al-
gorithm for which the input is the specific data driv-
ing the model and whose output is a solution to the
problem implied by the data. Insight is often gener-
ated through repeated use of a model to understand
how output changes with input and this feedback
loop makes speed of solution an important consider-
ation. Because of the theoretical difficulty in obtain-
ing answers from models to most PSE problems (see
Pekny & Reklaitis, 1998), the discipline of algorithm
engineering is critical to meeting the problem solving
challenges.

Fig. 1 summarizes the motivation for this paper.
As the progression of boxes shows, rapidly changing
and abundant information induces a need to use
more sophisticated models to explain behavior. In
process and business applications these models often
require making a number of discrete decisions. Given
real world uncertainties there is a natural need to
understand how decisions and risk depend on key
information. Many environments in which informa-
tion is used involve multiple entities so that game
theoretic considerations are important to key deci-
sions. The remainder of this paper discusses three re-
lated algorithm architectures for addressing the
bottom three boxes of Fig. 1. In particular, we review
the use of highly customized mathematical program-
ming technology for problems involving large-scale
combinatorial optimization. This technology is in its
infancy, but promises to systematically improve deci-
sion-making in strategic, tactical, and real-time envi-
ronments. The next section reviews examples where
large-scale combinatorial optimization is important.
The following section describes a Mathematical Pro-
gramming Based Architecture (MPA) for solving
models with a large combinatorial component. Subse-
quent sections describe the Simulation-Based Opti-
mization (SIMOPT) architecture for addressing risk
management and data uncertainty and an electronic
Process Investigation and Management Analysis
(ePIMA) architecture for addressing game theoretic
applications. The role of algorithm engineering is also
discussed, especially as it applies to making the PSE
modeling formalism practical.

Fig. 1. Hierarchy of modeling issues motivated by abundant and
dynamic information.
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Table 1
Feature based scheduling problem classification

Description Industry sector

Pharmaceutical andMultiple small molecule products,
specialty chemicalssimilar recipe structure,

campaigning/cleanout/setup,
common production equipment

Long chain process, fixed batch sizes, Protein manufacture
process vessel storage, dedicated
equipment

Identical recipe structure, large no. of Specialty blending
SKUs, single equipment processing
followed by packaging, labor
constraints

Poly-olefins manufactureLimited shared storage, convergent
process structure,
campaigning/cleanout/setup, parallel
equipment

Convergent recipe structure, shared Food and personal care
storage, renewable resource
constraints, batch size limitations

Asymmetric parallel equipment, Large-scale printing and
implicit task generation, unlimited publishing
storage, multiple steps

of the combinatorial complexity of these applications is
attributable to the management of time since many
types of yes/no decisions can be thought of as recurring
periodically throughout the horizon of interest. This
recurrence of yes/no decision type can increase problem
size by one or more orders of magnitude depending on
how finely grained time must be managed. From a
practical point of view the applications differ consider-
ably in terms of data quality, organizational interest,
end user skills, tool implementation issues, etc. How-
ever, the purpose of this paper is to discuss the com-
mon features of problems involving large-scale
combinatorics and algorithm architectures that may be
engineered for their solution. A summary of each appli-
cation domain and their relationship to each other is as
follows.

2.1. Process scheduling and planning

The problems in this domain are conveniently de-
scribed using the resource-task-equipment framework
(Pantelides, 1993). Resources can be considered renew-
able or consumable according to whether they are
reusable or are consumed upon use and must be replen-
ished. Tasks can be thought of as actions that are
applied to resources. For example a reaction task can
input raw material resources at the beginning and then
emit product after a certain amount of time. Together a
set of tasks defined to utilize a set of resources can
define an entire production network. Equipment is a
special kind of renewable resource that is required in
order for a task to execute. In principle the resource-
task description of a process is sufficient, but the redun-
dancy of explicitly defining equipment provides a great
deal more information to algorithms for solving process
scheduling problems. In general the scheduling problem
is to determine a time-based assignment of tasks to
equipment so that no process constraints are violated.
Typical constraints that must be satisfied are resource
balances, inventory limitations (minimum and maxi-
mums), unit allocation constraints, renewable resource
limitations, and restrictions on how equipment may be
used in time. The need to manage time greatly compli-
cates the solution of process scheduling problems be-
cause the interaction and tightness of these various
types of constraints can vary greatly, even in a single
problem instance. For example the bottleneck piece of
equipment may change several times over the course of
the problem horizon or the shortage of labor may
constrain the schedule at particular times even though
labor may be abundant at other times. In fact, the
various ways in which process scheduling constraints
may interact over time gives rise to well-defined classes
of problems. Table 1 summarizes the physical charac-
teristics of a few of these classes of process scheduling
problems that are encountered in practice. The widely

2. Combinatorial nature of many process systems
applications

Many PSE applications have a strong combinatorial
character. In principle, this combinatorial character can
be thought of as a series of yes/no questions that when
answered in conjunction with specifying some related
continuous variables values defines a solution to a
problem. This paper focuses on applications in the
process management domain, including:
� process scheduling and planning;
� process design and retrofit;
� model predictive decision-making;
� warehouse management;
� supply chain design and operation; and
� product and research pipeline management.

The problems defined by these application domains
are difficult in the theoretical sense in that they are
virtually all NP-complete (see Garey & Johnson, 1979;
Pekny & Reklaitis, 1998). In the intuitive sense they are
intractable to solve using explicit enumeration al-
gorithms for answering the yes/no questions since there
are typically hundreds to millions of yes/no decisions in
problems arising in practical applications. From the
standpoint of this paper, these application domains are
related in the sense that they can utilize the same
underlying technology for transforming information to
knowledge. In particular the discussion of MPA,
SIMOPT, and ePIMA is best motivated by understand-
ing the key features of these related application areas.
One key feature that unifies all the problems in these
application domains is the need to manage time. Much
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different nature of these problem classes has critical
implication on how to approach their solution as will
be discussed below. Goals in solving process scheduling
problems include minimizing cost, minimizing the num-
ber of late orders, or maximizing process throughput
(Applequist, Samikoglu, Pekny & Reklaitis, 1997;
Reklaitis, Pekny & Joglekar, 1997).

2.2. Process design and retrofit

The process design and retrofit problem is a general-
ization of the process scheduling problem in that all
the same decisions are required along with decisions as
to when and how much equipment to add to a process.
Process design and retrofit problems necessarily involve
much longer time horizons than typical planning
and scheduling problems because equipment purchase
and decommissioning plans are typically carried out
over several years. This longer time scale of interest
necessarily introduces significant uncertainty, especially
in the prediction of demands that will be placed on
the process. Thus process design and retrofit is typically
considered a stochastic optimization problem that
seeks to optimize probabilistic performance. This per-
formance usually involves maximizing expected net
present value, minimizing expected cost, controlling
risk of capital loss, or maximizing an abstract meas-
ure of process flexibility (Subrahmanyam, Bassett,
Pekny & Reklaitis, 1995; Subrahmanyam, Pekny &
Reklaitis, 1996; Epperly, Ierapetritou & Pistikopoulos,
1997).

2.3. Model predicti�e decision-making

In practical applications decision problems are never
solved in isolation, rather decision problems arise peri-
odically and must use as their starting point plans
previously in place as part of their solution. For exam-
ple, many processes typically are scheduled once a
week or every few days. In determining a current
schedule, the execution in progress of a previous sched-
ule, the available labor patterns, the arrival of raw
materials, and the transportation schedule for products
are fixed by decisions made from having solved previ-
ous scheduling problems. Thus decision problems are
frequently experienced as a related sequence in time.
The solution of the current problem strongly depends
on the previous members of the sequence and will
affect the solution of future problems. Thus in solving
a current problem, consideration must be given to the
types of uncertain events that will perturb the ability to
follow a prescribed solution so that future problems
can be effectively solved. Model predictive scheduling,
planning, or design problems have a close analogy to
model predictive process control (see the summary of
Qin & Badgwell, 2002).

2.4. Warehouse management

In abstract terms, the warehouse management prob-
lem can be considered as a special kind of scheduling
problem. In particular, a warehouse consists of a num-
ber of storage locations with capacities; there are a
number of resources that must be scheduled (e.g. labor-
ers, fork trucks, etc.) to accomplish activities; and there
is a ‘raw’ material and ‘product’ delivery schedule. Of
course in the warehouse management problem, the
‘raw’ materials are goods moved into the warehouse
and the ‘product’ materials are goods moved out into a
transportation network. Historically the warehouse
management domain has been served by highly special-
ized software. However, as upstream and downstream
production becomes more tightly integrated to ware-
house management, the problems to be solved take on
characteristics of both. The goal in warehouse manage-
ment is to store material in such a way that the time to
retrieve a set of material is minimized or that the cost
of warehouse operation is minimized. This goal is af-
fected by how incoming material is assigned to storage
locations and how cleverly resources are used to ac-
complish activities (Rohrer, 2000).

2.5. Supply chain design and operation

The supply chain operation problem extends the
scheduling problem in the spatial dimension and con-
siders the coordinated management of multiple facili-
ties and the shipment of materials through an
associated transportation network. Because of the
enormous size of supply chain management problems,
significant detail is necessarily suppressed in their solu-
tion. Similarly the supply chain design problem ad-
dresses questions such as where a warehouse or
manufacturing facility should be located and to which
existing site additional capacity should be added. The
increased scope of supply chain management problems
and their long time horizons imply that they must be
solved under significant uncertainty. Another dimen-
sion involved in supply chain management are the
game theoretic aspects of cooperation, competition,
and market factors. In particular many supply chain
management problems involve multiple entities, for ex-
ample some of whom are suppliers, some of whom are
customers, and some of whom are competitors. This
added dimension raises significant additional strategic
questions such as those concerning the pricing of prod-
ucts, when to offer promotions, which type of incen-
tives to offer customers to provide accurate demand
forecasts, and how much inventory to hold to counter
market or competition shifts (see for example Tsay,
1999). These strategic and game theoretic issues inter-
act with the capabilities and scheduling of the facilities
involved in the supply chain.
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2.6. Product and research pipeline management

The development of new products provides a com-
petitive advantage for many companies and offers the
possibility of superior profitability when done consis-
tently well. For example, the top-tier companies of the
pharmaceutical industry possess billion-dollar drug de-
velopment pipelines whose goal is to turn out block-
buster products that provide substantial returns and
underwrite the cost of many candidates that fail to
make it to market. The product and research pipeline
management problem has much overlap both with sup-
ply chain management and process scheduling prob-
lems. In particular, correctly answering many
management questions depends on insight into how
competitors will behave. This follows because the first
company to market with a particular product type
often reaps the vast majority of market share and
return relative to competitors that successively enter.
Besides game theoretic issues, the many resources in a
pipeline must be coordinated to maximize the develop-
ment throughput. Unlike manufacturing scheduling
problems, the scheduling of a product and research
pipeline involves a great deal of uncertainty as to
whether all the tasks associated with the development
of a particular product will be necessary. This is partic-
ularly true of the pharmaceutical industry when candi-
date drugs can be eliminated from consideration based
on safety and efficacy testing. The anticipated failure of
a significant fraction of all candidates leads to the
concept of ‘overbooking’ a pipeline whereby more tasks
are scheduled for possible completion than could be
achieved if all the candidates successfully survived. The
difficulty in addressing practical problems is achieving
the proper amount of overbooking so that resources are
fully utilized when attrition occurs but are not over-
taxed (Honkomp, 1998).

