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Industrial environments frequently face disruptive events. This contribution presents a support frame-
work, aimed at addressing the repair-based reactive scheduling problem. It is based on an explicit
object-oriented domain representation and a constraint programming (CP) approach. When an unfore-
seen event occurs, the framework captures the in-progress agenda status, as well as the event effect on it.
eywords:
eactive scheduling
atch plants
ecision support systems

Based on this information, a rescheduling problem specification is developed. Tasks to be rearranged are
recognized and the set of the most suitable rescheduling action types (e.g. shift-jump, reassign, freeze) is
identified. Since a given specification may lead to several solutions, the second stage relies on a CP model
to address the problem just defined. To create such model, action types are automatically transformed
into constraints. Provided that good quality schedules can be reached in low CPU times, alternative solu-

n stab
nowledge-based scheduling
onstraint programming

tion scenarios focusing o

. Introduction

Predictive scheduling techniques deal with the generation of
roduction plans while assuming stationary operation conditions
long the whole scheduling horizon. However, real industrial envi-
onments are dynamic in nature and unforeseen events frequently
isrupt the in-progress schedule. For instance, new order arrivals,
rders’ cancellations/modifications, unit breakdowns, changes in
atch processing/setup times, late arrivals of raw materials, etc.,
re some of the different kinds of unexpected events that are faced
n industry on a daily basis.

As Smith (1995) has pointed out, in most industrial plants,
cheduling is an ongoing reactive process where evolving and
hanging circumstances continually force reconsideration and revi-
ion of pre-established plans. The performance of an industrial
nvironment ultimately hinges on the management’s ability to
apidly adapt schedules to fit changing circumstances over time. To
acilitate this task, and make it fast and handy, rescheduling pro-
edures are needed. However, current computer-based scheduling
ystems deal poorly (if at all) with this need (Kelleher & Cavichiollo,
001), and much work still needs to be done to address this prob-
em. Ouelhadj and Petrovic (2009) provide an updated review of
he state-of-the-art of research on dynamic scheduling of manu-
acturing facilities. Besides, they introduce the principles of several
ynamic scheduling techniques (i.e. dispatching rules, heuristics
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ility and regular performance measures can be posed for each problem.
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and meta-heuristics, artificial intelligence-based methods, multi-
agent systems, etc.) and compare their relative merits.

Despite the great practical interest of the problem not many
proposals exist in the process systems engineering open litera-
ture. The scheduling research community has largely neglected
this problem, focusing instead on the generation of optimal static
schedules. However, in the last two decades some reactive schedul-
ing methodologies have been reported and they have been recently
reviewed by Li and Ierapetritou (2008). The earliest proposals were
based on algorithmic and heuristic procedures. Cott and Macchietto
(1989), who considered fluctuations of processing times as the dis-
ruptive event, presented a shifting algorithm to modify the starting
times of processing steps by the maximum deviation between the
expected and actual processing times of all related processing steps.
Shortly, Hasebe, Hashimoto, and Ishikawa (1991) proposed another
algorithmic approach to deal with the reactive scheduling of multi-
product batch plants. They allowed two reordering operations, the
insertion of a job and the exchange of two jobs, and pointed out
that simultaneous reordering of several jobs would be advanta-
geous, but quite demanding from a computational point of view.
Later, Kanakamedala, Reklaitis, and Venkatasubramanian (1994)
addressed the problem of reactive scheduling of multipurpose
batch plants in the event of unexpected deviations in processing
times and unit availabilities. They proposed a least impact heuristic

approach that allowed time shifting and unit reallocation. Huercio,
Espuña, and Puigjaner (1995) and Sanmartí, Huercio, Espuña, and
Puigjaner (1996) presented other heuristic-based methodologies to
tackle problems of variations in task processing times and equip-
ment availability. Two rescheduling strategies were proposed:

dx.doi.org/10.1016/j.compchemeng.2010.07.011
http://www.sciencedirect.com/science/journal/00981354
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Nomenclature

Objects
Productp instance of class Product
Reciper instance of class Recipe
ProcessingTaskt instance of class ProcessingTask
Unitu instance of class Unit
Stages instance of class ProcessStage
Batchi instance of class Batch
Task(i,s) instance of class Task associated with the Batchi and

Stages instances
Evente instance of any subclass of DisruptiveEvent

Task sets
Te tasks pertaining to the on-going agenda when

Evente takes place
TAE

e tasks which are already executed at the reschedul-
ing time point associated with Evente

TIP
e tasks which are being executed (in-progress tasks)

at the rescheduling time point associated with
Evente

TNE
e tasks which are not yet executed at the rescheduling

time point associated with Evente

TCA
e tasks to be cancelled due to the occurrence of Evente

TNW
e new tasks to be inserted in the active schedule due

to the occurrence of Evente

RTe tasks to be considered in the rescheduling problem
triggered by Evente

NTe tasks non-involved in the reactive process associ-
ated with Evente

RTDA
e tasks to be considered in the rescheduling problem

which are directly affected by Evente

RTIA
e tasks to be considered in the rescheduling problem

which are indirectly affected by Evente

RTNA
e tasks to be considered in the rescheduling problem

which are not affected by Evente

CP model sets/indices
I/i, i’ batches
S/s, s’ stages
U/u,u’ processing units
U(i,s) subset of equipment items in which Task (i,s) can be

executed
RTA

e set of tasks pertaining to the rescheduling problem
that arises due to the occurrence of Evente which are
to be assigned (new tasks) or reassigned.

RTS
e set of tasks pertaining to the rescheduling problem

that arises due to the occurrence of Evente that main-
tain their current unit assignment and can be locally
rearranged, being shifted or changing their position
in the unit sequence.

RTF
e set of tasks pertaining to the rescheduling problem

that arises due to the occurrence of Evente which
are to be frozen; i.e. they maintain their current unit
assignment and start time.

CUu equipment items which are connected with Unitu

CP model parameters
ddi due-date of batch i
est(i,s) earliest start time of Task(i,s)
ls(i,s) length of the left shift (reordering) interval of Task(i,s)
pti,s,u processing time of batch i on stage s when executed

on Unitu

rdi ready time of batch i
rdu ready time of Unitu

rs(i,s) length of the right shift (reordering) interval of
Task(i,s)

rt(i,s) release time of Task(i,s)

CP model variables
Task(i,s).start start time of Task (i,s)
Task(i,s).end finish time of Task (i,s)
Task(i,s).duration duration of Task (i,s)
Mk Makespan
TD total deviation of task start times

Performance measures
TCT total completion time
TT total tardiness

NES normalized equipment stability
NST normalized number of temporal shifted tasks

Shifting of task processing times and reassignment of tasks to
alternative units. Their method generates a set of decision trees
using alternative unit assignments, each based on a conflict in
the real production schedule caused by a deviation from the
nominal one.

More recent works addressed the reactive scheduling problem
through mathematical programming approaches that mostly rely
on Mixed Integer Linear Programming (MILP) formulations. Vin and
Ierapetritou (2000) considered the rescheduling of multiproduct
batch plants in the event of two types of disturbances: equipment
breakdown and rush order arrival. They applied the continuous-
time formulation originally proposed by Ierapetritou and Floudas
(1998) and reduced the computational effort by fixing those binary
variables involved in the period before the unforeseen event occurs.
Roslöf, Harjunkoski, Björkqvist, Karlsson, and Westerlund (2001)
proposed an MILP-based heuristic approach that can be employed
to improve a non-optimal schedule or to update the in-progress
schedule of a facility having a single/critical processing unit. In
this work rescheduling is performed by iteratively releasing and
reallocating a small number of jobs from the current schedule. Com-
putational complexity is controlled by limiting the size of the set of
jobs to be reallocated into the schedule. Méndez and Cerdá (2003)
employed different rescheduling operations (i.e. start time shifting,
local reordering, unit reallocation and insertion of new batches) to
carry out the reactive scheduling of a multiproduct batch plant hav-
ing a single/critical processing stage with several units operating
in parallel. This work was extended in Méndez and Cerdá (2004)
to consider multistage multiproduct facilities having limited avail-
ability of discrete renewable resources. Both approaches rely on a
predictive scheduling formulation that was previously proposed by
the same authors.

Janak, Floudas, Kallrath, and Vormbrock (2006) have also
addressed this kind of problem. They presented an MILP-based
method to respond to unexpected events, such as equipment
breakdown and addition/modification of orders. To avoid full
rescheduling, the approach identifies tasks which are not affected
by the event and can be carried out as originally scheduled.
The resulting tasks, along with additional subsets of tasks, are
then fixed. The rest of horizon is rescheduled using an effi-
cient MILP mathematical framework, developed for short-term
scheduling problems, and adapted to reflect the effects of the

unpredicted event. More recently, Kopanos, Capón-García, Espuña,
and Puigjaner (2008) have stressed the need to take reschedul-
ing costs into account in the formulations of reactive scheduling
mathematical models. By introducing such costs in the objective
function, schedules that are more stable and easier to implement
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ere generated. They were developed with the formulation of
éndez and Cerdá (2003). The trade-off between the original objec-

ive function optimization and the smooth operation of the plant
as carefully analyzed.

This contribution tackles the reactive scheduling problem by
roposing a support environment and a methodology that relies
n both, an explicit representation of the domain knowledge and a
onstraint Programming (CP) approach. The goal of the proposal

s to provide immediate responses to disruptions, while intro-
ucing minimum changes to the on-going schedule in order to
aintain a smooth operation of the plant. The approach acknowl-

dges that most of the already taken scheduling decisions need
o remain the same or at most they should experience a limited
umber of changes. The paper is organized as follows. In Section
, the main concepts about reactive and dynamic scheduling prob-

ems are reviewed. Section 3 provides an overview of the proposed
ramework, Section 4 presents the domain knowledge representa-
ion as well as the problem characterization and specification on
hich the proposal relies, and Section 5 describes the constraint
rogramming model. Finally, in Section 6 we illustrate the capabil-

ties of the approach by means of several example problems, and
lose in Section 7 with conclusions and some directions for future
ork.

