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a  b  s  t  r  a  c  t

A  methodology  to minimize  potential  environmental  impact  and  operating  cost  in  the  selection of the
operating  conditions  of  a  steam  and  power  plant  is  presented.  A  bi-objective  mixed  integer  nonlinear  pro-
gramming  problem  is  formulated  and  solved  in  GAMS.  Different  strategies  are  implemented  successfully
to  generate  the  Pareto  curve  such  as:  minimum  distance  to the  utopia  point,  ε-constraint,  weighted  sum
and global  criterion.  An analysis  of  the  Pareto  curve  allows  the  identification  of  two  regions  where  it  is
cheaper  and  more  expensive  respectively,  to reduce  the  potential  environmental  impact,  providing  rele-
vant  information  to support  a  decision  making  process.  The  economical  valorisation  of  greenhouse  gases
emissions  reduction  was  also  carried  out,  showing  the  region  of  the  Pareto  curve  in  which  the  income
would  compensate  the increment  in  operating  cost,  leading  to  a reduction  of the  potential  environmental
impact  with  no  extra  cost.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Reduction of environmental impact of process industry is one
of the imperative challenges to achieve sustainable development
for the current century. Economic objectives as operating and cap-
ital cost or net profit value have been extensively used in process
system engineering in order to find either the optimal operating
conditions of an existing process or flow sheet configurations in the
synthesis step. When the operating cost of a process is minimized,
the associated environmental impact might rise, conversely an
environmental friendly process is often cost intensive. This fact evi-
dences the need of solving problems with more than one objective,
that is, to find solutions that satisfy environmental and economic
objectives simultaneously. This solutions could be found formulat-
ing multi-objective optimization problems in the decision making
process.

The multi-objective optimization problem could, in theory, be
solved using similar methods as those employed in single objec-
tive optimization problems, converting the multiple objectives into
a single objective. Authors like Ciric and Huchette (1993) have
treated multi-objective optimization applied to environmental and
economic objectives minimizing the amount of waste and the cap-
ital and operating cost of an ethylene glycol production plant.
Dantus and High (1999) proposed a method, called global crite-
rion, to convert a bi objective optimization problem into a single
objective optimization problem; the method proposed is a varia-
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tion of the utopia point distance minimization, including discrete
variables to select the type of reactor to be used in the methyl chlo-
ride superstructure plant design. Pistikopoulos and Hugo (2005)
have treated multi objective optimization with environmental and
economic objectives applied to supply chain network design and
planning using the ε-constraint method. Azapagic and Clift (1999),
have proposed the application of life cycle assessment to aid the
decision making process for environmental improvement, with
multiple objectives for the mineral boron production. Puigjaner
et al. (2008) present a scheduling multi-objective programming
problem, solved using genetic algorithms, where environmen-
tal life cycle and cash flow balance are used. Recently, Novais,
Barbosa-Póvoa, and Duque (2010) present a design and planning
problem applied to a pollutant recovery network where the envi-
ronmental impact due to pollutant discharges and operating cost
are including into a multi-objective mixed integer linear prob-
lem solved using the ε-constraint method. Gebreslassie, Jimenez,
Guilleı̌n-Gosaı̌lbez, Jimeı̌nez, and Boer (2010) present a multi-
objective optimization of a solar assisted cooling system using the
life cycle environmental assessment and the total cost as objec-
tive functions, using the ε-constraint method and solving MINLP
problems.

These objectives usually compete with each other, so that it is
not possible to find a solution that simultaneously satisfies all of
them. Therefore, the concept of Pareto optimal solution is utilized
to assess whether a solution is optimal or not. A multi-objective
optimization problem requires the simultaneous satisfaction of a
number of different and often conflicting objectives. Pareto opti-
mality is the key concept to establish a hierarchy among the
solutions of a multi-objective optimization problem, in order to

0098-1354/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
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Nomenclature

C Utility plant operating cost, $
e Emission factor
F  Stream flow rate
g Inequality model constraint
h Equality model constraint
PEI Potential environmental impact
z Generic single objective function
Z Generic multi-objective function
W Imported electricity

Subscripts
ie Imported electricity
j  Environmental impact category
fw Fresh water
k  Pollutant
mw Make up water
ng Natural gas
p Purge stream
pe Pollutant emission
rc Resource consumption
rg Residual gas
wt Water treatment

Superscript
UP Utility plant

Greek symbols
˛  Weighting factors for each environmental impact

category j
� Environmental Impact category characterization

factor
ω Weighting factors for each single objective function

z
 ̊ Decision maker’s compromise index

ε Constraint-level parameter for the ε-constraint
method

determine whether or not a solution is really one of the best possi-
ble trades-off (Sayyaadi, 2009).

In the present work the operating conditions of a steam and
power plant are selected to minimize potential environmental
impact and operating cost simultaneously solving a bi-objective
mixed integer nonlinear optimization problem. The environmental
objective is the environmental impact associated with solid wastes,
gaseous and liquid emissions of a steam and power plant. The oper-
ating cost includes costs of imported electricity, natural gas feed,
makeup water and water treatment. The bi-objective mixed inte-
ger nonlinear optimization problem is formulated and solved in
GAMS (Brooke et al., 2003). The continuous operating variables are
temperature and pressure of the high (HPSH), medium (MPSH)
and low pressure (LPSH) steam headers and the deareator (DP)
pressure. Binary operating variables are introduced to represent
discrete decisions such as the selection of: (i) alternative pump
drivers such as electrical motors and steam turbines and (ii) boil-
ers which are on or off, and their auxiliary equipment such as feed
pumps and air fans.

