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Abstract 
A new network representation to study the impact of capital and research & 
development (R&D) investment decisions on the evolution of biomass to commodity 
chemicals technologies is presented. The corresponding mathematical programming 
formulation is developed. The model is solved for a simplified ethylene production 
scenario to demonstrate its ability to predict the capacity expansion and R&D 
investment decisions. 
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1. Introduction 
Biomass, as a renewable and locally available resource, has great potential for weaning 
the chemical process industry (CPI) from fossil based feedstocks. There are many 
different routes to transform biomass into feedstock for the bulk chemicals production. 
Similar to the use of biomass for fuel production, the technologies for bulk chemicals 
production can be classified under two main categories: thermo-chemical conversions 
and bio-chemical conversions. Thermo-chemical conversions are gasification, pyrolysis 
and liquefaction/hydro-thermal upgrading of the biomass, whereas bio-chemical 
conversions are fermentation and anaerobic digestion. Figure 1(a) gives a simplified 
overview of the biomass to commodity chemicals (BTCC) routes that are currently 
under consideration. Figure 1(a) is not comprehensive; rather the purpose here is to 
highlight the complexity of the decision space and its interconnections. Reviews of 
chemicals via bio- and thermo-chemical conversions can be found in (Werpy and 
Petersen 2004; Kamm, Gruber et al. 2006; Corma, Iborra et al. 2007; Holladay, Bozell 
et al. 2007; Kamm and Kamm 2007; Haveren, Scott et al. 2008).  
 
The switch from our current fossil fuel based CPI to a future CPI that utilizes biomass 
feedstock requires substantial amounts of R&D and capital investments for technology 
development. As such there is great need for investigating how these investments will 
impact the evolution of the biomass feedstock system. Given the vast number of routes 
that can be utilized to convert BTCC, the decisions of how much to invest in which 
technologies for the short, medium and long term in the resource-constrained 
environment of the CPI is a challenging task. Furthermore, a suitable framework which 
is amenable to support the investment decisions in this field and which can be used to 
represent and compare different technology options with their maturation levels and 
possible evolution paths is not available in the literature. 
 
In this paper, a new framework, based on graph theory, is proposed to fulfill this gap. In 
the following sections, the proposed framework to study the BTCC investment problem 
is defined in detail followed by the resulting nonlinear programming (NLP) formulation 
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of the investment problem. A simplified case study is presented to demonstrate the 
application of the proposed framework. Finally, last section provides conclusions and 
future directions. 
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Figure 1. The technologies to transform biomass to commodity chemicals (a) and the 
corresponding network representation (b) 

2. A New Framework to Study BTCC Investment Problem 
Drawing analogies to the graph theory, a network representation is developed as a 
suitable framework which is amenable to support the investment decisions for the 
BTCC system. In the network representation, nodes correspond to the materials, i.e., 
biomass, intermediate chemicals, and commodity chemical, and directed-arcs 
correspond to the technologies. This yields a directed network G = (V, E) with node set 
V, and arc set E. For example, Figure 1(b) shows the network representation of the 
BTCC technologies presented in Figure 1(a). Using index v to denote a node, and index 
e to denote an arc, the following variables are defined for each arc: cumulative capacity 
(CXe, cumulative installed capacity of technology e), transportation cost (CCe, unit 
capital cost for technology e), efficiency (e, the production efficiency of technology e, 
e, 1), αe and βe are the learning-by-doing and learning-by-searching elasticities of the 
corresponding technology, respectively. The transportation cost of an arc can be 
reduced by expending R&D and capital investments. While the R&D investments do 
not directly impact the cumulative capacity, the capital investments result in capacity 
expansions. The relationship between the R&D and capital investments, and the 
transportation cost and capacity is defined using two-factor learning curve expression 
(Figure 2). Depending on the R&D and capital investment decision of the CPI players 
and the government, the BTCC network will evolve differently. 
 