. An overview of dynamic scheduling problems and their
lements

As mentioned before, the problem of scheduling in the pres-
nce of real-time disruptive events has received limited attention.
ot many surveys have been done in this area and very few
orks have tried to understand and organize research contribu-

ions. Vieira, Herrmann, and Lin (2003) have made a remarkable
ffort to systematize knowledge in this domain. Their work
resents definitions and concepts appropriate for most applica-
ions of rescheduling manufacturing systems and also describes a
ramework for understanding rescheduling strategies, policies and

ethods.
According to Ouelhadj and Petrovic (2009), the problem of

cheduling in the presence of real-time events is termed dynamic
cheduling. These authors have classified dynamic scheduling
roblems under four categories: Completely reactive scheduling,
redictive-reactive scheduling, robust predictive-reactive schedul-

ng and robust pro-active scheduling. This classification is related
o what Vieira et al. (2003) have referred as the adopted strategy:
hether or not production schedules are generated. In completely

eactive scheduling no firm schedule is generated in advance, deci-
ions are made locally in real-time, and priority dispatching rules
re frequently used. On the other hand, predictive-reactive schedul-
ng, the most common approach used in manufacturing systems, is a
rocess under which schedules are revised in response to real-time
vents. Many predictive-reactive scheduling strategies are based
n simple adjustments that consider only shop efficiency; how-
ver, the new schedule may deviate significantly from the original
ne. To overcome this problem, robust predictive-reactive schedul-

ng focuses on building schedules that simultaneously take into
ccount both shop efficiency and deviation from the original sched-
le (stability). Finally, robust pro-active scheduling approaches focus
n building predictive schedules that satisfy performance require-
ents predictably in a dynamic environment (Vieira et al., 2003).

his category has also been referred as robust scheduling by some

uthors like Aytug, Lawley, McKay, Mohan, and Uzsoy (2005). They
ave pointed out that this approach can be viewed as a form of
nder-capacity scheduling, where the amount of work scheduled

n a time period is based on the historical performance of the equip-
ent.
ical Engineering 34 (2010) 2129–2148 2131

2.1. Rescheduling policies and methods

The second and the third category presented above correspond
to what is generally known as rescheduling; the process of updat-
ing an existing production schedule in response to disruptions or
other changes. Rescheduling needs to address various issues: (i)
when and how to react to real-time events, and (ii) the method or
methods’ combination used to revise the existing schedule. Accord-
ing to Vieira et al. (2003) a rescheduling policy specifies when and
how rescheduling is done.

Regarding the first issue, when to reschedule, three policies have
been proposed in the literature: periodic, event-driven, and hybrid.
In the periodic policy, schedules are generated at regular intervals,
gathering all the available information from the shop floor at the
planned rescheduling time points. The dynamic scheduling prob-
lem is decomposed into a series of static problems that can be
solved by resorting to classical predictive scheduling approaches.
Under an event-driven policy, rescheduling is triggered in response
to an unforeseen event. This policy runs the risk of initiating
rescheduling activities in the face of events not causing signif-
icant disruptions; thus, it may expend computational resources
needlessly and potentially cause unnecessary changes in the cur-
rent production schedule. In contrast, the drawback of the periodic
policy is that it ignores events taking place between reschedul-
ing points, which in some cases may lead to unfeasible agendas.
Hence a combination of these two approaches under a hybrid policy
appears to be attractive. It resorts to a periodic rescheduling, but a
rescheduling activity can also be invoked if a significant disruption
is observed.

Regarding the second issue, how to react to unexpected events,
the literature provides two main approaches: schedule repair
and complete rescheduling. Schedule repair refers to some local
adjustments of the current schedule, while complete reschedul-
ing generates a new production schedule from scratch. Complete
rescheduling might be better in reaching optimal solutions with
respect to traditional scheduling objectives, but these solutions
are rarely put in practice since they result in instability and lack
of continuity in the detailed plant schedules. As a result, com-
plete rescheduling leads to additional production costs and to what
has been termed as shop floor nervousness. Furthermore, complete
rescheduling might require prohibitive computational times when
fast responses are mandatory. Due to these reasons schedule repair
methods are preferred in practice; they preserve the stability of the
system and demand few computational resources.

2.2. Event types

Industrial environments are dynamic in nature and are subject
to continuous disturbances, referred as real-time events, which can
change the status of the environment and affect its performance.
If an event causes significant deterioration in performance, and an
event-driven rescheduling policy is adopted, the event will trig-
ger a rescheduling activity to reduce its impact. Such rescheduling
activity takes place at a rescheduling point, which is the point in
time when a schedule is created or revised. Generally, corrections
are performed at or soon after the occurrence of the event. Thus,
under an event-driven rescheduling policy each disruptive event is
associated with a rescheduling point, which should be as close as
possible to the time point where the event took place.

Real-time events have been classified into two main categories
(Vieira et al., 2003): Resource-related and job-related. The first cat-

egory includes machine breakdown, over- or underestimation of
processing times, limited manpower, delay in the arrival or short-
age of raw materials, defective material, etc. The second category
includes rush jobs, due-date modification, change in job prior-
ity, job cancellation, batch reprocessing, etc. Independently of the
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vent category, there appear to be three key dimensions of unfore-
een events, especially those related to resources: cause, context,
nd impact (Aytug et al., 2005). Cause can be viewed as a change of
tate of the affected resources, context is associated with the situ-
tion of the manufacturing environment at the moment the event
akes place, and impact refers to its result on the manufacturing
ystem. Context and impact are related among themselves; not all
he jobs or situations react the same way to the same perturba-
ion. For instance, a unit failure lasting one day does not have the
ame impact on a one-week schedule if it occurs at the beginning
r at the end of the scheduling horizon. Similarly, a unit breakdown
xtending for twelve hours does not have the same consequences
n a two-day schedule or on a schedule that lasts a week.

.3. Performance measures

Predictive scheduling activities are generally guided by mea-
ures of schedule efficiency and/or cost. The first group usually
orresponds to time-based measures like, makespan, mean tar-
iness, mean flow time, maximum lateness, average resource
tilization, etc. Since time-based performance measures do not
ompletely reflect the economic performance of the scheduling sys-
em, cost related objective functions have also been adopted. Issues
ike job-profitability, operating cost or work-in-process minimiza-

ion, or costs of missing due-dates or starting jobs too early, are
spects that have also been selected by managers.

In order to assess the departure of the revised from the initial
chedule, and in addition to regular performance measures, differ-
nt appraisals of schedule change should be considered. A schedule

Fig. 1. Main components of the Reactive
ical Engineering 34 (2010) 2129–2148

not only provides an operational plan that allocates resources
and defines task timings, but also serves as a base agenda for
other activities (e.g. releasing raw material movement orders, plan-
ning shipping operations, etc.). Hence, deviations from the original
schedule disrupt the secondary plans derived from it, creating floor
shop nervousness. Thus, stability measures that are associated with
a smooth operation of the plant become relevant. For instance, met-
rics like the starting time deviations between the tasks of the new
and the original schedules or a measure of the sequence difference
between these two schedules, have been introduced in the objec-
tive function to minimize the degree of disruption (Vieira et al.,
2003). Defining a proper disruption metric is not straightforward;
it requires considerable work and analysis if it is to be meaningful
and useful. Nevertheless, on top of this difficulty, another challenge
faced in rescheduling environments is to take into account both
disruption metrics and regular performance measures, balancing
efficiency and stability.

3. Reactive support environment

A rescheduling process is similar to the process of generating an
initial schedule, but has more constraints and objectives attached to
it. When addressing a rescheduling situation most of the objectives
and basic constraints that define the original problem still apply;

however, the partially executed schedule, as well as the pertur-
bation or triggering event has also to be taken into account. This
contribution presents advances in the development of a support
framework able to represent this context knowledge and to use it
in the generation of solutions to rescheduling problems. The cur-

Scheduling Support Framework.
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ent proposal is oriented towards multiproduct multistage batch
lants, which operate under a batch-based approach, and with
IS, NIS/UW, NIS/ZW interstage storage and operational policies.

t is limited to a set of unforeseen events (unit failure and perfor-
ance modification, batch cancellation/modification/new arrival,

atch quality problems). However, the underlying rationale of the
ystem would allow extending it in the future to consider mul-
ipurpose batch plants, other interstage and operational policies
nd a wider range of disruptive events (e.g. modification of non-
enewable resource availability).

The framework has been envisioned to operate under an event-
riven rescheduling policy. The proposed approach assumes that
he event which triggers the rescheduling process causes sig-
ificant disruptions and rescheduling is actually necessary. The

ramework explicitly captures the status of the in-progress sched-
le, and typifies the unexpected event in order to characterize
ts context and impact. This allows making a proper specifica-
ion of the rescheduling problem to be faced. This specification is
hen translated into a CP model and, finally, the resulting formula-
ion is solved. The proposed solution methodology attempts to get

Fig. 2. Main steps of the so
ical Engineering 34 (2010) 2129–2148 2133

together the benefits of a repair-based method (limited schedule
disruption and low computational requirements), with the advan-
tages of a complete rescheduling approach (non-myopic, overall
view of the rescheduling system). Furthermore, one of its goals is
to develop several alternative solutions in very low CPU times and
to select the preferred one with reference to a set of objectives
that measure both schedule efficiency and stability. The environ-
ment integrates different modules, as it is shown in Fig. 1, all based
on an explicit domain representation. The various responsibilities
assumed by these modules in relation to the solution methodology,
which is presented in detail in the following sections of the paper,
is depicted in Fig. 2.

The first phase of the approach (Problem Characterization Module
in Fig. 1), uses information about the current status of the in-
progress schedule (Capture in-progress schedule status step in Fig. 2),
the event type, and its intrinsic characteristics (Characterize event

impact step in Fig. 2), to automatically identify and classify tasks to
be taken into account in the rescheduling problem, and to distin-
guish them from those not involved in the reactive process (Identify
tasks to be rescheduled step in Fig. 2).

lution methodology.
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Tasks to be considered in the reactive problem are further cate-
orized into directly-affected, indirectly affected and non-affected
asks; and for each of them, the most suitable rescheduling action
ype or action is specified (Select suitable action types for reschedul-
ng tasks step in Fig. 2). An action type not only prescribes a type
f repair operation to be applied (e.g. shift, reassign, etc.) on a pro-
essing task that can be subject to rescheduling, but also a range
f possibilities for its application, e.g. feasible equipment for a
eassignment operation, shifting interval, etc. Thus, an action type
hould not be interpreted as an instance of a local repair action, but
s a generic specification of a set of operations.