Different methods to solve the bi-objective optimization prob-
lem, like minimum distance to the utopia point, ε-constraint,
weighted sum and global criterion, were implemented successfully
in GAMS. The Pareto curve is generated and analyzed, finding the
more convenient sector of the Pareto curve to reduce potential envi-
ronmental impact with the least increment in operating cost. The

increment in the operating cost is compensated with the Carbon
market income that could be generated by the reduction of green
house emissions. The analysis of the Pareto curve provides relevant
information to support a decision making process in the selection
of the operating conditions of a key sector as the numerical results
show.

2. Utility plant description

The utility plant provides mainly steam and power to the chem-
ical plant. It consumes fossil fuels, a non-renewable resource burnt
in the boilers and also a scarce resource as water. A schematic flow
sheet of an ethylene utility plant is presented in Fig. 1.

There are four boilers B1–B4 and a waste heat boiler, associ-
ated with the quenching sector of the ethane cracking furnace, both
kind of boilers produce superheated steam at high pressure (HPS)
sending it to the high pressure steam header. The main equipment
are: high, medium and low pressure steam headers, steam turbines,
pumps, deaerator tank, vents, let-down streams, water treatment
plant (WTP), vacuum condenser tank, air fans, electrical motors and
heat exchangers. The top product from the demethanizer column
of the ethylene plant is recycled as residual gas (RG in Fig. 1) to be
mixed with the natural gas (NG in Fig. 1) and burned in boilers and
waste heat boiler. There are optional drivers that can be electrical
motors (M1–M11) or steam turbines (T1–T11) for eleven pumps in
Fig. 1. The continuous operating conditions to be selected in util-
ity plant are: temperature and pressures of high, medium and low
pressure steam headers and deareator pressure. Their upper and
lower bounds are shown in Table 1.

The modelling equations of the main equipment and steam
and water enthalpy and entropy property predictions are posed
as equality constraints in the optimization problem formulated
in GAMS (Brooke et al., 2003). The plant has alternative drivers
such as electrical motors and steam turbines for some pumps.
Binary variables are used to select the drivers’ configuration and
on/off equipment selection. Binary variables are associated to the
selection of pumps drivers such as water tower pumps, lubricat-
ing pumps, condensate pumps, boiler water pumps, cooling water
pumps and also the boilers and air fans.

There are twenty-four binary variables shown in Table 2. Twelve
of the binary variables are used to select between electrical motors
and steam turbines as drivers corresponding to: seven pumps in the
ethylene plant (e.g. two  water quenching tower, three lubrication
and two condensate pumps), one air compressor impeller and four
air fan impellers. The rest of the binary variables are used to define
if the equipment is ON or OFF as for the four available boilers, three
boilers’ feeding water pumps and five cooling water pumps.

Those drivers indicated in brackets in Table 2 are fixed and the
corresponding binary variable is used to select if the equipment
is ON or OFF. In the mathematical model linear relations between
binary variables such as logical constraints are considered. These
relations are posed as inequalities so as to model an order of pri-
ority. This order of priority applies for example to boilers and its
auxiliary equipment such as feed water pumps and air fans.

Table 1
Binary variables of the utility plant.

Optimization variables Lower bound Upper bound

P1: HPSH pressure, bar 48.00 52.00
P2:  MPSH pressure, bar 18.00 26.00
P3:  LPSH pressure, bar 3.00 5.00
T1:  HPSH temperature, ◦C 400.00 450.00
T2:  MPSH temperature, ◦C 310.00 370.00
T3:  LPSH temperature, ◦C 150.00 250.00
Pd:  Deareator pressure, bar 1.20 3.00
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Fig. 1. Utility plant flow sheet.

Condensing and backpressure turbines are the most common
types of steam turbines, with the latter having the widest applica-
tion. Both can be multi stage with more than one steam input or
output. The output of condensing turbines commonly goes to a vac-
uum condenser to increase the power. Turbines take their steam
from a header and release the steam to a lower pressure header.

Table 2
Bounds on the continuous operating conditions of the utility plant.

Binary optimization variables Drivers’ selection

Utility plant units yi = 0 yi = 1

Water pump no. 1, quenching tower EM ST
Water pump no. 2, quenching tower EM ST
Lubrication pump no. 1 EM ST
Lubrication pump no. 2 EM ST
Lubrication pump no. 3 EM ST
Condensate pump no. 1 EM ST
Condensate pump no. 2 EM ST
Air  compressor impeller EM ST
Boiler water pump no. 1 (steam turbine) OFF ON
Boiler water pump no. 2 (steam turbine) OFF ON
Boiler water pump no. 3 (electrical motor) OFF ON
Cooling water pump no. 1 (steam turbine) OFF ON
Cooling water pump no. 2 (steam turbine) OFF ON
Cooling water pump no. 3 (electrical motor) OFF ON
Cooling water pump no. 4 (electrical motor) OFF ON
Cooling water pump no. 5 (electrical motor) OFF ON
Air  fan impeller, boiler no. 1 EM ST
Air fan impeller, boiler no. 2 ST ST
Air  fan impeller, boiler no. 3 EM ST
Air  fan impeller, boiler no. 4 EM ST
Boiler no. 1 OFF ON
Boiler no. 2 OFF ON
Boiler no. 3 OFF ON
Boiler no. 4 OFF ON

In the headers, the steam temperature and pressure is controlled
by de-superheating water and by high-pressure steam letdowns.
The main power demands of the process plant correspond to three
compressors: cracking gas (CGC), propylene gas (PC) and ethylene
gas (EC). The condensed steam returning from the chemical process
heat exchangers is collected in a tank at atmospheric pressure to
be re-used and generate steam. The recycled condensate cannot be
re-used without previous water treatment in the water treatment
plant (WTP) to prevent corrosion in boilers and turbines. Other
power demands posed as equality constraints corresponds to: the
energy recovered in the waste heat boiler, energy consumed by
the cracking furnace in the ethylene plant, power demands for the
condensate pump impellers, air fan impellers, boiler water pumps
and cooling water pumps. For further details on the mathematical
modelling of the utility sector see Eliceche, Corvalan, and Martinez
(2007).