2.7. Summary of features common to applications

As mentioned, all the above applications involve the
management of activities over a time horizon. However,
the discussion above also indicates several other com-
monalities. In particular successful solution of any of
these problems involves utilizing information that is not
known with great precision, for example demand fore-
casts or which tasks will fail in a product and research
pipeline. This uncertainty implies that there will be risk
in however the answers to the yes/no questions are
made. One challenge is to determine which pieces of
information are the most important to a good solution.
Another challenge is to select an answer to a problem
that is the most effective over a wide range of possible
values of the most critical pieces of information. This
last issue necessarily implies that risk management is an
important issue in many practical applications and that

steps must be taken because of uncertainty in underly-
ing information that would be unnecessary if the infor-
mation where completely known. Put succinctly, the
above applications involve (i) management of activities
on a timeline, (ii) significant combinatorial character
because of the large number of yes/no decisions implied
by practical applications, (iii) uncertain information
which can have a significant impact on the best answer,
(iv) risk because the uncertainty might be realized in a
way that is detrimental, and (v) game theoretic aspects
because in many problems multiple entities interact.

3. Mathematical programming approach for process
management problems

A practical approach to process management prob-
lems must be able to address each of the technical
issues summarized in the previous section as well as a
variety of business process and human factors issues
(see Bodington, 1995). The paper by Shobrys and
White (2002) reviews typical and best practices for
addressing many process management problems using
traditional technologies. This paper focuses on three
related technologies that are general enough to address
the applications described above, but which are
amenable to the significant customization necessary for
practical use. The paper by Pekny and Reklaitis (1998)
reviews various technologies and classifies them accord-
ing to how they address the intrinsic computational
difficulty of most process management problems. As
they discuss virtually all process management applica-
tions are NP-complete, the practical implication of
which is that there is an uncertainty principle that must
be addressed in the development of any solution ap-
proach. In particular, a given algorithm for a process
management problem cannot guarantee both the qual-
ity of the answer and that the worst case performance
would not be unreasonable in terms of execution time
or computational resources. That is an algorithm might
take an unreasonable amount of time to get a provably
good answer or might get an arbitrarily poor, or no
answer, in a predictable and reasonable amount of
time. Another useful way of interpreting the uncer-
tainty principle is that any given algorithm that per-
forms well on one process management problem will
exhibit poor performance on some other process man-
agement problem. This last statement sometimes seems
to contradict intuition, but can be understood by con-
sidering the great variety of process management prob-
lems and the fact that dominant features in some
problem will represent a combination of constraints on
which previously known solution strategies are ill-
suited. The importance of the uncertainty principle to
users, developers, and researchers of process manage-
ment software cannot be overstated and indeed not
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appreciating the practical implications of the uncer-
tainty principle is a key cause of failure when process
management software does not work. The following
example illustrates the implications of the uncertainty
principle on a simple problem.

3.1. Example: how an algorithm can fail when the
problem changes character

To understand the implications of the uncertainty
principle on a simple problem, consider a Traveling
Salesman Problem (TSP) when all the cities to be
visited lie on a circle of a certain radius (circle-TSP). An
optimal solution to the TSP involves specifying the
order in which cities are to be visited, starting and
ending at the home city, so that the travel distance is
minimized. For the circle-TSP an algorithm guaranteed
to find an optimal solution involves starting at the
home city, choosing the closest unvisited city as the
next city in the sequence, and repeating until all the
cities have been traversed and then returning to the
home city. Of course this ‘greedy’ algorithm traces out
a route in the order in which cities appear around the
circle (see Fig. 2). Now, when this same greedy al-
gorithm is applied to a TSP whose cities appear at

random locations in a Euclidean plane its performance
is very poor because the greedy strategy does not take
steps to prevent having to traverse a long distance after
most cities have been visited (see Fig. 3). The greedy
algorithm is an example of an algorithm whose execu-
tion time is reasonable but whose solution quality can
be very bad. An alternative to the greedy algorithm is
to exhaustively enumerate all possible solutions and
choose the one with the minimum travel distance. Such
an approach will guarantee arriving at a best possible
answer, but the execution time will be unreasonable for
all but the smallest problems. The papers by Miller and
Pekny (1991) and Pekny and Miller (1991) discuss the
tradeoff between solution quality and performance in
more detail for versions of the TSP relevant to several
process scheduling applications. The TSP is one of the
most well known problems in the combinatorial opti-
mization literature and many highly engineered solution
approaches have been developed that perform well on
many known classes of TSP instances-achieving opti-
mal or near optimal solutions with reasonable effort
and probability (Applegate, Bixby, Chvátal & Cook,
1998). However, even for these highly engineered al-
gorithms, instances can be constructed that cause them
to produce poor answers or take unreasonable amounts
of effort. When confronted with such a problematic
instance, existing TSP solution approaches can be
adapted to provide better performance. Indeed this
kind of iterative challenge of TSP approaches has been
a motivating factor in their improvement. Thus TSP
algorithms are an example of a research area that has
benefited from iterative refinement motivated by the
challenge of problematic cases (for more information
see the online bibliography by Moscato, 2002). This
need for iterative refinement is central to the engineer-
ing of algorithms for any NP-complete problem.

3.1.1. Life cycle issues associated with the use of
algorithms for practical problems

The key implication of the uncertainty principle is
that the development and use of process management
solution algorithms is an engineering activity. The start-
ing point of this engineering activity is that the objec-
tives of the solution algorithm must be clearly stated.
These objectives often include:
1. guarantee of optimal solution,
2. guarantee of feasible solution,
3. guarantee of reasonable execution time,
4. permits (requires) a high degree of user input in

obtaining an answer,
5. high probability of obtaining a good answer in

reasonable time on a narrow and well-defined set of
problem instances with limited user input,

6. easy to modify, adapt, and improve as new applica-
tions or unsatisfactory performance is encountered,

7. low cost of development, and

Fig. 2. A ‘Greedy’ nearest neighbor algorithm works well on a
circle-TSP.

Fig. 3. A ‘Greedy’ nearest neighbor algorithm works poorly on a
more generalized TSP.
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8. provides an intuitive connection between solutions
and input data, that is explains why a given solution
was obtained with the specified input data.

The theory of NP-completeness shows that insistence
on (1) or (2) as an objective precludes achieving (3) and
vice versa. Experience shows that objectives (4) and (7)
are highly compatible, but put much of the burden of
problem solution on the user. Experience also shows
that objectives (5) and (6) seem complementary, but
inconsistent with objective (7). Given the nature of
NP-completeness and the existence of the uncertainty
principle, objective (5) is a practical specification of
algorithm engineering success and objective (6) speaks
to how well an algorithm engineering approach sup-
ports the life cycle encountered in applications. In this
context life cycle means the deli�ery of a solution
technology for use in practical applications, providing
for user control of the nature of answers to allow for
incorporating considerations that are difficult to for-
mally capture, support of a technology in the field when
deficiencies arise, and extension of a technology both to
make an individual application more sophisticated and
for use in a broader range of applications. An impor-
tant part of user control is embodied in objective (8)
whereby a solution can be rationalized and imple-
mented with confidence because it is intuitively under-
stood to be valid. This is especially critical for
large-scale applications that involve enormous amounts
of data, large solution spaces, and where an effective
solution might represent a significant departure from
past practices. A key problem implied by (8) is the
resolution of infeasible problems. In those applications
where tools are most useful the chance for specifying an
infeasible problem is greatest (e.g. too much demand
for the given capacity, insufficient labor to execute all
tasks, etc.). In addition to being practically valuable,
addressing objective (8) is an interesting research prob-
lem given that there are sometimes many ways to
resolve infeasibilities and discovering and presenting
these many options in a meaningful way is itself a very
difficult theoretical and computational problem (see
Greenberg, 1998). The paper by Shobrys and White
(2002) suggests that objective (8) is crucial to the sus-
tained acceptance of sophisticated modeling tools.
Given the speed with which information is being gener-
ated, the associated opportunities for improving effi-
ciencies, and the need to rapidly reduce research
advances to practice, all these life cycle considerations
(delivery, control, support, and extension) are becoming
an important part of PSE research. The remainder of
this section discusses how mathematical programming
approaches to process management problems promote
support of life cycle issues and the remaining sections
discuss their extension into risk management and game
theoretic applications.

3.1.2. Mathematical programming framework to
address time-based problems

From an engineering standpoint, mathematical pro-
gramming based approaches to process management
problems offer a number of advantages. In particular a
mathematical programming based approach can deliver
many combinations of the objectives (1)– (8), depending
on how it is implemented and used. For example,
straightforward mathematical programming based ap-
proaches will deliver objectives (1) and (2) at the ex-
pense of ignoring (3). Experience also shows that
mathematical programming approaches can be used to
pursue objectives (5) and (6) at the expense of relaxing
objective (7), see for example Miller and Pekny (1991).
Furthermore, mathematical programming approaches
can easily support objective (4) and, as with other
approaches, effective user input can make problems
much easier to solve. As our goal is the treatment of
application life cycle issues, the remainder of this sec-
tion will discuss the use of mathematical programming
approaches to achieve objectives (5) and (6) with the
understanding that the same approaches can be used to
achieve objective (1) and (2) or utilize objective (4),
when necessary. With regard to addressing objective (8)
mathematical programming methods have the advan-
tage of a systematic framework for relating parameters
and constraints, but the combinatorial complexity and
ambiguities inherent in explaining solution structure
and resolving infeasibilities remains an important issue
to be addressed by research (see Greenberg, 1998).