A rescheduling problem is considered to be specified when for
ach relevant task an action type or an action is identified. For a
iven specification, due to the characteristics of the action types,
any solutions could exist. Then, the second phase of the method-

logy relies on a CP approach that is in charge of instantiating the set
f action types and generating repaired schedules (see Model Gener-
tion Module). In order to develop a solution this module needs to (i)
ransform the problem specification into a CP model, which entails
oth translating the identified action types into CP constraints
nd generating the basic model constraints (Translate < Task-action
ype > pairs into CP constraints and Generate basic CP scheduling con-
traints steps in Fig. 2), (ii) select an appropriate set of efficiency
nd stability performance measures (Select efficiency and stability
easures step in Fig. 2), and (iii) to adopt a search strategy based
n domain knowledge, in case of needing it (Select/adapt a search
trategy in Fig. 2). Finally, the solution of the CP model and its asso-
iated search strategy will render the repaired schedule, in which
he proposed repair action types will be instantiated.

Fig. 3. Partial view of batch sch
ical Engineering 34 (2010) 2129–2148

4. Domain knowledge representation and problem
characterization

Scheduling is a knowledge intensive activity in terms of domain
information. The explicit representation of this knowledge type is
a critical issue in any scheduling support system, especially if it is
to be integrated with other enterprise support systems (Henning,
2009). Besides, a major function of a production schedule, which is
often overlooked by the research community (Aytug et al., 2005),
is that of providing information visibility for the rest of the organi-
zation, and for internal and external suppliers and customers. The
more explicit the information of a schedule is, the more visible it
becomes. Furthermore, in the context of this proposal, an explicit
representation of a manufacturing environment and its production
plan (see Underlying Explicit OO Domain Model in Fig. 1) would allow
making informed decisions along the various steps of the solution
methodology.

Fig. 3 presents an UML class diagram, which is one of the
diagrams of the object-oriented technology (Booch, Rumbaugh,
& Jacobson, 1999) that provides a simplified version of the
model of the multiproduct batch plant scheduling knowledge
included in the framework. This information is organized into
different conceptual perspectives; resource, recipe and sched-
ule views, which are described below. To support compatibility
with other applications–e.g. Manufacturing Execution Systems

(MESs), Advanced Planning Systems (APS), etc.–, the proposed
representation was developed based on the ISA-S88 standard
(ANSI/ISA, 1995; ANSI/ISA, 2001a, ANSI/ISA, 2001b; ANSI/ISA,
2003).

eduling domain concepts.
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Fig. 4. Partial view of some re

The resource view represents the physical resources of the plant
nd their relationships, but also has links with elements pertain-
ng to the other views. The Resource class is specialized into the
enewable and non-renewable resource (See RenewableResource
lass in Fig. 3). A multiproduct plant is modeled as a kind of
enewable resource, which is an aggregation of process stages (Pro-
essStage class) and ancillary equipment. In turn, a process stage is
odeled as an aggregation of processing units (Unit class in the

iagram). This view also includes an explicit representation of the
ipeline connections between units and between units and storage
esources (see connectedTo associations in Fig. 3).

The recipe view models, for each product, the set of processing
ctivities (ProcessingTask class) required to produce a batch of it,
s well as the precedence relationships among them. As shown
n Fig. 3, this perspective is also related to the other views. For
nstance, the ProcessData association class, linking Unit and Pro-
essingTask, takes care of representing manufacturing data.

Finally, the schedule view models those entities involved in
cheduling and rescheduling activities and their associations. A
roduction campaign (ProductionCampaign class) is composed of
set of batches (Batch class). The execution of a batch leads to a

et of tasks (see assignedTask composition link between the classes
atch and SchedProcTask). The set of SchedProcTask instances that
re assigned to a particular unit comprise the schedule of such unit
UnitSched class). Likewise, the set of unit and storage resource
chedules embrace the plant schedule (see composition links of
he PlantSched class). Moreover, since operational plans are always
ssessed, the Schedule entity has several performance measures

ssociated with it. The PerformanceMeasure class is specialized to
epresent the various efficiency, cost, and stability metrics that
llow assessing a schedule (specialization not shown for simplicity
easons). These classes contain methods that define the corre-
ponding metrics.
entities and their properties.

Fig. 3 shows that the SchedProcTask instances are linked among
themselves by the precedes and before associations. The first rela-
tion links task entities comprising the same batch and it has
the same meaning than the precedes association between pro-
cessing tasks that belong to a given recipe. On the other hand,
the before link establishes a direct precedence relation between
two tasks that comprise the schedule of a particular unit. These
additional constraints about the objects on the model, as well
as others that are required to avoid ambiguities or inconsis-
tencies have been expressed in the Object Constraint Language
(OCL), OMG (2006). They have not been included due to lack of
space.

The class diagram of Fig. 4 presents a simplified view of the
domain knowledge, showing some of the properties and methods of
the most relevant entities. Most of the attributes and methods that
are going to be employed in the specifications presented in Sections
4.1 and 4.2 are included in this diagram. Please note that in this fig-
ure, the name of the SchedProcTask entity has been changed to Task,
and from now on, for simplicity reasons, it is going to be named in
this way. Not only static information of resources (Resource view
in Fig. 3) need to be explicitly represented, but also their tempo-
ral attributes are important too. As shown in Fig. 4, all scheduled
entities have attributes (e.g. actualStart, actualEnd, actualDuration,
etc.) whose values can be updated by the MES system at any time
point during the scheduling horizon, and from which the status of
the scheduling objects can be inferred.

Events and their specific characteristics are other critical aspects
of the problem; therefore, the different types of events and their

associated knowledge need to be explicitly captured by the under-
lying explicit OO representation. The event classification adopted
in this proposal follows the one that was already described in Sec-
tion 2.2. This model view, shown in Fig. 5, is also associated with the
other domain elements. The attributes that appear in this class dia-
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Fig. 5. Disruptive

ram are the ones that are employed in the specifications included
n Sections 4.1 and 4.2.

Having the domain knowledge explicitly captured, when an
nforeseen event occurs, it can be characterized (Unexpected Event
haracterization module in Fig. 1) and the status of the current
chedule at the rescheduling point can be determined (see In-
rogress Schedule Status Capture module in Fig. 1). Thus, both the
ontext and the impact of the event can be properly identified, and,
rom them, the rescheduling problem can be specified (Rescheduling
roblem Specification module). More details about these modules
nd their associated solution steps are presented in the following
ections.

.1. Capture of the current operational plan and its status at the
escheduling point

When addressing a rescheduling situation triggered by a par-
icular event (an instance of the DisruptiveEvent class of Fig. 5),
eferred from now onwards as Evente, the status of each task
nvolved in the in-progress schedule is supposed to be known
nd the tasks’ attributes are assumed to have updated values, as a
esult of continuous communication with a MES. At the reschedul-
ng point associated with the event, denoted as Evente.reschedtp,
he Problem Characterization Module carries out a decision-making
ctivity about the tasks to be included in the reactive process, which
nly includes the non-executed tasks, as well as those that need to
e carried out again. On the contrary, the already executed ones are

eft completely aside; thus, there is no need to artificially fix their
ssociated variables, as in Vin and Ierapetritou (2000) or Janak et
l. (2006). Nevertheless, since these entities remain represented in
he system, their associated information can be accessed, whenever
ecessary, to define the release times of units and/or tasks which

re still to be processed.

The set of tasks pertaining to the on-going agenda, named Te,
re first classified into three different subsets, independently of
he type of unforeseen event, but depending on their status at the
escheduling time point (RTP). These groups are:
s representation.

(i) Set of already executed tasks at the RTP associated with Evente,
which are denoted as TAE

e , and defined by expression (1).
(ii) Set of non-executed tasks at the RTP associated with Evente,

which are identified as TNE
e , and defined by expression (2).

(iii) Set of in-progress tasks at the RTP associated with Evente, which
are referred as TIP

e , whose elements are captured by expression
(3).

In all these expressions, and in the remaining of this paper, an
instance of the class Task that stands for the processing of batch i
at stage s is represented in a simplified way as Task(i,s).

ForAll (Task(i,s)|Task(i,s).actualEnd ≤ Evente.reschedtp⇒
Task(i,s) ∈TAE

e ∧ Task(i,s).status = “AlreadyExecuted”)
(1)

ForAll (Task(i,s)|Task(i,s).plannedStart ≥ Evente.reschedtp⇒
Task(i,s) ∈TNE

e ∧ Task(i,s).status = “NonExecuted”)
(2)

ForAll (Task(i,s)|(Task(i,s).actualStart ≤ Evente.reschedtp∧
Task(i,s).plannedEnd ≥ Evente.reschedtp⇒
Task(i,s) ∈TIP

e ∧ Task(i,s).status = “InProgress”)

(3)

In addition, if the type of disruptive event is the cancellation of
a particular batch instance, identified as Batchi, all its associated
tasks which have not been yet executed at the RTP, are going to be
included in the set of cancelled tasks, which is identified as TCA

e , and
has members defined by expression (4).

Exists (Evente.type = “BatchCancellation”∧
Evente.batch = Batchi),

Let BatchTaskSet ← Batchi.getTasks( )

ForAll (Task(i,s)|Task(i,s) ∈BatchTaskSet∧
(4)
Task(i,s).plannedStart ≥ Evente.reschedtp⇒
Task(i,s) ∈TCA

e ∧ Task(i,s).status = “Cancelled”)

Moreover, if one of the processing tasks of the cancelled Batchi
is actually being executed at the RTP, such task is immediately



d Chem

s
c

r
b
o
p
e
t
a
b
r
t
a

f

T

b
t
a
o

c
e

t
d
s
t
o
t
e
s

J.M. Novas, G.P. Henning / Computers an

hut down and considered as already executed. This condition is
aptured by expression (5).

(Exists (Evente.type = “BatchCancellation”∧
Evente.batch = Batchi)∧

Exists (Task(i,s)|Task(i,s).actualStart ≤ Evente.reschedtp∧
Task(i,s).plannedEnd ≥ Evente.reschedtp))⇒

Task(i,s) ∈TAE
e ∧ Task(i,s).actualEnd = Evente.reschedtp∧

Task.status = “AlreadyExecuted”

(5)

Finally, new tasks to be added to the schedule due to the occur-
ence of an Evente, corresponding to the rush arrival of a new batch,
elong to the set TNW

e . For each new batch Batchi, the number
f tasks to be included in the set TNW

e is equal to the number of
rocessing tasks defined in the recipe of the batch product (see
xpression (6) and Fig. 4). These tasks are going to be included in
he system as instances of the Task class. The same occurs with

batch that is actually being processed in a unit that suffers a
reakdown and the batch cannot continue its normal execution,
equiring to be redone. In this case, the batch’s already executed
asks, as well as its in-progress task, would need to be carried out
gain.