3. Environmental and economic objective functions

3.1. Potential environmental impact evaluation

The potential environmental impact (PEI) function considered is
a multi-objective function itself, since nine environmental impact
categories are considered: global warming, acidification, ozone
depletion, photo oxidant formation, eutrophication, fresh water
ecotoxicity, human toxicity, source depletion and the impact due
to ionizing radiation. The potential environmental impact is calcu-
lated using the CML  2002 methodology (Guinée et al., 2002). The
contribution of the emission of a pollutant k to a given environ-
mental impact category j is evaluated multiplying the pollutant k
flow rate Fk emitted into the environment by a characterization
factor �kj published by Guinée et al. (2002).  This characterization
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factor represents the effect that chemical k has on the environmen-
tal impact category j. Hence, the potential environmental impact,
PEI, is calculated adding the contributions of all the environmental
impact categories j as follows:

PEI =
∑

J

∑
k

˛j × Fk × �k,j (1)

where ˛j represent the weighting factors for each environmental
impact category j. More information can be found in Eliceche et al.
(2007). Eq. (1) transforms the pollutants emissions flow rates into
potential environmental impacts. Thus, the simulation of the utility
plant provides the emission flow rates Fk to end up calculating the
overall environmental impact PEI.

3.1.1. Utility plant environmental impact
The emissions of the steam and power plant are evaluated from

the modelling of the main processes formulated in GAMS (Brooke
et al., 2003). The emissions come mainly from the combustion in the
boilers of a mixture of natural gas, Fng and residual gas recycled from
the top of the demethanizer column, Frg. Liquid emissions of purge
streams, Fp, in the boilers and cooling system are also considered.
The total emission flow rate of a given pollutant k from the utility
plant (UP) is calculated as follows:

FUP
k = Fng × ek,ng + Frg × ek,rg + Frp × ek,rp (2)

where ek,ng is the emission factor for pollutant k due to the com-
bustion of natural gas, ek,rg is the corresponding emission factor for
residual gas combustion and ek,p is the pollutant emission factor for
liquid emissions. The emissions factors express the amount of pol-
lutant k emitted by unit mass of natural gas, residual gas and liquid
stream, respectively. The CO2 emission due to natural gas and resid-
ual gas combustion are estimated stoichiometrically with the gas
composition following the IPCC (2001) recommendations. Nearly
100 gaseous pollutants emissions are estimated from AP-42 report
(EPA, 1998). Emissions from liquid discharges were estimated from
the Electrical Power Research Institute report (2000).

Thus, the utility plant potential environmental impact due to its
pollutants emissions is calculated combining Eq. (2) and Eq. (1):

PEIUP
pe =

∑
j

∑
k

˛j × FUP
k × �k,j (3)

The parameters  ̨ and � as well as the subscripts k and j are the
same that those explained for Eq. (1).  The simulation of the utility
plant operation provides the emissions flow rates FUP

k
to calcu-

late the overall environmental impact due to utility plant pollutant
emissions, PEIUP

pe .
In addition, the resources depletion category was included. This

impact category is calculated as a function of the natural gas and
fresh water consumption through the following equation:

PEIUP
rc = Fng

Rng
+ Ffw

Rfw
(4)

where R indicates the resource reserve expressed in mass units.
Discrepancy on the values for resource reserve to be used has risen.
Some authors consider the world reserves for all the resources con-
sidered (Guinée et al., 2002). Nevertheless, the global availability
of certain resources is not a common practice, especially due to
cost and technical constraints. Instead of global values, perhaps it is
desirable to use a local reserve reflecting a more realistic situation.
This is the case of scarce resources as water. In this work the local
reserves of each resource, natural gas and water, are considered.

Finally, the utility plant environmental impact is calculating
adding Eqs. (3) and (4):

PEIUP = PEIUP
pe + PEIUP

rc (5)

3.1.2. Utility plant operating cost
The operating cost of the utility plant includes costs of imported

electricity (ie), natural gas feed (ng), makeup water (mw) and water
treatment (wt); where cie, cng, cmw and cwt are the corresponding
cost coefficients. The operating cost is calculated as follows:

C = Fng × cng + Fie × cie + Fmw × cmw + Fwt × Cwt (6)

A detailed mathematical model of the utility plant operation is
presented in Eliceche et al. (2007).

4. Formulation of bi-objective optimization problems

The multi-objective optimization is a system analysis approach
to problems with conflictive objectives. A key factor of multi-
objective optimization is that rarely exist a single solution that
simultaneously optimizes all the objectives. In its place, there is
a set of solutions where one objective cannot be improved except
at expense of another objective. This set of compromise solutions
is generally referred as non-inferior or Pareto optimal solutions.
In a single objective optimization problem the Kuhn–Tucker
conditions provide the necessary conditions for optimality. The
multi-objective problem can be seen as a vector optimization prob-
lem. In this work two  objectives are considered, as follows:

min Z(x) = [z1(x), z2(x)]
x ∈ X
s.t.
gm(x) ≤ 0, m = 1, 2, . . . , M
hs(x) = 0, s = 1, 2, . . . , S

(P1)

In the bi-objective formulation P1, x is the vector of decision
variables being X the feasible region. Z is the vector of objective
functions. The solutions of problem P1 minimize the two  individual
objective functions z1 and z2 simultaneously, while satisfying the
M inequalities gm(x) ≤ 0 and the S equalities hs(x) = 0 constraints,
which represents the system model equations and operation con-
straints.