The starting point of a mathematical programming
based approach is a formulation of a process manage-
ment problem:

Maximize or Minimize f(x,y)

Subject to:

h(x,y)=0

g(x,y)�0

x�{0,1}m, y�Rn

The objective function of a process management
problem is typically to minimize cost, maximize profit,
minimize tardiness in the delivery of orders, etc. The
equality constraints typically implement material bal-
ance or resource assignment constraints. The inequality
constraints typically put restrictions on inventory and
resource usage (e.g. labor). The binary variables (x)
represent the discrete choices available when solving a
process management problem, e.g. should an activity be
executed on a given piece of equipment at a given time.
The variables (y) represent the values of continuous
quantities such as inventory levels or the amount of
material purchased. There are two strategies for formu-
lating process management problems. One strategy cre-
ates time buckets and associates variables and
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constraints with these buckets. Another strategy con-
trols the sequencing of activities and only implicitly
represents time. Regardless of approach, the manage-
ment of activities in time almost always makes the size
of mathematical programming formulations for practi-
cal problems quite foreboding.

3.1.3. Implication of the use of time bucketed
formulations

The way that time is managed is critical to the
success of solving the process management problems
discussed above. We primarily use formulations where
time is divided into buckets and constraints are then
written on variables that are associated with the time
buckets. For example, the material available in time
bucket k is equal to the material available in time
bucket k−1 plus the material that becomes available in
time bucket k due to production minus the material
that is consumed. Such material balance constraints
must be written for every time bucket and material. As
another example, consider that restrictions on the allo-
cation of equipment yield constraints that have the
following form:

xmixing–activity–A,mixing–equipment,12 noon

+xmixing–activity–B,mixing–equipment,12 noon=1

This simple example shows that only one of mixing
activity A or B must be started on a piece of mixing
equipment at 12 noon and shows how easily intuition
may be expressed.

The work of Elkamel (1993), Kondili, Pantelides and
Sargent (1993), Pekny and Zentner (1994), and Zentner,
Pekny, Reklaitis and Gupta (1994) discusses time buck-
eted formulations in detail. Time bucketed formulations
offer many advantages in applications and support life
cycle needs: (i) they are readily extensible to account for
additional problem physics, (ii) they are easy to under-
stand since they are based on straightforward expres-
sions of conservation principles and other problem
physics, and (iii) solution algorithm engineering is often
facilitated because reasoning can be localized due to the
fact that variables and constraints only directly affect
small regions of time. The chief drawback to time
bucketed formulations is the size of formulation when
practical problem detail is required. For example, con-
sider that the need to provide 2 weeks worth of timeline
management with 1-h accuracy implies 336 time buck-
ets and can easily translate to thousands or tens of
thousands of binary variables for practical applications.
Furthermore, 1-h accuracy is insufficient for scheduling
many critical activities, e.g. the need to use labor for 10
min at the start and end of an activity. In fact the time
buckets must be chosen to be as small as the smallest
time interval of interest. This type of reasoning quickly
leads to the conclusion that explicit formulation of
problems using a time bucketing strategy leads to enor-

mous formulations and long solution times for most
practical problems. This is because these large formula-
tions take significant time to generate and an enormous
amount of memory to store them, irrespective of the
cost of actually obtaining a solution. Fortunately, most
of the constraints in time bucketed formulations of
practical problems do not contribute meaningful infor-
mation to problem solution because they hold trivially,
e.g. zero equals zero. In practice, generation of these
trivially satisfied constraints is not necessary. However,
one does not realize which constraints matter until after
a solution has been obtained. Exploiting the large num-
ber of trivially satisfied constraints and avoiding the
generation of large explicit formulations is an engineer-
ing necessity if a time bucketed mathematical program-
ming formulation is to be delivered for use in practical
applications.

3.1.4. Implicit techniques to a�oid large formulation
sizes

The discussion in the preceding paragraph illustrates
the importance of considering all aspects of algorithm
engineering when deciding how to approach solution of
an important class of practical problem. Whereas a
common means of using mathematical programming
approaches is to generate the formulation and then
solve it, this explicit generation of a formulation is out
of the question for many practical process management
problems. Instead, we choose to pursue implicit genera-
tion of only the nontrivially satisfied constraints and
nonzero variables that are necessary for defining the
solution. Polyhedral cutting plane techniques also use
this strategy by utilizing separation algorithms to detect
and iteratively enforce violated members of an expo-
nentially large constraint family (Parker & Rardin,
1988 and see the tutorial work of Trick, 2002). The
b-matching paper of Miller and Pekny (1995) illustrates
this implicit generation of both constraints and vari-
ables and their approach is summarized in the following
example.

3.2. Example: implicit formulation and solution of the
b-matching problem

The b-matching problem with upper bounds may be
formulated as an integer program on an undirected
graph G= (V,E) with integer edge weights cij and in-
teger edge variables xij as follows:

min �
(i, j )�E

cij xij (1)

subject to:

�
j�(i, j )�E

xij=bi, �i�V (2)

0�xij�dij (3)
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Fig. 4. Mathematical programming architecture for solving large-
scale process management problems.

variables. Tree growth terminates when another vio-
lated member of (6) is encountered and then the half-in-
tegral variables can be made integral by modifying the
variables values of the half-integral cycles and in the
tree according to a well-defined pattern (see Miller &
Pekny, 1995). Thus growth of the tree identifies the
nontrivial constraints of (6) which must be enforced.
The nonzero variable values are identified by the net-
work flow algorithm and tree growth. The highly cus-
tomized implicit solution strategy summarized in this
example has successfully solved problems with up to
121 million integer variables in less than 10 min of
personal computer time (1 GHz, 128 Mb of RAM). Of
course most of these variables actually take on a value
of zero in the solution and only a few of the constraints
in (6) actually have to be enforced. See Miller and
Pekny (1995) for a complete description of the al-
gorithm and a discussion of computational results.

Fig. 4 illustrates the basic concepts behind a mathe-
matical programming architecture for solving process
management problems. The three main components are
(i) implicit formulation— for example based on a time
bucketed strategy (bottom box), (ii) an expert system
which controls the pivoting strategy used to solve the
linear programming relaxation of the formulation (top
left box), and (iii) an expert system that controls the
branching rules used during implicit enumeration (top
right box). The b-matching example given above pro-
vides a simple example of implicit formulation genera-
tion and corresponding linear programming solution.
Unlike the b-matching problem, process management
applications produce linear programming relaxations
that are arbitrarily integer infeasible and much less
structured. In these cases the expert system chooses
pivots to provide for rapid linear programming solution
and to prevent the introduction of unnecessary infeasi-
bilities. The work of Bunch (1997) provides an example
of how pivot rules (i.e. an expert system for pivoting
strategy) can be used to avoid unnecessary infeasibili-
ties. Avoiding such infeasibilities dramatically speeds
solution since unnecessary implicit enumeration is
avoided to remove these infeasibilities. For the b-
matching problem described above the pivot rules de-
scribed in Bunch (1997) reduce the computational
complexity of the guaranteed detection of violated con-
straints from O(n4) to O(n), where n is the number of
nodes in the graph. The luxury of using a computation-
ally cheaper algorithm to detect violated constraints
results in order of magnitude speedup in problem solu-
tion both because of faster convergence and faster
iterations. The advantage of the work of Bunch (1997)
is that conventional linear programming solvers that
allow control of entering and exiting basic variables
may be used to implement the technique.

Whereas implicit generation of mathematical pro-
gramming formulations is crucial to the delivery of the

xij,dij�Z+ (4)

Relaxing the integrality constraints yields a Linear
Program (LP) that admits only integral and half-inte-
gral solutions. The convex hull of the b-matching poly-
tope as given by Padberg and Rao (1982) is useful for
developing a highly customized solution algorithm for
the b-matching problem. Let R�V with �R ��2, �(R)
be the set of all edges with exactly one end in R, and T
be a non-empty subset of �(R). A parity of R,T is
defined to be even or odd depending on the parity of:

b(R)+d(T)= �
i�R

bi+ �
e�T

de (5)

For this example �R,T is taken to mean all combina-
tions of R and T with odd parity. Following Padberg
and Rao (1982), the facet defining inequalities may be
written as:

�
(i, j )��(R)�T

xij+ �
(i, j )�T

(dij−xij)�1, �R,T (6)

The implicit solution strategy of Miller and Pekny
(1995) operates on the LP implied by (1)– (3), and (6) to
obtain a provably optimal solution in a number of steps
polynomial in the cardinality of V. Note that (6) im-
plies a number of constraints that scales exponentially
in the cardinality of V. The basic idea behind the
implicit solution strategy is to use a network flow
algorithm, an implicit and highly customized linear
programming solution technique, to solve (1)– (3). The
resulting solution will have integral and half-integral
values. The half-integral values are eliminated by grow-
ing a tree in graph G whose nodes represent either
members of V or individual constraints from (6). Cycles
may be found during growth of the tree, which identify
other nontrivial constraints from (6) which are then
directly enforced. The root of the tree is a violated
member of (6) consisting of a cycle of half-integral
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technology on practical applications, the architecture of
Fig. 4 promotes extension of applications to encompass
new features. In particular, the solution logic is dis-
tributed across the implicit generation of the formula-
tion, the implicit enumeration expert system, and the
expert system for solving the LP. Both expert systems
are designed to operate on the formulation and there-
fore are one level of abstraction removed from the
problem details. The expert system logic is coded to
obtain solutions to the formulation and is not directly
designed to deal with particular problem instances.
Thus when the formulation is changed to encompass
more details or features, the basic expert system strate-
gies for driving out infeasibilities are still valid. Of
course with due consideration to the uncertainty princi-
ple described above, significant departures in problem
features from those that the expert systems have been
well-designed to handle may cause a dramatic rise in
solution time. This is especially true on large problems
where even minor inefficiencies can result in unreason-
able solution times due to the extremely large search
spaces implied by a large number of integer variables.
When problematic cases occur, the abstraction of the
solution logic underlies a systematic approach for asso-
ciating the cause in the solution logic to an undesirable

solution or unreasonable execution time. That is, the
features of the problem can be rationalized against the
particular sequence of pivots and the search tree path,
which promotes physics based reasoning for failures
and expert system modifications that prevent encoun-
tering them.