(6)

The sets defined in the preceding paragraphs are related in the
ollowing way:

e = {TAE
e ∪ TIP

e ∪ TNE
e }; TCA

e ⊆ TNE
e ; TNW

e /∈ Te (7)

The previous classification allows distinguishing those tasks to
e involved in the rescheduling process due to the occurrence of
he unexpected event Evente. These activities comprise the RTe set
nd are defined by expression (8). The following sections will focus
n tasks belonging to RTe.

ForAll (Task(i,s)|Task(i,s) /∈ TCA
e ∧ (Task(i,s) ∈TNE

e ∨ Task(i,s) ∈TNW
e )

⇒ Task(i,s) ∈RTe)
(8)

The remaining tasks are those not involved in the reactive pro-
ess; they comprise the NTe set and are specified by means of
xpression (9).

ForAll (Task(i,s)|Task(i,s) ∈TAE
e ∨ Task(i,s) ∈TIP

e ∨ Task(i,s) ∈TCA
e

⇒ Task(i,s) ∈NTe)
(9)

In addition to the previous classification, the Problem Charac-
erization Module uses information from the task instances and the
isrupting event in order to specify other data that are also neces-
ary to properly define the reactive scheduling problem launched at

he RTP. Specifically, the module specifies: (i) the new ready times
f the equipment items, (ii) the earliest and latest start times of
hose tasks that are associated with in-progress and new batches,
tc. This information is required to properly specify the reactive
cheduling problem, as discussed in the following section.
ical Engineering 34 (2010) 2129–2148 2137

4.2. Rescheduling action types and actions

For each task belonging to the set RTe, its associated reschedul-
ing action type or action has to be chosen in order to generate
the specification of the reactive scheduling problem to be faced
and solved. As mentioned before, when a task is linked to an
action type it does not have a specific and pre-defined local
rescheduling operation related to it, but a generic action that
prescribes a rescheduling operation category and a range of pos-
sibilities to apply it. The framework includes the following action
types:

Shift-JumpAT(〈Task〉, ls, rs). This action type represents a generic
reordering operation on the same equipment item, so the task
remains allocated to the same unit where it was originally
assigned, but the timing of its start time can change. Thus, it
allows the task to modify its start time by pushing it forward
(right-shift) or backwards (left-shift) within prescribed limits.
However, it also allows moving the task to another position in
the sequence associated with the unit schedule, thus perform-
ing a reordering in the sequence by means of a jumping move
on the same unit. Any of these “shift-jump” movements can be
done by allowing the task to place its start time at any point
within the limits established by the following time window:
[Task.plannedStart− ls; Task.plannedStart + rs], where ls stands for
the allowed left shift (reordering) interval and rs for the right shift
(reordering) one.

ReassignAT(〈Task〉, SetOfUnits). This action type stands for a
generic reallocation operation of a particular task that can be
reassigned to any of the equipment items that belong to the SetO-
fUnits. When this set includes the current equipment item, the
task can remain assigned to it if such unit is available. By def-
inition, SetOfUnits comprises all the equipment items where the
processing task can be carried out (the ones retrieved by the getEn-
abledUnits method of the class Task—see model described in Section
4), which, in addition, should be operable within the scheduling
period.

AssignAT(〈Task〉, SetOfUnits). This action type represents a
generic assignment operation of a particular task that can be allo-
cated to any of the equipment items that belongs to the SetOfUnits.
By definition, SetOfUnits comprises all the equipment items where
the processing task can be carried out and which are also operable
within the scheduling period. AssignAT will be employed to allocate
tasks that need to be redone/reprocessed or are associated with the
insertion of new batches.

In principle, ReassignAT is more disruptive than a Shift-JumpAT
action type, which is likely to render more stable schedules, since
the assigned unit is kept and the start time modification is bounded.
Both ReassignAT and AssignAT refer to allocations of tasks to units,
which can occur at any time point during the reactive scheduling
horizon. Though they are similar in essence, they are distinguished
because their task argument is different. ReassignAT has as argu-
ment a scheduled, but non-executed task, while AssignAT is applied
to a new task. In addition to the previous action types the frame-
work includes the following phantom action, which is not a generic
one:

Freeze(〈Task〉). As its name indicates this operation applies to a
particular task not allowing it to be moved to another unit, nei-
ther to modify its start time and duration; thus, the task is frozen
in its current position. This action concerns those tasks which
for different reasons must retain their current unit assignment as
well as start and end times (e.g. tasks that are about to start in a

non-disrupted unit when a unit failure occurs in another one, and
already have their associated raw materials in place to start the
manufacturing process).

It should be remarked that any task linked to an action type is
bound to a set of rescheduling alternatives independently of the sta-
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ig. 6. Start time temporal intervals corresponding to the Shift-JumpAT action type
ssociated with two tasks that belong to the RTe set, showing the possible conflict
f the tasks’ execution times.

us of the other scheduled activities and the action types assigned
o them. For instance, a Shift-JumpAT that applies to a particular
ask allocated to a given unit, which prescribes a possible range of
alues for its start time, does not take into account the fact that
here can be other tasks, assigned to the same unit, which can have
ssociated Shift-JumpATs that implicitly define start time temporal
ntervals that might be in conflict. These potential conflicts among
he temporal intervals are not considered at this stage and will be
et on when solving the CP model. Fig. 6 depicts a simple example
f a conflicting situation that could arise when defining shift-jump
ction types for two neighbour tasks. Thus, the problem specifi-
ation is aimed at providing non-tight, but flexible repair actions,
aving a broader scope than the local repair operations presented

n the literature. The goal is to give each task associated with a
escheduling action type several rescheduling alternatives, with-
ut considering at this stage, potential conflicts among the various
ask executions.

.3. Rescheduling problem specification

In order to define the specific rescheduling action type to be
ssociated with each member of set RTe when a disruptive event
vente takes place, tasks are classified as:

(i) Tasks directly affected by the event, comprising the subset
identified as RTDA

e .
(ii) Tasks indirectly affected by the event, represented by the RTIA

e
subset, and

iii) Tasks that are non-affected, which are included in the RTNA
e

subset.

This classification attempts to take into account two important
lements, the event impact and the manufacturing environment
ontext. Thus, the members of the different task subsets depend
n the event type, its intrinsic characteristics and on how tasks
re affected by it. The set memberships might also depend on the
cheduling context at the RTP. The following sections present the
ay in which the set members can be systematically identified for

ome types of events.
Directly affected tasks are associated with particular action

ypes that are mandatory and depend on the type of event (e.g.

eassignAT action types are specified for those tasks which are
irectly affected by a unit failure, and in case of a batch rush
rrival, AssignAT action types are prescribed for the tasks associ-
ted with the new batch to be inserted). On the other hand, the
ction types or actions associated with indirectly and non-affected
ical Engineering 34 (2010) 2129–2148

tasks cannot be prescribed beforehand and are specified based on
domain knowledge and the state of the manufacturing environ-
ment at the RTP. The underlying idea is to associate these tasks
with the less disruptive action types/actions so as to avoid caus-
ing unnecessary changes and to preserve the schedule stability as
much as possible. Then, for a given event, alternative scenarios
can be defined, where tasks belonging to the indirectly and non-
affected task sets can be related to different rescheduling action
types.

4.3.1. Unit breakdown (UBD) event
It takes place when a unit fails unexpectedly, becoming unavail-

able for the processing of tasks during a certain period that can
extend up to the unit recovery time or over the whole scheduling
horizon.

4.3.1.1. UBD event – directly affected tasks. When a unit breaks
down and the plant operates under an unlimited intermediate
storage policy (UIS) or a non-intermediate storage, unlimited wait
(NIS-UW) policy, the tasks that are directly affected by the event
are the following:

(i) The ones belonging to the TNE
e set which are assigned to the

broken-down unit and start later than the RTP but earlier than
the unit recovery time.

(ii) Those tasks associated with the batch that was currently being
processed in the unit at the time it failed, if such batch could
not be recovered. In this case, all the batch associated tasks are
considered to be directly affected, even the already executed
ones.

Expressions (10) and (11) allow the automatic identification of
the members of the RTDA

e set, according to the previous specifica-
tion.

(10)

(11)

When the plant operates under a non-intermediate storage,
zero-wait (NIS-ZW) policy, the tasks that comprise a batch are
highly coupled. Therefore, it is necessary to consider as members
of the RTDA

e set the following activities:

(i) All tasks that are associated with batches having an in-progress
status at the RTP and that have, at least, one task assigned to
the broken-down unit and such task is being executed at the
RTP or is planned to start after it, but before the unit recovery
time.
(ii) Tasks belonging to the TNE
e set that are assigned to the

broken-down unit and are associated with batches hav-
ing a non-executed status, and which are planned to start
later than the RTP but earlier than the unit recovery
time.
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The conditions that allow an automatic identification of these
asks are presented in expressions (12) and (13), respectively.

(12)

(13)

The tasks that are identified as directly affected, independently
f the interstage storage and operational policy, will be associated
ith a ReassignAT action type.

.3.1.2. UBD event – indirectly affected tasks. When facing a unit
reakdown event, the members of the RTIA

e set are identified after
pecifying the members of the RTDA

e set. This categorization pro-
ess also takes into account the plant operating policy. If the plant
perates under a UIS or a NIS-UW policy, the tasks that are con-
idered to be indirectly affected by the event are the ones located
ownstream in those batches having a task that was identified
s directly affected. This condition is captured by expression (14).
lternatively, if the workload of the system is high and there are

ew degrees of freedom to rearrange the agenda, the scheduler can
xpand this set by also including the tasks that are located upstream
he directly affected one (see expression (15)).

(14)

(15)
On the other hand, if the plant operates under a NIS-ZW policy,
he indirectly affected tasks are those concerning the batches that
ave a non-executed status at the RTP and have a directly affected
ask specified by means of expression (13). These indirectly affected
ical Engineering 34 (2010) 2129–2148 2139

activities are then captured by expression (16).

(16)

4.3.1.3. UBD event – non-affected tasks. Independently of the inter-
mediate storage and operation policy, this set of tasks includes the
ones that are neither directly nor indirectly affected by the unit
breakdown event, as specified by expression (17).