An important characteristic of the multi-objective problems is
that rarely exist a solution x* that minimize all the objective func-
tions while the constraints are fulfilled, then the optimality concept
can be defined as:

A solution x* ∈ X is efficient or non-dominated for the prob-
lem (P) if and only if there is no x ∈ X such that zi(x) ≥ zi(x*) for all
i ∈ {1, . . .,  I} and zj(x*)  > zj(x) for at least one j.

In the previous general statement the subscript i is used to indi-
cate each single objective function in the set of single objective
functions I. The subscript j is used to denote an objective function
different from the i objective function. A set of solutions is said
to be Pareto optimal if, when moving from one point to another
in the set of solutions, any improvement in one of the objective
functions from its current value, would cause at least one of the
other objective functions to deteriorate from its current value. The
Pareto optimal set is usually an infinite set. The decision maker has
to choose from the set of solutions generated.

4.1. Multi-objective solving methods

A wide variety of algorithms for multi-objective optimization
has been reported in literature as Hwang and Masud (1979),  Zeleny
(1982), Goicoechea, Hansen, and Duckstein (1982),  Steuer (1986),
Zionts and Wallenius (1976, 1980),  Hwang, Paidy, Yoon, and Masud
(1980), Clark and Westerberg (1983),  Ciric and Huchette (1993),
Das and Dennis (1997),  Dantus and High (1999) and Alves and
Clímaco (2007).  The general approach converts the multiple objec-
tive functions vector into a single objective function, performing
then a single objective optimization. Some of these methods are:
weighted sum, utopia point distance minimization, ε-constraint
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method and global criterion method. The general formulation of
a bi-objective optimization problem with continuous optimization
variables was presented in problem P1. All the solution approaches,
except the ε-constraint method, involves a combination of differ-
ent objective functions into a single one. A brief description of the
methods used in this work follows, Bhaskar, Gupta, and Ray (2000).

4.1.1. Weighted sum or parametric approach
The weighted sum of the different objectives has been widely

used; the reformulated objective function is a convex combination
of the original single objective functions, as follows:

Z =
n∑

i=1

ωi × zi(x) (7)

0 ≤ ωi ≤ 1 (8)

n∑
i+1

ωi = 1 (9)

The non-inferior points are generated changing the relative
weights ωi. The weighting coefficients are chosen a priori.

4.1.2. Utopia point distance minimization
The utopia point has as coordinates the minimum values of each

single objective function z∗
i
, and it is the point at which the asymp-

totes of the Pareto set meet. Each asymptote, zi = z∗
i

= constant, can
be obtained by solving the single objective function optimization
problem. The best solution minimizes the distance to the utopia
point. The single objective for this strategy follows:

Z =
[

N∑
i=1

[zi − z∗
i ]2

]1/2

(10)

This objective function represents the distance (Euclidian norm)
between the ideal utopia point and the final solution. Some varia-
tions of this method use weighting factors as in the weighted sum
method.

4.1.3. Trade-off or ε-constraint method
In this method the trade-off among the multiple objectives is

specified by the decision maker. This method is also known as the ε-
constraint or reduced feasible space method because the technique
involves search in a progressively reduced criterion space. The orig-
inal problem is converted to a new problem in which one objective
is minimized while the other objectives are posed as inequality
constraints. Mathematically the objective is written as follows:

min  zr(x)
x ∈ X
s.t.
zi(x) ≤ εi, i = 1, . . . , I; i /= r
gm(x) ≤ 0, m = 1, 2, . . . , M
hs(x) = 0, s = 1, 2, . . . , S

(P2)

where εi is the desired bound on zi. By varying the values of εi a com-
plete set of Pareto optimal solutions can be found. In this technique,
a single objective function is optimized, chosen from among the
original ones, while treating all remaining objectives as inequality
constraints. This technique does not require the existence of sup-
porting hyper-planes and overcomes duality-gaps in non-convex
sets (Haimes & Hall, 1974).

4.1.4. Global criterion method
In this method the decision maker uses an approximate solution

z* or the ideal solution if it is known, to formulate a single objective

criterion to determine the optimum decision variables by solving
the following single objective optimization problem:

Z =
N∑

i=1

[
zi − z∗

i

z∗
i

]˚

(11)

0 ≤  ̊ ≤ ∞ (12)

The decision maker sets the parameter ˚,  varying the value of
this parameter the Pareto points are obtained. Several adaptations
of this method have been developed as presented by Goicoechea
et al. (1982),  Coello-Coello and Christiansen (1999) and Dantus and
High (1999).  Basically these methods consider the minimization of
deviation of the solution point with respect to a certain point, in
this way the search space is reduced to the space limited by the
utopia point coordinates. The method proposed by Goicoechea et al.
(1982) is implemented in this work, with the following objective
function to be minimised:

Z  =
N∑

i=1

ωi

[
zi − z∗

i

z∗∗
i

− z∗
i

]˚

(13)