3.2.1. Mathematical programming architecture and life
cycle considerations

The paper by Pekny and Zentner (1994) discussed the
basic mathematical programming deli�ery architecture
shown in Fig. 5 for process management applications.
The basic components are (I) graphical user interface,
(II) object oriented and natural language problem rep-
resentation language, (III) mathematical programming
formulation, and (IV) solution algorithm (see also
Zentner, Elkamel, Pekny & Reklaitis (1998)). Obviously
a major benefit of the architecture of Fig. 5 is insulating
the user from the details of the mathematical program-
ming formulation and algorithm. With respect to life
cycle considerations and keeping in mind the need to
use implicit formulations, the graphical user interface
shown in Fig. 5 (I) is the means by which user control
is provided. In particular, the elementary and funda-
mental nature of the variables in time bucketed mathe-

Fig. 5. Tool architecture promotes support of life cycle considerations.
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Fig. 6. Robust deployment through tool templatization.

matical programming formulations provides for many
classes of user control. For example the simplest class
of user control is to restrict a variable or group of
variables to a particular value. With respect to manage-
ment of time and equipment this class of user control
can represent restricting (preventing) an activity to
(from) a group of equipment or set of resources. Alter-
natively, this class can restrict activities to a particular
time interval. Another class of user control possible is
to direct the way in which the formulation is solved.
For example, in a scheduling application a user can
specify that a particular demand be assigned resources
before any other demand. This has the effect of
scheduling activities to satisfy the demand in a more
left most position on the time line than demands that
are scheduled subsequently. An interrupt driven class of
control is also possible whereby whenever an expert
system considers manipulating a group of variables the
user can be prompted for direction as to how to
proceed.

The architecture of Fig. 5 also promotes the support
of applications. Firstly, deciding where components of
Fig. 5 execute in a client/server-computing environment
can be made on the basis of the needs of the applica-
tion. Second, the component represented in Fig. 5 (II)
supports communication of problematic instances since
the object oriented language description can be elec-
tronically communicated to facilitate recreation of the
problem in a support environment. Perhaps most im-
portantly from the standpoint of support, the architec-
ture of Fig. 5 can be restricted to particular classes of
problem instances where the probability of failure can

be kept low. Fig. 6 illustrates the concept of a ‘templa-
tized’ tool whereby the graphical user interface and
problem description component are adapted to only
permit the creation of instances that fall within a class
for which the tool has a high probability of solution
success in terms of quality of answer and reasonable
performance, e.g. one of the problem types described in
Table 1. In terms of product support there may only be
one solution engine underneath all templatized tools,
but the templates prevent users from applying the tool
outside the testing envelope. This eliminates many po-
tential support problems, but still allows for extension
of the tool by relaxing the template restrictions. In
terms of the circle-TSP example given above, templa-
tization would amount to restricting the input to the
greedy algorithm to problems that are circle- or near
circle-TSPs. By avoiding arbitrary Euclidean TSP in-
stances a tool based on the greedy algorithm would not
exhibit poor behavior. For any given algorithm archi-
tecture, one qualitative measure of its versatility is the
number of different problem types and the size of
problem it can effectively address without additional
algorithm engineering. Experience shows that the
promise of the algorithm abstraction of Fig. 4 is that by
having the solution logic operate on the formulation
instead of the problem information directly that the
versatility is enhanced.

3.2.2. A qualitati�e rating system for process
management applications

Given the uncertainty principle implied by NP-com-
pleteness, a system for rating the effectiveness of solu-
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tion algorithms provides a useful way of differentiating
different approaches and implementations. Table 2 de-
scribes a qualitative rating system for process manage-
ment solution algorithms. The first column of Table 2
shows the various classifications in the rating system,
the second column provides a short description of the
classification, and the third column shows the re-
sources/techniques that are likely to be required to
move an algorithm from one classification to a more
capable classification. The qualitative rating system of
Table 2 embodies the uncertainty principle, is sugges-
tive of the different ways that solution algorithms can
be used and suggests that more robust behavior re-
quires greater algorithm investment. One of the major
advantages of mathematical programming approaches
is that, with suitable investment, they can support the
entire range of capability depicted in the first column
on a variety of problems through a formal and well-
defined series of iterative refinements (also see the dis-
cussion on problem generators in Kudva & Pekny,
1993).

3.3. Example: detailed process scheduling application
and discussion of mathematical programming approach

This example discusses a mathematical programming
approach to a practical example from the modeling
perspective through a model predictive application. The
example is based on the Harvard Applichem case study
(Flaherty, 1986) with the extensions described in Subra-
manian (2001). The first part of the discussion summa-
rizes the processing details and the second part
describes the application.

3.3.1. Recipe network
The Release-ease family of products moves through a

similar recipe, which consists of four tasks. The first
task involves the all-important reaction where four raw
materials A, B, C and D are added in a precise se-
quence, along with miscellaneous substances including
water (termed as ‘Other’) to yield a formulation of
Release-ease particles. The Release-ease particles
formed move over a conveyer belt mesh in a cleaning
task where the liquid waste falls through. The filtrate
particles are further dried and packed in different sizes.
The recipe is represented in Fig. 7.

The Gary, Indiana Applichem plant makes eight
formulations in two grades, commercial and pharma-
ceutical, and packs them in 79 packaging sizes selling a
total of 98 products.

3.3.2. Equipments/machines
There are four categories of equipment used for the

production: reactors, conveyer belts, driers and packag-
ing lines. The first task is executed in a reactor in batch
mode. Three reactors with capacities 1000 and 8000 lbs
along with four more of an intermediate capacity of
4000 lbs are available, totaling 10 in all. The processing
times and Bills of Materials (BOM) depend on the type
of the formulation of Release-ease and on the batch
size. The reactors have to be washed out every time a
batch is executed. Two identical conveyer belts filter the
formed Release-ease. This is modeled as a batch task
with processing times increasing proportionally with
amount to be filtered. Three identical driers dry the
filtered Release-ease in batches. Eight packing lines
pack the eight formulations into 79 sizes making 98

Table 2
Algorithm support classifications

Examples of resources required to improveAlgorithm capability Description
classification

Algorithm is incapable of even small test problems with Extension of algorithm framework, fundamentalUnsupported
algorithm modifications, intense R & D activityall constraint types

Algorithm is capable of demonstrating solutions butDemonstration Extension of algorithm framework to shape schedules
solutions are not implementable in practice, need according to user desires, interactive user interface
sculpting, and key constraints are not acceptably handled

Engineering Algorithm is capable of generating useful results, but Extension of algorithm framework to shape schedule
according to user desires, programmatic user interface,model solution is not sufficiently robust to use in practice

or some less important features are neglected which are interactive user interface
of practical interest for routine use

‘Designed’ testing problems and generators to testRoutine Algorithm routinely generates useful schedules that are
implemented in practice through human interpretation, algorithm robustness, periodic minor coding fixes or

slight algorithm enhancementsroutine usage periodically results in the need for bug fixes
or slight algorithm enhancements

Online model predictive Algorithm is extremely robust in generating schedules Generators to test algorithm robustness in an
that are faithful to shop-floor operations and can be used advancing time window fashion (SIMOPT based

testing—see later section)to predict shop-floor activity
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Fig. 7. Release-ease recipe.

Fig. 8. Material flow in the plant.

Stock Keeping Units (SKU) in all. It is assumed that
the eighth packing line is dedicated to packaging com-
mercial grade formulations, and hence packages faster
than the other packing lines. There is no intermediate
storage prescribed after the cleaning task. It is assumed
that intermediate storage vessels are available after the
reaction and drying tasks.

3.3.3. Products
The flow of materials (raw materials, intermediates

and final products) in the system is shown in Fig. 8. The
eight formulations are classified by grade (commercial
(C) and pharmaceutical (P)) and particle mesh size (325,
400, 600 and 800). Fig. 9 lists the final 98 products sold,
differentiated by the packing type or size in which a
formulation (such as C325) is packaged. P-xx refers to
a packing type, and is assumed to correspond to a
particular size or shape.

3.3.4. Processing characteristics

3.3.4.1. Reaction task. The BOM for this task involves
initial addition of B, C and Other together and upon
completion of this reaction, addition of A and D. The
processing times are dependent on the grade and batch
size. The processing times, in minutes, are provided in
Table 3. It is assumed that making 600 and 800 mesh
size particles takes M times (see below) longer than 325

and 400. It is further assumed that making P grade
takes N times (see below) longer than C grade. For
M=N=1.2, processing times for all the grades are
provided in Table 3. The addition of A and D is
assumed to take place after 10% of the overall process-
ing time has elapsed.

3.3.4.2. Reaction wash-outs. The reactors have to be
cleaned after every batch execution. Washout times are
longer for larger reactors and after making P grade, due
to stricter environmental regulations. Washout times
are presented in Table 4.

3.3.4.3. Cleaning task. The cleaning times over the
conveyer belt increase proportionally with the amount
being filtered. The processing times are given in Table 5.

3.3.4.4. Drying task. Drying times are slightly longer for
larger batches. The drying times are listed in Table 6 as
a function of output dried Release-ease quantities.

3.3.4.5. Packaging task. There are 79 distinct packing
types based on size, and the packing times depend on
these types. The packing times are assumed to be
independent of the formulation being packaged. Table 7
lists the packing times in hours, for all the 98 final
products along with the size they are sold in, in
kilograms.
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Table 3
Processing times in minutes for the 8 grades

Fig. 9. Final products made by the Gary Applichem plant.

Table 5
Cleaning times for conveyer belts

Table 6
Drying times for release-ease formulations

3.3.4.6. Packing setups. Before a packing line executes
the packaging task, a setup time is incurred. This is
required because there exists a need to arrange the
appropriate packing type in the packing line. These
setups are reduced by 50% for the dedicated packing
line 8. The setup data is provided in Table 8.