Exists (Evente.type = “UnitFailure”),

ForAll (Task(i,s)|Task(i,s) ∈TNE
e ∧ Task(i,s) /∈ RTDA

e ∧ Task(i,s) /∈ RTIA
e )

⇒ Task(i,s) ∈RTNA
e )

(17)

In case a UBD event is faced, different action types and actions
can be associated with tasks belonging to the RTIA

e and RTNA
e sets. As

it will be shown when solving the case studies in Section 6, they can
range from absolutely non-disrupting (Freeze), to very disruptive
ones (ReassignAT), passing through a Shift-JumpAT that can be mild.

4.3.2. Rush batch arrival (RBA) event
When an instance of this type of event occurs, it contains infor-

mation about the product to be produced and the recipe to be
applied to manufacture the required batch, as well as the batch’s
deadline. This information is used in the rescheduling problem
specification.

4.3.2.1. RBA event – directly affected tasks. Tasks needed to produce
the batch to be inserted, which are members of the TNW

e set (see
expression (6)), are considered as directly affected (see expression
(18)) and will be subject to an AssignAT action type.

Exists (Evente.type = “NewBatchArrival”),

ForAll (Task(i,s) |Task(i,s) ∈TNW
e , Task(i,s) ∈RTDA

e )
(18)

A similar approach can be followed in case the scheduler, due
to quality problems, needs to associate additional processing tasks
to a batch (see Fig. 5).

4.3.2.2. RBA event - Indirectly affected tasks. There are no indirectly
affected tasks when a new batch arrival event takes place.

4.3.2.3. RBA event - Non-affected tasks. This set of tasks includes all
the ones that were identified as non-executed yet at the time of the
event, as indicated by expression (19).

Exists (Evente.type = “NewBatchArrival”),

ForAll (Task(i,s)|Task(i,s) ∈TNE
e ⇒ Task(i,s) ∈RTNA

e )
(19)

4.3.3. Batch cancellation (BC) event
4.3.3.1. BC event – directly and indirectly affected tasks. When a BC
event occurs, there are no directly affected tasks neither indirectly

affected ones within the set of activities RTe to be considered when
tackling the resulting rescheduling problem. Since the set of tasks
associated with the cancelled batch are part of the NTe set (see
expression (9)), they will be automatically eliminated from the
problem specification.
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.3.3.2. BC event – non-affected tasks. This set of tasks includes all
he tasks that were identified as non-executed yet at the time of
he batch cancellation event, as indicated by expression (20).

Exists (Evente.type = “BatchCancellation”),

ForAll (Task(i,s) |Task(i,s) ∈TNE
e ∧ Task(i,s) /∈ TCA

e

⇒ Task(i,s) ∈RTNA
e )

(20)

.4. Alternative scenarios for indirectly-affected and non-affected
asks

Both indirectly and non-affected tasks are the ones that are
upposed to be less influenced by disrupting events. If maintain-
ng schedule stability is a goal, a large fraction of the scheduling
ecisions associated with these tasks should remain the same, or
t most experience limited modifications during the rescheduling
rocess. In consequence, tasks belonging to these categories are not
o be associated with unsettling actions or action types.

In general, it is desired not to move/reassign those non-affected
asks having a start time which is close to the rescheduling time
oint. As it was pointed out by Musier and Evans (1990), when-
ver possible, batches which are about to be processed should not
e moved to another unit or to another position in the sequence
ecause their required raw materials have already been sent. Based
n these ideas Méndez and Cerdá (2003) proposed freezing a
ortion of the schedule, without giving hints on which tasks to

mmobilize. In this contribution, we suggest as a possible scenario
o freeze those tasks that belong to the RTNA

e set and have a planned
tart time close to the rescheduling time point. Thus, as shown in
ig. 7 a freezing period FP that only applies for tasks in RTNA

e can
e defined. The challenge is to reasonably set the limits of such
eriod, which will define which are the non-affected tasks to be
rozen. The larger the FP period, the more stable the newly gener-
ted schedule becomes, but probably less effective it turns out to be
n terms of regular performance measures. In general, the length of
he FP interval depends on both, (i) the average processing time of
he tasks to be scheduled, and (ii) the ratio of this average process-
ng time to the length of the remaining portion of the scheduling
orizon. Thus, the FP length, which is problem specific, is inversely
roportional to the value of these two problem elements. In fact,
hops having tasks with large average processing time values are
ess prone to nervousness; therefore, the freezing interval does not
eed to be large. Similarly, if the above-mentioned ratio tends to
ne, there is almost no flexibility to accommodate the schedule; so,
he tasks to be frozen have to be reduced to a minimum (the length
f the freezing period should be minimized).

For tasks that are not frozen, the less stirring action type to be
pplied to them is the Shift-JumpAT one. This action type can be
pplied to tasks belonging to sets RTNA

e and RTIA
e , having planned

tart times located in the neighbourhood of the RTP (within the
P) and, more likely, within a period located a little bit beyond it,
eferred as the S-JP period (see Fig. 7). Finally, tasks in RTNA

e and
TIA

e having planned start times located further than the FP and S-JP
ntervals can be subject to different types of rescheduling actions,

ncluding more disrupting ones like ReassignAT, giving rise to a reas-
ign period RP. In consequence, both indirectly and non-affected
asks of a certain rescheduling problem, can be associated with dif-
erent rescheduling action types or actions, based on their context.
o, alternative solution scenarios can be generated for each partic-

Fig. 7. Time periods within the rescheduling horizon.
ical Engineering 34 (2010) 2129–2148

ular problem depending on the status and intrinsic characteristics
of the scheduling environment and the scheduler’s criteria. Each
scenario will be characterized by (i) the length of its associated FP
and S-JP intervals and (ii) the types of actions to be applied to those
tasks having planned start times located within these intervals. The
lengths of the FP and S-JP periods, which are problem dependent,
will be specified as a multiple of the average processing time of
all the tasks involved in the rescheduling problem. In the calcula-
tion of this overall parameter the processing time of each task is
computed as an average value of the processing times in all the
equipment items where the task can be executed.

Alternative solution scenarios can be also generated by
assigning different values to the ls and rs parameters of the Shift-
JumpAT(〈Task〉, ls, rs) action type. The maximum value that can be
assigned to the ls parameter adopted for Task(i,s) (named lsmax(i,s))
is given by expression (21), where est(i,s) stands for the earliest start
time of Task(i,s), rdu represents the release time of the unit where
such task is assigned, and RTS

e stands for the set of tasks in RTe for
which a shift-jump action type has been decided.

lsmax(i,s) = Task(i,s).plannedStart −Max (reschedtp, rdu, est(i,s));

∀ Task(i,s) ∈RTS
e, Task(i,s).assignedUnit = u

(21)

On the other hand, the maximum value that can be assigned to
the rs parameter that is adopted for Task(i,s) (named rsmax(i,s)) is
given by expression (22).

rsmax(i,s) = scheduleHorizon− Task(i,s).plannedEnd;

∀ Task(i,s) ∈RTS
e

(22)

If the schedule stability is tried to be preserved, values of ls(i,s)
and rs(i,s) lower than lsmax(i,s) and rsmax(i,s) are to be selected.
Expressions (23) and (24) provide general expressions for the
values to be assigned to these parameters, which are directly pro-
portional to the task duration.

ls(i,s) = ˛i,sTask(i,s).duration ∧ ls(i,s) ≤ lsmax(i,s);

∀ Task(i,s) ∈RTS
e

(23)

rs(i,s) = ˇi,sTask(i,s).duration ∧ rs(i,s) ≤ rsmax(i,s);

∀ Task(i,s) ∈RTS
e

(24)

Thus, the values of ls(i,s) and rs(i,s) can be adjusted by modifying
the values of the ˛(i,s) and ˇ(i,s) parameters. Assuming that all the
tasks assigned to a given unit have similar processing times, if ˛(i,s)
and ˇ(i,s) are given positive values lower than one, the task will only
be allowed to make shift movements, just sliding to the left or to
the right. As the values of ˛(i,s) and ˇ(i,s) increase over the unitary
value, the task is given more flexibility and is allowed modifying its
current sequence position and doing some “jumping” to reach a dif-
ferent one. As mentioned before, the decision of assigning greater
values to these parameters and giving more flexibility to this action
type depends on the scenario, the type of task (indirectly-affected
or non-affected), the workload of the assigned unit, etc.

5. Model generation

Once the rescheduling problem has been properly specified and
the performance measure to be used has been selected, the model
generation module is in charge of setting up the corresponding

constraint programming (CP) model. The CP approach has been
chosen because of the highly declarative nature of constraint-based
languages, the possibilities of incorporating new constraints incre-
mentally as well as developing/adopting search strategies that take
advantage of the specific characteristics of the problem at hand.
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ther advantages are the potential to detect unfeasible problem
pecifications immediately, to find initial feasible solutions quite
ast and to obtain optimal and suboptimal solutions in reduced
PU times. This last feature is especially appealing in the context
f rescheduling problems that demand immediate responses to the
ccurrence of unexpected events.

To implement the CP models, the OPL language, which is
he underlying language of the ILOG OPL Studio environment
ILOG, 2002), along with the ILOG Scheduler package (ILOG, 2000)
ave been selected. This last package employs some specific
cheduling constructs, such as (i) requires, which enforces the
ssignment of a renewable resource demanded by an activity,
rom a set of alternative resources (ii) precedes, that does not
llow tasks belonging to the same batch to overlap, (iii) activ-
tyHasSelectedResource, which acts as a predicate that evaluates
o true when a task has been assigned to a resource belonging
o a set of alternative resources, and (iv) break, which is a con-
truct that specifies a period of unavailability on a given renewable
esource. Furthermore, this ILOG environment allows implement-
ng a search strategy by employing domain knowledge. The chosen
trategy depends on the rescheduling scenario that is being tack-
ed. In the examples presented in this paper, a search strategy
ased on the equipment workload balance, which was proposed
nd assessed by Zeballos, Novas and Henning (2010), has been
dopted.

.1. Constraint programming model

In order to develop the CP model corresponding to a given
olution scenario, it is necessary to translate the actions types asso-
iated with it into constraints. The set of assignment, timing and/or
recedence constraints includes event-dependent ones, as well as
thers that are characteristic of any batch scheduling problem,
hich are referred as basic constraints.