Learning curve concept was first introduced by Wright (Wright 1936). Wright observed 
that the number of direct labor hours it takes to manufacture one unit of a product 
decreased at a uniform rate as the quantity of the units manufactured doubled. In their 
most general form, the learning curve models link the cumulative capacity, the output, 
or the labor to the technology's cost using the main phenomena observed by Wright: 
cost decreases uniformly as the cumulative learning source doubles. The original 
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learning curves included only the impact of one-factor (such as capacity) on the cost of 
the technology. These models are used to represent the learning-by-doing. However, the 
unit cost of a technology also changes with R&D expenditures, especially at the infancy 
of the technologies. This impact is called learning-by-searching, and resulted in two-
factor learning curves (Kouvaritakis, Soria et al. 2000). 

3. Modeling the Evolution of BTCC Technologies 
Using the framework described in this paper, the evolution of BTCC technologies is 
modeled with an NLP. There are three subsets of nodes that are used in the formulation: 
Raw materials, VR = {v|vV  v is a source node}; Biomass,  biomassVRR ; 

Products, VP = {v|vV  v is a sink node}. The connectivity of the graph is represented 
by a weighted incidence matrix, B, which is a |V||E| matrix B =(bv,e) (see Figure 2 for 
the elements of B). It is assumed that the demand for the products increases over time 
with an annual rate, the cost of biomass increases according to the inflation rate and the 
cost of nonrenewable raw materials increases linearly with the total resource depletion. 
With these assumptions, the resulting NLP formulation is given in Figure 2. 

4. Case Study 
A simplified case study, the evolution of ethylene production from biomass (corn grain 
+ corn stover) through two different technologies compared to conventional ethylene 
production from naphtha, is presented to illustrate the capabilities of the proposed 
approach. The network representation of the problem can be seen in Figure 3(a) and the 
evolution of the resulting production landscape is given in Figure 3(b). The evolution of 
the ethylene production technologies and production capacities was modeled for a 50 
year period. Technology parameters are in Table 1. Initial raw material costs for 
biomass (grain+stover) and naphtha are assumed to be $262/dry ton and $685/ton. The 
model was solved using GAMS 23.4 – CONOPT in 0.15 CPU seconds. With the model 
parameters used, the production shifts to utilizing biomass as the technology capacities 
become available and the only new capacity expansions are biomass utilizing 
technologies (Figure 3(b)).  

Table 1. Technology parameters 

Tec, e  (wt%)   Initial Cost Initial Capacity (106 tons) 
(1) 0.25 -0.20 -0.07 $0.20/kg 45 
(2) 0.80 -0.28 -0.05 $10.0/kg 0.01 
(3) 0.30 -0.20 -0.07 $10.0/kg 0.01 
(4) 0.55 -0.20 -0.07 $1.0/kg 0.01 
(5) 0.25 0.00 0.00 $1.2/kg 28.3 

5. Conclusions and Future Directions 

5.1. Conclusions 
In this work, BTCC investment problem is described and drawing analogies to graph 
theory, a new network representation for this problem is proposed. Using the proposed 
representation, the NLP formulation of the investment problem is presented. A 
simplified case study, the production of ethylene from conventional naphtha cracking 
and from biomass via two routes, is modeled to demonstrate the application of the 
framework. The results suggest that the evolution of the BTCC systems can be modeled 
by the proposed framework.  
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Figure 2. The NLP formulation of BTCC technologies evolution 
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Figure 3. The network representation of case study (a) and the resulting cumulative capacity (b) 

5.2. Future Directions  
The solutions of the model are sensitive to the data used to construct the model. 
Therefore, a systematic sensitivity analysis will be performed to study the impact of 
model parameters on the evolution of the BTCC system and on the emergence of the 
"winner" technologies.  
 
The elasticities in learning-curve equation are usually determined through historical data 
by regression, hence the elasticities are normally distributed uncertain variables 
(Gritsevskyi and Nakicenovi 2000). For new technologies the uncertainty in the 
elasticity estimates will be higher due to the limited amount of data, i.e., the mean of the 
normal distribution might shift and the variance of the distribution will shrink as more 
data becomes available. Furthermore, the possible evolution paths of the technologies 
are dependent on the investment decisions of the individual CPI players as well as the 
decisions of the government. This is a stochastic optimization problem with endogenous 
and exogenous uncertainty, because the decisions may impact the distribution 
parameters and/or the observations of the uncertainties. We will investigate simulation-
based optimization approaches to the stochastic BTCC investment problem. 
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