3.3.5. Material requirements and flow
For manufacture of 100 lbs of Release-ease, the raw

material requirements, as provided in the original Ap-

Table 4
Wash-out times for reactors
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plichem case study (Flaherty, 1986), are presented in
Table 9. The reactor batch is assumed to contain 10%
Release-ease. This 10% figure represents the yield of the
process. Therefore, 100 lbs of Release-ease would be
produced in a 1000 lbs batch with Other (1000–156.92)
making up the total material amount to 1000. Because
no intermediate storage is prescribed between the clean-

ing and drying tasks, they are modeled as a single task,
which outputs the dried Release-ease particles in
amounts of 100, 400 and 800 lbs (10% of the Reactor
batches). The rest of the material is discarded. These
amounts of final product Release-ease are stored in
containers and packed into various sizes depending on
the demand.

Table 7
Packing size in kg and packing times in hours for all final products

SKU ID Size Packing timeSKU ID Size Packing time

C400-P60 130C325-P11 1.520 0.166666667
1.5150C400-P62C325-P12 0.16666666722

C325-P13 0.166666667 C400-P64 170 224
C325-P14 2190C400-P660.16666666725

200C400-P67 20.33333333326C325-P15
C400-P68 225C325-P16 228 0.333333333

30 0.333333333C325-P17 C400-P70 275 2.5
C325-P18 C400-P7431 0.333333333 3375

32C325-P19 3475C400-P780.333333333
0.33333333333 C600-P39C325-P20 55 0.5

C600-P41 60C325-P21 0.534 0.333333333
0.33333333335 C600-P43 65 0.75C325-P22

C325-P23 0.333333333 C600-P45 70 0.7536
0.7575C600-P470.33333333337C325-P24

38 0.333333333C325-P25 C600-P49 0.7580
39C325-P26 0.7585C600-P510.333333333

0.33333333340 C600-P53C325-P27 90 0.75
C600-P55 95C325-P28 0.7541 0.416666667

0.41666666742 C600-P57 100 1C325-P29
0.41666666743 C600-P65 180 2C325-P30

0.33333333330C800-P17C325-P31 0.41666666744
0.41666666745 C800-P27 40 0.333333333C325-P32

46 0.416666667C325-P33 C800-P37 50 0.416666667
1120C800-P59C325-P34 0.41666666747

48C325-P35 1.50.416666667 140C800-P61
49 0.416666667 C800-P63 160 1.5C325-P36

C325-P37 50 0.416666667 C800-P72 325 3
3C325-P57 100 4251 C800-P76

1.5 0.0166666671C325-P62 150 P325-P3
5 0.016666667C325-P67 200 2 P325-P5

P325-P7 10C325-P69 0.083333333250 2
3300 P325-P9 15 0.166666667C325-P71

P325-P11 20C325-P73 0.166666667350 3
C325-P75 0.16666666725P325-P143400

30P325-P17 0.3333333333450C325-P77
3500 P400-P1 0.5 0.016666667C325-P79

30 0.333333333C400-P17 P400-P2 0.75 0.016666667
C400-P27 0.0166666671P400-P30.33333333340

50 0.416666667C400-P37 P400-P4 0.0166666672
52.5C400-P38 0.01666666750.5 P400-P5

P400-P6C400-P40 7.557.5 0.0833333330.5
0.08333333312.5P400-P8C400-P42 0.7562.5

P400-P1067.5 17.5 0.166666667C400-P44 0.75
72.5 0.75C400-P46 P600-P7 0.08333333310
77.5C400-P48 0.75 0.16666666715P600-P9

P600-P11 20C400-P50 0.16666666782.5 0.75
P800-P27 40C400-P52 0.33333333387.5 0.75

0.41666666750P800-P37C400-p54 0.7592.5
C400-P56 0.7597.5

1C400-P58 110
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Table 8
Packing setup times for packing lines, X :{1…7}

D(t)=B+Gt+C sin(ât)+S cos(ât)+Noise

Here, B is the base demand, G is the growth or decay of
demand, C is the coefficient for cyclic demand with
periodicity ã, S is the coefficient for seasonal demand
with periodicity ã, Noise is the normally distributed
noise, �N(0,�), � is 5% of B.

Given such a demand profile over a specified horizon,
the total demand quantity is apportioned amongst the
sampled SKUs for every period in the horizon, based on
a fixed ratio, thus generating the individual demands for
every SKU for every period.

3.3.7. Application
The purpose of the application was to study scheduling

algorithm performance over a typical year of Gary plant
operation assuming that the plant was restricted to
manufacture a specified number of SKUs (5, 10, 20, 40,
80) in any one 2 week period at various possible demand
levels. The Virtecs® scheduling system (version 4.021)
with the Elise® MILP scheduling solver was used to
conduct the study (Advanced Process Combinatorics,
Inc., 2001). The plant is assumed to produce in a
make-to-stock environment. Given the existence of the
model, the study could have investigated the effect of
additional equipment, labor, technical improvements to
reactor or other equipment performance, the marginal
impact of adding SKUs to the product mix, the effect of
forecast noise on inventory levels, etc. To conduct the
study, the timeline was divided into 52 1-week periods
with a reasonable initial inventory condition at the start
of the timeline. A 2-week schedule was generated starting
with week number 1, the inventory at the end of the week
was computed, and then the frame of interest was
advanced 1 week and the process was repeated until 52
overlapping 2-week schedules were generated for the 1
year timeline. A typical 2-week Gantt Chart is shown in
Fig. 10 and a portion of this Gantt Chart is shown in
detail in Fig. 11. The scheduling problem used to generate
Fig. 10 contained 178 tasks (reaction, etc.), 129 resources
(products, intermediates), and 28 equipment items. The
Gantt Chart in Fig. 10 contains 6710 scheduled activities
(task instances=boxes on Gantt Chart). The problem in
this example is sufficiently large that a time bucketed (5
min buckets) mathematical programming based ap-
proach is only possible using an implicitly generated
formulation. Table 10 shows the execution time statistics
for the Elise scheduling solver on a 400 MHz Pentium
II with 256 Mb of memory after approximately 20 h of
algorithm engineering effort. Table 11 shows the failure
rate of the Elise scheduling solver on problem instances
at the beginning of the study prior to any algorithm
engineering work. In this case failure is defined to be any
1 year timeline in which the Elise solver required an
unacceptably large amount of time to obtain a solution
on some scheduling problem along the timeline. For this

Table 9
Raw materials consumed/100 lb release-ease produced

Raw material Amount (lbs)

A 20.75
53.8B

C 53.6
D 28.77
Total 156.92

3.3.6. Product demand
There are two components to how demands are

estimated for use in the application below. The first is the
product mix for which demands are specified, and the
second pertains to the actual demand quantity specified.

3.3.6.1. Product mix. The 98 final products have been
classified into three categories with high (0.6), medium
(0.3) and low chance (0.1) of demands being specified.
The number of products split between these categories is
19, 46, and 33, respectively. If demands for ten products
were to be specified, six would be from the high category,
three from medium and one from low. Even though 98
products could be made and there is no restriction on
how many products can have demands specified, it is
assumed that during normal plant operation only about
20–40 products have demands specified in any one time
period. This assumption stems from usual industrial
practice of scheduling campaigns to smooth out noisy
long-term demand signals, and rarely does a plant make
100 different products in a short period of time. For the
application described below, the number of SKUs for
which demands would be generated is chosen and a
particular list of SKUs is obtained by sampling from the
list of 98 products.

3.3.6.2. Demand generation. Once the product mix is
obtained, a total demand profile is created with the help
of a generic demand generator. The total demand over
all the SKUs is generated using a sum of different
demand signals. These signals are base demand, growth
or decay with time, cyclic demands, seasonal demands
and random noise. The parameters that control each of
the demand signals are set based on the desired charac-
teristics in the total demand profile over time. The
demand, D(t), for a period t is given as follows:
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study unacceptably large was defined to be more than 1
h of execution time. As Table 11 shows, for schedules
involving certain numbers of SKUs the failure rate was
as high as 50% and as low as 0%. Upon completion of
the algorithm work, the failure rate was 0% as mea-
sured over 1300 2-week scheduling problems and the
execution time statistics of Table 10 show that the
standard deviation of execution times is small relative
to the mean indicating reliable performance. In order to
conduct the algorithm engineering work several prob-
lematic scheduling problems were studied to determine
the cause of the unreasonable execution time. In all
cases the root cause of execution time failure was
determined to be due to numerical tolerances involved
in LP solution that had not failed on other problem
types. The strategy used in applying the tolerances had
to be modified because of significant formulation de-
generacy encountered in this application. The nature of
these Applichem derived scheduling problems is such
that very little enumeration is required so almost all the
computational effort is spent on LP solution.

The scheduling literature contains several examples
of applications similar in size or larger that are solved
using highly customized heuristics (Thomas & Shobrys,
1988; Elkamel, Zentner, Pekny & Reklaitis, 1997).
However, these heuristics are usually applicable only to
the specific problem for which they were designed.

Many of these heuristics lack the framework to express,
let alone solve, such problem extensions as adding
another level of processing, parallel equipment, se-
quence dependent changeover, shared or process vessel
storage, or combinations of these features. Some heuris-
tic algorithms cannot address the addition of such a
commonplace constraint as binding finite capacity stor-
age. From an algorithm engineering point of view these
heuristic algorithms can be developed inexpensively rel-
ative to customized mathematical programming based
approaches. However, they lack extensibility since their
underlying specialized representations cannot describe
features beyond the problem for which they were de-
signed. Lack of extensibility has significant practical
implications. Processes typically evolve over time due to
changing prices of raw materials, new products, pres-
sure from competitors, etc. An application that is
wholly acceptable when installed, will certainly fall into
disuse if the underlying solution technology proves too
brittle to follow process evolution. Mathematical pro-
gramming based approaches have the advantage that
the solution methodology is built on an abstract prob-
lem representation. The representation can often be
changed easily to accommodate process evolution
(Zentner et al., 1994). Sometimes the solution method-
ology will work as is, but NP-completeness guarantees
that this cannot always be the case. This leads to the

Fig. 10. Two-week schedule for applichem case study.
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Fig. 11. Grantt chart showing schedule detail.

notion of inductive development. A solution algorithm
based on an abstract representation will have been
engineered to solve a certain set of problems. When the
representation is extended to address a new problem
feature, NP-completeness often requires additional
algorithm engineering work. The inductive development
process involves maintaining a set of problems
representative of the neighborhood of success for the
algorithm, and the methodical extension of this set as
problematic cases are encountered. The key point of the
inductive development process is that the improved
algorithm will solve not only the new problematic cases,
but also the entire set of representative problems.
Mathematical programming based approaches can
support the inductive development process through the
use of implicit formulation techniques. In fact the
above scheduling example was a problematic case that
was brought into the solved set by mechanistically
analyzing the cause of failure and adapting the solution
approach.