The construction of the CP model also implies that for each avail-
ble processing unit it is necessary to establish its ready time. It is
alculated by taking the maximum value of RTP and the planned
nd of the in-progress task assigned to it, if any. In case that Evente

s associated with a unit failure, the ready time will be equal to
he unit recovery time. Similarly, for each task in RTe its release
ime needs to be calculated/estimated. For tasks having a direct
redecessor in the TAE

e set, their release time will be equal to
he rescheduling time point. For those having a direct predeces-
or in the TIP

e set, their release time will equal to the planned
nd of their predecessor task. In the case of tasks having a direct
redecessor that does not belong to sets TAE

e or TIP
e , their release

ime will be estimated as the batch release time plus the sum-
ation of the minimum processing times of their predecessors in

he batch sequence. Finally, the release time of those tasks which
re the first in the batch sequence, is equal to the batch release
ime.

.1.1. Basic constraints
Basic constraints are generated for all the tasks in the RTe set.

xpression (25) is an assignment constraint prescribing that each
rocessing task must be allocated to just one unit belonging to the
et of alternative units where it can be processed.

ask(i,s) requires U(i,s), ∀ Task(i,s) ∈RTe, ∀ i∈ I, ∀ s∈ S (25)

Constraint (26) enforces the proper sequencing of all the pro-
essing operations corresponding to consecutive stages (s and s’)

hat need to be executed on each batch i.

ask(i,s) precedes Task(i,s′) ∀ Task(i,s), Task(i′,s′) ∈RTe,

∀ i, i′ ∈ I, ∀ s, s′ ∈ S, s /= last(S), Ord(s′) = Ord(s)+ 1 (26)
ical Engineering 34 (2010) 2129–2148 2141

If the intermediate storage policy is assumed to be UIS, con-
straint (26) is enough to establish the timing of the activities
associated with a batch. However, to handle a NIS/ZW policy the
constraint (27) is to be included in the model. It enforces the end
of a processing activity required by a batch to coincide with the
beginning of the next operation (no waiting between consecutive
stages)

Task(i,s).end = Task(i,s′).start ∀ Task(i,s), Task(i′,s′) ∈RTe,

∀ i, i′ ∈ I, ∀ s, s′ ∈ S, s /= last(S), Ord(s′) = Ord(s)+ 1

(27)

Expression (28) places a lower bound on the start time of tasks
based on the ready time of the processing unit where each task is
assigned and on the release time of the task.

ActivityHasSelectedResource (Task(i,s), U(i,s), u)

⇒ Task(i,s).start > Max(rdu, rt(i,s)) ∀ Task(i,s) ∈RTe, ∀u∈U(i,s)

(28)

Expression (29) models a topological constraint, imposing that
two consecutive tasks of a certain batch are not to be assigned to
unconnected units.

ActivityHasSelectedResource(Task(i,s), U(i,s), u)⇒
not ActivityHasSelectedResource(Task(i,s′), U(i,s′), u′)

∀ Task(i,s) ∈RTe, ∀ s, s′ ∈ S, s /= last(S), Ord(s′) = Ord(s)+ 1,
∀u, u′ ∈U, u′ /∈ CUu

(29)

5.1.2. Event-dependent constraints
Constraints of this type depend on the disrupting situation being

faced and on the actions and action types adopted for the tasks
included in sets RTDA

e , RTIA
e , and RTNA

e . The association between a
task and a rescheduling action type, developed in the rescheduling
problem specification, establishes the constraints that are required
by such task to be properly rescheduled.

5.1.2.1. Shift-jump action types on tasks. Tasks belonging to sets
RTIA

e and RTNA
e for which a shift-jump action type has been decided

are included in the set RTS
e . Constraint (30) enforces these tasks

to maintain their current unit assignments and their start times
within the allowed limits, whereas constraints (31) and (32) set
the task durations, which depend on the adopted interstage policy.
Expression (31) holds for UIS and NIS-ZW, and (32) for NIS-UW. In
these expressions, u represents the unit allocated to Task(i,s) in the
active agenda (the value of Task(i,s).assignedUnit) and parameters
ls(i,s) and rs(i,s) stand for the left and right shift limits corresponding
to the Shift-JumpAT action type associated with Task(i,s).

ActivityHasSelectedResource(Task(i,s), U(i,s), u)∧
not ActivityHasSelectedResource(Task(i,s), U(i,s), u′)⇒

Task(i,s).start ≤ Task(i,s).plannedStart + rs(i,s)∧
Task(i,s).start ≥ Task(i,s).plannedStart − ls(i,s)

∀ Task(i,s) ∈RTS
e, ∀u′ ∈U(i,s), u = Task(i,s).assignedUnit, u′ /= u

(30)
ActivityHasSelectedResource(Task(i,s), U(i,s), u)⇒
Task(i,s).duration = Task(i,s).plannedDuration,

∀ Task(i,s) ∈RTS
e, ∀u∈U(i,s)

(31)
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ActivityHasSelectedResource(Task(i,s), U(i,s), u)
⇒ Task(i,s).duration ≥ pti,s,u,

∀ Task(i,s) ∈RTS
e, ∀ s∈ S, s /= last(S), ∀u∈U(i,s)

ActivityHasSelectedResource(Task(i,s), U(i,s), u)
⇒ Task(i,s).duration = pti,s,u,

∀ Task(i,s) ∈RTS
e, ∀ s∈ S, s = last(S), ∀u∈U(i,s)

(32)

here pti,s,u represents the processing time demanded by Task(i,s)
hen it is executed on Unitu.

.1.2.2. Assign and reassign action types on tasks. Tasks belonging
o sets RTDA

e , RTIA
e and RTNA

e for which an assign or reassign action
ype have been chosen are included in the set RTA

e . Constraint (33)
rescribes that each task Task(i,s) belonging to the set RTA

e , requires
eing assigned to any available equipment item which can process
uch task and is available during the rescheduling period (a unit
elonging to the set U(i,s)). Also, the constraint prescribes that the
ask duration depends on the assigned unit, since pti,s,u represents
he processing time demanded by Task(i,s) when it is executed on
nitu. It should be noted that the set U(i,s) can include the equipment

tem where Task(i,s) is already assigned.

ActivityHasSelectedResource(Task(i,s), U(i,s), u)⇒
Task(i,s).duration = pti,s,u,

∀ Task(i,s) ∈RTA
e , ∀u∈U(i,s)

(33)

In case the NIS/UW policy rules the interstage handling of mate-
ials, constraint (33) should not be included in the model. Instead,
onstraints (34) and (35) must replace it.

ActivityHasSelectedResource(Task(i,s), U(i,s), u)⇒
Task(i,s).duration ≥ pti,s,u,

∀ Task(i,s) ∈RTA
e , ∀ s∈ S, s /= last(S), ∀u∈U(i,s)

(34)

ActivityHasSelectedResource(Task(i,s), U(i,s), u)⇒
Task(i,s).duration = pti,s,u,

∀ Task(i,s) ∈RTA
e , s = last(S), ∀u∈U(i,s)

(35)

.1.2.3. Freeze action types. Tasks in RTNA
e , having a planned start

ime within the FP period that are required to maintain their unit
llocations and their current start times, are included in the set RTF

e .
hey are forced to be frozen by means of constraint (36), which
s applicable to any task, and expressions (37) or (38), depend-
ng on the adopted interstage policy. Expression (37) holds for UIS
r NIS-ZW policies, whereas (38) is applicable to NIS-UW situa-
ions. In these expressions, u represents the unit already allocated
o Task(i,s) in the agenda that was active prior to the unexpected
vent occurrence.

ActivityHasSelectedResource(Task(i,s), U(i,s), u) ∧
not ActivityHasSelectedResource(Task(i,s), U(i,s), u′)⇒
Task(i,s).start = Task(i,s).plannedStart
∀ Task(i,s) ∈RTF

e , ∀u′ ∈U(i,s), u = Task(i,s).assignedUnit, u′ /= u

(36)

ActivityHasSelectedResource(Task(i,s), U(i,s), u)⇒
Task(i,s).duration = Task(i,s).plannedDuration;
∀ Task(i,s) ∈RTS

e, ∀u∈U(i,s)

(37)

ActivityHasSelectedResource(Task(i,s), U(i,s), u)⇒
Task(i,s).duration ≥ pti,s,u,
∀ Task(i,s) ∈RTS
e, ∀ s∈ S, s /= last(S), ∀u∈U(i,s)

ActivityHasSelectedResource(Task(i,s), U(i,s), u)⇒
Task(i,s).duration = pti,s,u,

∀ Task(i,s) ∈RTS
e, ∀ s∈ S, s = last(S), ∀u∈U(i,s)

(38)
ical Engineering 34 (2010) 2129–2148

5.1.2.4. Renewable resource failure. Expression (39) specifies an
unavailability period for a unit that failed. It occurs when Evente

corresponds to a unit failure that extends from RTP to the recovery
time of the unit. The same expression can be applied to any other
critical renewable resource.

Break(u, Evente.reschedtp, Evente.unitRecoveryTime),
Evente.type = “UnitFailure”, Evente.unit = u

(39)

5.1.3. Performance measures
When addressing a rescheduling problem, as pointed out in Sec-

tion 2.3, in addition to classical performance measures used to
assess the efficiency of the agenda (e.g., makespan, tardiness, ear-
liness, etc.), stability measures associated with a smooth operation
of the plant need to be taken into account.

In this contribution, the case-studies that are presented in Sec-
tion 6 have been solved employing the minimization of Makespan
(Mk) and Total Deviation (TD) as the objective functions. When
minimizing one of these performance measures, the impact over
the other one has also been evaluated. Furthermore, other metrics,
such as the Total Completion Time (TCT), Normalized Equipment
Stability (NES) and Number of Temporal Shifted Tasks (NST) have
been calculated with the aim of having more information about the
overall quality of the newly generated schedules.

5.1.3.1. Makespan. This measure represents the maximum com-
pletion time among all the batches that participate in the
rescheduling problem. When the minimization of the Mk variable
is pursued, expression (40) has to be included in the model.

Task(i,s) precedes Mk, ∀ Task(i,s) ∈RTe, s = last(S) (40)

5.1.3.2. Total deviation. This measure quantifies the changes over
the planned start times of all the tasks included in RTe. If the mini-
mization of TD is chosen as the objective function, expression (41)
has to be included in the CP model.

TD =
∑

Task(i,s) ∈RTe

∣∣Task(i,s).start − Task(i,s).plannedStart
∣∣ (41)

5.1.3.3. Additional metrics. One of the performance measures that
allows assessing the quality of a schedule is TCT, which represents
the summation of the completion times of all the batches that par-
ticipate in the rescheduling problem (see expression (42)).