In Eq. (13) ωi are the weighting factors as in the weighted sum
approach; these preference weights are used to represent the rel-
ative importance of each objective function zi. This method also
includes constraints over the weighting coefficients ωi (e.g. Eqs. (8)
and (9))  and the compromise index  ̊ (e.g. Eq. (12)) stated ear-
lier. The decision-maker’s preferences are also expressed in the
compromise index ˚ (1 ≤ ˚ ≤ ∞),  which represents the decision-
maker’s concern with respect to the maximal deviation from the
utopia point. As a result, the non-inferior solutions defined within
the range 1 ≤  ̊ ≤ ∞ correspond to the compromise set from which
the decision maker still has to make the final choice to identify the
best compromise solution (Dantus & High, 1999). The single aster-
isk as superscript in z∗

i
indicates the minimum values of the ith

objective function found solving the corresponding single objective
optimization problem. Meanwhile double asterisk as superscript in
z∗∗

i
indicates the maximum allowed value of the ith objective func-

tion. For the special case of a bi-objective problem z∗∗
i

is the value
obtained for zi when minimizing the alternative objective function.
In other words, if i = 1, 2 in Eq. (13), then z∗

1 = min z1, z∗
2 = min  z2,

then the maximum values of each objective function are as follow:
z∗∗

1 the result for z1 when z2 is minimized and z∗∗
2 the result for z2

when z1 is minimized.
Continuous optimization variables have been considered in the

previous description of methods to solve multi-objective optimiza-
tion problems. The inclusion of binary optimization variables is
described next.

4.1.5. Inclusion of binary optimization variables
Multi-objective mixed-integer non-linear problems have been

studied much less than multi-objective non-linear problems only
with continuous variables. Introduction of discrete variables in the
mathematical model turns the problem much more difficult to
solve, being the feasible region non-convex. The non-dominance
concept in multi-objective mixed-integer programming is defined
as for multi-objective mathematical programming with continuous
variables only (Alves & Clímaco, 2007). Zionts and Wallenius (1980)
studied multi-objective problems with integer variables applied to
linear programming problems only. Ciric and Huchette (1993) had
dealt with multi-objective nonlinear problems in an ethylene glycol
plant. The Pareto curve could be discontinuous due to the presence
of discrete variables, where the feasible region is disjointed. Dantus
and High (1999) successfully applied the global criterion method
(Goicoechea, 1982) to a multi-objective problem including discrete
variables to select the type of reactor to be used in the methyl
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chloride plant design. In the present work all the methods men-
tioned previously have been implemented to solve a bi-objective
mixed integer non-linear problem: weighted sum, utopia point dis-
tance minimization and global criterion. In the following section the
operating condition of the steam and power plant are selected to
minimize the potential environmental impact and operating cost.

5. Minimization of potential environmental impact and
operating cost

The objective of this work is to minimise the potential environ-
mental impact and operating cost to select the operating conditions
of steam and power plants, leading to a bi-objective mixed integer
non-linear optimization problem. The objective functions used are
potential environmental impact (PEI) given in Eq. (5) and oper-
ating cost (C) given in Eq. (6).  Thus, the general formulation of
the bi-objective optimization problem considering continuous and
discrete variables follows:

min  Z = Z[PEI(x, y), C(x, y)]
x, y
s.t.
g(x) + A(y) ≤ 0
h(x) = 0
xL ≤ x ≤ xU

x ∈ RN

y ∈
{

0, 1
}m

(P3)

where x and y are the continuous and binary optimization vari-
ables, respectively. Superscripts U and L, indicate upper and lower
bounds on vector x. The equality constraints h(x) = 0 are the sys-
tem of non-linear algebraic equations that represent the steady
state modelling of the process plant, including mass and energy
balances; enthalpy and entropy predictions. The inequality con-
straints g(x) + A(y) ≤ 0 represent logical constraints, minimum and
maximum equipment capacities, operating and design constraints,
etc. The A matrix includes linear relations between binary variables
such as logical constraints.

The weighted sum, utopia point distance minimization, ε-
constraint and global criterion methods were implemented to solve
the bi-objective mixed-integer nonlinear programming problem
P3. Their formulation follows:

Weighted sum:

Z = ω1 × PEI(x, y) + ω2 × C(x, y) (14)

Constraints over the weighting factors presented in Eqs. (8) and
(9) are also included.

Utopia point distance minimization method, where the distance Z
is defined as follows:

Z = {[PEI(x, y) − PEI∗]2 + [C(x, y) − C∗]2}1/2
(15)

ε-constraint method, minimizing the utility plant environmental
impact:

min
x,y

PEI(x, y)

s.t.
C(x, y) ≤ εc

g(x) + A(y) ≤ 0
h(x) = 0

(P4)

ε-constraint method, minimizing the utility plant operating cost:

min
x,y

C(x, y)

s.t.
PEI(x, y) ≤ εPEI
g(x) + A(y) ≤ 0
h(x) = 0

(P5)

Table 3
Minimization of utility plant environmental impact.

Objective functions and cont. var. Solution point

UP env. impact, PEI/h 28,591.307
Operating cost, $/h 515.224
Natural gas, ton/h 6.995
Imported electricity, kWh  3806.508
Make up Water, ton/h 22.000
Drivers
Electrical motors power/units 3277.13 kWh/13
Steam turbines/units 0 kWh/0

Global criterion:

Z = ω1 ×
[

PEI(x, y) − PEI∗

PEI∗∗ − PEI∗
]˚

+ ω2 ×
[

C(x, y) − C∗

C∗∗ − C∗

]˚

(16)

Constraints over the weighting factors given in Eqs. (8) and (9)
and over the compromise index given in Eq. (12) are considered.
The parameters for Eq. (16) are defined as follows:

PEI* = min  PEI.
C* = min  C.
PEI** = value of PEI at the minimum operating cost point.
C** = value of C at the minimum environmental impact point.
The parameters needed for the global criterion method

implementation are obtained in the single objective function opti-
mization step.