4. Simulation-based optimization architecture

As discussed above, process management problems
involve two issues that make their solution computa-
tionally difficult:

Uncertain data: Much of the data used to drive
process management is highly uncertain, for example
marketing forecasts, the true cost of lost sales, and
equipment failures. As such management strategies
must be designed to work under a range of possible
conditions. Developing rational risk management poli-
cies for a process involves exploring the tradeoffs be-
tween the robustness of proposed plans to uncertain
events and the costs to achieve this robustness. For
example, determining an appropriate inventory level of
a key intermediate involves trading off a carrying cost
against unexpected customer demand for any down-
stream products or upstream production disturbances.
The inventory carrying cost may be viewed as an
insurance premium for protecting against particular
types of risks. Understanding the protection afforded

Table 10
Final execution time statistics (in min) for 1300 2-week scheduling
problems

SKU Min. Max. Average S.D.

5.03829611.9396225.055 1.983333
2.883333 57.7833310 30.91132 14.40239

20 3.883333 25.4 12.28382 3.957422
5.99252140 0.9397764.516667 8.45
9.09891180 3.034012.95 14.73333
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Table 11
Solver failure rate prior to any algorithm engineering effort

SKU Number of yearly runs made Num of yearly runs not solved Failure rate

75 0.514
10 10 0 0

612 0.520
540 1 0.2

80 7 0 0

by various levels of inventory helps keep costs to a
minimum.

Combinatorial character: Even the most innocuous
process management problems often have significant
combinatorial character due to the need to manage
resources over time. This combinatorial character arises
from the need to address a series of yes/no questions
whose answers, for example, specify product sourcing,
the use of different contract manufacturing options,
transportation modes, raw material purchase alterna-
tives, marketing strategies to promote demand, etc.

The need to simultaneously address both the combina-
torial aspect and the impact of uncertain data is a key
technical challenge in approaching process management
problems. While there exist deterministic methods that
address the combinatorial aspect (see the previous sec-
tions) and simulation methods that use Monte Carlo
sampling to investigate the impact of uncertainty, most
existing methodologies do not effectively address the
interaction of both to determine the best process manage-
ment strategy. The approach described in this section is
a computationally tractable approach for simultaneously
considering combinatorial aspects and data uncertainty
for industrial scale problems. The approach builds on
well known simulation methods and deterministic meth-
ods for large-scale problems, such as those described in
the previous section.

The SIMOPT architecture, as shown in Fig. 12, uses
a customized mixed integer linear programming solver to
optimize process behavior in conjunction with a discrete
event simulator to investigate the effect of uncertainty on
the plans output from the optimizer. The optimizer
solution provides the initial input to the simulation and
the simulation returns control to the optimizer whenever
an uncertain event causes infeasibility that necessitates a
new plan. Thus the iteration between the simulation and
optimization continues until a timeline is traced out for
a sufficiently long horizon of interest. The information
generated along this timeline represents an example of
how the future could unfold. As this process is repeated
along different timelines for different simulation sam-
plings (see Fig. 13), the evolution of behavior can be
visualized in many possible realities. From a risk man-
agement perspective, the goal is to optimize the here-and-
now decisions so that they perform well across a large

fraction of the possible timelines. Of course the here-and-
now optimization problem embodies the set of choices
faced by planners and the SIMOPT approach allows
them to gauge whether their decisions involve an accept-
able amount of risk. One objective that can be used in
this stochastic optimization is the lowest cost to achieve
a certain level of risk. Risk is specified in terms of limiting
the probability of certain goals not being achieved or

Fig. 12. Architecture of simulation-based optimization algorithm for
combinatorial optimization problems under parametric uncertainty
and for risk analysis.

Fig. 13. Timelines traced by simulation-based optimization architec-
ture.
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Fig. 14. Seven project example.

where the goal is to maximize the rewards from success-
fully completing tasks over a 19 week horizon. This
example is closely related to the scheduling example in
the previous section in that the tasks in the pipeline must
be scheduled so as not to utilize more resources than are
dynamically available. As such a time bucketed schedul-
ing formulation is used by the optimizer. In the pipeline
there are the seven projects shown in Fig. 14 whose
activity details are given in Table 12 and expected reward
data are given in Table 13. Each activity has a duration,
requirements for two different resources, and a probabil-
ity of success. Each of these parameters is represented by
a probability distribution as shown in Table 12. The
duration and resource requirements are represented by
a custom distribution that specifies a value and its
associated probabilities. The activity success probabili-
ties are represented by a triangular distribution. In
practice the custom distributions could be specified
simply as high, medium, and low values since estimating
more detailed distributions is too tedious for many
purposes. For this example there are 16 units of resource
R1 and 8 units of resource R2 available. The distribu-
tions associated with each parameter are used by the
simulation component to trace out timelines of possible
pipeline behavior. The data given in Tables 12 and 13 are
also used by the optimization component to schedule
pipeline activities. An example schedule is given in Fig.
15 after the simulation component has sampled the task
duration and resource requirement distributions. Note
that the schedule shown in Fig. 15 only includes a subset
of the projects because resource requirements limit the
number of activities that may be simultaneously exe-
cuted. In generating the schedule of Fig. 15, the optimiza-
tion component was executed three times, to develop an
initial schedule, to develop a schedule after activity I2
(project 1) failed, and after activity I6 (project 3) failed.
Note that Fig. 15 only illustrates the initial portion of a
possible timeline and that the simulation could be
extended until all projects either fail or are executed. A
more realistic simulation could also introduce new
projects at later times. Each time the simulation is
executed a new timeline is generated corresponding to
one possible outcome of the pipeline. After many execu-
tions, a distribution of pipeline behavior is obtained. Fig.
16 shows the distribution of pipeline performance after
20 000 timelines are generated. Two distinct classes of
performance are illustrated in Fig. 16. One class of
performance is associated with timelines that experience
an average reward of about $8000. Another class of
performance is associated with timelines that experience
an average reward of about $34 000. The more valuable
class of performance is associated with the success of a
blockbuster project. A close inspection of Fig. 16 shows
that several timelines also exhibit behavior between the
two dominant classes. Thus Fig. 16 illustrates that even
a relatively small problem involving only a few projects
exhibits complex behavior that arises because of uncer-

limiting the probability that a process will not achieve a
certain level of performance.

A key challenge of the basic scheme shown in Fig. 12
is maximizing the rate at which meaningful samples can
be collected so that the overall procedure completes in
a reasonable time, even for realistic problem sizes. This
challenge can be met with two basic strategies: (1)
maximizing the speed at which the optimizer executes (as
in the previous section), and (2) biasing the parameter
sampling procedure so that the simulation focuses on
‘critical events’ and avoids a large number of simulations
which are not particularly insightful. Strategy number (2)
essentially requires using a procedure for identifying
which uncertain events are problematic for a given plan
and then biasing the sampling to explore them. A
correction must be applied to accurately estimate the
system behavior probabilities from the biased sampling
(see Kalagnanam & Diwekar (1997), Diwekar &
Kalagnanam (1997)).

A related challenge of the SIMOPT approach is
determining when control should pass from the simulator
to the optimizer. In particular, the response to an
uncertain event can be to make local changes at a given
time point in the simulator or to invoke the optimizer to
effect more global changes. Obviously the more fre-
quently the optimizer is invoked the slower the overall
procedure, but the better the quality of the reaction.
Practically the key to meeting this challenge is to deter-
mine an optimization frequency whereby if the optimizer
is invoked more frequently the overall result does not
change by an appreciable measure. The paper by Subra-
manian, Pekny and Reklaitis (2001) describes the issues
involved with selecting reasonable trigger events and
their associated computational expense.

4.1. Example: simulation-based optimization applied to
an R & D pipeline

As an example of the SIMOPT approach consider
management of a research and development pipeline
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Table 12
Data for seven-project example

R1 (units), customActivity R2 (units), custom Probability success triangularDuration (weeks), custom
distribution distribution distribution distribution

ValueValue Probability Value Probability Min. Most likely Max.Probability

I1 41 0.29 2 0.28 0.74 0.80 0.860.295
5 0.44 3 0.440.3752
6 0.21 4 0.283 0.190
7 0.060.1104

5 0.030
4 0.06 1 0.220.10 0.7I2 0.75 0.82
5 0.21 2 0.563 0.18
6 0.46 3 0.160.444
7 0.21 4 0.065 0.18
8 0.060.106

10 0.06 2 0.29P1 0.83 0.85 0.90.32
11 0.12 3 0.440.404
125 0.55 4 0.210.18
13 0.21 5 0.060.106
14 0.06
3 0.05 1 0.230.335 0.7I3 0.8 0.851
4 0.20 2 0.522 0.415
5 0.45 3 0.200.1663
6 0.25 4 0.054 0.084
7 0.05
4 0.23 1 0.23I4 0.553 0.6 0.650.123
5 0.52 2 0.550.2034
6 0.20 3 0.165 0.335
7 0.05 4 0.060.2286

7 0.111
10 0.23 2 0.230.32 0.754 0.8 0.85P2
11 0.55 3 0.535 0.44
12 0.16 4 0.160.166

7 0.08 13 0.06 5 0.08
2 0.23 1 0.230.26 0.7I5 0.8 0.852
3 0.55 2 0.533 0.54
4 0.15 3 0.170.144
5 0.07 4 0.075 0.06
4 0.23 1 0.2250.10 0.73 0.75 0.8I6
5 0.53 2 0.5654 0.20
6 0.17 3 0.1550.365
7 0.07 4 0.0556 0.28

0.067
12 0.225 2 0.225P3 0.854 0.9 0.950.32
13 0.555 3 0.5550.405
14 0.160 4 0.1606 0.18
15 0.060 5 0.0600.107

3 0.23 2 0.23I7 0.853 0.9 0.950.335
4 0.55 3 0.550.4154
5 0.155 4 0.150.165
6 0.07 5 0.070.0856
5 0.23 1 0.23I8 0.551 0.6 0.650.335
6 0.57 2 0.570.4152
7 0.15 3 0.153 0.165
8 0.05 4 0.050.0854
4 0.23 1 0.22I9 0.651 0.7 0.750.32
5 0.57 2 0.560.402
6 0.153 3 0.160.18
7 0.05 4 0.060.104
9 0.23 2 0.23P4 0.754 0.8 0.850.07

10 0.53 3 0.530.175
11 0.176 4 0.170.52
12 0.07 5 0.070.177

8 0.07



J.F. Pekny / Computers and Chemical Engineering 26 (2002) 239–267260

Table 12 (Continued)

R2 (units), customR1 (units), customDuration (weeks), custom Probability success triangularActivity
distributiondistribution distribution distribution

Most likelyValue Probability Value Probability Value Probability Min. Max.