TCT =
∑

Task(i,s) ∈RTe:s=last(S)

Task(i,s).end (42)

Another regular evaluation metric that can be employed to
assess schedules when due dates are relevant is TT, which rep-
resents the total tardiness. As expression (43) prescribes, TT is
calculated as the sum of the delays in the batch completion times
with respect to their due dates.

TT =
∑

Task(i,s) ∈RTe:s=last(S)

Max
(

0, Task(i,s).end− ddi

)
(43)

where ddi stands for Batchi.dueDate. Similarly, performance mea-
sures related to earliness or just-in-time manufacture can also be
proposed and chosen by the scheduler.
In addition to the previous regular measures, schedule stability
appraisals other than TD are needed. Expression (44) introduces
NES, a normalized equipment stability measure that assumes a
value equal to one if no task has changed its originally assigned
unit and zero if all the tasks have changed their allocated
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Table 1
Data for different equipment failure cases.

Case Affected unit Rescheduling time point Recovery time

Case 1 3 45 145
Fig. 8. In-progress

quipment item.

NES = 1−
∑

Task(i,s) ∈RTe
Y(i,s)

Card(RTe)

where

Y(i,s)

⎛
⎜⎜⎜⎝

1← if ActivityHasSelectedResource (Task(i,s), U(i,s),, u) = 1∧
Task(i,s).assignedUnit /= u ∧ u′ /= u

0← if ActivityHasSelectedResource(Task(i,s), U(i,s),, u) = 1∧
Task(i,s).assignedUnit = u

⎞
⎟⎟⎟⎠

(44)

Another stability measure is defined by means of expression
45), which introduces an assessment normalized measure named
ST, which quantifies the number of tasks in RTe that have varied

heir planned start times, independently if they have changed their
riginally assigned unit or not. NST assumes a value equal to one if
o task in RTe has changed its original planned start time and zero

n case all the tasks have altered their initial times.

NST = 1−
∑

Task(i,s) ∈RTe
X(i,s)

Card(RTe)

where

X(i,s)

(
1← if Task(i,s).start /= Task(i,s).plannedStart

0← if Task(i,s).start = Task(i,s).plannedStart

) (45)

. Examples and computational results

With the aim of testing this proposal, various examples have
een solved and some of them are reported in this section. They
re based on a case-study first introduced by Castro and Grossmann

2005) as problem P10, which has been modified to enlarge it. The

ultiproduct batch plant involves 4 stages and 12 units, instead of
as in the original problem; so at each stage one of the equipment

tems is duplicated. The plant is assumed to operate under a NIS-
W interstage storage policy. During the scheduling horizon, 20
Case 2 3 120 220
Case 3 7 45 145
Case 4 7 150 250

batches (2 per each order of the P10 problem) have to be processed,
minimizing the total amount of time it takes to complete all jobs.
Fig. 8 shows the in-progress schedule that has a Makespan of 330
time units. Provided that unit failure is one of the most disrupting
events that can occur, different examples of equipment breakdown
are considered.

The various cases of equipment failure are shown in Table 1.
As seen, unit breakdowns are assumed to occur in units u3 and
u7, thus affecting stages 1 and 3, this last one being the bottle-
neck of the production environment. Besides testing the effect of a
unit failure at different stages, the examples allow investigating the
effect of a unit failure when it takes place at different time points
of the scheduling horizon. In order to make a fair comparison it
will be assumed that in all cases it takes 100 time units to have the
equipment item repaired and operable again.

Following the proposed solution methodology, tasks belonging
to each case study were automatically classified according to the
proposal presented in Section 4.1 that takes into account the status
of the plant, as well as the impact of the unexpected event. Thus,
sets RTDA

e , RTIA
e and RTNA

e were automatically identified for all the
case studies. Table 2 shows the number of tasks comprising each
of these sets for the various examples. In all the situations it has
been assumed that the batch that is being manufactured when the
unit breakdown occurs has to be redone. Fig. 9 depicts the tasks
comprising each of the sets for Case 3, showing that batch 17 is the

one that has to be manufactured again.

Having done this task classification, several solution scenar-
ios for the equipment breakdown event can be proposed based
on the adoption of different action types for tasks that are non-
affected or indirectly affected by the disruptive event. Therefore,
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Table 2
Classification of tasks for each case study.

Sets Case study

1 2 3 4

RTDA
e 7 7 9 9

RTIA 9 9 3 3

e
b
m
R
t
b
t
i
T
t
t
s
a
S
l

Deviation (TD) was selected as the measure of schedule instability

T
D

S
S

e

RTNA
e 57 35 64 30

RTe 73 51 76 42

ach one of the four cases studies described in Tables 1 and 2 will
e addressed under six different solution scenarios. Table 3 sum-
arizes the rescheduling action types associated with sets RTDA

e ,
TIA

e and RTNA
e for the six scenarios. Since the unexpected event

ype is a unit failure, all the tasks that were directly affected will
e reassigned. In the case of the scenarios 5 and 6 tasks belonging
o the RTNA

e set were associated with different action types accord-
ng to their location with respect to the rescheduling time point.
herefore, for these two scenarios the position of the non-affected
asks in relation to the FP and S-JP periods determined the action
ype to be applied to them, being frozen the ones having a planned

tart time located within the FP period and being associated with
Shift-JumpAT those with a planned start time situated within the

-JP period. Tasks having a planned start time located beyond this
ast period were allowed to be reassigned. For the examples asso-

Fig. 9. Directly, indirectly and non-a

able 3
ifferent solution scenarios for a unit failure event.

Alternative scenarios Tasks in RTDA
t

Scenario 1 ReassignAT
Scenario 2 ReassignAT
Scenario 3 ReassignAT
Scenario 4 ReassignAT
Scenario 5 & Scenario 6 ReassignAT

cenario 5: Freeze factor = 1; Shift-Jumpt factor = 3.
cenario 6: Freeze factor = 2; Shift-Jumpt factor = 6
ical Engineering 34 (2010) 2129–2148

ciated with scenarios 5 and 6, the length of FP period was adopted
to be equal to one and two times (Freeze factor equal to 1 and 2)
the average processing time of the tasks involved in the problem,
respectively. Similarly, the length of the S-JP period was assumed
to be equal to three and six times (Shift-Jump factor equal to 3 and
6) this average processing time.

The four case-studies were tackled under the six scenarios
described in Table 3 and each problem instance was solved with
two objective functions. Tasks for which a Shift-JumpAT action type
was chosen were associated with lsmax(i,s) and ˇi,s = 5 values, with
exception of those in which this ˇi,s value led to infeasibilities. In
such cases, bigger values of ˇi,s had to be adopted. The CP models
corresponding to all the combinations of case studies and scenarios
were automatically generated based on their specifications. Instead
of the ILOG default search process (Depth First Search, DFS) a search
strategy that pursues a balance of the equipment workload was
implemented and used to solve all the problem instances, since it
was proved (Zeballos et al., 2010) that in most of the examples such
strategy outperforms DFS. Examples were solved with a PC having a
Pentium Dual Core 3.4 GHz processor with 2 GB of RAM. Makespan
(Mk) was chosen as the regular performance to optimize and Total
to be minimized.
Table 4 presents the results reached when minimizing

Makespan. In turn, Table 5 shows a comparison of the best solutions

ffected tasks for Case Study 3.

Tasks in RTIA
t Tasks in RTNA

t

Shift-JumpAT FreezeAT
Shift-JumpAT Shift-JumpAT
ReassignAT Shift-JumpAT
ReassignAT ReassignAT
ReassignAT Based on FP, S-JP & RP periods
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Table 4
Solutions reached when minimizing Makespan. NIS-ZW policy and ˇi,s = 5.

Problem Optimal/best solution in 300 s Other performance measures

Mk CPU timea TD TCT NST NES

Case 1
Scen1 397b <1 2855 5134 0.79 0.94
Scen2 356 <1 4264 4734 0.13 0.96
Scen3 355c 111.9 4531 4728 0.13 0.94
Scen4 371c <1 3984 5025 0.24 0.92
Scen5 375c 177.7 2611 4931 0.29 0.94
Scen6 366c 240.1 2109 4945 0.40 0.87

Case 2
Scen1 413 <1 1735 4367 0.69 0.97
Scen2 358 <1 1675 4122 0.38 0.95
Scen3 353 42.9 1886 4098 0.22 0.89
Scen4 353c 46.5 2190 4128 0.22 0.71
Scen5 361c 2.4 1732 4233 0.53 0.79
Scen6 361 3.3 1162 4196 0.46 0.87

Case 3
Scen1 361d <1 2730 5090 0.85 0.91
Scen2 364 4.5 3866 5058 0.11 0.91
Scen3 359 6.6 3294 5100 0.64 0.93
Scen4 382c 267.3 5216 5247 0.11 0.85
Scen5 359c 124.8 2701 5084 0.64 0.93
Scen6 360 8.5 2674 5089 0.79 0.93

Case 4
Scen1 374 <1 1413 3779 0.72 0.81
Scen2 366 <1 1289 3750 0.62 0.81
Scen3 366 2.8 1380 3741 0.43 0.89
Scen4 360c 37.6 1913 3706 0.24 0.81
Scen5 364 15.5 1233 3737 0.43 0.89
Scen6 366 <1 1431 3752 0.53 0.84

a Time required to reach optimal solutions or to instantiate suboptimal ones.
b ˇi,s = 8. Lower values of ˇi,s result in unfeasible solutions.
c Suboptimal solution.
d ˇi,s = 13. Lower values of ˇi,s result in unfeasible solutions.

Table 5
Trade-offs between performance measures. NIS-ZW policy and ˇi,s = 5. Minimization of Makespan and Total Deviation.