6. Selection of the operating conditions

The operating conditions, including continuous and binary vari-
ables, are selected to minimise potential environmental impact and
operating cost simultaneously, solving problem P3. The discrete
decisions are associated with the selection of optional drivers for
some pumps, which can be driven by existing electrical motors or
steam turbines. Other decisions associated with binary variables
are the selection of equipment that can be in operation (ON) or
shut down (OFF), like the boilers and their auxiliary equipment.
The binary variables were listed in Table 2.

Single objective minimization is carried out before attempting
the bi-objective minimization. Results minimising the potential
environmental impact are shown in Table 3 and minimizing the
operating cost are presented in Table 4.

The weighted sum and ε-constraint methods had a good perfor-
mance when using only continuous variables. Utopia point distance
minimization and global criterion methods had a very good per-
formance when using continuous and binary variables. Numerical
results generated with the utopia point distance minimization and
the global criterion methods are presented in this section.

6.1. Utopia point distance minimization

This method was  stated in Eq. (15) and produces only one
Pareto point. The optimal point has the following coordinates:

Table 4
Minimization of utility plant operating cost.

Objective functions and cont. var. Solution point

UP env. impact, PEI/h 29,335.360
Operating cost, $/h 470.763
Natural gas, ton/h 7.246
Imported electricity, kWh  671.700
Make up water, ton/h 22.000
Drivers
Electrical motors power/units 570.91 kWh/3
Steam turbines/units 2400.31 kWh/10
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Table 5
Single Optimization results including binary variables in the UP model.

Objective function Min. C (x) Min. PEIUP (x) % variation

Operating cost, $/h 470.763 515.224 8.629
Pot.  env. impact, PEI/h 29,335.360 28,591.307 2.536

C = 506.01 $/h, PEIUP = 28,644.70 PEI/h. At this point 11 electrical
motors and 2 steam turbines were ON.

6.2. Global criterion method

To solve the bi-objective optimization problem with the global
criterion method, single optimization results are needed as param-
eters and both extreme points are shown in Table 5. The minimum
values for each single objective function has been highlighted in
bold letters and the maximum allowed values for each single objec-
tive function are presented in italics letters (this values are used as
parameters in the global criterion method, Eq. (16)).

The expected variations, between extreme points, are in the
order of 8.63% in operating cost and 2.54% en total potential envi-
ronmental impact.

Each Pareto optimal point was obtained with GAMS (Brooke
et al., 2003) using the following solver options: DICOPT as a MINLP
solver, including CONOPT2 to solve the NLP subproblem and CPLEX
to solve the MIP  subproblem, respectively.

The weighting parameters ωi vary from 0.1 to 0.9 with a step
equal to 0.1. The decision maker’s compromise index  ̊ has been
taken equal to:  ̊ = 1, 2 and 3. Twenty Pareto optimal points are
obtained and reported in Table 6, where single objective function
values, the specific global criterion method parameters used, solver
performance (e.g. CPU time in seconds and number of iterations)
and the continuous optimization variables values are included. The
continuous variables reported are temperatures (T1, T2, T3) and
pressures (P1, P2, P3) of high, medium and low pressure steam
headers and deareator pressure (Pd). Pressure are expressed in bar
and temperature in ◦C. The first point (1) corresponds to minimum
operating cost and the final point (20) to minimum environmen-
tal impact point (both numerical values indicated in bold letter in
Table 6). As the decision maker’s compromise index rise, for fixed
value of the weighting coefficients ω, the computational time to
reach a solution is longer.

Temperature (T1) and pressure (P1) of high pressure steam
header are at their upper bound value and temperatures of medium
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Fig. 2. Pareto curve for bi-objective minimization using continuous and binary opti-
mization variables.

(T2) and low (T3) pressure steam headers are at their lower bound
values, as expected to provide maximum steam turbines’ power.
The Pareto curve is shown in Fig. 2, with the twenty optimal points
presented in Table 6.

The number of electrical motors and steam turbines required
providing the power demands of the ethylene plant for each point
in the Pareto curve are reported in Table 7, to show binary results
of each Pareto point.

At point 1 corresponding to the minimum operating cost point,
steam turbines are selected because the power generated in the
utility plant is cheaper than the electricity power imported, due to

Table 7
Number of electrical motors and steam turbines in operation for different Pareto
points.

Pareto points Electrical motors Steam turbines

2, 3, 4 2 11
1,  7, 8, 9, 10 3 10
13  4 9
11,  12 5 8
5,  6, 14, 17 6 7
15 7 6
18  9 4
16,  19 10 3
20  13 0

Table 6
Continuous optimization variables for the Pareto optimal points.

Pareto points Cost, $/h PEI/h ω1  ̊ CPU time, s It P1 P2 P3 Pd T1 T2 T3

1 470.763 29,335.360 – – 3.64 4 52.00 22.98 3.00 3.00 450.00 326.74 150.00
2 470.967 29,305.450 0.1 1 3.91 3 52.00 22.93 3.00 2.98 450.00 310.00 150.00
3  474.886 29,103.120 0.3 1 3.03 2 52.00 23.86 4.08 2.75 450.00 310.00 150.00
4  475.001 29,100.500 0.1 2 5.14 3 52.00 23.86 4.08 2.75 450.00 310.00 150.00
5  480.288 29,017.090 0.2 2 5.45 3 52.00 23.53 4.86 2.39 450.00 310.00 150.00
6  480.981 29,007.310 0.1 3 5.28 3 52.00 23.34 4.89 2.14 450.00 310.00 150.00
7 483.009 28,948.680 0.3 2 3.16 2 52.00 23.30 4.97 2.17 450.00 310.00 150.00
8  483.010 28,948.670 0.2 3 3.44 2 52.00 23.30 4.97 2.17 450.00 310.00 150.00
9  483.014 28,948.590 0.5 1 3.98 3 52.00 23.33 4.98 2.20 450.00 310.00 150.00