0.7 0.85I10 3 0.850.33 4 0.23 3 0.23
0.544 0.41 5 0.53 4
0.1750.1760.205

0.066 0.0660.077
2I11 6 0.230.297 3 0.23 0.38 0.38 0.48
3 0.456 7 0.54 4 0.53
4 0.197 8 0.17 5 0.17

0.0760.0690.055
0.380.380.231 0.480.2350.321I12

2 0.42 6 0.53 2 0.53
3 0.18 7 0.17 3 0.17

0.0740.0780.084
0.750.70.232 0.80.23110.3253P5

4 0.375 12 0.53 3 0.53
5 0.150 13 0.17 4 0.17
6 0.100 14 0.07 5 0.07
7 0.050

0.70.23 0.80.75I13 3 0.305 4 0.23 3
0.440 5 0.53 44 0.53

5 0.200 6 0.17 5 0.17
6 0.055 7 0.07 6 0.07

0.2330.236 0.40.323I14 0.45 0.5
0.5340.5370.424

5 0.18 8 0.17 5 0.17
6 0.08 9 0.07 6 0.07

0.70.650.60.223P6 0.20130.0883
4 0.200 14 0.57 4 0.54
5 0.380 15 0.23 5 0.17
6 0.280 6 0.07

0.0527
0.70.2230.22 0.8540.3253I15 0.85

0.5440.5450.4254
5 0.175 6 0.17 5 0.17
6 0.075 7 0.07 6 0.07
1 0.283 6 0.22I16 5 0.450.22 0.550.5

0.5460.5470.4332
0.1770.1780.2843

9 0.07 8 0.07
0.3 0.35I17 2 0.29 6 0.40.22 2 0.22

0.5430.5470.443
0.1740.1780.214

5 0.06 9 0.07 5 0.07
0.55P7 3 0.29 13 0.20 3 0.22 0.45 0.5

4 0.44 14 0.57 4 0.54
5 0.21 15 0.23 5 0.17

60.066 0.07

tainty and resource contention. SIMOPT type ap-
proaches provide insight into this range of behavior,
but there are several issues that must be addressed in
practical applications. In particular, the nature of how
rewards are computed has a significant effect on results.
This example assumes that 10% of the reward is re-
ceived after completion of the initial steps of the project
and the remaining 90% of the reward is received after
completion of the final step. Another strategy is to
assume that all rewards are received only after the

completion of the final step. Which assumptions are
used for the rewards depends on the purposes of the
study. If proper care is exercised in setting up the
project parameters, this example shows that SIMOPT
can be used to develop intuition about particular events
that can occur (Fig. 15) and the classes of behavior that
may be encountered in operating the pipeline (Fig. 16).
The combined use of optimization and simulation pro-
vides a great deal of realistic insight because the sched-
ules that are generated satisfy all the resource constra-
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Table 13
Project reward data

Project Reward $

P1 30 000
P2 20 000
P3 15 000
P4 40 000
P5 50 000
P6 40 000
P7 60 000

Fig. 16. Distribution of rewards for the seven-project example after
20 000 timelines are generated.

ints and the distribution information can be used to
manage risk. More details about SIMOPT and this
example may be found in Subramanian, Pekny and
Reklaitis (2001).

5. ePIMA: architecture for investigating game theoretic
applications

In addition to combinatorial and uncertainty consider-
ations, many practical problems involve multiple entities
that must cooperate or compete in some environment.
These types of game theoretic issues are most often found
at the supply chain management level, but are important
in any process management problem where significant
behavior can only be modified indirectly. Traditionally,
game theoretic issues are only addressed with relatively
coarse approaches that neglect details to more fully focus
on how cooperation or competition takes place. How-
ever, to accurately address many applications requires
connecting game theoretic issues to process details. For
example, effectively setting the proper pricing or timing
of a consumer product promotion can depend on man-
ufacturing operations (e.g. inventory levels, changeover
costs, waste, etc.) and a competitor’s manufacturing

operations. Ideally, a promotion must be timed when
inventory levels and manufacturing capacity can accom-
modate additional demand and puts a competitor at a
disadvantage. Available to Promise (ATP) dates for
potential product delivery are another example of where
connecting game theoretic issues to process detail offers
significant opportunity. The most effective ATP dates
must take into account inventory levels, available process
capacity, the importance of the customer, and current
process operations. If the wrong ATP date is given this
can result in a lost product sale or requiring extra cost
to satisfy the order. Effective ATP dates can involve
different product pricing levels or sharing demand fore-
casts between suppliers and customers so that delivery
dates can be cooperatively determined. Examples of
other process management questions where both detail
and game theoretic issues are important include:

Fig. 15. A possible schedule for the seven-project example.
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� What is the effect of forecast quality on performance?
� What is the effect of an increase in supplier or

customer inventory levels on performance?
� What is the effect of re-distribution of inventory

levels among the various entities in a supply chain?
� How much extra inventory is needed in the supply

chain to counter the effect of forecasting error?
� What is the value of information sharing between the

manufacturer and customers?
� What contracts, incentives, or penalties for bad fore-

casts should be negotiated with the customers to
ensure better performance?
The SIMOPT architecture described in Section 4

represents a single locus of control. The premise is that
the optimization model solution may be realized in
practice because all the people responsible for its imple-
mentation have incentives to follow it. In a multiple
entity environment, each entity has a separate locus of
control and follows objectives specific to that entity. The
ePIMA architecture shown in Fig. 17 incorporates one
SIMOPT ‘agent’ per entity to model a multiple entity
environment. Each SIMOPT agent is responsible for
developing plans and simulating them to address uncer-
tainty. Events that involve the interaction of more than
one entity will appear on both entities simulation event
stacks. The functionality associated with the ‘Agent
Mediation and Timeline Recording’ box in Fig. 17 is
responsible for informing all entities involved in an
event once it is accepted by both agents (e.g. an order
must be accepted by a supplier and placed by a cus-
tomer). This functionality is also responsible for coordi-
nating the event stack of each SIMOPT simulation and
advancing the simulation time to correspond to the
event on the stack with the next earliest event. Thus this
functionality also has the information necessary to
record a master time line for later analysis. As part of
processing an event, a SIMOPT agent may invoke its
optimization model to develop a new plan. Of course
this can change the event stack of its simulation and the
agent mediation function will inform other SIMOPT
agents involved in the events so that their event stacks
may be appropriately updated by any change in plans.
More detail concerning the ePIMA architecture and its
use to address the types of questions listed above is

discussed in Bose (2001) and Subramanian (2000). Use
of the ePIMA architecture is illustrated in the following
example.

5.1. Example: tradeoff between forecast quality, capacity,
and customer ser�ice le�el in a manufacturer-retailer
system

The ePIMA framework creates a virtual supply chain
by modeling each of the entities and their interactions.
The entities are represented as self-interested objects,
working to control their business processes in an effort
to optimize their own objectives. In this example a
supplier, manufacturer, and retailer are modeled. This
example is written from the perspective of the manufac-
turer. The other entities are modeled so as to evaluate
the manufacturer’s decisions under realistic conditions.
While the manufacturer is modeled in the greatest
detail, the other entities are modeled to a level of detail
that is required to perform studies involving coordina-
tion and information sharing. The business processes
modeled for the three-tiered supply chain under study
are: forecasting and ordering model for the retailers,
planning, scheduling and ordering model for the manu-
facturer, and planning-scheduling model for the sup-
plier. The mathematical models for the business
processes, in each of the entities, are given below. A
demand module generates many different ‘true-demand’
scenarios for which experiments are performed with a
separate ePIMA timeline associated with each experi-
ment. Distorting the true-demand controls the level of
forecasting accuracy. This introduces uncertainty in the
system (like an external disturbance in the case of
process control). The effect of this uncertainty and ways
to combat the uncertainty can be evaluated. The opti-
mization model of the manufacturer is implemented
using a two-stage model: (i) a Set-point Setting (SPS)
model whose output is fed to (ii) a Set-point attaining
(SPA) model. The SPS model is solved over a longer
time scale and hence cannot address all the necessary
detail in the manufacturing facility. The costs parame-
ters in the SPS model are updated based upon the
solution of the SPA model, which is more detailed.
Additional details may be found in Bose (2001).

The math-programming formulations for the SPS and
SPA models are summarized next.

Economic model for the manufacturer (SPS model)

Vij inventory of variant i in period j
inventory of SKU i in period jSij

safety stock of SKU i in period jSSij

scheduling horizonH
batch size of production of variant i onBie

V

equipment e

Fig. 17. The electronic process investigation and management analy-
sis (ePIMa) environment for investigating game theoretic interactions
under uncertainty.
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batch size of production of SKU i on equip-Bie
S

ment e
process time for batch of variant i in period jt ije

V

on equipment e
process time for batch of SKU i in period jt ije

S

on equipment e
nije

V number of batches of variant i produced in
period j on equipment e

number of batches of SKU i produced in pe-nije
S

riod j on equipment e
number of variantsNV

number of SKUsNS

set of equipments for producing variantsEV

set of equipments for producing SKUsES

MV matrix representing the bill of materials for
stage I (purification of variants)

matrix representing the bill of materials forMS

stage II (packing of SKUs)
c cost of raw materials
PV production costs for stage I (purification of

variants)
production costs for stage II (packing ofPS

SKUs)
PM price mark-up for SKUs
hRM holding cost of raw materials per unit weight

per period
holding cost of variants per unit weight perh�

period
hs holding cost of SKUs per unit weight per

period
ps penalty cost of missed demands for SKUs
Sij

+ dummy positive variable representing overage
of SKU i in period j

dummy positive variable representing under-Sij
−

age of SKU i in period j
safety stock of SKU i in period jSSij

demand of SKU i in period jDij

t je
D downtimes and changeover-time on equipment

e in period j
tT total time available in a period

The SPS model seeks to maximize profit that is
defined as revenue minus costs. The costs have three
components, which are holding costs, penalty costs and
production costs. The objective function is given below.
For succinct matrix representation, the index i pertain-
ing to the resource (SKU or variant) is dropped.
Max (profit)= �

H

j=1

[(revenue)j− (costs)j ] (7)

where,

((revenue)j

= (c MVMS+PVMs+PS)(Dj−Sj
−)(1+PM) (8)

(costs)j=hsSj
++hRMRj+psSj

−+PV �
EV

e=1

nje
V+PS �

ES

e=1

nje
S

(9)

The modeling of penalty and holding costs becomes
easy by introducing two dummy independent variables,
representing the underage (Sij

−) and overage (Sij
+) of

inventory. The actual inventory in any week for a SKU
is given by the following equation.