Problem Objective function Performance measures values CPU timea

Mk TD TCT NST NES

Case 1—Scen3
Mk 355b 4531 4728 0.13 0.94 111.9
TD 407 2271b 4988 0.50 0.99 46.3

Case 2—Scen3
Mk 353 1886 4098 0.22 0.89 42.9
TD 381 1201b 4218 0.46 0.95 31.3

Case 3—Scen3
Mk 359 3294 5100 0.64 0.93 6.2
TD 404 2640b 5088 0.43 0.97 252.7
Mk 360b 1913 3706 0.24 0.81 37.6

381b

o
m
a
l
s
i
a

T
T

*

Case 4—Scen4 TD 399 1

a Time required to reach optimal Solutions or to instantiate suboptimal ones.
b Suboptimal solution.

btained for this performance measure with the ones reached when
inimizing total deviation (TD). Due to the fact that quick answers
re mandatory when facing rescheduling problems, 300 s was the
imit imposed to obtain solutions. In order to allow a comprehen-
ive comparison of the various solutions obtained for each problem
nstance, other performance indexes were calculated. The other
ssessment measures were the Total Completion Time (TCT), as well

able 6
rade-offs between performance measures. NIS-UW policy and ˇi,s = 5. Minimization of M

Problem Objective function Performance measures va

Mk TD

Case 1—Scen3
Mk 347 5547
TD 435 2687

Case 3—Scen3
Mk 359 3639
TD 435 3715

a Time required to reach optimal solutions or to instantiate suboptimal ones
Suboptimal solution
3791 0.62 0.89 106.6

as the normalized stability measures NST and NES, introduced by
expressions (44) and (45).
Table 4 shows that optimal solutions were reached for 15 out
of 24 problem instances in very low CPU times. For this produc-
tion environment the number of suboptimal solutions diminished
to just one when the number of batches was reduced to 10.
Table 4 also shows that the computational effort is greater when

akespan and Total Deviation.

lues CPU timea

TCT NST NES

4713 0.13 0.98 103.3
5091 0.62 1.00 <1
4986 0.16 0.94 3.1
5340 0.47 0.98 188.7
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he event takes place at the beginning of the scheduling hori-
on. In addition, results indicate that the earlier the failure takes

lace, the more degrees of freedom the problem has and the
ider the variety of solutions that can be obtained with the

arious scenarios. Therefore, when the equipment breakdown
ccurs at the beginning of the scheduling horizon it is worth
o solve all the proposed scenarios or even additional ones and

ig. 10. Case Study 3—Scenario 5. (a) Problem specification showing the task classificatio
inimizing Makespan.
ical Engineering 34 (2010) 2129–2148

let the scheduler select the best solution according to his/her
preferences.
An analysis of the results presented in Tables 4 and 5 confirms
what can be intuitively predicted. In general, solutions correspond-
ing to the minimization of regular performance measures, like
Makespan, do not exhibit good stability indexes. On the other
hand, when TD is minimized, the values of Mk noticeably degrade.

n and the associated action types. (b) Gantt diagram of the solution obtained when
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Table 7
Case study 1—Scenario 2, NIS-ZW policy, Makespan minimization. Effect of ˇ(i,s) on
the trade-off between Mk and TD.

ˇi,s Mk TD TCT NST NES

1 Unfeasible solution
2 367 1875 4859 0.24 0.96
3 363 2591 4846 0.24 0.96
4 356 4216 4722 0.13 0.96
5 356 4264 4734 0.13 0.96
6 356 4280 4738 0.13 0.96
J.M. Novas, G.P. Henning / Computers an

he same behavior was observed when different interstage stor-
ge policies were adopted, as shown in Table 6, which compares
olutions obtained minimizing Makespan and TD when the plant
perates under the NIS-UW policy.

Table 4 reveals that, in almost all cases, the worst values of
akespan were associated with the solutions corresponding to Sce-

ario 1, under which the non-affected tasks are frozen. Naturally,
hese solutions try to preserve the structure of the original sched-
le and exhibit good values of NST and NES. On the other hand,
hen more flexibility is given to the rescheduling problem, lower
k values are obtained. In fact, Scenarios 3 and 4, which allow
ore tasks to be reassigned, exhibit better values of Makespan,
hich are attained at the expense of low values of NST and NES.
oreover, it is worth to remark that solutions corresponding to

cenarios 5 and 6 exhibit a good compromise between Makespan
nd the stability indexes. Fig. 10a presents a Gantt diagram that
raphically shows the classification of tasks and action types to be
pplied to the example corresponding to Case Study 3—Scenario
. In turn, Fig. 10b portrays the Gantt diagram obtained after solv-

ng the resulting rescheduling problem, with the minimization of
akespan as the objective function.
A comparative analysis of Fig. 10a and b shows that out of the

6 tasks that were allowed to be reassigned, only 6 were actu-
lly relocated in other equipment items. The other 40 were either
hifted or frozen. In other words, most of the tasks that could be
eassigned remained in their original units and some even did
ot move. Similarly, many tasks that were associated with a Shift-

umpAT, were not modified at all. In fact, the solution depicted in
ig. 10b shows that very few changes took place in the schedule.
n consequence, the stability indexes associated with this solution
TD = 1732, NST = 0.53, NES = 0.79) are reasonably good. It should
e remarked that regardless of these satisfactory stability proper-
ies, the solution exhibits a reasonable Makespan value of 361 time
nits, which is just 8 units higher that the optimal and suboptimal
alues obtained for Scenarios 3 and 4, in which tasks are given more
reedom to be reassigned.

The solution of a wide variety of examples has shown us that
olution strategies similar to the ones of scenarios 5 and 6 represent
natural way of taking into account stability aspects along with

he optimization of regular performance measures, which other-
ise could be quite difficult to include in a multiobjective function.

n fact, the various metrics usually render values that may differ in
everal orders of magnitude. Besides, they are inherently difficult
o normalize and, thus, hard to combine. For these reasons, the idea
f considering different time periods along the scheduling horizon,
nd selecting the task-action types according to their memberships
o those periods, is a natural way for dealing with stability while
ptimizing any regular performance measure. Since solutions are
btained in low CPU times, several scenarios corresponding to dif-
erent values of FP and S-JP, can be solved for a particular problem
nstance, giving the scheduler various alternatives to choose his/her
genda.

Alternative settings can also be generated for Scenarios 1, 2, and
, which have associated Shift-JumpAT action types, by varying the
alues of the ˛(i,s) and ˇ(i,s) parameters, and thus the values of ls(i,s)
nd rs(i,s). Problem specifications in which ls(i,s) and rs(i,s) are given
alues considerably lower than lsmax(i,s) and rsmax(i,s), will bound
he task movements and generate more stable solutions. However,
f the values are too small, such a specification may lead to an
nfeasible condition having no solution. This situation occurred for
cenario 1 of Cases 1 and 3 (see Table 4), in which the value of ˇ(i,s)

ad to be increased to reach feasible solutions. To assess the effect of
hese parameter values on the characteristics of the obtained solu-
ion, the results presented in Table 7 can be analyzed. This table
hows solutions obtained for Case study 1—Scenario 2 (Tasks in
TIA

e and RTNA
e are associated with Shift-JumpAT action types), when
7 356 3735 4748 0.24 0.96
8 355 4196 4721 0.18 0.96
9 355 4196 4721 0.18 0.96

minimizing Makespan. In these problem instances, for all the tasks
in RTIA

e and RTNA
e , ls(i,s) was set equal to lsmax(i,s). In turn, rs(i,s) was

specified according to expression (24), with different values given
to ˇ(i,s). As seen in the first row, a very low value of ˇ(i,s) led to an
unfeasible problem. However, as more flexibility was given to the
possible task movements, solutions having better Makespan val-
ues were reached and the trade-off between Mk and TD was made
explicit.

By assigning distinct values to the ˛(i,s) and ˇ(i,s) parameters,
solutions exhibiting different trade-offs between regular perfor-
mance measures and stability ones can be obtained. However, it is
not straight forward to fix these values to obtain solutions properly
balancing these different objectives. In cases where the scheduler
does not have enough knowledge to fix these parameter values,
and provided solutions are reached with almost no computational
effort, various alternative repaired schedules can be obtained in
a very short time by iteratively modifying the values of ˛(i,s) and
ˇ(i,s). Then, the scheduler can examine the solutions and choose
his/her preferred one. A similar approach can be followed if a solu-
tion approach based on the definition of several time periods is
adopted. In case the scheduler does not have enough know-how to
fix the length of the FP and S-JP periods, several alternative solu-
tions can be quickly generated by iteratively modifying the length
of these periods.

7. Conclusions and future work

This contribution introduced a support framework, aimed at
addressing the repair-based reactive scheduling problem of batch
plants. This framework has been envisioned to operate under an
event-driven rescheduling policy. It is based on a hybrid represen-
tation, which combines an explicit object-oriented domain model
and a constraint programming (CP) approach.

The framework is able to capture the status of the in-progress
schedule, and to typify the unexpected event in order to character-
ize its context and impact. This allows making a proper specification
of the rescheduling problem to be faced. Tasks to be rearranged are
recognized and automatically classified into different categories.
Then, the set of the most suitable rescheduling action types (e.g.
shift-jump, reassign, freeze, etc.) is specified for them. Since a given
specification many lead to several solutions, the second stage of
the approach relies on a CP model to address the problem just
defined. To create such model, action types are automatically trans-
formed into constraints. Provided that good quality solutions can
be reached in very low CPU times, alternative solution scenarios
focusing on stability and regular performance measures can be
posed by the scheduler for each problem. In this way, the scheduler
can analyze the possible rescheduling solutions developed with the

framework and select the most suitable one for the problem being
faced.

The proposed solution methodology attempts to get together
the benefits of a repair-based method (limited schedule disrup-
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ion and low computational requirements), with the advantages a
omplete rescheduling approach (non-myopic, overall view of the
escheduling system). The current implementation of the proposal
s oriented towards multiproduct stage batch plants, operating
nder a batch-based approach, and with UIS, NIS/UW, NIS/ZW

nterstage storage and operational policies. It is limited to a set
f unforeseen events (unit failure and performance modification,
atch cancellation/modification/new arrival, inclusion of addi-
ional tasks). However, the underlying rationale of the system
ould allow extending it in the future to consider multipurpose

atch plants, other interstage and operational policies and a wider
ange of disruptive events (e.g. modification of non-renewable
esources availability).

Another future work is concerned with determining the need for
escheduling. Disrupting events can cause significant disturbances,
ild disruptions, or just have a negligible impact, requiring minor

djustments of task timings. In its current version, the framework
ssumes that the event triggering the rescheduling process causes a
ajor disturbance, and can only assist in the evaluation of the event

mpact by checking if the schedule became unfeasible or not. How-
ver, a much clever assistance is necessary. Unfortunately, this issue
as not been addressed in the literature yet and we plan to tackle

t in the future. Having an explicit representation of the production
nvironment, the in-progress schedule and the event, we have the
oundations to develop intelligent capabilities, able to assess the
vent impact and determine the associated response accordingly.
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