10  483.017 28,948.540 0.3 3 4.28 3 52.00 23.35 4.98 2.23 450.00 310.00 150.00
11  485.394 28,919.700 0.5 2 3.44 2 52.00 23.31 4.97 2.21 450.00 310.00 150.00
12  485.879 28,914.150 0.5 3 3.44 2 52.00 23.49 5.00 2.47 450.00 310.00 150.00
13  490.903 28,852.350 0.7 3 7.21 5 52.00 23.34 5.00 2.33 450.00 310.00 150.00
14  493.254 28,824.060 0.7 2 4.67 3 52.00 23.38 5.00 2.42 450.00 310.00 150.00
15  493.439 28,821.840 0.8 3 5.16 3 52.00 23.38 5.00 2.43 450.00 310.00 150.00
16  498.414 28,762.330 0.9 3 4.86 2 52.00 23.46 5.00 2.62 450.00 310.00 150.00
17 499.896 28,744.690 0.8 2 2.77 2 52.00 23.49 5.00 2.67 450.00 310.00 150.00
18 505.609 28,677.110 0.9 2 18.85 4 52.00 23.58 5.00 2.90 450.00 310.00 150.00
19  506.939 28,661.490 0.6 1 8.00 6 52.00 23.60 5.00 2.96 450.00 310.00 150.00
20 515.224 28,591.307 – – 11.82 13 52.00 23.46 5.00 3.00 445.00 310.00 150.00
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Fig. 3. Power generated by electrical motors and steam turbines for the Pareto
optimal points.

the mass and heat integration of the utility sector with the ethylene
process plant. The two main reasons are that: (i) a rich hydrogen
residual stream coming from the top of the demetanizer column is
burned in the boilers to generate high pressure steam as has been
analyzed by Martínez and Eliceche (2010) and (ii) high pressure
steam is generated to cool down the ethylene cracking furnace. On
the other hand, when minimizing potential environmental impact
(point 20) the power demand is supplied with electrical motors
because there is no impact associated with the imported electric-
ity. For these reasons the power provided by the steam turbines
has a monotonic decreasing behaviour and the power delivered by
electrical motors has a monotonic increasing behaviour in Fig. 3
along the Pareto curve.

Pareto curve will be analyzed in the following section to identify
the more attractive solutions.

7. Analysis of the Pareto curve

Convergence was achieved with the global criterion method
using compromise index values up to a value of  ̊ = 10, generating
95 point of the Pareto curve. No solutions were found with a com-
promise index  ̊ = 11. In Fig. 5 these 95 points are included, with
the 20 points of Table 6 indicated with (+). These twenty points
were calculated with compromise index  ̊ = 1, 2 and 3.

Two regions of the Pareto curve can be approximated by linear
correlations as shown in Fig. 4.

The analytical expressions of the two straight lines were
obtained using minimum squares method and the analytical
expressions follow:[

PEI
PEI∗

]
= 1.909 − 0.884

[
C

C∗

]
(17)
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Fig. 4. Linearization of the Pareto curve, for 1 <  ̊ < 11, global criterion method.

Table 8
Ratio of reduction of PEI per increment in op. cost between the extreme points of
the  two  straight lines.

Differences between points
of the Pareto curve

(4th–1st) points (20th–5th) points

� PEI reduction, PEI/h −234.860 −425.783
�  Operating cost increment, $/h 4.238 34.936
�  PEI/� operating cost −55.418 −12.188

[
PEI
PEI∗

]
= 1.216 − 0.198

[
C

C∗

]
(18)

The reduction in potential environmental impact (PEI) and
the corresponding increment in operating cost (C) between the
extreme points of the first straight line (4 is the final point and
1 is the first point) are shown in the first column of Table 8; while
the reduction in potential environmental impact and increment in
operating cost between the extreme points of the second straight
line (20 is the final point and 5 is the first point) are shown in the
second column of Table 8. These values can be calculated from data
presented in Table 6.

The ratios of PEI reduction with respect to increment in operat-
ing cost, for the two regions of the Pareto curve, are reported in the
third line of Table 8. This ratio for the first straight line is more than
four times bigger than the same ratio for the second straight line,
indicating that the reduction of potential environmental impact per
unit of increment in operating cost is four times more in the region
of the first approximation than in the second region. The slope of
the first straight line (Eq. (17)) is also more than four times bigger
than the slope of the second straight line (Eq. (18)). As a conclu-
sion, it could be said that the cost of reducing the PEI in the region
approximated by the first straight line (points 1–4) is four times
less than the cost of reducing the PEI in the region approximated
by the second straight line (points 5–20).

At a decision making level, this information would indicate that
it is more convenient to go from point 1 to 4 than going from point 5
to 20. It would be advisable to work in the region of the Pareto curve
approximated by the first straight line, rather than in the region of
the Pareto curve approximated by the second straight line. Thus
point 4 looks as the best compromise solution.

The economical valorization of the reduction of greenhouse
gases emission is studied in the following section to evaluate the
possibility of compensating the increment in operating cost.

8. Considering the economical income due to greenhouse
gases emissions reduction

It is worth mentioning the fact that under a tradable permit
system, an allowable overall level of pollution is established and
allocated among sectors in the form of permits. Sectors that keep
their emission levels below their fixed level may sell their surplus
permits to other sectors or use them to compensate excess emis-
sions in other parts of their facilities; the market is regulated and
organized by the Kyoto Protocol Clean Development Mechanism
(Hepburn, 2007).