Sij=Sij
+−Sij

− (10)

The variables Sij
+ and Sij

− cannot take negative values
and both Sij

+ and Sij
− cannot be positive at the same

time.
The above objective function is subject to various

constraints. The following sets of equations are the
mass balance constraints, which link the inventory from
one period to the next.

Sij=Si( j−1)+ �
e�E S

[nije
S Bie

S]−Dij �i� [1,NS ], �j� [1,H ]

(11)

Vij=Vi( j−1)+ �
e�E V

[nije
V Bie

V]− �
e�E S

{M ie
S[nije

S Bie
S]}

�i� [1,NS ], �j� [1,H ] (12)

The constraint determines the raw material inventory
that should be available at the beginning of each
period.

Rj� �
e�E V

[MV(nje
VBe

V)] �j� [1,H ] (13)

The next two equations enforce the condition that the
total production time, downtime and changeover-times
do not exceed the total available time in a period.

�
NS

i=1

[t ije
S n ije

S ]+ t je
D� tT �j� [1,H ], �e�ES (14)

�
NV

i=1

[t ije
V nije

V ]+ t je
D� tT �j� [1,H ], �e�EV (15)

The lower and upper bounds for the independent vari-
ables are given below.

0�Sij
+�Smax

+ �i� [1,NS ], �j� [1,H ] (16)

0�Sij
−�Smax

− �i� [1,NS ], �j� [1,H ] (17)

0�Vij�Vmax �i� [1,NV ], �j� [1,H ] (18)

0�Rij�Rmax �i� [1,NV ], �j� [1,H ] (19)

yije
S �{0,1} �i� [1,NS ], �j� [1,H ], �e�ES (20)

yije
V �{0,1} �i� [1,NV ], �j� [1,H ], �e�EV (21)

5.1.1. Scheduling model for manufacturer ( first SPA
model)

The manufacturer uses the SPA (scheduling) model
to attain the target inventory levels set by the SPS
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model. In order to avoid being myopic the manufac-
turer plans for several periods ahead in advance in the
SPS model. However, the SPA model is only invoked
for the first period in order to obtain a detailed sched-
ule for that period. The SPA model is defined and
solved with the VirtECS® scheduler (Advanced Process
Combinatorics, Inc., 2001). Before the SPA model is
formulated, the solution of the SPS model is processed
to compute the demands for the scheduling problem.
Based on the solution of the SPA model, the product
costs in the SPS model are updated and the SPS model
is resolved. This updating is done to reflect the actual
values of the products cost parameters.

5.1.2. Ordering model for the manufacturer (second SPA
model)

The model is based upon dynamic lot-sizing where
demands are known but vary over time. This single
item model is solved for each SKU.

Let, H is the planning horizon (the number of peri-
ods for which demands are known in advance), Dj is
the forecast demand in period j, j= [1, H ], cj is the unit
purchase cost in period j, j= [1, H ], K is the fixed
(set-up) cost incurred when an order is placed in period
j, j= [1, H ], h is the holding cost incurred to carry an
unit of inventory from period j to ( j+1), j= [1, H ], Ij

is the amount of product inventory at the start of a
period t (before ordering), j= [1, H ], and Qj is the order
quantity for period t (to be determined), j= [1, H ].

The formulation seeks to determine Qj in order to
minimize the total cost (holding cost plus fixed-ordering
cost) while satisfying all demands (no back orders) (see
Bose, 2001 for details). It is assumed that the purchase
cost of items is constant over time. Thus cj=c for all
j= [1, H ].

The objective function tries to minimize the sum of
holding costs and ordering costs. Since it is assumed
that the ordering models will order so as to fulfill all
demands for raw materials, the penalty cost for missing
any demand is not considered in the model. The objec-
tive function is given as follows:

Min �
H

j=1

[hIj ]+ �
H

j=1

[K�(Qj)] (22)

Here the delta function (�) takes the value 1 if Qj is
positive, 0 otherwise. The above objective function is
subject to several constraints. The first constraint is a
material balance constraint.

Ij=Ij−1+Qj−Dj �j� [1,H ] (23)
The upper and lower bounds for the variables are
specified in the problem. They are given as:

0�Ij�Imax �j� [1,H ] (24)

0�Qj�Qmax �j� [1,H ] (25)

Let the lead-time between the manufacturer and the

retailers is L periods. Thus, quantity, Qj ordered in
period j will be received in period j+L. Eq. (23)
changes to:

Ij+L=Ij+L−1+Qj−Dj+L �j� [1,H ] (26)

We provide below a brief description of the other
models used in this example.

5.1.3. Planning model for the supplier
In order to produce the variants from the raw mate-

rial, the supplier uses a planning model. This planning
model is simpler since there are no parallel equipments
for producing the bases and variants. The formulation
is similar to the planning model used for the manufac-
turer. We assume that the raw materials for the supplier
are in abundance and hence his forecasting and order-
ing processes are not considered.

5.1.4. Demand generation model
The customer demands for each of the SKUs at the

retailers is generated using a sum of different demand
signals. These signals are base demand, growth or
decay with time, cyclic demands, seasonal demands and
random noise. The parameters that control each of the
demand signals are obtained from the historical de-
mand data of the industrial case study. The many
instances that can be generated using these parameters
are representative of the actual demands that can occur
in this industry. The demand, Di(t), for a period t and
SKU i is given as follows:

Di(t)=Bi+Gi t+Ci sin(âi t)+Si cos(âi t)+Noisei

(27)

Here, Bi is the base demand of SKU i, Gi is the growth
or decay of demand of SKU i, Ci is the coefficient for
cyclic demand with periodicity ãi, Si is the coefficient
for seasonal demand with periodicity ãi, Noisei is the
normally distributed noise, �N(0, �i), �i=5% of Bi.

5.1.5. Forecasting model for retailers
The demand observed by the retailers in the supply

chain is stochastic. Hence, the retailers can predict the
demands for the future weeks to a certain degree of
accuracy. We will define this degree of accuracy as the
forecast quality. This accuracy is measured as the devia-
tion of the forecasted demands from the true demands.
The deviation is normalized between 0 and 1, 0 being
the ability to predict future demands perfectly, and 1
denoting poor prediction of the future demands.

The forecast, Fi(t), for a period t and SKU i is
calculated as follows:

Fi(t)= [Di(t)]*Ni
F (28)

Here, Ni
F is the norm ally distributed noise, �N(1, �i),

�i is a parameter that can be varied to obtain forecasts
of different accuracy.
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Table 14
Forecast quality description

Forecast quality �i (%)

5Good
Average 20

50Bad

improvement in the service level. Results are shown in
Fig. 18 as a contour plot of service level against
forecast quality and increase in plant-capacity. Clearly,
high quality forecasting can allow the same level of
customer service to be reached with less process
capacity. Another of the important observations is that
if the manufacturer has ‘bad’ forecast quality, then an
increase in the plant capacity will not be effective. The
results argue for a combination of both options. For
example, in order to increase service level to 95%, the
manufacturer can improve the forecast quality to an
‘average’ level from a ‘bad’ level and then increase the
capacity by 10%. To further increase the service level,
to say 97%, from 95% the manufacturer can either
improve the forecast quality to a ‘good’ level, or
increase the capacity to 20%. At different points on the
contour plot, the marginal increase in service level
varies depending upon what investment option is
chosen at that point.

6. Conclusions

This paper has discussed three algorithm architec-
tures for addressing decision problems arising in
process management applications: (i) mathematical pro-
gramming architecture for problems involving large-
scale combinatorics, (ii) SIMOPT architecture for
problems involving combinatorics, uncertainty, and risk

Table 14 lists the values of �i, which were used to
obtain the various forecast qualities of ‘good’, ‘average’
and ‘bad’. The retailer orders SKUs based on the
forecasts using a similar ordering model as described
for the manufacturer.

This example represents the situation when the
manufacturer can make an investment towards
improving the forecast quality and/or increase the
production capacity. Under such conditions, the
manufacturer must choose the best investment decision,
which is one of following three options.
1. (Forecast Improvement) Invest in better

information-systems, like Electronic Data
Interchange (EDI), or Point of Sales (POS) data, or
marketing and product sampling surveys.

2. (Capacity Expansion) Invest in increasing plant
capacity, or purchasing technologically improved
and efficient equipment.

3. A combination of the above investments.
In such situations, the ePIMA architecture can reveal

which of the options will yield the maximum

Fig. 18. Contour plot of service level.
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management, and (iii) an ePIMA architecture for prob-
lems involving game theoretic issues. A key factor
underlying the design and engineering of these architec-
tures is the uncertainty principle implied by NP-com-
pleteness. Since no single algorithm can guarantee both
the solution quality and a reasonable execution time
over the range of all problems of interest, consideration
of life-cycle issues is of paramount importance. In
particular the delivery, control, support, and extension
of a given architecture and implementation are critical
research and development issues and ones that will
control the sophistication with which practical prob-
lems can be addressed. Mathematical programming
based architectures offer several advantages with regard
to life-cycle issues, although the intellectual hurdles are
high since the size of practical problems dictates sophis-
ticated techniques to achieve acceptable performance
(e.g. implicit generation of formulations). For several
application areas, this sophistication is justified since
the ready availability of information is putting a pre-
mium on the ability to quickly reduce information to
effective actions, identify key information driving an
answer, and develop strategies that manage risk. In this
regard the formalism of mathematical programming
offers the potential for cheaper delivery with regard to
the effort required for an application, detailed al-
gorithm control, rapid support in the event of problem-
atic problems, and extensibility to new constraint
combinations and application areas.
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