Thus, a potential economic incentive of the greenhouse gases
emissions reduction can be estimated, considering the income that
could be obtained in the carbon market that has arisen with the
Kyoto protocol. The greenhouse gases emissions, measured in CO2
equivalent kg/h, represent 99.6% of the potential environmental
impact in the steam and power plant, as has been shown in Eliceche
et al. (2007).  The greenhouse gases emissions, measured in CO2
equivalent kg/h, account for emissions of greenhouse gases such as
CO2, CH4 and N2O which are the typical fuel combustion emissions
as shown in Martínez and Eliceche (2009).  The utility plant does
not emit greenhouse gases as CFCs (chlorinated fluorocarbons) and
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Table 9
Potential income due to reduction of greenhouse gases emissions.

Pareto points Operating cost, $/h Greenhouse, kg/h CO2 income, $/h

1 470.763 29,218.019 76.746
2 470.967 29,188.228 77.342
3 474.886 28,986.708 81.372
4  475.001 28,984.098 81.424
5  480.288 28,901.022 83.086
6  480.981 28,891.281 83.281
7  483.009 28,832.885 84.449
8 483.010 28,832.875 84.449
9 483.014 28,832.796 84.450

10 483.017 28,832.746 84.451
11  485.394 28,804.021 85.026
12  485.879 28,798.493 85.136
13  490.903 28,736.941 86.368
14 493.254 28,708.764 86.931
15 493.439 28,706.553 86.975
16 498.414 28,647.281 88.161
17  499.896 28,629.711 88.512
18 505.609 28,562.402 89.858
19 506.939 28,546.844 90.169
20 515.224 28,476.942 91.568

HFCs (hydro fluorocarbons). To evaluate a possible economic incen-
tive due to carbon emissions permit sold in the emission trading
market, a price of 20 $/ton is used to quantify the potential income.
The greenhouse gases emissions flow rate, the corresponding CO2
income and the operating cost for each Pareto point are shown in
Table 9.

Reductions in greenhouse gases emissions, increments (�)  in
operating cost and CO2 income between the extreme points of the
first and second straight lines approximations of the Pareto curve
are reported in the first and second columns respectively of Table 10
and calculated from data in Table 9.

It can be observed that in the region of the Pareto curve approx-
imated by the first straight line, first column of Table 10,  the CO2
income is slightly superior to the operating cost increment, so the
reduction in greenhouse gases emissions would generate a CO2
income that would compensate the increment in operating cost
going from point 1 to point 4 of the Pareto curve. Therefore it
would be convenient to reduce greenhouse gases emissions with
no additional cost and operate in point 4.

On the other hand in the second column, going from point 5 to
point 20, the possible CO2 income by reduction of greenhouse gases
emissions represents only 24% of the increment in operating cost,
so the net cost increment would still be equal to 26.45 $/h. Thus
at first glance, it would be more expensive to go from point 5 to
point 20 and it is less attractive from an economical point of view.
The increments in operating cost and CO2 income are presented in
Fig. 5 for the twenty Pareto optimal points.

It can be observed in Fig. 5, that when moving from point 1 to 4
the increment in operating cost is of the same value than the incre-
ment of CO2 income in the carbon market, but when moving from
point 5 onwards the operating cost increment is bigger than the
increment of CO2 income. Therefore considering the economical
assessment of CO2 income in the carbon market, due to reduction
of greenhouse gases emissions, would indicate that the reduction

Table 10
Ratios of potential greenhouse gases emissions income and increment in operating
cost.

Differences between points of the Pareto
curve

(4th–1st)
points

(20th–5th)
points

� Operating cost increment, $/h 4.238 34.936
�  Greenhouse emissions reduction, kg/h 233.921 424.080
�  CO2 income increment, $/h 4.678 8.482
�  CO2 income/� Operating Cost 110.382% 24.279%
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Fig. 5. Increments in CO2 income and operating cost.

of potential environmental impact between points 1 and 4 of the
Pareto curve would be done with no extra cost. These results rein-
force the conclusions obtained in the Pareto curve analysis of the
previous section.

Thus, it is very important to generate the Pareto curve and more
so, to analyze its behaviour in order to gain insight of the trade
offs, providing relevant information to support a decision making
process, as it has been shown in this work.

9. Conclusions

A methodology has been presented to select the operating
conditions (continuous and binary) of a steam and power plant
minimizing simultaneously the potential environmental impact
and operating cost. Different methods to solve a bi-objective
mixed integer nonlinear optimization problem such as: mini-
mum distance to the utopia point, ε-constraint, weighted sum and
global criterion were implemented successfully in GAMS. With
the global criterion method 95 points of the Pareto curve were
generated.

It is relevant not only to generate the Pareto curve, but also
to analyze the behaviour of the different compromise solutions
of the Pareto curve to gain insight that would support a decision
making process. In the Pareto curve of the steam and power sec-
tor of an ethylene plant, two  regions can be identified that were
approximated with two  straight lines. In the first region it is much
cheaper to reduce potential environmental impact than in the sec-
ond region, therefore it would be advisable to reduce potential
environmental impact in the first region of the Pareto curve as
shown in Table 8 and Fig. 4. Furthermore, the assessment of CO2
income in the carbon market due to greenhouse gases emission
reduction compensates, in the first region of the Pareto curve, the
increment in operating cost, as shown in Table 10 and Fig. 5. The
possibility of reducing the potential environmental impact with no
additional cost makes more attractive the first region of the Pareto
curve, and in particular the neighbourhood of point 4, that would
have the minimum potential environmental impact.
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